Sample records for incomplete hippocampal inversion

  1. Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects.

    PubMed

    Cury, Claire; Toro, Roberto; Cohen, Fanny; Fischer, Clara; Mhaya, Amel; Samper-González, Jorge; Hasboun, Dominique; Mangin, Jean-François; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Buechel, Christian; Cattrell, Anna; Conrod, Patricia; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lemaitre, Hervé; Martinot, Jean-Luc; Nees, Frauke; Paillère Martinot, Marie-Laure; Orfanos, Dimitri P; Paus, Tomas; Poustka, Luise; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Frouin, Vincent; Schumann, Gunter; Glaunès, Joan A; Colliot, Olivier

    2015-01-01

    The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ(2)-test, p < 10(-28)). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe.

  2. Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects

    PubMed Central

    Cury, Claire; Toro, Roberto; Cohen, Fanny; Fischer, Clara; Mhaya, Amel; Samper-González, Jorge; Hasboun, Dominique; Mangin, Jean-François; Banaschewski, Tobias; Bokde, Arun L. W.; Bromberg, Uli; Buechel, Christian; Cattrell, Anna; Conrod, Patricia; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lemaitre, Hervé; Martinot, Jean-Luc; Nees, Frauke; Paillère Martinot, Marie-Laure; Orfanos, Dimitri P.; Paus, Tomas; Poustka, Luise; Smolka, Michael N.; Walter, Henrik; Whelan, Robert; Frouin, Vincent; Schumann, Gunter; Glaunès, Joan A.; Colliot, Olivier

    2015-01-01

    The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe. PMID:26733822

  3. Incomplete Sparse Approximate Inverses for Parallel Preconditioning

    DOE PAGES

    Anzt, Hartwig; Huckle, Thomas K.; Bräckle, Jürgen; ...

    2017-10-28

    In this study, we propose a new preconditioning method that can be seen as a generalization of block-Jacobi methods, or as a simplification of the sparse approximate inverse (SAI) preconditioners. The “Incomplete Sparse Approximate Inverses” (ISAI) is in particular efficient in the solution of sparse triangular linear systems of equations. Those arise, for example, in the context of incomplete factorization preconditioning. ISAI preconditioners can be generated via an algorithm providing fine-grained parallelism, which makes them attractive for hardware with a high concurrency level. Finally, in a study covering a large number of matrices, we identify the ISAI preconditioner as anmore » attractive alternative to exact triangular solves in the context of incomplete factorization preconditioning.« less

  4. The incomplete inverse and its applications to the linear least squares problem

    NASA Technical Reports Server (NTRS)

    Morduch, G. E.

    1977-01-01

    A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.

  5. Adiposity is inversely associated with hippocampal volume in African Americans and European Americans with diabetes.

    PubMed

    Hsu, Fang-Chi; Yuan, Mingxia; Bowden, Donald W; Xu, Jianzhao; Smith, S Carrie; Wagenknecht, Lynne E; Langefeld, Carl D; Divers, Jasmin; Register, Thomas C; Carr, J Jeffrey; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Freedman, Barry I

    To assess associations between body mass index (BMI), waist circumference (WC), and computed tomography-determined volumes of pericardial, visceral, and subcutaneous adipose tissue with magnetic resonance imaging-(MRI) based cerebral structure and cognitive performance in individuals with type 2 diabetes (T2D). This study was performed in 348 African Americans (AAs) and 256 European Americans (EAs) with T2D. Associations between adiposity measures with cerebral volumes of white matter (WMV), gray matter (GMV), white matter lesions, hippocampal GMV, and hippocampal WMV, cognitive performance and depression were examined using marginal models incorporating generalized estimating equations. All models were adjusted for age, sex, education, smoking, HbA1c, hypertension, statins, cardiovascular disease, MRI scanner (MRI outcomes only), and time between scans; some neuroimaging measures were additionally adjusted for intracranial volume. Participants were 59.9% female with mean (SD) age 57.7(9.3)years, diabetes duration 9.6(6.8)years, and HbA1c 7.8(1.9)%. In AAs, inverse associations were detected between hippocampal GMV and both BMI (β [95% CI]-0.18 [-0.30, -0.07], P=0.0018) and WC (-0.23 [-0.35, -0.12], P=0.0001). In the full bi-ethnic sample, inverse associations were detected between hippocampal WMV and WC (P≤0.0001). Positive relationships were observed between BMI (P=0.0007) and WC (P<0.0001) with depression in EAs. In patients with T2D, adiposity is inversely associated with hippocampal gray and white matter volumes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fluid-attenuated inversion recovery: correlations of hippocampal cell densities with signal abnormalities.

    PubMed

    Diehl, B; Najm, I; Mohamed, A; Wyllie, E; Babb, T; Ying, Z; Hilbig, A; Bingaman, W; Lüders, H O; Ruggieri, P

    2001-09-25

    Hippocampal sclerosis (HS) is characterized by hippocampal atrophy and increased signal on T2-weighted images and on fluid-attenuated inversion recovery (FLAIR) images. To quantitate cell loss and compare it with signal abnormalities on FLAIR images. Thirty-one patients with temporal lobe resection, pathologically proven HS, and Engel class I and II outcome were included: 20 with HS only and 11 with HS associated with pathologically proven cortical dysplasia (dual pathology). The signal intensity on FLAIR was rated as present or absent in the hippocampus and correlated with the neuronal losses in the hippocampus. FLAIR signal increases were present in 77% (24/31) of all patients studied. In patients with isolated HS, 90% (18/20) had ipsilateral signal increases, but in patients with dual pathology, only 55% (6/11; p < 0.02) showed FLAIR signal increase. Hippocampal cell losses were significantly higher in the isolated HS group. The average cell loss in patients with FLAIR signal abnormalities was 64.8 +/- 8.0% as compared with only 32.7 +/- 5.1% in patients with no FLAIR signal abnormalities. There was a significant positive correlation between the presence of signal abnormality and average hippocampal cell loss in both pathologic groups. Ipsilateral FLAIR signal abnormalities occur in the majority of patients with isolated HS but are less frequent in those with dual pathology. The presence of increased FLAIR signal is correlated with higher hippocampal cell loss.

  7. Multiple hippocampal transections for intractable hippocampal epilepsy: Seizure outcome.

    PubMed

    Koubeissi, Mohamad Z; Kahriman, Emine; Fastenau, Philip; Bailey, Christopher; Syed, Tanvir; Amina, Shahram; Miller, Jonathan; Munyon, Charles; Tanner, Adriana; Karanec, Kristina; Tuxhorn, Ingrid; Lüders, Hans

    2016-05-01

    The purpose of this study was to evaluate the seizure outcomes after transverse multiple hippocampal transections (MHTs) in 13 patients with intractable TLE. Thirteen patients with normal memory scores, including 8 with nonlesional hippocampi on MRI, had temporal lobe epilepsy (TLE) necessitating depth electrode implantation. After confirming hippocampal seizure onset, they underwent MHT. Intraoperative monitoring was done with 5-6 hippocampal electrodes spaced at approximately 1-cm intervals and spike counting for 5-8min before each cut. The number of transections ranged between 4 and 7. Neuropsychological assessment was completed preoperatively and postoperatively for all patients and will be reported separately. Duration of epilepsy ranged between 5 and 55years. There were no complications. Intraoperatively, MHT resulted in marked spike reduction (p=0.003, paired t-test). Ten patients (77%) are seizure-free (average follow-up was 33months, range 20-65months) without medication changes. One of the 3 patients with persistent seizures had an MRI revealing incomplete transections, another had an additional neocortical seizure focus (as suggested by pure aphasic seizures), and the third had only 2 seizures in 4years, one of which occurred during antiseizure medication withdrawal. Verbal and visual memory outcomes will be reported separately. Right and left hippocampal volumes were not different preoperatively (n=12, p=0.64, Wilcoxon signed-rank test), but the transected hippocampal volume decreased postoperatively (p=0.0173). Multiple hippocampal transections provide an effective intervention and a safe alternative to temporal lobectomy in patients with hippocampal epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight.

    PubMed

    Coplan, Jeremy D; Fathy, Hassan M; Abdallah, Chadi G; Ragab, Sherif A; Kral, John G; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2014-01-01

    We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis - a form of neuroplasticity - and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging ((1)H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted.

  9. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight☆

    PubMed Central

    Coplan, Jeremy D.; Fathy, Hassan M.; Abdallah, Chadi G.; Ragab, Sherif A.; Kral, John G.; Mao, Xiangling; Shungu, Dikoma C.; Mathew, Sanjay J.

    2014-01-01

    Objective We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis – a form of neuroplasticity – and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). Methods We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging (1H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Results Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Conclusion Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted. PMID:24501701

  10. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults.

    PubMed

    Kleemeyer, Maike Margarethe; Kühn, Simone; Prindle, John; Bodammer, Nils Christian; Brechtel, Lars; Garthe, Alexander; Kempermann, Gerd; Schaefer, Sabine; Lindenberger, Ulman

    2016-05-01

    This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue density; hence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), and more positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline

    DOE PAGES

    Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.; ...

    2017-02-08

    The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less

  12. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leal, Stephanie L.; Landau, Susan M.; Bell, Rachel K.

    The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer’s disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baselinemore » was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.« less

  13. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    PubMed

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  14. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  15. Inhibited Temperament and Hippocampal Volume in Offspring of Parents with Bipolar Disorder.

    PubMed

    Kim, Eunjoo; Garrett, Amy; Boucher, Spencer; Park, Min-Hyeon; Howe, Meghan; Sanders, Erica; Kelley, Ryan G; Reiss, Allan L; Chang, Kiki D; Singh, Manpreet K

    2017-04-01

    Prior studies have suggested that inhibited temperament may be associated with an increased risk for developing anxiety or mood disorder, including bipolar disorder. However, the neurobiological basis for this increased risk is unknown. The aim of this study was to examine temperament in symptomatic and asymptomatic child offspring of parents with bipolar disorder (OBD) and to investigate whether inhibited temperament is associated with aberrant hippocampal volumes compared with healthy control (HC) youth. The OBD group consisted of 45 youth, 24 of whom had current psychiatric symptoms (OBD + s) and 21 without any psychiatric symptoms (OBD - s), and were compared with 24 HC youth. Temperament characteristics were measured by using the Revised Dimensions of Temperament Survey. Magnetic resonance imaging was used to measure hippocampal volumes. The association between temperament and hippocampal volumes was tested by using multiple regression analysis. Compared with the OBD - s group, the OBD + s group had significantly more inhibited temperament traits, less flexibility, more negative mood, and less regular rhythm in their daily routines. In contrast, the OBD - s group was more likely to approach novel situations compared with OBD + s or HC groups. Within the OBD + s group, a more inhibited temperament was associated with smaller right hippocampal volumes. In this study, symptomatic OBD were characterized by an inhibited temperament that was inversely correlated with hippocampal volume. Additional longitudinal studies are needed to determine whether inverse correlations between hippocampal volume and inhibited temperament represent early markers of risk for later developing bipolar disorder.

  16. Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes.

    PubMed

    Kreilkamp, B A K; Weber, B; Elkommos, S B; Richardson, M P; Keller, S S

    2018-06-01

    To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1-weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus-amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome. © 2018 The Authors. Acta Neurologica Scandinavica Published by John Wiley & Sons Ltd.

  17. Sonographic and MR features of puerperal uterine inversion.

    PubMed

    Thakur, Shruti; Sharma, Sanjiv; Jhobta, Anupam; Aggarwal, Neeti; Thakur, Charu S

    2014-06-01

    Puerperal uterine inversion is a rare and potentially life-threatening complication of a mismanaged third stage of labour. Early diagnosis is mandatory for proper management of the patient. Complete uterine inversion is a clinical diagnosis. However, incomplete uterine inversion is difficult to identify and warrants further workup. Sonographic evaluation, although a bedside procedure, may be confusing. The conspicuity of findings is much greater on MR examination than on ultrasound. Only a few diagnostic imaging findings in uterine inversion have been described in previous reports. We present the case of a 26-year-old woman who had a full-term vaginal delivery and presented after 20 days with acute urinary retention and mild vaginal bleeding. She was diagnosed as a case of neglected subacute incomplete uterine inversion. Both greyscale and Doppler sonographic and MR features of the case are described with an emphasis on better delineation of uterine and adnexal anatomy on MR imaging.

  18. Statistical methods for incomplete data: Some results on model misspecification.

    PubMed

    McIsaac, Michael; Cook, R J

    2017-02-01

    Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.

  19. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation.

    PubMed

    Reiter, Sam; Liaw, Hua-Peng; Yamawaki, Tracy M; Naumann, Robert K; Laurent, Gilles

    2017-01-01

    Our ability to navigate through the world depends on the function of the hippocampus. This old cortical structure plays a critical role in spatial navigation in mammals and in a variety of processes, including declarative and episodic memory and social behavior. Intense research has revealed much about hippocampal anatomy, physiology, and computation; yet, even intensely studied phenomena such as the shaping of place cell activity or the function of hippocampal firing patterns during sleep remain incompletely understood. Interestingly, while the hippocampus may be a 'higher order' area linked to a complex cortical hierarchy in mammals, it is an old cortical structure in evolutionary terms. The reptilian cortex, structurally much simpler than the mammalian cortex and hippocampus, therefore presents a good alternative model for exploring hippocampal function. Here, we trace common patterns in the evolution of the hippocampus of reptiles and mammals and ask which parts can be profitably compared to understand functional principles. In addition, we describe a selection of the highly diverse repertoire of reptilian behaviors to illustrate the value of a comparative approach towards understanding hippocampal function. © 2017 S. Karger AG, Basel.

  20. Hippocampal volume and memory performance in children with perinatal stroke.

    PubMed

    Gold, Jeffrey J; Trauner, Doris A

    2014-01-01

    Pediatric neurologists and neonatologists often are asked to predict cognitive outcome after perinatal brain injury (including likely memory and learning outcomes). However, relatively few data exist on how accurate predictions can be made. Furthermore, although the consequences of brain injury on hippocampal volume and memory performance have been studied extensively in adults, little work has been done in children. We measured the volume of the hippocampus in 27 children with perinatal stroke and 19 controls, and measured their performance on standardized verbal and non-verbal memory tests. We discovered the following: (1) As a group, children with perinatal stroke had smaller left and right hippocampi compared with control children. (2) Individually, children with perinatal stroke demonstrated 1 of 3 findings: no hippocampal loss, unilateral hippocampal loss, or bilateral hippocampal volume loss compared with control children. (3) Hippocampal volume inversely correlated with memory test performance in the perinatal stroke group, with smaller left and right hippocampal volumes related to poorer verbal and non-verbal memory test performance, respectively. (4) Seizures played a significant role in determining memory deficit and extent of hippocampal volume reduction in patients with perinatal stroke. These findings support the view that, in the developing brain, the left and right hippocampi preferentially support verbal and nonverbal memory respectively, a consistent finding in the adult literature but a subject of debate in the pediatric literature. This is the first work to report that children with focal brain injury incurred from perinatal stroke have volume reduction in the hippocampus and impairments in certain aspects of declarative memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Acute Hippocampal Slice Preparation and Hippocampal Slice Cultures

    PubMed Central

    Lein, Pamela J.; Barnhart, Christopher D.; Pessah, Isaac N.

    2012-01-01

    A major advantage of hippocampal slice preparations is that the cytoarchitecture and synaptic circuits of the hippocampus are largely retained. In neurotoxicology research, organotypic hippocampal slices have mostly been used as acute ex vivo preparations for investigating the effects of neurotoxic chemicals on synaptic function. More recently, hippocampal slice cultures, which can be maintained for several weeks to several months in vitro, have been employed to study how neurotoxic chemicals influence the structural and functional plasticity in hippocampal neurons. This chapter provides protocols for preparing hippocampal slices to be used acutely for electrophysiological measurements using glass microelectrodes or microelectrode arrays or to be cultured for morphometric assessments of individual neurons labeled using biolistics. PMID:21815062

  2. Hippocampal BOLD response during category learning predicts subsequent performance on transfer generalization.

    PubMed

    Fera, Francesco; Passamonti, Luca; Herzallah, Mohammad M; Myers, Catherine E; Veltri, Pierangelo; Morganti, Giuseppina; Quattrone, Aldo; Gluck, Mark A

    2014-07-01

    To test a prediction of our previous computational model of cortico-hippocampal interaction (Gluck and Myers [1993, 2001]) for characterizing individual differences in category learning, we studied young healthy subjects using an fMRI-adapted category-learning task that has two phases, an initial phase in which associations are learned through trial-and-error feedback followed by a generalization phase in which previously learned rules can be applied to novel associations (Myers et al. [2003]). As expected by our model, we found a negative correlation between learning-related hippocampal responses and accuracy during transfer, demonstrating that hippocampal adaptation during learning is associated with better behavioral scores during transfer generalization. In addition, we found an inverse relationship between Blood Oxygenation Level Dependent (BOLD) activity in the striatum and that in the hippocampal formation and the orbitofrontal cortex during the initial learning phase. Conversely, activity in the dorsolateral prefrontal cortex, orbitofrontal cortex and parietal lobes dominated over that of the hippocampal formation during the generalization phase. These findings provide evidence in support of theories of the neural substrates of category learning which argue that the hippocampal region plays a critical role during learning for appropriately encoding and representing newly learned information so that that this learning can be successfully applied and generalized to subsequent novel task demands. Copyright © 2013 Wiley Periodicals, Inc.

  3. Dehydroepiandrosterone impacts working memory by shaping cortico-hippocampal structural covariance during development.

    PubMed

    Nguyen, Tuong-Vi; Wu, Mia; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Campbell, Benjamin C; Booij, Linda; Herba, Catherine; Monnier, Patricia; Ducharme, Simon; McCracken, James T

    2017-12-01

    Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    PubMed

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes.

    PubMed

    Singh, Rashmi; Meier, Timothy B; Kuplicki, Rayus; Savitz, Jonathan; Mukai, Ikuko; Cavanagh, LaMont; Allen, Thomas; Teague, T Kent; Nerio, Christopher; Polanski, David; Bellgowan, Patrick S F

    2014-05-14

    Concussion and subconcussive impacts have been associated with short-term disrupted cognitive performance in collegiate athletes, but there are limited data on their long-term neuroanatomic and cognitive consequences. To assess the relationships of concussion history and years of football experience with hippocampal volume and cognitive performance in collegiate football athletes. Cross-sectional study conducted between June 2011 and August 2013 at a US psychiatric research institute specializing in neuroimaging among collegiate football players with a history of clinician-diagnosed concussion (n = 25), collegiate football players without a history of concussion (n = 25), and non-football-playing, age-, sex-, and education-matched healthy controls (n = 25). History of clinician-diagnosed concussion and years of football experience. High-resolution anatomical magnetic resonance imaging was used to quantify brain volumes. Baseline scores on a computerized concussion-related cognitive battery were used for cognitive assessment in athletes. Players with and without a history of concussion had smaller hippocampal volumes relative to healthy control participants (with concussion: t48 = 7.58; P < .001; mean difference, 1788 μL; 95% CI, 1317-2258 μL; without concussion: t48 = 4.35; P < .001, mean difference, 1027 μL; 95% CI, 556-1498 μL). Players with a history of concussion had smaller hippocampal volumes than players without concussion (t48 = 3.15; P < .001; mean difference, 761 μL; 95% CI, 280-1242 μL). In both athlete groups, there was a statistically significant inverse relationship between left hippocampal volume and number of years of football played (t46 = -3.62; P < .001; coefficient = -43.54; 95% CI, -67.66 to -19.41). Behavioral testing demonstrated no differences between athletes with and without a concussion history on 5 cognitive measures but did show an inverse correlation between years of playing

  6. Sex-specific associations of testosterone with prefrontal-hippocampal development and executive function.

    PubMed

    Nguyen, Tuong-Vi; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Ducharme, Simon; McCracken, James T

    2017-02-01

    Testosterone is thought to play a crucial role in mediating sexual differentiation of brain structures. Examinations of the cognitive effects of testosterone have also shown beneficial and potentially sex-specific effects on executive function and mnemonic processes. Yet these findings remain limited by an incomplete understanding of the critical timing and brain regions most affected by testosterone, the lack of documented links between testosterone-related structural brain changes and cognition, and the difficulty in distinguishing the effects of testosterone from those of related sex steroids such as of estradiol and dehydroepiandrosterone (DHEA). Here we examined associations between testosterone, cortico-hippocampal structural covariance, executive function (Behavior Rating Inventory of Executive Function) and verbal memory (California Verbal Learning Test-Children's Version), in a longitudinal sample of typically developing children and adolescents 6-22 yo, controlling for the effects of estradiol, DHEA, pubertal stage, collection time, age, handedness, and total brain volume. We found prefrontal-hippocampal covariance to vary as a function of testosterone levels, but only in boys. Boys also showed a specific association between positive prefrontal-hippocampal covariance (as seen at higher testosterone levels) and lower performance on specific components of executive function (monitoring the action process and flexibly shifting between actions). We also found the association between testosterone and a specific aspect of executive function (monitoring) to be significantly mediated by prefrontal-hippocampal structural covariance. There were no significant associations between testosterone-related cortico-hippocampal covariance and verbal memory. Taken together, these findings highlight the developmental importance of testosterone in supporting sexual differentiation of the brain and sex-specific executive function. Copyright © 2016 Elsevier Ltd. All rights

  7. Pharmacological Intervention of Hippocampal CA3 NMDA Receptors Impairs Acquisition and Long-Term Memory Retrieval of Spatial Pattern Completion Task

    ERIC Educational Resources Information Center

    Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal

    2009-01-01

    Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…

  8. Bigger is better and worse: on the intricate relationship between hippocampal size and memory.

    PubMed

    Molnár, Katalin; Kéri, Szabolcs

    2014-04-01

    The structure-function relationship between the hippocampal region and memory is a debated topic in the literature. It has been suggested that larger hippocampi are associated with less effective memory performance in healthy young adults because of a partial synaptic pruning. Here, we tested this hypothesis in individuals with Fragile X Syndrome (FXS) with known abnormal pruning and IQ- and age-matched individuals with hypoxic brain injury, preterm birth, and obstetric complications. Results revealed larger normalized hippocampal volume in FXS compared with neurotypical controls, whereas individuals with hypoxic injury had smaller hippocampi. In neurotypical controls and individuals with hypoxic injury, better general memory, as indexed by the Wechsler Memory Scale-Revised, was associated with larger hippocampus. In contrast, in FXS we observed the opposite relationship: larger hippocampus was associated with worse general memory. Caudate volume did not correlate with memory in either group. These results suggest that incomplete pruning in young healthy adults may not contribute to less efficient memory capacity, and hippocampal size is positively associated with memory performance. However, abnormally large and poorly pruned hippocampus may indeed be less effective in FXS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice.

    PubMed

    Biedermann, Sarah; Fuss, Johannes; Zheng, Lei; Sartorius, Alexander; Falfán-Melgoza, Claudia; Demirakca, Traute; Gass, Peter; Ende, Gabriele; Weber-Fahr, Wolfgang

    2012-07-16

    Voluntary exercise has tremendous effects on adult hippocampal plasticity and metabolism and thus sculpts the hippocampal structure of mammals. High-field (1)H magnetic resonance (MR) investigations at 9.4 T of metabolic and structural changes can be performed non-invasively in the living rodent brain. Numerous molecular and cellular mechanisms mediating the effects of exercise on brain plasticity and behavior have been detected in vitro. However, in vivo attempts have been rare. In this work a method for voxel based morphometry (VBM) was developed with automatic tissue segmentation in mice using a 9.4 T animal scanner equipped with a (1)H-cryogenic coil. The thus increased signal to noise ratio enabled the acquisition of high resolution T2-weighted images of the mouse brain in vivo and the creation of group specific tissue class maps for the segmentation and normalization with SPM. The method was used together with hippocampal single voxel (1)H MR spectroscopy to assess the structural and metabolic differences in the mouse brain due to voluntary wheel running. A specific increase of hippocampal volume with a concomitant decrease of hippocampal glutamate levels in voluntary running mice was observed. An inverse correlation of hippocampal gray matter volume and glutamate concentration indicates a possible implication of the glutamatergic system for hippocampal volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans.

    PubMed

    Chao, Linda L; Zhang, Yu

    2018-05-04

    In early March 1991, shortly after the end of the Gulf War (GW), a munitions dump was destroyed at Khamisiyah, Iraq. Later, in 1996, the dump was found to have contained the organophosphorus (OP) nerve agents sarin and cyclosarin. We previously reported evidence of smaller hippocampal volumes in GW veterans with predicted exposure to the Khamisiyah plume compared to unexposed GW veterans. To investigate whether these macroscopic hippocampal volume changes are accompanied by microstructural alterations in the hippocampus, the current study acquired diffusion-tensor imaging (DTI), T1-, and T2-weighted images from 170 GW veterans (mean age: 53 ± 7 years), 81 of whom had predicted exposure to the Khamisiyah plume according to Department of Defense (DOD) plume modeling. We examined fractional anisotropy (FA), mean diffusivity (MD), and grey matter (GM) density from a hippocampal region of interest (ROI). Results indicate that, even after accounting for total hippocampal GM density (or hippocampal volume), age, sex, apolipoprotein ε4 genotype, and potential confounding OP pesticide exposures, hippocampal MD significantly predicted Khamisiyah exposure status (model p = 0.005, R 2  = 0.215, standardized coefficient β = 0.26, t = 2.85). Hippocampal MD was also inversely correlated with verbal memory learning performance in the entire study sample (p = 0.001). There were no differences in hippocampal FA or GM density; however, veterans with predicted Khamisiyah exposure had smaller hippocampal volumes compared to unexposed veterans. Because MD is sensitive to general microstructural disruptions that lead to increased extracellular spaces due to neuronal death, inflammation and gliosis, and/or to axonal loss or demyelination, these findings suggest that low-level exposure to the Khamisiyah plume has a detrimental, lasting effects on both macro- and micro-structure of the hippocampus. Copyright © 2018. Published by Elsevier Inc.

  11. GENETIC INFLUENCE OF APOE4 GENOTYPE ON HIPPOCAMPAL MORPHOMETRY - AN N=725 SURFACE-BASED ADNI STUDY

    PubMed Central

    Shi, Jie; Leporé, Natasha; Gutman, Boris A.; Thompson, Paul M.; Baxter, Leslie C.; Caselli, Richard L.; Wang, Yalin

    2014-01-01

    The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer’s disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 non-carriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database – the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD. PMID:24453132

  12. Control theory-based regulation of hippocampal CA1 nonlinear dynamics.

    PubMed

    Hsiao, Min-Chi; Song, Dong; Berger, Theodore W

    2008-01-01

    We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. Our previous study has shown that the VLSI implementation of a CA3 nonlinear dynamic model can functionally replace the CA3 subregion of the hippocampal slice. As a result, the propagation of temporal patterns of activity from DG-->VLSI-->CA1 reproduces the activity observed experimentally in the biological DG-->CA3-->CA1 circuit. In this project, we incorporate an open-loop controller to optimize the output (CA1) response. Specifically, we seek to optimize the stimulation signal to CA1 using a predictive dentate gyrus (DG)-CA1 nonlinear model (i.e., DG-CA1 trajectory model) and a CA1 input-output model (i.e., CA1 plant model), such that the ultimate CA1 response (i.e., desired output) can be first predicted by the DG-CA1 trajectory model and then transformed to the desired stimulation through the inversed CA1 plant model. Lastly, the desired CA1 output is evoked by the estimated optimal stimulation. This study will be the first stage of formulating an integrated modeling-control strategy for the hippocampal neural prosthetic system.

  13. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  14. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single “cryptic” episode of focal hippocampal excitation in awake rats

    PubMed Central

    Norwood, Braxton A.; Bumanglag, Argyle V.; Osculati, Francesco; Sbarbati, Andrea; Marzola, Pasquina; Nicolato, Elena; Fabene, Paolo F.; Sloviter, Robert S.

    2010-01-01

    In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called “classic hippocampal sclerosis.” No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive “endstage” pathology resulting from years of spontaneous seizures. We posed the alternate hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30-minute episodes of perforant pathway stimulation in Sprague-Dawley rats increased granule cell paired-pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8-hour episode of reduced-intensity stimulation in Long-Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal-onset seizures began 16–25 days post-injury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically “cryptic” excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury. PMID

  15. Effects of cumulative illness severity on hippocampal gray matter volume in major depression: a voxel-based morphometry study.

    PubMed

    Zaremba, Dario; Enneking, Verena; Meinert, Susanne; Förster, Katharina; Bürger, Christian; Dohm, Katharina; Grotegerd, Dominik; Redlich, Ronny; Dietsche, Bruno; Krug, Axel; Kircher, Tilo; Kugel, Harald; Heindel, Walter; Baune, Bernhard T; Arolt, Volker; Dannlowski, Udo

    2018-02-08

    Patients with major depression show reduced hippocampal volume compared to healthy controls. However, the contribution of patients' cumulative illness severity to hippocampal volume has rarely been investigated. It was the aim of our study to find a composite score of cumulative illness severity that is associated with hippocampal volume in depression. We estimated hippocampal gray matter volume using 3-tesla brain magnetic resonance imaging in 213 inpatients with acute major depression according to DSM-IV criteria (employing the SCID interview) and 213 healthy controls. Patients' cumulative illness severity was ascertained by six clinical variables via structured clinical interviews. A principal component analysis was conducted to identify components reflecting cumulative illness severity. Regression analyses and a voxel-based morphometry approach were used to investigate the influence of patients' individual component scores on hippocampal volume. Principal component analysis yielded two main components of cumulative illness severity: Hospitalization and Duration of Illness. While the component Hospitalization incorporated information from the intensity of inpatient treatment, the component Duration of Illness was based on the duration and frequency of illness episodes. We could demonstrate a significant inverse association of patients' Hospitalization component scores with bilateral hippocampal gray matter volume. This relationship was not found for Duration of Illness component scores. Variables associated with patients' history of psychiatric hospitalization seem to be accurate predictors of hippocampal volume in major depression and reliable estimators of patients' cumulative illness severity. Future studies should pay attention to these measures when investigating hippocampal volume changes in major depression.

  16. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma

    PubMed Central

    Engel, Tobias; Murphy, Brona M.; Hatazaki, Seiji; Jimenez-Mateos, Eva M.; Concannon, Caoimhin G.; Woods, Ina; Prehn, Jochen H. M.; Henshall, David C.

    2010-01-01

    The functional significance of neuronal death for pathogenesis of epilepsy and the underlying molecular mechanisms thereof remain incompletely understood. The p53 transcription factor has been implicated in seizure damage, but its target genes and the influence of cell death under its control on epilepsy development are unknown. In the present study, we report that status epilepticus (SE) triggered by intra-amygdala kainic acid in mice causes rapid p53 accumulation and subsequent hippocampal damage. Expression of p53-up-regulated mediator of apoptosis (Puma), a proapoptotic Bcl-2 homology domain 3-only protein under p53 control, was increased within a few hours of SE. Induction of Puma was blocked by pharmacologic inhibition of p53, and hippocampal damage was also reduced. Puma induction was also blocked in p53-deficient mice subject to SE. Compared to Puma-expressing mice, Puma-deficient mice had significantly smaller hippocampal lesions after SE. Long-term, continuous telemetric EEG monitoring revealed a ∼60% reduction in the frequency of epileptic seizures in the Puma-deficient mice compared to Puma-expressing mice. These are the first data showing genetic deletion of a proapoptotic protein acting acutely to influence neuronal death subsequently alters the phenotype of epilepsy in the long-term, supporting the concept that apoptotic pathway activation is a trigger of epileptogenesis.—Engel, T., Murphy, B. M., Hatazaki, S., Jimenez-Mateos, E. M., Concannon, C. G., Woods, I., Prehn, J. H. M., Henshall, D. C. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. PMID:19890018

  17. Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men.

    PubMed

    Panizzon, Matthew S; Hauger, Richard L; Xian, Hong; Jacobson, Kristen; Lyons, Michael J; Franz, Carol E; Kremen, William S

    2018-05-01

    Animal and human research suggests that testosterone is associated with hippocampal structure and function. Studies examining the association between testosterone and either hippocampal structure or hippocampal-mediated cognitive processes have overwhelmingly focused on the effects of testosterone alone, without considering the interaction of other neuroendocrine factors. The aim of the present study was to examine the interactive effects of testosterone and cortisol in relation to hippocampal volume and episodic memory in a sample of late-middle aged men from the Vietnam Era Twin Study of Aging. The average age of participants was 56.3 years (range 51-60). Salivary hormone samples were collected at multiple time-points on two non-consecutive at-home days, and an in-lab assessment. Area under the curve with respect to ground measures for cortisol and testosterone were utilized. Significant testosterone-by-cortisol interactions were observed for hippocampal volume, and episodic memory. When cortisol levels were elevated (1 SD above the mean), testosterone levels were positively associated with hippocampal volume and memory performance. However, when cortisol levels were low (1 SD below the mean), testosterone levels were inversely related to hippocampal volume and memory performance. These findings suggest that in context of high cortisol levels, testosterone may be neuroprotective. In contrast, low testosterone may also be neuroprotective in the context of low cortisol levels. To our knowledge this is the first demonstration of such an interaction in a structural brain measure and an associated cognitive ability. These results argue in favor of broadening neuroendocrine research to consider the simultaneous and interactive effects of multiple hormones on brain structure and function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: Extracellular matrix molecules are important for the maintenance of hippocampal volume.

    PubMed

    Peixoto-Santos, Jose Eduardo; Velasco, Tonicarlo Rodrigues; Galvis-Alonso, Orfa Yineth; Araujo, David; Kandratavicius, Ludmyla; Assirati, Joao Alberto; Carlotti, Carlos Gilberto; Scandiuzzi, Renata Caldo; Santos, Antonio Carlos dos; Leite, Joao Pereira

    2015-10-01

    Hippocampal sclerosis is a common finding in patients with temporal lobe epilepsy (TLE), and magnetic resonance imaging (MRI) studies associate the reduction of hippocampal volume with the neuron loss seen on histologic evaluation. Astrogliosis and increased levels of chondroitin sulfate, a major component of brain extracellular matrix, are also seen in hippocampal sclerosis. Our aim was to evaluate the association between hippocampal volume and chondroitin sulfate, as well as neuronal and astroglial populations in the hippocampus of patients with TLE. Patients with drug-resistant TLE were subdivided, according to hippocampal volume measured by MRI, into two groups: hippocampal atrophy (HA) or normal volume (NV) cases. Hippocampi from TLE patients and age-matched controls were submitted to immunohistochemistry to evaluate neuronal population, astroglial population, and chondroitin sulfate expression with antibodies against neuron nuclei protein (NeuN), glial fibrillary acidic protein (GFAP), and chondroitin sulfate (CS-56) antigens, respectively. Both TLE groups were clinically similar. NV cases had higher hippocampal volume, both ipsilateral and contralateral, when compared to HA. Compared to controls, NV and HA patients had reduced neuron density, and increased GFAP and CS-56 immunopositive area. There was no statistical difference between NV and HA groups in neuron density or immunopositive areas for GFAP and CS-56. Hippocampal volume correlated positively with neuron density in CA1 and prosubiculum, and with immunopositive areas for CS-56 in CA1, and negatively with immunopositive area for GFAP in CA1. Multiple linear regression analysis indicated that both neuron density and CS-56 immunopositive area in CA1 were statistically significant predictors of hippocampal volume. Our findings indicate that neuron density and chondroitin sulfate immunopositive area in the CA1 subfield are crucial for the hippocampal volume, and that chondroitin sulfate is important for

  19. Delineation of sediments below flood basalts by joint inversion of seismic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Manglik, A.; Verma, Saurabh K.

    A one-dimensional joint-inversion (JI) scheme considering seismic reflection and refraction, and MT data is developed. Its efficacy to resolve low velocity conducting sediments below high velocity resistive flood basalts is tested for a representative geological model considering noisy, incomplete data. The JI is found to provide improved results in comparison to those obtained by individual seismic and MT inversions.

  20. Failsafe modes in incomplete minority game

    NASA Astrophysics Data System (ADS)

    Yao, Xiaobo; Wan, Shaolong; Chen, Wen

    2009-09-01

    We make a failsafe extension to the incomplete minority game model, give a brief analysis on how incompleteness will effect system efficiency. Simulations that limited incompleteness in strategies can improve the system efficiency. Among three failsafe modes, the “Back-to-Best” mode brings most significant improvement and keeps the system efficiency in a long range of incompleteness. A simple analytic formula has a trend which matches simulation results. The IMMG model is used to study the effect of distribution, and we find that there is one junction point in each series of curves, at which system efficiency is not influenced by the distribution of incompleteness. When pIbar > the concentration of incompleteness weakens the effect. On the other side of , concentration will be helpful. When pI is close to zero agents using incomplete strategies have on average better profits than those using standard strategies, and the “Back-to-Best” agents have a wider range of pI to win.

  1. Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network

    PubMed Central

    Zhang, Kechen

    2016-01-01

    The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a “megamap,” or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. PMID:27193320

  2. Empathy in Hippocampal Amnesia

    PubMed Central

    Beadle, J. N.; Tranel, D.; Cohen, N. J.; Duff, M. C.

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy. PMID:23526601

  3. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of FMRP in neurotransmission

    PubMed Central

    Wang, Xiao-Sheng; Peng, Chun-Zi; Cai, Wei-Jun; Xia, Jian; Jin, Daozhong; Dai, Yuqiao; Luo, Xue-Gang; Klyachko, Vitaly A.; Deng, Pan-Yue

    2014-01-01

    Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and the mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak scaled nonstationary variance analysis to examine changes in both pre- and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in EPSC kinetics, quantal size or postsynaptic AMPA receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS. PMID:24646437

  4. Bilateral Hippocampal Dysfunction in Schizophrenia

    PubMed Central

    Hanlon, Faith M.; Houck, Jon M.; Pyeatt, Clinton J.; Lundy, S. Laura; Euler, Matthew J.; Weisend, Michael P.; Thoma, Robert J.; Bustillo, Juan R.; Miller, Gregory A.; Tesche, Claudia D.

    2014-01-01

    The hippocampus has long been known to be important for memory, with the right hippocampus particularly implicated in nonverbal/visuo-spatial memory and left in verbal/narrative or episodic memory. Despite this hypothesized lateralized functional difference, there has not been a single task that has been shown to activate both the right and left hippocampus differentially, dissociating the two, using neuroimaging. The transverse patterning (TP) task is a strong candidate for this purpose, as it has been shown in human and nonhuman animal studies to theoretically and empirically depend on the hippocampus. In TP, participants choose between stimuli presented in pairs, with the correct choice being a function of the specific pairing. In this project, TP was used to assess lateralized hippocampal function by varying its dependence on verbal material, with the goal of dissociating the two hippocampi. Magnetoencephalographic (MEG) data were collected while controls performed verbal and nonverbal versions of TP in order to verify and validate lateralized activation within the hippocampi. Schizophrenia patients were evaluated to determine whether they exhibited a lateralized hippocampal deficit. As hypothesized, patients’ mean level of behavioral performance was poorer than controls’ on both verbal and nonverbal TP. In contrast, patients had no decrement in performance on a verbal and nonverbal non-hippocampal-dependent matched control task. Also, controls but not patients showed more right hippocampal activation during nonverbal TP and more left hippocampal activation during verbal TP. These data demonstrate the capacity to assess lateralized hippocampal function and suggest a bilateral hippocampal behavioral and activation deficit in schizophrenia. PMID:21763438

  5. The Inversion of Ionospheric/plasmaspheric Electron Density From GPS Beacon Observations

    NASA Astrophysics Data System (ADS)

    Zou, Y. H.; Xu, J. S.; Ma, S. Y.

    It is a space-time 4-D tomography to reconstruct ionospheric/ plasmaspheric elec- tron density, Ne, from ground-based GPS beacon measurements. The mathematical foundation of such inversion is studied in this paper and some simulation results of reconstruction for GPS network observation are presented. Assuming reasonably a power law dependence of NE on time with an index number of 1-3 during one ob- servational time of GPS (60-90min.), 4-D inversion in consideration is reduced to a 3-D cone-beam tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction for 3-D condition, we deduced theoretically the formulae of 3-D parallel-beam tomography. After establishing the mathematical basis, we adopt linear temporal dependence of NE and voxel elemental functions to perform simulation of NE reconstruction with the help of IRI90 model. Reasonable time-dependent 3-D images of ionosphere/ plasmasphere electron density distributions are obtained when taking proper layout of the GPS network and allowing variable resolutions in vertical.

  6. Novel genetic loci associated with hippocampal volume.

    PubMed

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  7. Novel genetic loci associated with hippocampal volume

    PubMed Central

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J. M.; De Geus, Eco J. C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness. PMID:28098162

  8. Matriculation Research Report: Incomplete Grades; Data & Analysis.

    ERIC Educational Resources Information Center

    Gerda, Joe

    The policy on incomplete grades at California's College of the Canyons states that incompletes may only be given under circumstances beyond students' control and that students must make arrangements with faculty prior to the end of the semester to clear the incomplete. Failure to complete an incomplete may result in an "F" grade. While…

  9. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    PubMed

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  10. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    PubMed

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  11. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole.

    PubMed

    Hoffman, W E; Kochs, E; Werner, C; Thomas, C; Albrecht, R F

    1991-08-01

    Dexmedetomidine is an alpha 2-adrenergic agonist that decreases central sympathetic activity and reduces the anesthetic requirement for halothane. We evaluated the effect of dexmedetomidine on neurologic and histopathologic outcome from incomplete cerebral ischemia in the rat. Anesthesia was maintained with a 25-micrograms.kg-1.h-1 fentanyl infusion combined with 70% nitrous oxide. Incomplete ischemia was produced by unilateral carotid artery ligation combined with hemorrhagic hypotension to 35 mmHg for 30 min. Arterial blood gas tensions, pH, and head temperature were maintained at normal levels during the experiment. Four ischemic groups were tested: group 1 (n = 15) received an intraperitoneal (ip) saline injection (control); group 2 (n = 10) received an ip injection of 10 micrograms/kg dexmedetomidine 30 min before ischemia; group 3 (n = 10) received 100 micrograms/kg dexmedetomidine; and group 4 (n = 10) received 100 micrograms/kg dexmedetomidine plus 1 mg/kg atipamezole (an alpha 2-adrenergic antagonist). Neurologic outcome was evaluated for 3 days using a graded deficit score. Histopathology was evaluated in coronal section in caudate and hippocampal tissue segments. Dexmedetomidine (10 and 100 micrograms/kg) significantly decreased plasma catecholamines and improved neurologic and histopathologic outcome in a dose-dependent manner compared to control rats (P less than 0.05). Atipamezole abolished the decrease in catecholamines and the improvement in outcome seen with dexmedetomidine, confirming that these effects were mediated by alpha 2-adrenergic receptors. It is concluded that alpha 2-adrenoreceptor stimulation decreases sympathetic activity and decreases ischemic injury in a model of incomplete cerebral ischemia.

  12. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.

    PubMed

    Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti

    2006-02-01

    Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.

  13. Hippocampal Sclerosis in Older Patients

    PubMed Central

    Cykowski, Matthew D.; Powell, Suzanne Z.; Schulz, Paul E.; Takei, Hidehiro; Rivera, Andreana L.; Jackson, Robert E.; Roman, Gustavo; Jicha, Gregory A.; Nelson, Peter T.

    2018-01-01

    Context Autopsy studies of the older population (≥65 years of age), and particularly of the “oldest-old” (≥85 years of age), have identified a significant proportion (~20%) of cognitively impaired patients in which hippocampal sclerosis is the major substrate of an amnestic syndrome. Hippocampal sclerosis may also be comorbid with frontotemporal lobar degeneration, Alzheimer disease, and Lewy body disease. Until recently, the terms hippocampal sclerosis of aging or hippocampal sclerosis dementia were applied in this context. Recent discoveries have prompted a conceptual expansion of hippocampal sclerosis of aging because (1) cellular inclusions of TAR DNA-binding protein 43 kDa (TDP-43) are frequent; (2) TDP-43 pathology may be found outside hippocampus; and (3) brain arteriolosclerosis is a common, possibly pathogenic, component. Objective To aid pathologists with recent recommendations for diagnoses of common neuropathologies in older persons, particularly hippocampal sclerosis, and highlight the recent shift in diagnostic terminology from HS-aging to cerebral age-related TDP-43 with sclerosis (CARTS). Data Sources Peer-reviewed literature and 5 autopsy examples that illustrate common age-related neuropathologies, including CARTS, and emphasize the importance of distinguishing CARTS from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology. Conclusions In advanced old age, the substrates of cognitive impairment are often multifactorial. This article demonstrates common and frequently comorbid neuropathologic substrates of cognitive impairment in the older population, including CARTS, to aid those practicing in this area of pathology. PMID:28467211

  14. Aerobic fitness, hippocampal viscoelasticity, and relational memory performance

    PubMed Central

    Schwarb, Hillary; Johnson, Curtis L.; Daugherty, Ana M.; Hillman, Charles H.; Kramer, Arthur F.; Cohen, Neal J.; Barbey, Aron K.

    2017-01-01

    The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO2max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults. PMID:28366763

  15. Hippocampal sclerosis in advanced age: clinical and pathological features.

    PubMed

    Nelson, Peter T; Schmitt, Frederick A; Lin, Yushun; Abner, Erin L; Jicha, Gregory A; Patel, Ela; Thomason, Paula C; Neltner, Janna H; Smith, Charles D; Santacruz, Karen S; Sonnen, Joshua A; Poon, Leonard W; Gearing, Marla; Green, Robert C; Woodard, John L; Van Eldik, Linda J; Kryscio, Richard J

    2011-05-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer's disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer's Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n=106). For individuals aged≥95 years at death (n=179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of 'definite' Alzheimer's disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n=10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar degeneration TAR

  16. Hippocampal sclerosis in advanced age: clinical and pathological features

    PubMed Central

    Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A.; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Woodard, John L.; Van Eldik, Linda J.; Kryscio, Richard J.

    2011-01-01

    Hippocampal sclerosis is a relatively common neuropathological finding (∼10% of individuals over the age of 85 years) characterized by cell loss and gliosis in the hippocampus that is not explained by Alzheimer’s disease. Hippocampal sclerosis pathology can be associated with different underlying causes, and we refer to hippocampal sclerosis in the aged brain as hippocampal sclerosis associated with ageing. Much remains unknown about hippocampal sclerosis associated with ageing. We combined three different large autopsy cohorts: University of Kentucky Alzheimer’s Disease Centre, the Nun Study and the Georgia Centenarian Study to obtain a pool of 1110 patients, all of whom were evaluated neuropathologically at the University of Kentucky. We focused on the subset of cases with neuropathology-confirmed hippocampal sclerosis (n = 106). For individuals aged ≥95 years at death (n = 179 in our sample), each year of life beyond the age of 95 years correlated with increased prevalence of hippocampal sclerosis pathology and decreased prevalence of ‘definite’ Alzheimer’s disease pathology. Aberrant TAR DNA protein 43 immunohistochemistry was seen in 89.9% of hippocampal sclerosis positive patients compared with 9.7% of hippocampal sclerosis negative patients. TAR DNA protein 43 immunohistochemistry can be used to demonstrate that the disease is usually bilateral even when hippocampal sclerosis pathology is not obvious by haematoxylin and eosin stains. TAR DNA protein 43 immunohistochemistry was negative on brain sections from younger individuals (n = 10) after hippocampectomy due to seizures, who had pathologically confirmed hippocampal sclerosis. There was no association between cases with hippocampal sclerosis associated with ageing and apolipoprotein E genotype. Age of death and clinical features of hippocampal sclerosis associated with ageing (with or without aberrant TAR DNA protein 43) were distinct from previously published cases of frontotemporal lobar

  17. Predictors of seizure freedom after incomplete resection in children.

    PubMed

    Perry, M S; Dunoyer, C; Dean, P; Bhatia, S; Bavariya, A; Ragheb, J; Miller, I; Resnick, T; Jayakar, P; Duchowny, M

    2010-10-19

    Incomplete resection of the epileptogenic zone (EZ) is the most important predictor of poor outcome after resective surgery for intractable epilepsy. We analyzed the contribution of preoperative and perioperative variables including MRI and EEG data as predictors of seizure-free (SF) outcome after incomplete resection. We retrospectively reviewed patients <18 years of age with incomplete resection for epilepsy with 2 years of follow-up. Fourteen preoperative and perioperative variables were compared in SF and non-SF (NSF) patients. We compared lesional patients, categorized by reason for incompleteness, to lesional patients with complete resection. We analyzed for effect of complete EEG resection on SF outcome in patients with incompletely resected MRI lesions and vice versa. Eighty-three patients with incomplete resection were included with 41% becoming SF. Forty-eight lesional patients with complete resection were included. Thirty-eight percent (57/151) of patients with incomplete resection and 34% (47/138) with complete resection were excluded secondary to lack of follow-up or incomplete records. Contiguous MRI lesions were predictive of seizure freedom after incomplete resection. Fifty-seven percent of patients incomplete by MRI alone, 52% incomplete by EEG alone, and 24% incomplete by both became SF compared to 77% of patients with complete resection (p = 0.0005). Complete resection of the MRI- and EEG-defined EZ is the best predictor of seizure freedom, though patients incomplete by EEG or MRI alone have better outcome compared to patients incomplete by both. More than one-third of patients with incomplete resection become SF, with contiguous MRI lesions a predictor of SF outcome.

  18. Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation.

    PubMed

    Tambini, Arielle; Nee, Derek Evan; D'Esposito, Mark

    2018-06-19

    The hippocampus plays a critical role in episodic memory, among other cognitive functions. However, few tools exist to causally manipulate hippocampal function in healthy human participants. Recent work has targeted hippocampal-cortical networks by performing TMS to a region interconnected with the hippocampus, posterior inferior parietal cortex (pIPC). Such hippocampal-targeted TMS enhances associative memory and influences hippocampal functional connectivity. However, it is currently unknown which stages of mnemonic processing (encoding or retrieval) are affected by hippocampal-targeted TMS. Here, we examined whether hippocampal-targeted TMS influences the initial encoding of associations (vs. items) into memory. To selectively influence encoding and not retrieval, we performed continuous theta-burst TMS before participants encoded object-location associations and assessed memory after the direct effect of stimulation dissipated. Relative to control TMS and baseline memory, pIPC TMS enhanced associative memory success and confidence. Item memory was unaffected, demonstrating a selective influence on associative versus item memory. The strength of hippocampal-pIPC functional connectivity predicted TMS-related memory benefits, which was mediated by parahippocampal and retrosplenial cortices. Our findings indicate that hippocampal-targeted TMS can specifically modulate the encoding of new associations into memory without directly influencing retrieval processes and suggest that the ability to influence associative memory may be related to the fidelity of hippocampal TMS targeting. Our results support the notion that pIPC TMS may serve as a potential tool for manipulating hippocampal function in healthy participants. Nonetheless, future work combining hippocampal-targeted continuous theta-burst TMS with neuroimaging is needed to better understand the neural basis of TMS-induced memory changes.

  19. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis.

    PubMed

    Jardim, Anaclara Prada; Corso, Jeana Torres; Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Comper, Sandra Mara; Lancellotti, Carmen Lúcia Penteado; Centeno, Ricardo Silva; Carrete, Henrique; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2016-12-01

    To correlate hippocampal volumes obtained from brain structural imaging with histopathological patterns of hippocampal sclerosis (HS), in order to predict surgical outcome. Patients with mesial temporal lobe epilepsy (MTLE) with HS were selected. Clinical data were assessed pre-operatively and surgical outcome in the first year post surgery. One block of mid hippocampal body was selected for HS classification according to ILAE criteria. NeuN-immunoreactive cell bodies were counted within hippocampal subfields, in four randomly visual fields, and cell densities were transformed into z-score values. FreeSurfer processing of 1.5T brain structural images was used for subcortical and cortical volumetric estimation of the ipsilateral hippocampus. Univariate analysis of variance and Pearson's correlation test were applied for statistical analyses. Sixty-two cases (31 female, 32 right HS) were included. ILAE type 1 HS was identified in 48 patients, type 2 in eight, type 3 in two, and four had no-HS. Better results regarding seizure control, i.e. ILAE 1, were achieved by patients with type 1 HS (58.3%). Patients with types 1 and 2 had smaller hippocampal volumes compared to those with no-HS (p<0.001 and p=0.004, respectively). Positive correlation was encountered between hippocampal volumes and CA1, CA3, CA4, and total estimated neuronal densities. CA2 was the only sector which did not correlate its neuronal density with hippocampal volume (p=0.390). This is the first study correlating hippocampal volume on MRI submitted to FreeSurfer processing with ILAE patterns of HS and neuronal loss within each hippocampal subfield, a fundamental finding to anticipate surgical prognosis for patients with drug-resistant MTLE and HS. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Automated measurement of hippocampal subfields in PTSD: Evidence for smaller dentate gyrus volume.

    PubMed

    Hayes, Jasmeet P; Hayes, Scott; Miller, Danielle R; Lafleche, Ginette; Logue, Mark W; Verfaellie, Mieke

    2017-12-01

    Smaller hippocampal volume has been consistently observed as a biomarker of posttraumatic stress disorder (PTSD). However, less is known about individual volumes of the subfields composing the hippocampus such as the dentate gyrus and cornu ammonis (CA) fields 1-4 in PTSD. The aim of the present study was to examine the hypothesis that volume of the dentate gyrus, a region putatively involved in distinctive encoding of similar events, is smaller in individuals with PTSD versus trauma-exposed controls. Ninety-seven recent war veterans underwent structural imaging on a 3T scanner and were assessed for PTSD using the Clinician-Administered PTSD Scale. The hippocampal subfield automated segmentation program available through FreeSurfer was used to segment the CA4/dentate gyrus, CA1, CA2/3, presubiculum, and subiculum of the hippocampus. Results showed that CA4/dentate gyrus subfield volume was significantly smaller in veterans with PTSD and scaled inversely with PTSD symptom severity. These results support the view that dentate gyrus abnormalities are associated with symptoms of PTSD, although additional evidence is necessary to determine whether these abnormalities underlie fear generalization and other memory alterations in PTSD. Published by Elsevier Ltd.

  1. Hippocampal MR volumetry

    NASA Astrophysics Data System (ADS)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  2. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study.

    PubMed

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-12-10

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that dosimetric

  3. The effects of hormones and physical exercise on hippocampal structural plasticity.

    PubMed

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. FG7142, yohimbine, and βCCE produce anxiogenic-like effects in the elevated plus-maze but do not affect brainstem activated hippocampal theta.

    PubMed

    Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T

    2013-12-01

    The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Etiology of hippocampal sclerosis

    PubMed Central

    Tsai, Meng-Han; Pardoe, Heath R.; Perchyonok, Yuliya; Fitt, Gregory J.; Scheffer, Ingrid E.; Berkovic, Samuel F.

    2013-01-01

    Objective: We sought evidence of a hereditary component for hippocampal sclerosis (HS) by determining whether close relatives of probands with temporal lobe epilepsy (TLE) with HS also had asymptomatic HS or subtle variation in hippocampal morphology. Methods: First-degree relatives from 15 families in which probands had TLE with HS and 32 age- and sex-matched controls were included in the study. Left and right hippocampal volumes and T2 relaxometry were measured using 3-tesla MRI. Results: Thirty-two asymptomatic first-degree relatives and 3 relatives with a history of seizures or epilepsy were studied. None of the first-degree relatives had HS on visual analysis and T2 relaxation times were normal, excluding the presence of HS. Mean hippocampal volume was smaller (6.4%) in asymptomatic relatives (2.94 ± 0.27 cm3, 95% confidence interval = 2.87–3.01) than in controls (3.14 ± 0.22 cm3, 95% confidence interval = 3.09–3.19, p < 0.005); the effect was greater in relatives of probands with a positive family history of epilepsy. The relatives also had more asymmetric hippocampi (asymmetric index 0.92 ± 0.05) than controls (0.96 ± 0.03, p = 0.001). Conclusions: Small asymmetric hippocampi in healthy relatives are likely to represent a familial developmental variant that may predispose to the formation of TLE with HS. The underlying histopathology of these small hippocampi is unknown. This observation may provide an imaging marker for future studies seeking susceptibility genes for HS. PMID:23749796

  6. Hippocampal-neocortical functional reorganization underlies children's cognitive development

    PubMed Central

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod

    2014-01-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076

  7. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    PubMed

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  8. Hippocampal “Time Cells”: Time versus Path Integration

    PubMed Central

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  9. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval

    PubMed Central

    Ishikawa, Rie; Fukushima, Hotaka; Frankland, Paul W; Kida, Satoshi

    2016-01-01

    Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment. DOI: http://dx.doi.org/10.7554/eLife.17464.001 PMID:27669409

  10. Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study

    PubMed Central

    Li, Bolun; Shi, Jie; Gutman, Boris A.; Baxter, Leslie C.; Thompson, Paul M.; Caselli, Richard J.; Wang, Yalin

    2016-01-01

    The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers. PMID:27065111

  11. Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.

    PubMed

    Richmond, Jenny; Colombo, Michael

    2002-02-22

    Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.

  12. Recombination and synaptic adjustment in oocytes of mice heterozygous for a large paracentric inversion.

    PubMed

    Torgasheva, Anna A; Rubtsov, Nikolai B; Borodin, Pavel M

    2013-03-01

    Homologous chromosome synapsis in inversion heterozygotes results in the formation of inversion loops. These loops might be transformed into straight, non-homologously paired bivalents via synaptic adjustment. Synaptic adjustment was discovered 30 years ago; however, its relationship with recombination has remained unclear. We analysed this relationship in female mouse embryos heterozygous for large paracentric inversion In(1)1Rk using immunolocalisation of the synaptonemal complex (SYCP3) and mature recombination nodules (MLH1) proteins. The frequency of cells containing bivalents with inversion loops decreased from 69 % to 28 % during pachytene. If an MLH1 focus was present in the non-homologously paired inverted region of the straight bivalent, it was always located in the middle of the inversion. Most of the small, incompletely adjusted loops contained MLH1 foci near the points at which pairing partners were switched. This observation indicates that the degree of synaptic adjustment depended on the crossover position. Complete synaptic adjustment was only possible if a crossover (CO) was located exactly in the middle of the inversion. If a CO was located at any other site, this interrupted synaptic adjustment and resulted in inversion loops of different sizes with an MLH1 focus at or near the edge of the remaining loop.

  13. Remembering preservation in hippocampal amnesia

    PubMed Central

    Clark, Ian A.; Maguire, Eleanor A.

    2017-01-01

    The lesion-deficit model dominates neuropsychology. This is unsurprising given powerful demonstrations that focal brain lesions can affect specific aspects of cognition. Nowhere is this more evident than in patients with bilateral hippocampal damage. In the last sixty years the amnesia and other impairments exhibited by these patients have helped to delineate the functions of the hippocampus and shape the field of memory. We do not question the value of this approach. However, less prominent are the cognitive processes that remain intact following hippocampal lesions. Here, we collate the piecemeal reports of preservation of function following focal bilateral hippocampal damage, highlighting a wealth of information often veiled by the field’s focus on deficits. We consider how a systematic understanding of what is preserved as well as what is lost could add an important layer of precision to models of memory and the hippocampus. PMID:26361051

  14. Hippocampal subfield volume changes in subtypes of attention deficit hyperactivity disorder.

    PubMed

    Al-Amin, Mamun; Zinchenko, Artyom; Geyer, Thomas

    2018-04-15

    Attention-deficit hyperactivity disorder (ADHD) is accompanied by reduction of total hippocampal volume. However, disorder-related fine-grained structural alterations of hippocampal subfields remain unclear. Here we compared hippocampal subfield volumes in a large sample of patients with ADHD and healthy controls. We used T1-weighted structural 3-Tesla MRI images of 880 individuals (7-21 years old) from the ADHD-200 database. The images were acquired from 553 healthy individuals and 327 children and adolescents with combined (N = 196) and inattentive (N = 131) ADHD subtypes. Hippocampal subfields were segmented into the cornu amonis regions (CA1, CA2/3, CA4), fimbria, hippocampal fissure, presubiculum, subiculum, hippocampal tail, parasubiculum, granule cell layers of the dentate gyrus, molecular layer within the subiculum and the CA fields, and the hippocampal-amygdala transition area using an automatic algorithm available in Freesurfer 6.0. We found a significant reduction of total hippocampal volume in the combined ADHD group compared to healthy controls. This reduction was due to the atrophy of CA1, CA4, molecular layer, granule cell layers of the dentate gyrus, presubiculum, subiculum, and hippocampal tail. These differences were exclusively driven by the corresponding brain volume reduction in the combined ADHD-subtype, while hippocampal volumes in inattentive ADHD showed no reliable differences relative to controls. Finally, there were negative correlations between the reduced hippocampal subfields and behavioral ADHD indices. The present results point to a clear dissociation between inattentive and combined subtypes of ADHD. Therefore, hippocampal subfields may contribute towards understanding the pathophysiology of ADHD. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Incomplete colonoscopy: Maximizing completion rates of gastroenterologists

    PubMed Central

    Brahmania, Mayur; Park, Jei; Svarta, Sigrid; Tong, Jessica; Kwok, Ricky; Enns, Robert

    2012-01-01

    BACKGROUND Cecal intubation is one of the goals of a quality colonoscopy; however, many factors increasing the risk of incomplete colonoscopy have been implicated. The implications of missed pathology and the demand on health care resources for return colonoscopies pose a conundrum to many physicians. The optimal course of action after incomplete colonoscopy is unclear. OBJECTIVES: To assess endoscopic completion rates of previously incomplete colonoscopies, the methods used to complete them and the factors that led to the previous incomplete procedure. METHODS: All patients who previously underwent incomplete colonoscopy (2005 to 2010) and were referred to St Paul’s Hospital (Vancouver, British Columbia) were evaluated. Colonoscopies were re-attempted by a single endoscopist. Patient charts were reviewed retrospectively. RESULTS: A total of 90 patients (29 males) with a mean (± SD) age of 58±13.2 years were included in the analysis. Thirty patients (33%) had their initial colonoscopy performed by a gastroenterologist. Indications for initial colonoscopy included surveillance or screening (23%), abdominal pain (15%), gastrointestinal bleeding (29%), change in bowel habits or constitutional symptoms (18%), anemia (7%) and chronic diarrhea (8%). Reasons for incomplete colonoscopy included poor preparation (11%), pain or inadequate sedation (16%), tortuous colon (30%), diverticular disease (6%), obstructing mass (6%) and stricturing disease (10%). Reasons for incomplete procedures in the remaining 21% of patients were not reported by the referring physician. Eighty-seven (97%) colonoscopies were subsequently completed in a single attempt at the institution. Seventy-six (84%) colonoscopies were performed using routine manoeuvres, patient positioning and a variable-stiffness colonoscope (either standard or pediatric). A standard 160 or 180 series Olympus gastroscope (Olympus, Japan) was used in five patients (6%) to navigate through sigmoid diverticular disease; a

  16. Discrete Inverse and State Estimation Problems

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2006-06-01

    The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware

  17. Interplay between Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in Decision Making.

    PubMed

    Papale, Andrew E; Zielinski, Mark C; Frank, Loren M; Jadhav, Shantanu P; Redish, A David

    2016-12-07

    Current theories posit that memories encoded during experiences are subsequently consolidated into longer-term storage. Hippocampal sharp-wave-ripple (SWR) events have been linked to this consolidation process during sleep, but SWRs also occur during awake immobility, where their role remains unclear. We report that awake SWR rates at the reward site are inversely related to the prevalence of vicarious trial and error (VTE) behaviors, thought to be involved in deliberation processes. SWR rates were diminished immediately after VTE behaviors and an increase in the rate of SWR events at the reward site predicted a decrease in subsequent VTE behaviors at the choice point. Furthermore, SWR disruptions increased VTE behaviors. These results suggest an inverse relationship between SWRs and VTE behaviors and suggest that awake SWRs and associated planning and memory consolidation mechanisms are engaged specifically in the context of higher levels of behavioral certainty. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hippocampal and Amygdalar Volumes in Dissociative Identity Disorder

    PubMed Central

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J.; Bremner, J. Douglas

    2011-01-01

    Objective Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. Method The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Results Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. Conclusions The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects. PMID:16585437

  19. Hippocampal and amygdalar volumes in dissociative identity disorder.

    PubMed

    Vermetten, Eric; Schmahl, Christian; Lindner, Sanneke; Loewenstein, Richard J; Bremner, J Douglas

    2006-04-01

    Smaller hippocampal volume has been reported in several stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD), borderline personality disorder with early abuse, and depression with early abuse. Patients with borderline personality disorder and early abuse have also been found to have smaller amygdalar volume. The authors examined hippocampal and amygdalar volumes in patients with dissociative identity disorder, a disorder that has been associated with a history of severe childhood trauma. The authors used magnetic resonance imaging to measure the volumes of the hippocampus and amygdala in 15 female patients with dissociative identity disorder and 23 female subjects without dissociative identity disorder or any other psychiatric disorder. The volumetric measurements for the two groups were compared. Hippocampal volume was 19.2% smaller and amygdalar volume was 31.6% smaller in the patients with dissociative identity disorder, compared to the healthy subjects. The ratio of hippocampal volume to amygdalar volume was significantly different between groups. The findings are consistent with the presence of smaller hippocampal and amygdalar volumes in patients with dissociative identity disorder, compared with healthy subjects.

  20. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  1. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  2. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  3. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  4. 49 CFR 529.4 - Requirements for incomplete automobile manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...

  5. 49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2014-10-01 2014-10-01 false Requirements for incomplete vehicle manufacturers...

  6. 49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2011-10-01 2011-10-01 false Requirements for incomplete vehicle manufacturers...

  7. 49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for incomplete vehicle manufacturers...

  8. Incomplete Multisource Transfer Learning.

    PubMed

    Ding, Zhengming; Shao, Ming; Fu, Yun

    2018-02-01

    Transfer learning is generally exploited to adapt well-established source knowledge for learning tasks in weakly labeled or unlabeled target domain. Nowadays, it is common to see multiple sources available for knowledge transfer, each of which, however, may not include complete classes information of the target domain. Naively merging multiple sources together would lead to inferior results due to the large divergence among multiple sources. In this paper, we attempt to utilize incomplete multiple sources for effective knowledge transfer to facilitate the learning task in target domain. To this end, we propose an incomplete multisource transfer learning through two directional knowledge transfer, i.e., cross-domain transfer from each source to target, and cross-source transfer. In particular, in cross-domain direction, we deploy latent low-rank transfer learning guided by iterative structure learning to transfer knowledge from each single source to target domain. This practice reinforces to compensate for any missing data in each source by the complete target data. While in cross-source direction, unsupervised manifold regularizer and effective multisource alignment are explored to jointly compensate for missing data from one portion of source to another. In this way, both marginal and conditional distribution discrepancy in two directions would be mitigated. Experimental results on standard cross-domain benchmarks and synthetic data sets demonstrate the effectiveness of our proposed model in knowledge transfer from incomplete multiple sources.

  9. Additive gene-environment effects on hippocampal structure in healthy humans.

    PubMed

    Rabl, Ulrich; Meyer, Bernhard M; Diers, Kersten; Bartova, Lucie; Berger, Andreas; Mandorfer, Dominik; Popovic, Ana; Scharinger, Christian; Huemer, Julia; Kalcher, Klaudius; Pail, Gerald; Haslacher, Helmuth; Perkmann, Thomas; Windischberger, Christian; Brocke, Burkhard; Sitte, Harald H; Pollak, Daniela D; Dreher, Jean-Claude; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Esterbauer, Harald; Pezawas, Lukas

    2014-07-23

    Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD). Copyright © 2014 the authors 0270-6474/14/349917-10$15.00/0.

  10. Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity

    PubMed Central

    Zeidman, Peter; Mullally, Sinéad L.; Maguire, Eleanor A.

    2015-01-01

    In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes. PMID:25405941

  11. Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression.

    PubMed

    Young, Kymberly D; Drevets, Wayne C; Dantzer, Robert; Teague, T Kent; Bodurka, Jerzy; Savitz, Jonathan

    2016-08-01

    Inflammation-related changes in the concentrations of inflammatory mediators such as c-reactive protein (CRP), interleukin 1β (IL-1), and IL-6 as well as kynurenine metabolites are associated with major depressive disorder (MDD) and affect depressive behavior, cognition, and hippocampal plasticity in animal models. We previously reported that the ratios of kynurenic acid (KynA) to the neurotoxic metabolites, 3-hydroxykynurenine (3HK) and quinolinic acid (QA), were positively correlated with hippocampal volume in depression. The hippocampus is critical for autobiographical memory (AM) recall which is impaired in MDD. Here we tested whether the ratios, KynA/3HK and KynA/QA were associated with AM recall performance as well as hippocampal activity during AM recall. Thirty-five unmedicated depressed participants and 25 healthy controls (HCs) underwent fMRI scanning while recalling emotionally-valenced AMs and provided serum samples for the quantification of kynurenine metabolites, CRP, and cytokines (IL-1 receptor antagonist - IL-1RA; IL-6, tumor necrosis factor alpha - TNF, interferon gamma -IFN-γ, IL-10). KynA/3HK and KynA/QA were lower in the MDD group relative to the HCs. The concentrations of the CRP and the cytokines did not differ significantly between the HCs and the MDD group. Depressed individuals recalled fewer specific AMs and displayed increased left hippocampal activity during the recall of positive and negative memories. KynA/3HK was inversely associated with left hippocampal activity during specific AM recall in the MDD group. Further, KynA/QA was positively correlated with percent negative specific memories recalled in the MDD group and showed a non-significant trend toward a positive correlation with percent positive specific memories recalled in HCs. In contrast, neither CRP nor the cytokines were significantly associated with AM recall or activity of the hippocampus during AM recall. Conceivably, an imbalance in levels of KynA versus QA

  12. Increased hippocampal blood volume and normal blood flow in schizophrenia

    PubMed Central

    Talati, Pratik; Rane, Swati; Skinner, Jack; Gore, John; Heckers, Stephan

    2015-01-01

    Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia. PMID:25896442

  13. Some Families of the Incomplete H-Functions and the Incomplete \\overline H -Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Saxena, R. K.; Parmar, R. K.

    2018-01-01

    Our present investigation is inspired by the recent interesting extensions (by Srivastava et al. [35]) of a pair of the Mellin-Barnes type contour integral representations of their incomplete generalized hypergeometric functions p γ q and p Γ q by means of the incomplete gamma functions γ( s, x) and Γ( s, x). Here, in this sequel, we introduce a family of the relatively more general incomplete H-functions γ p,q m,n ( z) and Γ p,q m,n ( z) as well as their such special cases as the incomplete Fox-Wright generalized hypergeometric functions p Ψ q (γ) [ z] and p Ψ q (Γ) [ z]. The main object of this paper is to study and investigate several interesting properties of these incomplete H-functions, including (for example) decomposition and reduction formulas, derivative formulas, various integral transforms, computational representations, and so on. We apply some substantially general Riemann-Liouville and Weyl type fractional integral operators to each of these incomplete H-functions. We indicate the easilyderivable extensions of the results presented here that hold for the corresponding incomplete \\overline H -functions as well. Potential applications of many of these incomplete special functions involving (for example) probability theory are also indicated.

  14. Hippocampal contributions to recollection in retrograde and anterograde amnesia.

    PubMed

    Gilboa, Asaf; Winocur, Gordon; Rosenbaum, R Shayna; Poreh, Amir; Gao, Fuqiang; Black, Sandra E; Westmacott, Robyn; Moscovitch, Morris

    2006-01-01

    Lesions restricted to the hippocampal formation and/or extended hippocampal system (hippocampal formation, fornix, mammillary bodies, and anterior thalamic nuclei) can disrupt conscious recollection in anterograde amnesia, while leaving familiarity-based memory relatively intact. Familiarity may be supported by extra-hippocampal medial temporal lobe (MTL) structures. Within-task dissociations in recognition memory best exemplify this distinction in anterograde amnesia. The authors report for the first time comparable dissociations within recognition memory in retrograde amnesia. An amnesic patient (A.D.) with bilateral fornix and septal nuclei lesions failed to recognize details pertaining to personal past events only when recollection was required, during recognition of episodic details. His intact recognition of generic and semantic details pertaining to the same events was ascribed to intact familiarity processes. Recollective processes in the controls were reflected by asymmetrical Receiver's Operating Characteristic curves, whereas the patient's Receiver's Operating Characteristic was symmetrical, suggesting that his inferior recognition performance on episodic details was reliant on familiarity processes. Anterograde and retrograde memories were equally affected, with no temporal gradient for retrograde memories. By comparison, another amnesic person (K.C.) with extensive MTL damage (involving extra-hippocampal MTL structures in addition to hippocampal and fornix lesions) had very poor recognition and no recollection of either episodic or generic/semantic details. These data suggest that the extended hippocampal system is required to support recollection for both anterograde and retrograde memories, regardless of their age.

  15. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, Tyler M.; Karunamuni, Roshan; Bartsch, Hauke

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI beforemore » and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for

  16. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    PubMed Central

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  17. Effortful Retrieval Reduces Hippocampal Activity and Impairs Incidental Encoding

    PubMed Central

    Reas, Emilie T.; Brewer, James B.

    2014-01-01

    Functional imaging studies frequently report that the hippocampus is engaged by successful episodic memory retrieval. However, considering that concurrent encoding of the background environment occurs during retrieval and influences medial temporal lobe activity, it is plausible that hippocampal encoding functions are reduced with increased attentional engagement during effortful retrieval. Expanding upon evidence that retrieval efforts suppress activity in hippocampal regions implicated in encoding, this study examines the influence of retrieval effort on encoding performance and the interactive effects of encoding and retrieval on hippocampal and neocortical activity. Functional magnetic resonance imaging was conducted while subjects performed a word recognition task with incidental picture encoding. Both lower memory strength and increased search duration were associated with encoding failure and reduced hippocampal and default network activity. Activity in the anterior hippocampus tracked encoding, which was more strongly deactivated when incidental encoding was unsuccessful. These findings highlight potential contributions from background encoding processes to hippocampal activations during neuroimaging studies of episodic memory retrieval. PMID:23378272

  18. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  19. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    PubMed

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  20. Hippocampal amnesia disrupts creative thinking.

    PubMed

    Duff, Melissa C; Kurczek, Jake; Rubin, Rachael; Cohen, Neal J; Tranel, Daniel

    2013-12-01

    Creativity requires the rapid combination and recombination of existing mental representations to create novel ideas and ways of thinking. The hippocampal system, through its interaction with neocortical storage sites, provides a relational database necessary for the creation, updating, maintenance, and juxtaposition of mental representations used in service of declarative memory. Given this functionality, we hypothesized that hippocampus would play a critical role in creative thinking. We examined creative thinking, as measured by verbal and figural forms of the torrance tests of creative thinking (TTCT), in a group of participants with hippocampal damage and severe declarative memory impairment as well as in a group of demographically matched healthy comparison participants. The patients with bilateral hippocampal damage performed significantly worse than comparison participants on both the verbal and figural portions of the TTCT. These findings suggest that hippocampus plays a role critical in creative thinking, adding to a growing body of work pointing to the diverse ways the hallmark processing features of hippocampus serve a variety of behaviors that require flexible cognition. Copyright © 2013 Wiley Periodicals, Inc.

  1. Longitudinal study of hippocampal volumes in heavy cannabis users.

    PubMed

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, Wam; van den Brink, W; Wiers, R W; Meijer, C J; Machielsen, Mwj; Goudriaan, A E; Veltman, D J; Yücel, M; Cousijn, J

    2017-08-01

    Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Twenty heavy cannabis users (mean age 21 years, range 18-24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.

  2. Longitudinal study of hippocampal volumes in heavy cannabis users

    PubMed Central

    Koenders, L; Lorenzetti, V; de Haan, L; Suo, C; Vingerhoets, WAM; van den Brink, W; Wiers, RW; Meijer, CJ; Machielsen, MWJ; Goudriaan, AE; Veltman, DJ; Yücel, M; Cousijn, J

    2017-01-01

    Background: Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes. Methods: Twenty heavy cannabis users (mean age 21 years, range 18–24 years) and 23 matched non-cannabis using healthy controls were submitted to a comprehensive psychological assessment and magnetic resonance imaging scan at baseline and at follow-up (average of 39 months post-baseline; standard deviation=2.4). Cannabis users started smoking around 16 years and smoked on average five days per week. A novel aspect of the current study is that hippocampal volume estimates were obtained from manual tracing the hippocampus on T1-weighted anatomical magnetic resonance imaging scans, using a previously validated protocol. Results: Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes. Conclusions: Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy. PMID:28741422

  3. Treatment of Intravenous Leiomyomatosis with Cardiac Extension following Incomplete Resection.

    PubMed

    Doyle, Mathew P; Li, Annette; Villanueva, Claudia I; Peeceeyen, Sheen C S; Cooper, Michael G; Hanel, Kevin C; Fermanis, Gary G; Robertson, Greg

    2015-01-01

    Aim. Intravenous leiomyomatosis (IVL) with cardiac extension (CE) is a rare variant of benign uterine leiomyoma. Incomplete resection has a recurrence rate of over 30%. Different hormonal treatments have been described following incomplete resection; however no standard therapy currently exists. We review the literature for medical treatments options following incomplete resection of IVL with CE. Methods. Electronic databases were searched for all studies reporting IVL with CE. These studies were then searched for reports of patients with inoperable or incomplete resection and any further medical treatments. Our database was searched for patients with medical therapy following incomplete resection of IVL with CE and their results were included. Results. All studies were either case reports or case series. Five literature reviews confirm that surgery is the only treatment to achieve cure. The uses of progesterone, estrogen modulation, gonadotropin-releasing hormone antagonism, and aromatase inhibition have been described following incomplete resection. Currently no studies have reviewed the outcomes of these treatments. Conclusions. Complete surgical resection is the only means of cure for IVL with CE, while multiple hormonal therapies have been used with varying results following incomplete resection. Aromatase inhibitors are the only reported treatment to prevent tumor progression or recurrence in patients with incompletely resected IVL with CE.

  4. Treatment of Intravenous Leiomyomatosis with Cardiac Extension following Incomplete Resection

    PubMed Central

    Doyle, Mathew P.; Li, Annette; Villanueva, Claudia I.; Peeceeyen, Sheen C. S.; Cooper, Michael G.; Hanel, Kevin C.; Fermanis, Gary G.; Robertson, Greg

    2015-01-01

    Aim. Intravenous leiomyomatosis (IVL) with cardiac extension (CE) is a rare variant of benign uterine leiomyoma. Incomplete resection has a recurrence rate of over 30%. Different hormonal treatments have been described following incomplete resection; however no standard therapy currently exists. We review the literature for medical treatments options following incomplete resection of IVL with CE. Methods. Electronic databases were searched for all studies reporting IVL with CE. These studies were then searched for reports of patients with inoperable or incomplete resection and any further medical treatments. Our database was searched for patients with medical therapy following incomplete resection of IVL with CE and their results were included. Results. All studies were either case reports or case series. Five literature reviews confirm that surgery is the only treatment to achieve cure. The uses of progesterone, estrogen modulation, gonadotropin-releasing hormone antagonism, and aromatase inhibition have been described following incomplete resection. Currently no studies have reviewed the outcomes of these treatments. Conclusions. Complete surgical resection is the only means of cure for IVL with CE, while multiple hormonal therapies have been used with varying results following incomplete resection. Aromatase inhibitors are the only reported treatment to prevent tumor progression or recurrence in patients with incompletely resected IVL with CE. PMID:26783463

  5. Development of hippocampal subfield volumes from 4 to 22 years.

    PubMed

    Krogsrud, Stine K; Tamnes, Christian K; Fjell, Anders M; Amlien, Inge; Grydeland, Håkon; Sulutvedt, Unni; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sølsnes, Anne E; Håberg, Asta K; Skrane, Jon; Walhovd, Kristine B

    2014-11-01

    The hippocampus supports several important cognitive functions known to undergo substantial development during childhood and adolescence, for example, encoding and consolidation of vivid personal memories. However, diverging developmental effects on hippocampal volume have been observed across studies. It is possible that the inconsistent findings may attribute to varying developmental processes and functions related to different hippocampal subregions. Most studies to date have measured global hippocampal volume. We aimed to explore early hippocampal development both globally and regionally within subfields. Using cross-sectional 1.5 T magnetic resonance imaging data from 244 healthy participants aged 4-22 years, we performed automated hippocampal segmentation of seven subfield volumes; cornu ammonis (CA) 1, CA2/3, CA4/dentate gyrus (DG), presubiculum, subiculum, fimbria, and hippocampal fissure. For validation purposes, seven subjects were scanned at both 1.5 and 3 T, and all subfields except fimbria showed strong correlations across field strengths. Effects of age, left and right hemisphere, sex and their interactions were explored. Nonparametric local smoothing models (smoothing spline) were used to depict age-trajectories. Results suggested nonlinear age functions for most subfields where volume increases until 13-15 years, followed by little age-related changes during adolescence. Further, the results showed greater right than left hippocampal volumes that seemed to be augmenting in older age. Sex differences were also found for subfields; CA2/3, CA4/DG, presubiculum, subiculum, and CA1, mainly driven by participants under 13 years. These results provide a detailed characterization of hippocampal subfield development from early childhood. Copyright © 2014 Wiley Periodicals, Inc.

  6. Abnormal hippocampal shape in offenders with psychopathy.

    PubMed

    Boccardi, Marina; Ganzola, Rossana; Rossi, Roberta; Sabattoli, Francesca; Laakso, Mikko P; Repo-Tiihonen, Eila; Vaurio, Olli; Könönen, Mervi; Aronen, Hannu J; Thompson, Paul M; Frisoni, Giovanni B; Tiihonen, Jari

    2010-03-01

    Posterior hippocampal volumes correlate negatively with the severity of psychopathy, but local morphological features are unknown. The aim of this study was to investigate hippocampal morphology in habitually violent offenders having psychopathy. Manual tracings of hippocampi from magnetic resonance images of 26 offenders (age: 32.5 +/- 8.4), with different degrees of psychopathy (12 high, 14 medium psychopathy based on the Psychopathy Checklist Revised), and 25 healthy controls (age: 34.6 +/- 10.8) were used for statistical modelling of local changes with a surface-based radial distance mapping method. Both offenders and controls had similar hippocampal volume and asymmetry ratios. Local analysis showed that the high psychopathy group had a significant depression along the longitudinal hippocampal axis, on both the dorsal and ventral aspects, when compared with the healthy controls and the medium psychopathy group. The opposite comparison revealed abnormal enlargement of the lateral borders in both the right and left hippocampi of both high and medium psychopathy groups versus controls, throughout CA1, CA2-3 and the subicular regions. These enlargement and reduction effects survived statistical correction for multiple comparisons in the main contrast (26 offenders vs. 25 controls) and in most subgroup comparisons. A statistical check excluded a possible confounding effect from amphetamine and polysubstance abuse. These results indicate that habitually violent offenders exhibit a specific abnormal hippocampal morphology, in the absence of total gray matter volume changes, that may relate to different autonomic modulation and abnormal fear-conditioning. 2009 Wiley-Liss, Inc.

  7. Memory-related hippocampal activation in the sleeping toddler.

    PubMed

    Prabhakar, Janani; Johnson, Elliott G; Nordahl, Christine Wu; Ghetti, Simona

    2018-06-19

    Nonhuman research has implicated developmental processes within the hippocampus in the emergence and early development of episodic memory, but methodological challenges have hindered assessments of this possibility in humans. Here, we delivered a previously learned song and a novel song to 2-year-old toddlers during natural nocturnal sleep and, using functional magnetic resonance imaging, found that hippocampal activation was stronger for the learned song compared with the novel song. This was true regardless of whether the song was presented intact or backwards. Toddlers who remembered where and in the presence of which toy character they heard the song exhibited stronger hippocampal activation for the song. The results establish that hippocampal activation in toddlers reflects past experiences, persists despite some alteration of the stimulus, and is associated with behavior. This research sheds light on early hippocampal and memory functioning and offers an approach to interrogate the neural substrates of early memory.

  8. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Bell, R. E.; Bitter, M.

    2014-11-15

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at the Large Helical Device. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy andmore » tomographic inversion, XICS can provide profile measurements of the local emissivity, temperature, and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modified Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example, geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  9. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE PAGES

    Pablant, N. A.; Bell, R. E.; Bitter, M.; ...

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  10. Membrane Potential Dynamics of CA1 Pyramidal Neurons During Hippocampal Ripples in Awake Mice

    PubMed Central

    Hulse, Brad K.; Moreaux, Laurent C.; Lubenov, Evgueniy V.; Siapas, Athanassios G.

    2016-01-01

    Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer time scale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations. PMID:26889811

  11. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    PubMed

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process. Copyright 2003 Wiley-Liss, Inc.

  12. Factors Affecting Formation of Incomplete Vi Antibody in Mice

    PubMed Central

    Gaines, Sidney; Currie, Julius A.; Tully, Joseph G.

    1965-01-01

    Gaines, Sidney (Walter Reed Army Institute of Research, Washington, D.C.), Julius A. Currie, and Joseph G. Tully. Factors affecting formation of incomplete Vi antibody in mice. J. Bacteriol. 90:635–642. 1965.—Single immunizing doses of purified Vi antigen elicited complete and incomplete Vi antibodies in BALB/c mice, but only incomplete antibody in Cinnamon mice. Three of six other mouse strains tested responded like BALB/c mice; the remaining three, like Cinnamon mice. Varying the quantity of antigen injected or the route of administration failed to stimulate the production of detectable complete Vi antibody in Cinnamon mice. Such antibody was evoked in these animals by multiple injections of Vi antigen or by inoculating them with Vi-containing bacilli or Vi-coated erythrocytes. The early protection afforded by serum from Vi-immunized BALB/c mice coincided with the appearance of incomplete Vi antibody, 1 day prior to the advent of complete antibody. Persistence of incomplete as well as complete antibody in the serum of immunized mice was demonstrated for at least 56 days after injection of 10 μg of Vi antigen. Incomplete Vi antibody was shown to have blocking ability, in vitro bactericidal activity, and the capability of protecting mice against intracerebral as well as intraperitoneal challenge with virulent typhoid bacilli. Production of incomplete and complete Vi antibodies was adversely affected by immunization with partially depolymerized Vi antigens. PMID:16562060

  13. Modeling hippocampal neurogenesis using human pluripotent stem cells.

    PubMed

    Yu, Diana Xuan; Di Giorgio, Francesco Paolo; Yao, Jun; Marchetto, Maria Carolina; Brennand, Kristen; Wright, Rebecca; Mei, Arianna; McHenry, Lauren; Lisuk, David; Grasmick, Jaeson Michael; Silberman, Pedro; Silberman, Giovanna; Jappelli, Roberto; Gage, Fred H

    2014-03-11

    The availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD), we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs). We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine.

  14. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    PubMed

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  15. Classifying with confidence from incomplete information.

    DOE PAGES

    Parrish, Nathan; Anderson, Hyrum S.; Gupta, Maya R.; ...

    2013-12-01

    For this paper, we consider the problem of classifying a test sample given incomplete information. This problem arises naturally when data about a test sample is collected over time, or when costs must be incurred to compute the classification features. For example, in a distributed sensor network only a fraction of the sensors may have reported measurements at a certain time, and additional time, power, and bandwidth is needed to collect the complete data to classify. A practical goal is to assign a class label as soon as enough data is available to make a good decision. We formalize thismore » goal through the notion of reliability—the probability that a label assigned given incomplete data would be the same as the label assigned given the complete data, and we propose a method to classify incomplete data only if some reliability threshold is met. Our approach models the complete data as a random variable whose distribution is dependent on the current incomplete data and the (complete) training data. The method differs from standard imputation strategies in that our focus is on determining the reliability of the classification decision, rather than just the class label. We show that the method provides useful reliability estimates of the correctness of the imputed class labels on a set of experiments on time-series data sets, where the goal is to classify the time-series as early as possible while still guaranteeing that the reliability threshold is met.« less

  16. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review.

    PubMed

    Pu, Yi; Cheyne, Douglas O; Cornwell, Brian R; Johnson, Blake W

    2018-01-01

    Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG "deep source imaging" of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations.

  17. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders.

    PubMed

    Geuze, E; Vermetten, E; Bremner, J D

    2005-02-01

    Magnetic resonance imaging (MRI) has opened a new window to the brain. Measuring hippocampal volume with MRI has provided important information about several neuropsychiatric disorders. We reviewed the literature and selected all English-language, human subject, data-driven papers on hippocampal volumetry, yielding a database of 423 records. Smaller hippocampal volumes have been reported in epilepsy, Alzheimer's disease, dementia, mild cognitive impairment, the aged, traumatic brain injury, cardiac arrest, Parkinson's disease, Huntington's disease, Cushing's disease, herpes simplex encephalitis, Turner's syndrome, Down's syndrome, survivors of low birth weight, schizophrenia, major depression, posttraumatic stress disorder, chronic alcoholism, borderline personality disorder, obsessive-compulsive disorder, and antisocial personality disorder. Significantly larger hippocampal volumes have been correlated with autism and children with fragile X syndrome. Preservation of hippocampal volume has been reported in congenital hyperplasia, children with fetal alcohol syndrome, anorexia nervosa, attention-deficit and hyperactivity disorder, bipolar disorder, and panic disorder. Possible mechanisms of hippocampal volume loss in neuropsychiatric disorders are discussed.

  18. Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review

    PubMed Central

    Pu, Yi; Cheyne, Douglas O.; Cornwell, Brian R.; Johnson, Blake W.

    2018-01-01

    Hippocampal rhythms are believed to support crucial cognitive processes including memory, navigation, and language. Due to the location of the hippocampus deep in the brain, studying hippocampal rhythms using non-invasive magnetoencephalography (MEG) recordings has generally been assumed to be methodologically challenging. However, with the advent of whole-head MEG systems in the 1990s and development of advanced source localization techniques, simulation and empirical studies have provided evidence that human hippocampal signals can be sensed by MEG and reliably reconstructed by source localization algorithms. This paper systematically reviews simulation studies and empirical evidence of the current capacities and limitations of MEG “deep source imaging” of the human hippocampus. Overall, these studies confirm that MEG provides a unique avenue to investigate human hippocampal rhythms in cognition, and can bridge the gap between animal studies and human hippocampal research, as well as elucidate the functional role and the behavioral correlates of human hippocampal oscillations. PMID:29755314

  19. Enhanced Dopamine-Dependent Hippocampal Plasticity after Single MK-801 Application

    PubMed Central

    Bartsch, Julia C; Fidzinski, Pawel; Huck, Jojanneke HJ; Hörtnagl, Heide; Kovács, Richard; Liotta, Agustin; Priller, Josef; Wozny, Christian; Behr, Joachim

    2015-01-01

    Dopaminergic hyperfunction and N-methyl-D-aspartate receptor (NMDAR) hypofunction have both been implicated in psychosis. Dopamine-releasing drugs and NMDAR antagonists replicate symptoms associated with psychosis in healthy humans and exacerbate symptoms in patients with schizophrenia. Though hippocampal dysfunction contributes to psychosis, the impact of NMDAR hypofunction on hippocampal plasticity remains poorly understood. Here, we used an NMDAR antagonist rodent model of psychosis to investigate hippocampal long-term potentiation (LTP). We found that single systemic NMDAR antagonism results in a region-specific, presynaptic LTP at hippocampal CA1-subiculum synapses that is induced by activation of D1/D5 dopamine receptors and modulated by L-type voltage-gated Ca2+ channels. Thereby, our findings may provide a cellular mechanism how NMDAR antagonism can lead to an enhanced hippocampal output causing activation of the hippocampus-ventral tegmental area-loop and overdrive of the dopamine system. PMID:25315194

  20. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    PubMed

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  1. 49 CFR 630.6 - Late and incomplete reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Late and incomplete reports. 630.6 Section 630.6 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION NATIONAL TRANSIT DATABASE § 630.6 Late and incomplete reports. (a) Late reports...

  2. 49 CFR 630.6 - Late and incomplete reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Late and incomplete reports. 630.6 Section 630.6 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION NATIONAL TRANSIT DATABASE § 630.6 Late and incomplete reports. (a) Late reports...

  3. 49 CFR 630.6 - Late and incomplete reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Late and incomplete reports. 630.6 Section 630.6 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION NATIONAL TRANSIT DATABASE § 630.6 Late and incomplete reports. (a) Late reports...

  4. 49 CFR 630.6 - Late and incomplete reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Late and incomplete reports. 630.6 Section 630.6 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION NATIONAL TRANSIT DATABASE § 630.6 Late and incomplete reports. (a) Late reports...

  5. 49 CFR 630.6 - Late and incomplete reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Late and incomplete reports. 630.6 Section 630.6 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION NATIONAL TRANSIT DATABASE § 630.6 Late and incomplete reports. (a) Late reports...

  6. The Impact of Sleep Loss on Hippocampal Function

    ERIC Educational Resources Information Center

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  7. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease.

    PubMed

    Protas, Hillary D; Chen, Kewei; Langbaum, Jessica B S; Fleisher, Adam S; Alexander, Gene E; Lee, Wendy; Bandy, Daniel; de Leon, Mony J; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W; Caselli, Richard J; Reiman, Eric M

    2013-03-01

    To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Academic medical center. A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for

  8. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  9. Hippocampal Morphology and Distinguishing Late-Onset From Early-Onset Elderly Depression

    PubMed Central

    Ballmaier, Martina; Narr, Katherine L.; Toga, Arthur W.; Elderkin-Thompson, Virginia; Thompson, Paul M.; Hamilton, Liberty; Haroon, Ebrahim; Pham, Daniel; Heinz, Andreas; Kumar, Anand

    2010-01-01

    Objective Despite evidence for hippocampal abnormalities in elderly depression, it is unknown whether these changes are regionally specific. This study used three-dimensional mapping techniques to identify regional hippocampal abnormalities in early- and late-onset depression. Neuropsychological correlates of hippocampal morphology were also investigated. Method With high-resolution magnetic resonance imaging, hippocampal morphology was compared among elderly patients with early- (N=24) and late-onset (N=22) depression and comparison subjects (N=34). Regional structural abnormalities were identified by comparing distances, measured from homologous hippocampal surface points to the central core of each individual’s hippocampal surface model, between groups. Results Hippocampal volumes differed between depressed patients and comparison subjects but not between patients with early- and late-onset depression. However, statistical mapping results showed that regional surface contractions were significantly pronounced in late-compared to early-onset depression in the anterior of the subiculum and lateral posterior of the CA1 subfield in the left hemisphere. Significant shape differences were observed bilaterally in anterior CA1–CA3 subfields and the subiculum in patients in relation to comparison subjects. These results were similar when each disease group was separately compared to comparison subjects. Hippocampal surface contractions significantly correlated with memory measures among late- but not early-onset depressed patients or comparison subjects. Conclusions More pronounced regional volume deficits and their associations with memory in late-onset depression may suggest that these patients are more likely to develop cognitive impairment over time than individuals with early-onset depression. Mapping regional hippocampal abnormalities and their cognitive correlates may help guide research in defining risk profiles and treatment strategies. PMID:17986679

  10. Hippocampal multimodal structural changes and subclinical depression in healthy individuals.

    PubMed

    Spalletta, Gianfranco; Piras, Fabrizio; Caltagirone, Carlo; Fagioli, Sabrina

    2014-01-01

    Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males. © 2013 Elsevier B.V. All rights reserved.

  11. 43 CFR 46.125 - Incomplete or unavailable information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Incomplete or unavailable information. 46... THE NATIONAL ENVIRONMENTAL POLICY ACT OF 1969 Protection and Enhancement of Environmental Quality § 46.125 Incomplete or unavailable information. In circumstances where the provisions of 40 CFR 1502.22...

  12. 43 CFR 46.125 - Incomplete or unavailable information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Incomplete or unavailable information. 46... THE NATIONAL ENVIRONMENTAL POLICY ACT OF 1969 Protection and Enhancement of Environmental Quality § 46.125 Incomplete or unavailable information. In circumstances where the provisions of 40 CFR 1502.22...

  13. Direct brain recordings reveal hippocampal rhythm underpinnings of language processing.

    PubMed

    Piai, Vitória; Anderson, Kristopher L; Lin, Jack J; Dewar, Callum; Parvizi, Josef; Dronkers, Nina F; Knight, Robert T

    2016-10-04

    Language is classically thought to be supported by perisylvian cortical regions. Here we provide intracranial evidence linking the hippocampal complex to linguistic processing. We used direct recordings from the hippocampal structures to investigate whether theta oscillations, pivotal in memory function, track the amount of contextual linguistic information provided in sentences. Twelve participants heard sentences that were either constrained ("She locked the door with the") or unconstrained ("She walked in here with the") before presentation of the final word ("key"), shown as a picture that participants had to name. Hippocampal theta power increased for constrained relative to unconstrained contexts during sentence processing, preceding picture presentation. Our study implicates hippocampal theta oscillations in a language task using natural language associations that do not require memorization. These findings reveal that the hippocampal complex contributes to language in an active fashion, relating incoming words to stored semantic knowledge, a necessary process in the generation of sentence meaning.

  14. 40 CFR 86.085-20 - Incomplete vehicles, classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., classification. (a) An incomplete truck less than 8,500 pounds gross vehicle weight rating shall be classified by... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Incomplete vehicles, classification... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General...

  15. Associative reinstatement memory measures hippocampal function in Parkinson's Disease.

    PubMed

    Cohn, Melanie; Giannoylis, Irene; De Belder, Maya; Saint-Cyr, Jean A; McAndrews, Mary Pat

    2016-09-01

    In Parkinson's Disease (PD), hippocampal atrophy is associated with rapid cognitive decline. Hippocampal function is typically assessed using memory tests but current clinical tools (e.g., free recall) also rely on executive functions or use material that is not optimally engaging hippocampal memory networks. Because of the ubiquity of executive dysfunction in PD, our ability to detect true memory deficits is suboptimal. Our previous behavioural and neuroimaging work in other populations suggests that an experimental memory task - Associative Reinstatement Memory (ARM) - may prove useful in investigating hippocampal function in PD. In this study, we investigated whether ARM is compromised in PD and we assessed its convergent and divergent validity by comparing it to standardized measures of memory and of attention and executive functioning in PD, respectively. Using fMRI, we also investigated whether performance in PD relates to degree of hippocampal engagement. Fifteen participants with PD and 13 age-matched healthy controls completed neuropsychological testing as well as an ARM fMRI recognition paradigm in which they were instructed to identify word pairs comprised of two studied words (intact or rearranged pairs) and those containing at least one new word (new or half new pairs). ARM is measured by the differences in hit rates between intact and rearranged pairs. Behaviourally, ARM was poorer in PD relative to controls and was correlated with verbal memory measures, but not with attention or executive functioning in the PD group. Hippocampal activation associated with ARM was reduced in PD relative to controls and covaried with ARM scores in both groups. To conclude, ARM is a sensitive measure of hippocampal memory function that is unaffected by attention or executive dysfunction in PD. Our study highlights the benefit of integrating cognitive neuroscience frameworks and novel experimental tasks to improve the practice of clinical neuropsychology in PD

  16. Lateralization of Temporal Lobe Epilepsy using a Novel Uncertainty Analysis of MR Diffusion in Hippocampus, Cingulum, and Fornix, and Hippocampal Volume and FLAIR Intensity

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Schwalb, Jason M.; Elisevich, Kost V.; Bagher-Ebadian, Hassan; Hamidian, Hajar; Akhondi-Asl, Ali-Reza; Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid

    2014-01-01

    Purpose To analyze the utility of a quantitative uncertainty analysis approach for evaluation and comparison of various MRI findings for lateralization of epileptogenicity in mesial temporal lobe epilepsy (mTLE), including novel diffusion-based analyses. Methods We estimated the hemispheric variation uncertainty (HVU) of hippocampal T1 volumetry and FLAIR (Fluid Attenuated Inversion Recovery) intensity. Using diffusion tensor images of 23 nonepileptic subjects, we estimated the HVU levels of mean diffusivity (MD) in the hippocampus, and fractional anisotropy (FA) in the posteroinferior cingulum and crus of fornix. Imaging from a retrospective cohort of 20 TLE patients who had undergone surgical resection with Engel class I outcomes was analyzed to determine whether asymmetry of preoperative volumetrics, FLAIR intensities, and MD values in hippocampi, as well as FA values in posteroinferior cingula and fornix crura correctly predicted laterality of seizure onset. Ten of the cohort had pathologically proven mesial temporal sclerosis (MTS). Seven of these patients had undergone extra-operative electrocorticography (ECoG) for lateralization or to rule out extra-temporal foci. Results HVU was estimated to be 3.1 × 10−5 for hippocampal MD, 0.027 for FA in posteroinferior cingulum, 0.018 for FA in crus of fornix, 0.069 for hippocampal normalized volume, and 0.099 for hippocampal normalized FLAIR intensity. Using HVU analysis, a higher hippocampal MD value, lower FA within the posteroinferior cingulum and crus of fornix, shrinkage in hippocampal volume, and higher hippocampal FLAIR intensity were observed beyond uncertainty on the side ipsilateral to seizure onset for 10, 10, 9, 9, and 10 out of 10 pathology-proven MTS patients, respectively. Considering all 20 TLE patients, these numbers were 18, 15, 14, 13, and 16, respectively. However, consolidating lateralization results of HVU analysis on these quantities by majority voting detected the epileptogenic side for 19

  17. Lateralization of temporal lobe epilepsy using a novel uncertainty analysis of MR diffusion in hippocampus, cingulum, and fornix, and hippocampal volume and FLAIR intensity.

    PubMed

    Nazem-Zadeh, Mohammad-Reza; Schwalb, Jason M; Elisevich, Kost V; Bagher-Ebadian, Hassan; Hamidian, Hajar; Akhondi-Asl, Ali-Reza; Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid

    2014-07-15

    To analyze the utility of a quantitative uncertainty analysis approach for evaluation and comparison of various MRI findings for the lateralization of epileptogenicity in mesial temporal lobe epilepsy (mTLE), including novel diffusion-based analyses. We estimated the hemispheric variation uncertainty (HVU) of hippocampal T1 volumetry and FLAIR (Fluid Attenuated Inversion Recovery) intensity. Using diffusion tensor images of 23 nonepileptic subjects, we estimated the HVU levels of mean diffusivity (MD) in the hippocampus, and fractional anisotropy (FA) in the posteroinferior cingulum and crus of fornix. Imaging from a retrospective cohort of 20 TLE patients who had undergone surgical resection with Engel class I outcomes was analyzed to determine whether asymmetry of preoperative volumetrics, FLAIR intensities, and MD values in hippocampi, as well as FA values in posteroinferior cingula and fornix crura correctly predicted laterality of seizure onset. Ten of the cohort had pathologically proven mesial temporal sclerosis (MTS). Seven of these patients had undergone extraoperative electrocorticography (ECoG) for lateralization or to rule out extra-temporal foci. HVU was estimated to be 3.1×10(-5) for hippocampal MD, 0.027 for FA in posteroinferior cingulum, 0.018 for FA in crus of fornix, 0.069 for hippocampal normalized volume, and 0.099 for hippocampal normalized FLAIR intensity. Using HVU analysis, a higher hippocampal MD value, lower FA within the posteroinferior cingulum and crus of fornix, shrinkage in hippocampal volume, and higher hippocampal FLAIR intensity were observed beyond uncertainty on the side ipsilateral to seizure onset for 10, 10, 9, 9, and 10 out of 10 pathology-proven MTS patients, respectively. Considering all 20 TLE patients, these numbers were 18, 15, 14, 13, and 16, respectively. However, consolidating the lateralization results of HVU analysis on these quantities by majority voting has detected the epileptogenic side for 19 out of 20 cases

  18. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia

    PubMed Central

    Talbot, Konrad; Eidem, Wess L.; Tinsley, Caroline L.; Benson, Matthew A.; Thompson, Edward W.; Smith, Rachel J.; Hahn, Chang-Gyu; Siegel, Steven J.; Trojanowski, John Q.; Gur, Raquel E.; Blake, Derek J.; Arnold, Steven E.

    2004-01-01

    Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73–93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18–42% (P = 0.027–0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., β-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia. PMID:15124027

  19. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia.

    PubMed

    Talbot, Konrad; Eidem, Wess L; Tinsley, Caroline L; Benson, Matthew A; Thompson, Edward W; Smith, Rachel J; Hahn, Chang-Gyu; Siegel, Steven J; Trojanowski, John Q; Gur, Raquel E; Blake, Derek J; Arnold, Steven E

    2004-05-01

    Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73-93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18-42% (P = 0.027-0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., beta-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia.

  20. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators

    PubMed Central

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-01-01

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect

  1. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators.

    PubMed

    Hueston, C M; Cryan, J F; Nolan, Y M

    2017-04-04

    Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect

  2. Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.

    PubMed

    Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S

    2017-11-01

    We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  3. Adult Hippocampal Neurogenesis in Natural Populations of Mammals

    PubMed Central

    Amrein, Irmgard

    2015-01-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. PMID:25934014

  4. Classification and data acquisition with incomplete data

    NASA Astrophysics Data System (ADS)

    Williams, David P.

    In remote-sensing applications, incomplete data can result when only a subset of sensors (e.g., radar, infrared, acoustic) are deployed at certain regions. The limitations of single sensor systems have spurred interest in employing multiple sensor modalities simultaneously. For example, in land mine detection tasks, different sensor modalities are better-suited to capture different aspects of the underlying physics of the mines. Synthetic aperture radar sensors may be better at detecting surface mines, while infrared sensors may be better at detecting buried mines. By employing multiple sensor modalities to address the detection task, the strengths of the disparate sensors can be exploited in a synergistic manner to improve performance beyond that which would be achievable with either single sensor alone. When multi-sensor approaches are employed, however, incomplete data can be manifested. If each sensor is located on a separate platform ( e.g., aircraft), each sensor may interrogate---and hence collect data over---only partially overlapping areas of land. As a result, some data points may be characterized by data (i.e., features) from only a subset of the possible sensors employed in the task. Equivalently, this scenario implies that some data points will be missing features. Increasing focus in the future on using---and fusing data from---multiple sensors will make such incomplete-data problems commonplace. In many applications involving incomplete data, it is possible to acquire the missing data at a cost. In multi-sensor remote-sensing applications, data is acquired by deploying sensors to data points. Acquiring data is usually an expensive, time-consuming task, a fact that necessitates an intelligent data acquisition process. Incomplete data is not limited to remote-sensing applications, but rather, can arise in virtually any data set. In this dissertation, we address the general problem of classification when faced with incomplete data. We also address the

  5. BDNF is Associated With Age-Related Decline in Hippocampal Volume

    PubMed Central

    Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.

    2010-01-01

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  6. Nocturnal Mnemonics: Sleep and Hippocampal Memory Processing

    PubMed Central

    Saletin, Jared M.; Walker, Matthew P.

    2012-01-01

    As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved: increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information. Instead, and based on explicit as well as saliency cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications. PMID:22557988

  7. WE-AB-207A-02: John’s Equation Based Consistency Condition and Incomplete Projection Restoration Upon Circular Orbit CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Qi, H; Wu, S

    Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method ismore » proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete

  8. Global and Regional Alterations of Hippocampal Anatomy in Long-Term Meditation Practitioners

    PubMed Central

    Luders, Eileen; Thompson, Paul M.; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R.; Wang, Yalin; Gutman, Boris A.; Chou, Yi-Yu; Narr, Katherine L.; Toga, Arthur W.

    2014-01-01

    Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. PMID:22815233

  9. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis.

    PubMed

    Wilkinson, Samuel T; Sanacora, Gerard; Bloch, Michael H

    2017-05-01

    Reduced hippocampal volume is one of the most consistent morphological findings in Major Depressive Disorder (MDD). Electroconvulsive therapy (ECT) is the most effective therapy for MDD, yet its mechanism of action remains poorly understood. Animal models show that ECT induces several neuroplastic processes, which lead to hippocampal volume increases. We conducted a meta-analysis of ECT studies in humans to investigate its effects on hippocampal volume. PubMed was searched for studies examining hippocampal volume before and after ECT. A random-effects model was used for meta-analysis with standardized mean difference (SMD) of the change in hippocampal volume before and after ECT as the primary outcome. Nine studies involving 174 participants were included. Total hippocampal volumes increased significantly following ECT compared to pre-treatment values (SMD=1.10; 95% CI 0.80-1.39; z=7.34; p<0.001; k=9). Both right (SMD=1.01; 95% CI 0.72-1.30; z=6.76; p<0.001; k=7) and left (SMD=0.87; 95% CI 0.51-1.23; z=4.69; p<0.001; k=7) hippocampal volumes were also similarly increased significantly following ECT. We demonstrated no correlation between improvement in depression symptoms with ECT and change in total hippocampal volume (beta=-1.28, 95% CI -4.51-1.95, z=-0.78, p=0.44). We demonstrate fairly consistent increases in hippocampal volume bilaterally following ECT treatment. The relationship among these volumetric changes and clinical improvement and cognitive side effects of ECT should be explored by larger, multisite studies with harmonized imaging methods.

  10. Extent of hippocampal atrophy predicts degree of deficit in recall.

    PubMed

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  11. Delayed recall, hippocampal volume and Alzheimer neuropathology: findings from the Nun Study.

    PubMed

    Mortimer, J A; Gosche, K M; Riley, K P; Markesbery, W R; Snowdon, D A

    2004-02-10

    To examine the associations of hippocampal volume and the severity of neurofibrillary lesions determined at autopsy with delayed verbal recall performance evaluated an average of 1 year prior to death. Hippocampal volumes were computed using postmortem brain MRI from the first 56 scanned participants of the Nun Study. Quantitative neuropathologic studies included lesion counts, Braak staging, and determination of whether neuropathologic criteria for Alzheimer disease (AD) were met. Multiple regression was used to assess the association of hippocampal volume and neuropathologic lesions with the number of words (out of 10) recalled on the Consortium to Establish a Registry for Alzheimer's Disease Delayed Word Recall Test administered an average of 1 year prior to death. When entered separately, hippocampal volume, Braak stage, and the mean neurofibrillary tangle counts in the CA-1 region of the hippocampus and the subiculum were strongly associated with the number of words recalled after a delay, adjusting for age and education. When hippocampal volume was entered together with each neuropathologic index, only hippocampal volume retained a significant association with the delayed recall measure. The association between hippocampal volume and the number of words recalled was present in both demented and nondemented individuals as well as in those with and without substantial AD neurofibrillary pathology. The association of neurofibrillary tangles with delayed verbal recall may reflect associated hippocampal atrophy.

  12. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder.

    PubMed

    Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T

    2015-11-10

    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13-18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder.

  13. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice.

    PubMed

    Kaifosh, Patrick; Lovett-Barron, Matthew; Turi, Gergely F; Reardon, Thomas R; Losonczy, Attila

    2013-09-01

    Hippocampal interneurons receive GABAergic input from the medial septum. Using two-photon Ca(2+) imaging of axonal boutons in hippocampal CA1 of behaving mice, we found that populations of septo-hippocampal GABAergic boutons were activated during locomotion and salient sensory events; sensory responses scaled with stimulus intensity and were abolished by anesthesia. We found similar activity patterns among boutons with common putative postsynaptic targets, with low-dimensional bouton population dynamics being driven primarily by presynaptic spiking.

  14. Remote semantic memory is impoverished in hippocampal amnesia

    PubMed Central

    Klooster, Nathaniel B.; Duff, Melissa C.

    2015-01-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. PMID:26474741

  15. Dynamics of hippocampal spatial representation in echolocating bats

    PubMed Central

    Ulanovsky, Nachum; Moss, Cynthia F.

    2009-01-01

    The ‘place fields‘ of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place-fields may ‘remap‘ within typical timescales of ~1 minute. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within the theta cycle. However, little is known about rapid hippocampal place-field dynamics in response to external, sensory stimuli. Here, we studied this question in big brown bats, echolocating mammals in which we can readily measure rapid changes in sensory dynamics (sonar signals), as well as rapid behavioral switches between distal and proximal exploratory modes. First, we show that place-field size was modulated by the availability of sensory information, on a timescale of ~300-milliseconds: Bat hippocampal place-fields were smallest immediately after an echolocation call, but place-fields ‘diffused’ with the passage of time after the call, when echo information was no longer arriving. Second, we show rapid modulation of hippocampal place-fields as the animal switched between two exploratory modes. Third, we compared place fields and spatial-view fields of individual neurons and found that place tuning was much more pronounced than spatial-view tuning. In addition, dynamic fluctuations in spatial-view tuning were stronger than fluctuations in place tuning. Taken together, these results suggest that spatial representation in mammalian hippocampus can be very rapidly modulated by external sensory and behavioral events. PMID:20014379

  16. Optimizing Balanced Incomplete Block Designs for Educational Assessments

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Veldkamp, Bernard P.; Carlson, James E.

    2004-01-01

    A popular design in large-scale educational assessments as well as any other type of survey is the balanced incomplete block design. The design is based on an item pool split into a set of blocks of items that are assigned to sets of "assessment booklets." This article shows how the problem of calculating an optimal balanced incomplete block…

  17. Hippocampal functional connectivity and episodic memory in early childhood

    PubMed Central

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L.; Redcay, Elizabeth

    2016-01-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4-and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. PMID:26900967

  18. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity

    PubMed Central

    Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.

    2015-01-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852

  19. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Han; Huang, Da-Nian; Ma, Guo-Qing; Meng, Zhao-Hai; Li, Ye

    2017-06-01

    With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noisecontaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airborne gravity-gradiometry data from Vinton salt dome (southwest Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.

  20. Preliminary evidence of hippocampal damage in chronic users of ecstasy.

    PubMed

    den Hollander, Bjørnar; Schouw, Marieke; Groot, Paul; Huisman, Henk; Caan, Matthan; Barkhof, Frederik; Reneman, Liesbeth

    2012-01-01

    Various studies have shown that ecstasy (3,4-methylenedioxymethamphetamine) users display significant memory impairments, whereas their performance on other cognitive tests is generally normal. The hippocampus plays an essential role in short-term memory. There are, however, no structural human data on the effects of ecstasy on the hippocampus. The objective of this study was to investigate whether the hippocampal volume of chronic ecstasy users is reduced when compared with healthy polydrug-using controls, as an indicator of hippocampal damage. The hippocampus was manually outlined in volumetric MRI scans in 10 male ecstasy users (mean age 25.4 years) and seven healthy age- and gender-matched control subjects (21.3 years). Other than the use of ecstasy, there were no statistically significant differences between both groups in exposure to other drugs of abuse and alcohol. The ecstasy users were on average drug-free for more than 2 months and had used on average 281 tablets over the past six and a half years. The hippocampal volume in the ecstasy using group was on average 10.5% smaller than the hippocampal volume in the control group (p=0.032). These data provide preliminary evidence that ecstasy users may be prone to incurring hippocampal damage, in line with previous reports of acute hippocampal sclerosis and subsequent atrophy in chronic users of this drug.

  1. Calcified Neurocysticercosis Associates with Hippocampal Atrophy: A Population-Based Study

    PubMed Central

    Del Brutto, Oscar H.; Salgado, Perla; Lama, Julio; Del Brutto, Victor J.; Campos, Xavier; Zambrano, Mauricio; García, Héctor H.

    2015-01-01

    Calcified neurocysticercosis has been associated with hippocampal atrophy in patients with refractory epilepsy, but the relevance of this association in the population at large is unknown. We assessed calcified cysticerci and its association with hippocampal atrophy in elderly persons living in Atahualpa, an Ecuadorian village endemic for neurocysticercosis. All Atahualpa residents ≥ 60 years of age were invited to undergo computed tomography/magnetic resonance imaging for neurocysticercosis detection. Twenty-eight (11%) out of 248 enrolled persons had calcified cysticerci (case-patients) and were matched 1:1 by age, sex, and years of education to individuals without neurocysticercosis on computed tomography/magnetic resonance imaging (controls). Four case-patients and none of the controls had epilepsy (P = 0.134). Cognitive performance was similar across both groups. The Scheltens' medial temporal atrophy scale was used for hippocampal rating in case-patients and matched controls without neurocysticercosis. Mean score in the Scheltens' scale was higher in case-patients than in controls (P < 0.001). Atrophic hippocampi were noticed in 19 case-patients and five controls (P = 0.003). Atrophy was bilateral in 11 case-patients and unilateral in eight. All case-patients with unilateral hippocampal atrophy had at least one ipsilateral calcification. This study shows an association between calcified cysticerci and hippocampal atrophy and raises the possibility of an inflammation-mediated hippocampal damage as the responsible mechanism for these findings. PMID:25349375

  2. Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.

    PubMed

    Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan

    2018-05-01

    Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of

  3. Hippocampal Structure Predicts Statistical Learning and Associative Inference Abilities during Development.

    PubMed

    Schlichting, Margaret L; Guarino, Katharine F; Schapiro, Anna C; Turk-Browne, Nicholas B; Preston, Alison R

    2017-01-01

    Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region's hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development.

  4. Hippocampal structure predicts statistical learning and associative inference abilities during development

    PubMed Central

    Schlichting, Margaret L.; Guarino, Katharine F.; Schapiro, Anna C.; Turk-Browne, Nicholas B.; Preston, Alison R.

    2016-01-01

    Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks—both of which require encoding associations that span multiple episodes—in a developmental sample ranging from ages 6–30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region’s hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development. PMID:27575916

  5. Brevetoxin Depresses Synaptic Transmission in Guinea Pig Hippocampal Slices

    DTIC Science & Technology

    1993-01-01

    Brevetoxin depresses synaptic transmission in guinea pig hippocampal slices. Brain Res Bull 31(1/2) 201-207, 1993.--Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices. PbTx-3, a brevetoxin fraction isolated from the red tide dinoflagellate Ptychodiscus brevis, was

  6. Hippocampal microRNA-mRNA regulatory network is affected by physical exercise.

    PubMed

    Fernandes, Jansen; Vieira, Andre Schwambach; Kramer-Soares, Juliana Carlota; Da Silva, Eduardo Alves; Lee, Kil Sun; Lopes-Cendes, Iscia; Arida, Ricardo Mario

    2018-05-08

    It is widely known that physical activity positively affects the overall health and brain function. Recently, microRNAs (miRNAs) have emerged as potential regulators of numerous biological processes within the brain. These molecules modulate gene expression post-transcriptionally by inducing mRNA degradation and inhibiting the translation of target mRNAs. To verify whether the procognitive effects of physical exercise are accompanied by changes in the activity of miRNA-mRNA network in the brain, differential expression analysis was performed in the hippocampus of control (CTL) and exercised (Ex) rats subjected to 4 weeks of treadmill exercise. Cognition was evaluated by a multiple trial inhibitory avoidance (MTIA) task and Illumina next-generation sequencing (NGS) was used for miRNA and mRNA profiling. Exercise improved memory retention but not acquisition in the MTIA task. It was observed that 4 miRNAs and 54 mRNAs were significantly altered in the hippocampus of Ex2 (euthanized 2 h after the last exercise bout) group when compared to CTL group. Bioinformatic analysis showed an inverse correlation between 3 miRNAs and 6 target mRNAs. The miRNAs miR-129-1-3p and miR-144-5p were inversely correlated to the Igfbp5 and Itm2a, respectively, and the miR-708-5p presented an inverse correlation with Cdkn1a, Per2, Rt1-a2. The exercise-induced memory improvements are accompanied by changes in hippocampal miRNA-mRNA regulatory network. Physical exercise can affect brain function through modulation of epigenetics mechanisms involving miRNA regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance.

    PubMed

    Jeukens, Cécile R L P N; Vlooswijk, Mariëlle C G; Majoie, H J Marian; de Krom, Marc C T F M; Aldenkamp, Albert P; Hofman, Paul A M; Jansen, Jacobus F A; Backes, Walter H

    2009-09-01

    Although volumetry of the hippocampus is considered to be an established technique, protocols reported in literature are not described in great detail. This article provides a complete and detailed protocol for hippocampal volumetry applicable to T1-weighted magnetic resonance (MR) images acquired at 3 Tesla, which has become the standard for structural brain research. The protocol encompasses T1-weighted image acquisition at 3 Tesla, anatomic guidelines for manual hippocampus delineation, requirements of delineation software, reliability measures, and criteria to assess and ensure sufficient reliability. Moreover, the validity of the correction for total intracranial volume size was critically assessed. The protocol was applied by 2 readers to the MR images of 36 patients with cryptogenic localization-related epilepsy, 4 patients with unilateral hippocampal sclerosis, and 20 healthy control subjects. The uncorrected hippocampal volumes were 2923 +/- 500 mm3 (mean +/- SD) (left) and 3120 +/- 416 mm3 (right) for the patient group and 3185 +/- 411 mm3 (left) and 3302 +/- 411 mm3 (right) for the healthy control group. The volume of the 4 pathologic hippocampi of the patients with unilateral hippocampal sclerosis was 2980 +/- 422 mm3. The inter-reader reliability values were determined: intraclass-correlation-coefficient (ICC) = 0.87 (left) and 0.86 (right), percentage volume difference (VD) = 7.0 +/- 4.7% (left) and 6.0 +/- 3.8% (right), and overlap ratio (OR) = 0.82 +/- 0.04 (left) and 0.82 +/- 0.03 (right). The positive Pearson correlation between hippocampal volume and total intracranial volume was found to be low: r = 0.48 (P = 0.03, left) and r = 0.62 (P = 0.004, right) and did not significantly reduce the volumetric variances, showing the limited benefit of the brain size correction. A protocol was described to determine hippocampal volumes based on 3 Tesla MR images with high inter-reader reliability. Although the reliability of hippocampal volumetry at 3 Tesla

  8. Hippocampal volume in healthy controls given 3-day stress doses of hydrocortisone.

    PubMed

    Brown, E Sherwood; Jeon-Slaughter, Haekyung; Lu, Hanzhang; Jamadar, Rhoda; Issac, Sruthy; Shad, Mujeeb; Denniston, Daren; Tamminga, Carol; Nakamura, Alyson; Thomas, Binu P

    2015-03-13

    In animal models, corticosterone elevations are associated with hippocampal changes that can be prevented with phenytoin. In humans, Cushing's syndrome and long-term prescription corticosteroid use are associated with a reduction in the hippocampal volume. However, little is known about the effects of short-term corticosteroid administration on the hippocampus. The current report examines changes in the hippocampal volume during a brief hydrocortisone exposure and whether volumetric changes can be blocked by phenytoin. A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in healthy adults (n=17). Participants received hydrocortisone (160 mg/day)/placebo, phenytoin/placebo, both medications together, or placebo/placebo, with 21-day washouts between the conditions. Structural MRI scans and cortisol levels were obtained following each medication condition. No significant difference in the total brain volume was observed with hydrocortisone. However, hydrocortisone was associated with a significant 1.69% reduction in the total hippocampal volume compared with placebo. Phenytoin blocked the volume reduction associated with hydrocortisone. Reduction in hippocampal volume correlated with the change in cortisol levels (r=-0.58, P=0.03). To our knowledge, this is the first report of structural hippocampal changes with brief corticosteroid exposure. The correlation between the change in hippocampal volume and cortisol level suggests that the volume changes are related to cortisol elevation. Although the findings from this pilot study need replication, they suggest that the reductions in hippocampal volume occur even during brief exposure to corticosteroids, and that hippocampal changes can, as in animal models, be blocked by phenytoin. The results may have implications both for understanding the response of the hippocampus to stress as well as for patients receiving prescription corticosteroids.

  9. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners.

    PubMed

    Luders, Eileen; Thompson, Paul M; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R; Wang, Yalin; Gutman, Boris A; Chou, Yi-Yu; Narr, Katherine L; Toga, Arthur W

    2013-12-01

    Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. Copyright © 2012 Wiley Periodicals, Inc.

  10. Hippocampal asymmetry in exploratory behavior to vasoactive intestinal polypeptide.

    PubMed

    Ivanova, Margarita; Ternianov, Alexandar; Belcheva, Stiliana; Tashev, Roman; Negrev, Negrin; Belcheva, Iren

    2008-06-01

    The effects of vasoactive intestinal polypeptide (VIP) microinjected uni- or bilaterally into the CA1 hippocampal area of male Wistar rats at a dose of 10, 50 and 100 ng on exploratory behavior were examined. VIP microinjected bilaterally at a high dose (100 ng) significantly decreased the horizontal movements, while at low doses (10 and 50 ng) had no effect on the exploratory activity. Microinjections of VIP into the left hippocampal CA1 area at doses 50 and 100 ng suppressed the exploratory activity, while right-side VIP administration at a dose 100 ng significantly increased horizontal movements compared to the respective controls. Vertical activity was stimulated only by VIP administered into the right hippocampal CA1 area at the three doses used. Neither bilateral nor left injections of VIP induced changes in the vertical movements. The main finding was the presence of hippocampal asymmetry in exploratory behavior to unilateral microinjections of VIP depending on the dose and the microinjected hemisphere.

  11. Hippocampal mechanisms for the context-dependent retrieval of episodes

    PubMed Central

    Hasselmo, Michael E.; Eichenbaum, Howard B.

    2008-01-01

    Behaviors ranging from delivering newspapers to waiting tables depend on remembering previous episodes to avoid incorrect repetition. Physiologically, this requires mechanisms for long-term storage and selective retrieval of episodes based on time of occurrence, despite variable intervals and similarity of events in a familiar environment. Here, this process has been modeled based on physiological properties of the hippocampal formation, including mechanisms for sustained activity in entorhinal cortex and theta rhythm oscillations in hippocampal subregions. The model simulates the context-sensitive firing properties of hippocampal neurons including trial specific firing during spatial alternation and trial by trial changes in theta phase precession on a linear track. This activity is used to guide behavior, and lesions of the hippocampal network impair memory-guided behavior. The model links data at the cellular level to behavior at the systems level, describing a physiologically plausible mechanism for the brain to recall a given episode which occurred at a specific place and time. PMID:16263240

  12. A Study of Incomplete Abortion Following Medical Method of Abortion (MMA).

    PubMed

    Pawde, Anuya A; Ambadkar, Arun; Chauhan, Anahita R

    2016-08-01

    Medical method of abortion (MMA) is a safe, efficient, and affordable method of abortion. However, incomplete abortion is a known side effect. To study incomplete abortion due to medication abortion and compare to spontaneous incomplete abortion and to study referral practices and prescriptions in cases of incomplete abortion following MMA. Prospective observational study of 100 women with first trimester incomplete abortion, divided into two groups (spontaneous or following MMA), was administered a questionnaire which included information regarding onset of bleeding, treatment received, use of medications for abortion, its prescription, and administration. Comparison of two groups was done using Fisher exact test (SPSS 21.0 software). Thirty percent of incomplete abortions were seen following MMA; possible reasons being self-administration or prescription by unregistered practitioners, lack of examination, incorrect dosage and drugs, and lack of follow-up. Complications such as collapse, blood requirement, and fever were significantly higher in these patients compared to spontaneous abortion group. The side effects of incomplete abortions following MMA can be avoided by the following standard guidelines. Self medication, over- the-counter use, and prescription by unregistered doctors should be discouraged and reported, and need of follow-up should be emphasized.

  13. Extent of hippocampal atrophy predicts degree of deficit in recall

    PubMed Central

    Patai, Eva Zita; Gadian, David G.; Cooper, Janine M.; Dzieciol, Anna M.; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-01-01

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition. PMID:26417089

  14. The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study.

    PubMed

    Maguire, Eleanor A; Frith, Christopher D; Rudge, Peter; Cipolotti, Lisa

    2005-08-01

    Bilateral hippocampal pathology typically results in significant memory problems. Despite apparently similar structural damage, patients with such lesions can differ in the pattern of impairment and preservation of memory functions. Previously, an fMRI study of a developmental amnesic patient whose anoxic hippocampal damage was incurred perinatally revealed his residual hippocampal tissue to be active during memory retrieval. This hippocampal activity was apparent during the retrieval of personal and general facts relative to a control task. In this study, we used a similar fMRI paradigm to investigate whether residual hippocampal activation was present also in patient VC with adult-acquired anoxic hippocampal pathology. VC's performance and reaction times on the experimental personal and general fact tasks were comparable to age-matched control subjects. However, in contrast to the elderly control sample and the previous developmental amnesic patient, his residual hippocampal tissue did not show activation changes during the experimental tasks. This finding indicates that patient VC's successful retrieval of personal and general facts was achieved without a significant hippocampal contribution. It further suggests that the hippocampal activation observed in the elderly controls and previous developmental amnesic patient was not necessary for successful task performance. The reason for this difference in hippocampal responsivity between VC and the developmental amnesic patient remains to be determined. We speculate that it may relate to the age at which hippocampal damage occurred reflecting plasticity within the developing brain, or to cognitive differences between VC, the developmental amnesic patient, and the control subjects.

  15. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice

    PubMed Central

    Tuscher, Jennifer J.; Szinte, Julia S.; Starrett, Joseph R.; Krentzel, Amanda A.; Fortress, Ashley M.; Remage-Healey, Luke; Frick, Karyn M.

    2016-01-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in dorsal hippocampus observed 30 min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. PMID:27178577

  16. Adult hippocampal neurogenesis in natural populations of mammals.

    PubMed

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  18. Maternal anxiety and infants' hippocampal development: timing matters.

    PubMed

    Qiu, A; Rifkin-Graboi, A; Chen, H; Chong, Y-S; Kwek, K; Gluckman, P D; Fortier, M V; Meaney, M J

    2013-09-24

    Exposure to maternal anxiety predicts offspring brain development. However, because children's brains are commonly assessed years after birth, the timing of such maternal influences in humans is unclear. This study aimed to examine the consequences of antenatal and postnatal exposure to maternal anxiety upon early infant development of the hippocampus, a key structure for stress regulation. A total of 175 neonates underwent magnetic resonance imaging (MRI) at birth and among them 35 had repeated scans at 6 months of age. Maternal anxiety was assessed using the State-Trait Anxiety Inventory (STAI) at week 26 of pregnancy and 3 months after delivery. Regression analyses showed that antenatal maternal anxiety did not influence bilateral hippocampal volume at birth. However, children of mothers reporting increased anxiety during pregnancy showed slower growth of both the left and right hippocampus over the first 6 months of life. This effect of antenatal maternal anxiety upon right hippocampal growth became statistically stronger when controlling for postnatal maternal anxiety. Furthermore, a strong positive association between postnatal maternal anxiety and right hippocampal growth was detected, whereas a strong negative association between postnatal maternal anxiety and the left hippocampal volume at 6 months of life was found. Hence, the postnatal growth of bilateral hippocampi shows distinct responses to postnatal maternal anxiety. The size of the left hippocampus during early development is likely to reflect the influence of the exposure to perinatal maternal anxiety, whereas right hippocampal growth is constrained by antenatal maternal anxiety, but enhanced in response to increased postnatal maternal anxiety.

  19. Remote semantic memory is impoverished in hippocampal amnesia.

    PubMed

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Anencephaly with incomplete twinning (diprosopus).

    PubMed

    Riccardi, V M; Bergmann, C A

    1977-10-01

    A case of diprosopus with anencephaly is presented. It is suggested that such concurrence of neural tube defects and incomplete twinning corroborates the notion that a single pathogenetic mechanism may be common to both neural tube defects and monozygotic twinning.

  1. Hippocampal Volume in Healthy Controls Given 3-Day Stress Doses of Hydrocortisone

    PubMed Central

    Brown, E Sherwood; Jeon-Slaughter, Haekyung; Lu, Hanzhang; Jamadar, Rhoda; Issac, Sruthy; Shad, Mujeeb; Denniston, Daren; Tamminga, Carol; Nakamura, Alyson; Thomas, Binu P

    2015-01-01

    In animal models, corticosterone elevations are associated with hippocampal changes that can be prevented with phenytoin. In humans, Cushing's syndrome and long-term prescription corticosteroid use are associated with a reduction in the hippocampal volume. However, little is known about the effects of short-term corticosteroid administration on the hippocampus. The current report examines changes in the hippocampal volume during a brief hydrocortisone exposure and whether volumetric changes can be blocked by phenytoin. A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in healthy adults (n=17). Participants received hydrocortisone (160 mg/day)/placebo, phenytoin/placebo, both medications together, or placebo/placebo, with 21-day washouts between the conditions. Structural MRI scans and cortisol levels were obtained following each medication condition. No significant difference in the total brain volume was observed with hydrocortisone. However, hydrocortisone was associated with a significant 1.69% reduction in the total hippocampal volume compared with placebo. Phenytoin blocked the volume reduction associated with hydrocortisone. Reduction in hippocampal volume correlated with the change in cortisol levels (r=−0.58, P=0.03). To our knowledge, this is the first report of structural hippocampal changes with brief corticosteroid exposure. The correlation between the change in hippocampal volume and cortisol level suggests that the volume changes are related to cortisol elevation. Although the findings from this pilot study need replication, they suggest that the reductions in hippocampal volume occur even during brief exposure to corticosteroids, and that hippocampal changes can, as in animal models, be blocked by phenytoin. The results may have implications both for understanding the response of the hippocampus to stress as well as for patients receiving prescription corticosteroids. PMID:25409592

  2. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  3. Aerobic Fitness is Associated With Hippocampal Volume in Elderly Humans

    PubMed Central

    Erickson, Kirk I.; Prakash, Ruchika S.; Voss, Michelle W.; Chaddock, Laura; Hu, Liang; Morris, Katherine S.; White, Siobhan M.; Wójcicki, Thomas R.; McAuley, Edward; Kramer, Arthur F.

    2010-01-01

    Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function. PMID:19123237

  4. Hippocampal functional connectivity and episodic memory in early childhood.

    PubMed

    Riggins, Tracy; Geng, Fengji; Blankenship, Sarah L; Redcay, Elizabeth

    2016-06-01

    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    PubMed

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Uncovering temporal structure in hippocampal output patterns

    PubMed Central

    de Jong, Laurel Watkins; Pfeiffer, Brad E; Foster, David

    2018-01-01

    Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals’ positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory. PMID:29869611

  7. Uncovering temporal structure in hippocampal output patterns.

    PubMed

    Maboudi, Kourosh; Ackermann, Etienne; de Jong, Laurel Watkins; Pfeiffer, Brad E; Foster, David; Diba, Kamran; Kemere, Caleb

    2018-06-05

    Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals' positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory. © 2018, Maboudi et al.

  8. 49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Requirements for incomplete vehicle manufacturers. 568.4 Section 568.4 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLES MANUFACTURED IN TWO OR MORE STAGES-ALL INCOMPLETE, INTERMEDIATE AND...

  9. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    PubMed

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p < 0.001 for both right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.

  10. The Association Between Neurocysticercosis and Hippocampal Atrophy is Related to Age

    PubMed Central

    Del Brutto, Oscar H.; Issa, Naoum P.; Salgado, Perla; Del Brutto, Victor J.; Zambrano, Mauricio; Lama, Julio; García, Héctor H.

    2017-01-01

    Neurocysticercosis (NCC) has been associated with hippocampal atrophy, but the prevalence and pathogenic mechanisms implicated in this relationship are unknown. Using a population-based, case–control study design, residents in a rural village (Atahualpa) aged ≥ 40 years with calcified NCC were identified as cases and paired to NCC-free individuals (control subjects) matched by age, sex, and level of education. Cases and control subjects underwent magnetic resonance imaging for hippocampal rating according to the Scheltens' scale for medial temporal atrophy and were interviewed to identify those with a clinical seizure disorder. The prevalence of hippocampal atrophy was compared between cases and control subjects by the use of the McNemar's test for correlated proportions. Seventy-five individuals with calcified NCC and their matched control subjects were included in the analysis. Hippocampal atrophy was noted in 26 (34.7%) cases and nine (12%) control subjects (odds ratio: 4.4; 95% confidence interval: 1.6–14.9, P < 0.0021). Stratification of pairs according to tertiles of age revealed an age-related trend in this association, which became significant only in those aged ≥ 68 years (P = 0.027). Only five cases and one control had recurrent seizures (P = 0.221); three of these five cases had hippocampal atrophy, and the single control subject had normal hippocampi. This study confirms an association between NCC and hippocampal atrophy, and shows that this association is stronger in older age groups. This suggests that NCC-related hippocampal atrophy takes a long time to develop. PMID:28077750

  11. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    PubMed Central

    Fetterhoff, Dustin; Kraft, Robert A.; Sandler, Roman A.; Opris, Ioan; Sexton, Cheryl A.; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological, and pathological states. PMID:26441562

  12. Influence of tumor cell proliferation and sex-hormone receptors on effectiveness of radiation therapy for dogs with incompletely resected meningiomas.

    PubMed

    Théon, A P; Lecouteur, R A; Carr, E A; Griffey, S M

    2000-03-01

    To assess the influence of tumor cell proliferation and sex-hormone receptors on the efficacy of megavoltage irradiation for dogs with incompletely resected meningiomas. Longitudinal clinical trial. 20 dogs with incompletely resected intracranial meningiomas. Dogs were treated with 48 Gy of radiation administered 3 times per week on an alternate-day schedule of 4 Gy/fraction for 4 weeks, using bilateral parallel-opposed fields. Tumor proliferative fraction measured by immunohistochemical detection of proliferating cell nuclear antigen (PFPCNA index) ranged from 10 to 42% (median, 24%). Progesterone receptor immunoreactivity was detected in 70% of tumors. Estrogen receptor immunoreactivity was not detected. An inverse correlation was found between detection of progesterone receptors and the PFPCNA index. The overall 2-year progression-free survival (PFS) rate was 68%. The only prognostic factor that significantly affected PFS rate was the PFPCNA index. The 2-year PFS was 42% for tumors with a high PFPCNA index (value > or = 24%) and 91% for tumors with a low PFPCNA index (value < 24%). Tumors with a high PFPCNA index were 9.1 times as likely to recur as were tumors with a low PFPCNA index. This study confirms the value of irradiation for dogs with incompletely resected meningiomas. Prognostic value of the PFPCNA index suggests-that duration of treatment and interval from surgery to start of irradiation may affect outcome. Loss of progesterone receptors in some tumors may be responsible for an increase in PFPCNA index and may indirectly affect prognosis after radiation therapy.

  13. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    PubMed Central

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  14. Hippocampal subfield surface deformity in non-semantic primary progressive aphasia.

    PubMed

    Christensen, Adam; Alpert, Kathryn; Rogalski, Emily; Cobia, Derin; Rao, Julia; Beg, Mirza Faisal; Weintraub, Sandra; Mesulam, M-Marsel; Wang, Lei

    2015-03-01

    Alzheimer neuropathology (AD) is found in almost half of patients with non-semantic primary progressive aphasia (PPA). This study examined hippocampal abnormalities in PPA to determine similarities to those described in amnestic AD. In 37 PPA patients and 32 healthy controls, we generated hippocampal subfield surface maps from structural MRIs and administered a face memory test. We analyzed group and hemisphere differences for surface shape measures and their relationship with test scores and ApoE genotype. The hippocampus in PPA showed inward deformity (CA1 and subiculum subfields) and outward deformity (CA2-4+DG subfield) and smaller left than right volumes. Memory performance was related to hippocampal shape abnormalities in PPA patients, but not controls, even in the absence of memory impairments. Hippocampal deformity in PPA is related to memory test scores. This may reflect a combination of intrinsic degenerative phenomena with transsynaptic or Wallerian effects of neocortical neuronal loss.

  15. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  16. Intracapsular implant rupture: MR findings of incomplete shell collapse.

    PubMed

    Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E

    1997-01-01

    The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.

  17. Association of human hippocampal neurochemistry, serotonin transporter genetic variation, and anxiety.

    PubMed

    Gallinat, Jürgen; Ströhle, Andreas; Lang, Undine E; Bajbouj, Malek; Kalus, Peter; Montag, Christiane; Seifert, Frank; Wernicke, Catrin; Rommelspacher, Hans; Rinneberg, Herbert; Schubert, Florian

    2005-05-15

    The impact of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) on anxiety-related behavior and related cerebral activation has facilitated the understanding of neurobiological mechanisms of anxiety. However, the influence of the 5-HTTLPR genotype on hippocampal neuronal development and neurochemistry, which is relevant to anxiety behavior, has not been investigated. In 38 healthy subjects, absolute concentrations of N-acetylaspartate (NAA) were measured as a main surrogate parameter for hippocampal neurochemistry on a 3-T scanner. A significantly lower hippocampal NAA concentration in s allele carriers was observed as compared to l/l genotype. Other metabolites (choline, creatine + phosphocreatine, glutamate) were unaffected by genotype. The hippocampal NAA concentration was negatively correlated with trait anxiety scores (STAI). Metabolites measured in the anterior cingulate cortex (reference region) were not associated with genotype. The results are in accordance with the recently reported relationship between hippocampal neuronal development and anxiety behavior in adult animals and show an association between human limbic neurochemistry and genetically driven serotonergic neurotransmission relevant to anxiety.

  18. Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model.

    PubMed

    Taxidis, Jiannis; Mizuseki, Kenji; Mason, Robert; Owen, Markus R

    2013-01-01

    Hippocampal sharp wave-ripple complexes (SWRs) involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO) during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway (TA). The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences.

  19. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity.

    PubMed

    Grillo, Claudia A; Piroli, Gerardo G; Lawrence, Robert C; Wrighten, Shayna A; Green, Adrienne J; Wilson, Steven P; Sakai, Randall R; Kelly, Sandra J; Wilson, Marlene A; Mott, David D; Reagan, Lawrence P

    2015-11-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice.

    PubMed

    Berger-Sweeney, Joanne; Zearfoss, N Ruth; Richter, Joel D

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of memories on two hippocampal-dependent tasks. A corresponding microarray analysis reveals that about 0.14% of hippocampal genes have an altered expression in the CPEB knockout mouse. These data suggest that CPEB-dependent local protein synthesis may be an important cellular mechanism underlying extinction of hippocampal-dependent memories.

  1. Properties of an intermediate-duration inactivation process of the voltage-gated sodium conductance in rat hippocampal CA1 neurons.

    PubMed

    French, Christopher R; Zeng, Zhen; Williams, David A; Hill-Yardin, Elisa L; O'Brien, Terence J

    2016-02-01

    Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an "intermediate inactivation" (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials (V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 10(2)-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. Copyright © 2016 the American Physiological Society.

  2. Sensitivity of low-energy incomplete fusion to various entrance-channel parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.; Singh, D.; Ali, Rahbar; Kumar, Kamal; Sathik, N. P. M.; Ali, Asif; Parashari, Siddharth; Dubey, R.; Bala, Indu; Kumar, R.; Singh, R. P.; Muralithar, S.

    2018-03-01

    The disentangling of incomplete fusion dependence on various entrance channel parameters has been made from the forward recoil range distribution measurement for the 12C+175Lu system at ≈ 88 MeV energy. It gives the direct measure of full and/or partial linear momentum transfer from the projectile to the target nucleus. The comparison of observed recoil ranges with theoretical ranges calculated using the code SRIM infers the production of evaporation residues via complete and/or incomplete fusion process. Present results show that incomplete fusion process contributes significantly in the production of α xn and 2α xn emission channels. The deduced incomplete fusion probability (F_{ICF}) is compared with that obtained for systems available in the literature. An interesting behavior of F_{ICF} with ZP ZT is observed in the reinvestigation of incomplete fusion dependency with the Coulomb factor (ZPZT), contrary to the recent observations. The present results based on (ZPZT) are found in good agreement with recent observations of our group. A larger F_{ICF} value for 12C induced reactions is found than that for 13C, although both have the same ZPZT. A nonsystematic behavior of the incomplete fusion process with the target deformation parameter (β2) is observed, which is further correlated with a new parameter (ZP ZT . β2). The projectile α -Q-value is found to explain more clearly the discrepancy observed in incomplete fusion dependency with parameters ( ZPZT) and (ZP ZT . β2). It may be pointed out that any single entrance channel parameter (mass-asymmetry or (ZPZT) or β2 or projectile α-Q-value) may not be able to explain completely the incomplete fusion process.

  3. Hippocampal Region-Specific Contributions to Memory Performance in Normal Elderly

    ERIC Educational Resources Information Center

    Chen, Karren H. M.; Chuah, Lisa Y. M.; Sim, Sam K. Y.; Chee, Michael W. L.

    2010-01-01

    To investigate the relationship between regional hippocampal volume and memory in healthy elderly, 147 community-based volunteers, aged 55-83 years, were evaluated using magnetic resonance imaging, the Groton Maze Learning Test, Visual Reproduction and the Rey Auditory Verbal Learning Test. Hippocampal volumes were determined by interactive…

  4. Hippocampal damage and memory impairment in congenital cyanotic heart disease.

    PubMed

    Muñoz-López, Mónica; Hoskote, Aparna; Chadwick, Martin J; Dzieciol, Anna M; Gadian, David G; Chong, Kling; Banks, Tina; de Haan, Michelle; Baldeweg, Torsten; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2017-04-01

    Neonatal hypoxia can lead to hippocampal atrophy, which can lead, in turn, to memory impairment. To test the generalizability of this causal sequence, we examined a cohort of 41 children aged 8-16, who, having received the arterial switch operation to correct for transposition of the great arteries, had sustained significant neonatal cyanosis but were otherwise neurodevelopmentally normal. As predicted, the cohort had significant bilateral reduction of hippocampal volumes relative to the volumes of 64 normal controls. They also had significant, yet selective, impairment of episodic memory as measured by standard tests of memory, despite relatively normal levels of intelligence, academic attainment, and verbal fluency. Across the cohort, degree of memory impairment was correlated with degree of hippocampal atrophy suggesting that even as early as neonatal life no other structure can fully compensate for hippocampal injury and its special role in serving episodic long term memory. © 2017 Wiley Periodicals, Inc. © 2017 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  5. Hippocampal damage and memory impairment in congenital cyanotic heart disease

    PubMed Central

    Hoskote, Aparna; Chadwick, Martin J.; Dzieciol, Anna M.; Gadian, David G.; Chong, Kling; Banks, Tina; de Haan, Michelle; Baldeweg, Torsten; Mishkin, Mortimer; Vargha‐Khadem, Faraneh

    2017-01-01

    ABSTRACT Neonatal hypoxia can lead to hippocampal atrophy, which can lead, in turn, to memory impairment. To test the generalizability of this causal sequence, we examined a cohort of 41 children aged 8‐16, who, having received the arterial switch operation to correct for transposition of the great arteries, had sustained significant neonatal cyanosis but were otherwise neurodevelopmentally normal. As predicted, the cohort had significant bilateral reduction of hippocampal volumes relative to the volumes of 64 normal controls. They also had significant, yet selective, impairment of episodic memory as measured by standard tests of memory, despite relatively normal levels of intelligence, academic attainment, and verbal fluency. Across the cohort, degree of memory impairment was correlated with degree of hippocampal atrophy suggesting that even as early as neonatal life no other structure can fully compensate for hippocampal injury and its special role in serving episodic long term memory. © 2017 Wiley Periodicals, Inc. PMID:28032672

  6. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Morency, Félix C; Collins, D Louis; Nishikawa, Masami; Ganzola, Rossana; Grothe, Michel J; Wolf, Dominik; Redolfi, Alberto; Pievani, Michela; Antelmi, Luigi; Fellgiebel, Andreas; Matsuda, Hiroshi; Teipel, Stefan; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B

    2015-02-01

    The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) is a Delphi definition of manual hippocampal segmentation from magnetic resonance imaging (MRI) that can be used as the standard of truth to train new tracers, and to validate automated segmentation algorithms. Training requires large and representative data sets of segmented hippocampi. This work aims to produce a set of HarP labels for the proper training and certification of tracers and algorithms. Sixty-eight 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects, balanced by age, medial temporal atrophy, and scanner manufacturer, were segmented by five qualified HarP tracers whose absolute interrater intraclass correlation coefficients were 0.953 and 0.975 (left and right). Labels were validated as HarP compliant through centralized quality check and correction. Hippocampal volumes (mm(3)) were as follows: controls: left = 3060 (standard deviation [SD], 502), right = 3120 (SD, 897); mild cognitive impairment (MCI): left = 2596 (SD, 447), right = 2686 (SD, 473); and Alzheimer's disease (AD): left = 2301 (SD, 492), right = 2445 (SD, 525). Volumes significantly correlated with atrophy severity at Scheltens' scale (Spearman's ρ = <-0.468, P = <.0005). Cerebrospinal fluid spaces (mm(3)) were as follows: controls: left = 23 (32), right = 25 (25); MCI: left = 15 (13), right = 22 (16); and AD: left = 11 (13), right = 20 (25). Five subjects (3.7%) presented with unusual anatomy. This work provides reference hippocampal labels for the training and certification of automated segmentation algorithms. The publicly released labels will allow the widespread implementation of the standard segmentation protocol. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.

    PubMed

    Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian

    2018-02-01

    Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.

  8. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.

    PubMed

    Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J

    2015-10-15

    Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.

  9. Oxidative Damage in the Guinea Pig Hippocampal Slice

    DTIC Science & Technology

    1989-01-01

    Original Contribution OXIDATIVE DAMAGE IN THE GUINEA PIG HIPPOCAMPAL SLICE TIRRY C. Pnt.N1.iAR’ and KATIlRNN L. Nt-t-t- Physiology Department. Armed Forces...responses in the hippocampal slice isolated from the brains of guinea pigs . Electrical stim- ulation of afferents to neurons of the CA I region of...from the brains be secreted by the microglia invading a region of in- of euthanized male Hartley guinea pigs as previously Jury. ’ Another possible

  10. Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia.

    PubMed

    La Joie, Renaud; Perrotin, Audrey; de La Sayette, Vincent; Egret, Stéphanie; Doeuvre, Loïc; Belliard, Serge; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2013-01-01

    Hippocampal atrophy is a well-known feature of Alzheimer's disease (AD), but sensitivity and specificity of hippocampal volumetry are limited. Neuropathological studies have shown that hippocampal subfields are differentially vulnerable to AD; hippocampal subfield volumetry may thus prove to be more accurate than global hippocampal volumetry to detect AD. CA1, subiculum and other subfields were manually delineated from 40 healthy controls, 18 AD, 17 amnestic Mild Cognitive Impairment (aMCI), and 8 semantic dementia (SD) patients using a previously developed high resolution MRI procedure. Non-parametric group comparisons and receiver operating characteristic (ROC) analyses were conducted. Complementary analyses were conducted to evaluate differences of hemispheric asymmetry and anterior-predominance between AD and SD patients and to distinguish aMCI patients with or without β-amyloid deposition as assessed by Florbetapir-TEP. Global hippocampi were atrophied in all three patient groups and volume decreases were maximal in the CA1 subfield (22% loss in aMCI, 27% in both AD and SD; all p < 0.001). In aMCI, CA1 volumetry was more accurate than global hippocampal measurement to distinguish patients from controls (areas under the ROC curve = 0.88 and 0.76, respectively; p = 0.05) and preliminary analyses suggest that it was independent from the presence of β-amyloid deposition. In patients with SD, whereas the degree of CA1 and subiculum atrophy was similar to that found in AD patients, hemispheric and anterior-posterior asymmetry were significantly more marked than in AD with greater involvement of the left and anterior hippocampal subfields. The findings suggest that CA1 measurement is more sensitive than global hippocampal volumetry to detect structural changes at the pre-dementia stage, although the predominance of CA1 atrophy does not appear to be specific to AD pathophysiological processes.

  11. Human Hippocampal Dynamics during Response Conflict.

    PubMed

    Oehrn, Carina R; Baumann, Conrad; Fell, Juergen; Lee, Hweeling; Kessler, Henrik; Habel, Ute; Hanslmayr, Simon; Axmacher, Nikolai

    2015-08-31

    Besides its relevance for declarative memory functions, hippocampal activation has been observed during disambiguation of uncertainty and conflict. Uncertainty and conflict may arise on various levels. On the perceptual level, the hippocampus has been associated with signaling of contextual deviance and disambiguation of similar items (i.e., pattern separation). Furthermore, conflicts can occur on the response level. Animal experiments showed a role of the hippocampus for inhibition of prevailing response tendencies and suppression of automatic stimulus-response mappings, potentially related to increased theta oscillations (3-8 Hz). In humans, a recent fMRI study demonstrated hippocampal involvement in approach-avoidance conflicts. However, the more general significance of hippocampal activity for dealing with response conflicts also on a cognitive level is still unknown. Here, we investigated the role of the hippocampus for response conflict in the Stroop task by combining intracranial electroencephalography (iEEG) recordings from the hippocampus of epilepsy patients with region of interest-based fMRI in healthy participants. Both methods revealed converging evidence that the hippocampus is recruited in a regionally specific manner during response conflict. Moreover, our iEEG data show that this activation depends on theta oscillations and is relevant for successful response conflict resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Are hippocampal size differences in posttraumatic stress disorder mediated by sleep pathology?

    PubMed

    Mohlenhoff, Brian S; Chao, Linda L; Buckley, Shannon T; Weiner, Michael W; Neylan, Thomas C

    2014-06-01

    Posttraumatic stress disorder (PTSD) is associated with smaller volumes of the hippocampus, as has been demonstrated by meta-analyses. Proposed mechanistic relationships are reviewed briefly, including the hypothesis that sleep disturbances mediate the effects of PTSD on hippocampal volume. Evidence for this includes findings that insomnia and restricted sleep are associated with changes in hippocampal cell regulation and impairments in cognition. We present results of a new study of 187 subjects in whom neither PTSD nor poor sleep was associated with lower hippocampal volume. We outline a broad research agenda centered on the hypothesis that sleep changes mediate the relationship between PTSD and hippocampal volume. Copyright © 2014. Published by Elsevier Inc.

  13. Phlebotomy-induced anemia alters hippocampal neurochemistry in neonatal mice

    PubMed Central

    Wallin, Diana J.; Tkac, Ivan; Stucker, Sara; Ennis, Kathleen M.; Sola-Visner, Martha; Rao, Raghavendra; Georgieff, Michael K.

    2015-01-01

    Background Phlebotomy-induced anemia (PIA) is common in preterm infants. The hippocampus undergoes rapid differentiation during late fetal/early neonatal life and relies on adequate oxygen and iron to support oxidative metabolism necessary for development. Anemia shortchanges these two critical substrates, potentially altering hippocampal development and function. Methods PIA (hematocrit <25%) was induced in neonatal mice pups from postnatal day (P)3 to P14. Neurochemical concentrations in the hippocampus were determined using in vivo 1H NMR spectroscopy at 9.4T and compared with control animals at P14. Gene expression was assessed using qRT-PCR. Results PIA decreased brain iron concentration, increased hippocampal lactate and creatine concentrations, and decreased phosphoethanolamine (PE) concentration and the phosphocreatine/creatine ratio. Hippocampal transferrin receptor (Tfrc) gene expression was increased, while the expression of calcium/calmodulin-dependent protein kinase type II alpha (CamKIIα) was decreased in PIA mice. Conclusion This clinically relevant model of neonatal anemia alters hippocampal energy and phospholipid metabolism and gene expression during a critical developmental period. Low target hematocrits for preterm neonates in the NICU may have potential adverse neural implications. PMID:25734245

  14. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.

    PubMed

    Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc

    2010-04-01

    Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  15. Past incompleteness of a bouncing multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenkin, Alexander; Zhang, Jun, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    2014-06-01

    According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consistsmore » of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces.« less

  16. Hippocampal sclerosis: volumetric evaluation of the substructures of the hippocampus by magnetic resonance imaging.

    PubMed

    Granados Sánchez, A M; Orejuela Zapata, J F

    2018-05-25

    The pathological classification of hippocampal sclerosis is based on the loss of neurons in the substructures of the hippocampus. This study aimed to evaluate these substructures in patients with hippocampal sclerosis by magnetic resonance imaging and to compare the usefulness of this morphological analysis compared to that of volumetric analysis of the entire hippocampus. We included 25 controls and 25 patients with hippocampal sclerosis whose diagnosis was extracted from the institutional epilepsy board. We used FreeSurfer to process the studies and obtain the volumetric data. We evaluated overall volume and volume by substructure: fimbria, subiculum, presubiculum, hippocampal sulcus, CA1, CA2-CA3, CA4, and dentate gyrus (DG). We considered p < 0.05 statistically significant. We observed statistically significant decreases in the volume of the hippocampus ipsilateral to the epileptogenic focus in 19 (76.0%) of the 25 cases. With the exception of the hippocampal sulcus, we observed a decrease in all ipsilateral hippocampal substructures in patients with right hippocampal sclerosis (CA1, p=0.0223; CA2-CA3, p=0.0066; CA4-GD, p=0.0066; fimbria, p=0.0046; presubiculum, p=0.0087; subiculum, p=0.0017) and in those with left hippocampal sclerosis (CA1, p<0.0001; CA2-CA3, p<0. 0001; CA4-GD, p<0. 0001; fimbria, p=0.0183; presubiculum, p<0. 0001; subiculum, p<0. 0001). In four patients with left hippocampal sclerosis, none of the substructures had statistically significant alterations, although a trend toward atrophy was observed, mainly in CA2-CA3 and CA4-GD. The findings suggest that it can be useful to assess the substructures of the hippocampus to improve the performance of diagnostic imaging in patients with hippocampal sclerosis. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Choline-mediated modulation of hippocampal sharp wave-ripple complexes in vitro.

    PubMed

    Fischer, Viktoria; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2014-06-01

    The cholinergic system is critically involved in the modulation of cognitive functions, including learning and memory. Acetylcholine acts through muscarinic (mAChRs) and nicotinic receptors (nAChRs), which are both abundantly expressed in the hippocampus. Previous evidence indicates that choline, the precursor and degradation product of Acetylcholine, can itself activate nAChRs and thereby affects intrinsic and synaptic neuronal functions. Here, we asked whether the cellular actions of choline directly affect hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R) and can induce gamma oscillations. In addition, choline reduces synaptic transmission between hippocampal subfields CA3 and CA1. Surprisingly, these effects are mediated by activation of both mAChRs and α7-containing nAChRs. Most nicotinic effects became only apparent after local, fast application of choline, indicating rapid desensitization kinetics of nAChRs. Effects were still present following block of choline uptake and are, therefore, likely because of direct actions of choline at the respective receptors. Together, choline turns out to be a potent regulator of patterned network activity within the hippocampus. These actions may be of importance for understanding state transitions in normal and pathologically altered neuronal networks. In this study we asked whether choline, the precursor and degradation product of acetylcholine, directly affects hippocampal network activity. Using mouse hippocampal slices we found that choline efficiently suppresses spontaneously occurring sharp wave-ripple complexes (SPW-R). In addition, choline reduces synaptic transmission between hippocampal subfields. These effects are mediated by direct activation of muscarinic as well as nicotinic cholinergic pathways. Together, choline turns out to be a potent regulator of patterned activity within hippocampal

  18. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  19. A mathematical model of aging-related and cortisol induced hippocampal dysfunction

    PubMed Central

    McAuley, Mark T; Kenny, Rose Anne; Kirkwood, Thomas BL; Wilkinson, Darren J; Jones, Janette JL; Miller, Veronica M

    2009-01-01

    Background The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD), the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silicomodel of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML). We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated. Results The in silicoSBML model reflected the in vivoaging of the hippocampus and increased plasma cortisol and negative feedback to the hypothalamic pituitary axis. Aging induced a 12% decrease in hippocampus activity (HA), increased to 30% by acute and 40% by chronic elevations in cortisol. The biological intervention attenuated the cortisol associated decrease in HA by 2% in the acute cortisol simulation and by 8% in the chronic simulation. Conclusion Both acute and chronic elevations in cortisol secretion increased aging-associated hippocampal atrophy and a loss of HA in the model. We suggest that this first SMBL model, in tandem with in vitroand in vivostudies, may provide a backbone to further frame computational cortisol and brain aging models, which may help predict aging-related brain changes in vulnerable older people. PMID:19320982

  20. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    PubMed

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  1. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.

    PubMed

    Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections

  2. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    PubMed Central

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections

  3. Incomplete fuzzy data processing systems using artificial neural network

    NASA Technical Reports Server (NTRS)

    Patyra, Marek J.

    1992-01-01

    In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.

  4. Algodystrophy: complex regional pain syndrome and incomplete forms

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Dell’Osso, Giacomo; Bugelli, Giulia; Celli, Fabio; Cazzella, Niki; Guido, Giulio

    2016-01-01

    Summary The algodystrophy, also known as complex regional pain syndrome (CRPS), is a painful disease characterized by erythema, edema, functional impairment, sensory and vasomotor disturbance. The diagnosis of CRPS is based solely on clinical signs and symptoms, and for exclusion compared to other forms of chronic pain. There is not a specific diagnostic procedure; careful clinical evaluation and additional test should lead to an accurate diagnosis. There are similar forms of chronic pain known as bone marrow edema syndrome, in which is absent the history of trauma or triggering events and the skin dystrophic changes and vasomotor alterations. These incomplete forms are self-limited, and surgical treatment is generally not needed. It is still controversial, if these forms represent a distinct self-limiting entity or an incomplete variant of CRPS. In painful unexplained conditions such as frozen shoulder, post-operative stiff shoulder or painful knee prosthesis, the algodystrophy, especially in its incomplete forms, could represent the cause. PMID:27252736

  5. Estimation from incomplete multinomial data. Ph.D. Thesis - Harvard Univ.

    NASA Technical Reports Server (NTRS)

    Credeur, K. R.

    1978-01-01

    The vector of multinomial cell probabilities was estimated from incomplete data, incomplete in that it contains partially classified observations. Each such partially classified observation was observed to fall in one of two or more selected categories but was not classified further into a single category. The data were assumed to be incomplete at random. The estimation criterion was minimization of risk for quadratic loss. The estimators were the classical maximum likelihood estimate, the Bayesian posterior mode, and the posterior mean. An approximation was developed for the posterior mean. The Dirichlet, the conjugate prior for the multinomial distribution, was assumed for the prior distribution.

  6. Transient slow gamma synchrony underlies hippocampal memory replay

    PubMed Central

    Carr, Margaret F.; Karlsson, Mattias P.; Frank, Loren M.

    2012-01-01

    Summary The replay of previously stored memories during hippocampal sharp wave ripples (SWRs) is thought to support both memory retrieval and consolidation in distributed hippocampal-neocortical circuits. Replay events consist of precisely timed sequences of spikes from CA3 and CA1 neurons that are coordinated both within and across hemispheres. The mechanism of this coordination is not understood. Here we show that during SWRs in both awake and quiescent states there are transient increases in slow gamma (20-50Hz) power and synchrony across dorsal CA3 and CA1 networks of both hemispheres. These gamma oscillations entrain CA3 and CA1 spiking. Moreover, during awake SWRs, higher levels of slow gamma synchrony are predictive of higher quality replay of past experiences. Our results indicate that CA3–CA1 gamma synchronization is a central component of awake memory replay and suggest that transient gamma synchronization serves as a clocking mechanism to enable coordinated memory reactivation across the hippocampal network. PMID:22920260

  7. Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder.

    PubMed

    Bond, D J; Silveira, L E; MacMillan, E L; Torres, I J; Lang, D J; Su, W; Honer, W G; Lam, R W; Yatham, L N

    2017-03-28

    We previously reported that higher body mass index (BMI) was associated with greater hippocampal glutamate+glutamine in people with bipolar disorder (BD), but not in non-BD healthy comparator subjects (HSs). In the current report, we extend these findings by examining the impact of BD diagnosis and BMI on hippocampal volumes and the concentrations of several additional neurochemicals in 57 early-stage BD patients and 31 HSs. Using 3-T magnetic resonance imaging and magnetic resonance spectroscopy, we measured bilateral hippocampal volumes and the hippocampal concentrations of four neurochemicals relevant to BD: N-acetylaspartate+N-acteylaspartylglutamate (tNAA), creatine+phosphocreatine (Cre), myoinositol (Ins) and glycerophosphocholine+phosphatidylcholine (Cho). We used multivariate factorial analysis of covariance to investigate the impact of diagnosis (patient vs HS) and BMI category (normal weight vs overweight/obese) on these variables. We found a main effect of diagnosis on hippocampal volumes, with patients having smaller hippocampi than HSs. There was no association between BMI and hippocampal volumes. We found diagnosis and BMI effects on hippocampal neurochemistry, with patients having lower Cre, Ins and Cho, and overweight/obese subjects having higher levels of these chemicals. In patient-only models that controlled for clinical and treatment variables, we detected an additional association between higher BMI and lower tNAA that was absent in HSs. To our knowledge, this was the first study to investigate the relative contributions of BD diagnosis and BMI to hippocampal volumes, and only the second to investigate their contributions to hippocampal chemistry. It provides further evidence that diagnosis and elevated BMI both impact limbic brain areas relevant to BD.

  8. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhang, Chi

    2018-03-01

    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  9. The evolving concept of the intrinsic hippocampal theta/gamma oscillator.

    PubMed

    Cataldi, Mauro; Vigliotti, Chiara

    2018-01-01

    Three main types of electrical oscillations are recorded from the hippocampus in vivo : theta (θ), gamma (γ) and sharp wave ripples with frequency bands of 4-12, 25-100 and 110-250 Hz, respectively. Theta activity is the more robust of them, and has important physiological roles because it is involved in spatial navigation, memory formation and memory retrieval. Classical lesion studies in vivo have suggested that the hippocampus passively follows the θ  rhythm generated in the septum by neurons that are synaptically connected with hippocampal neurons though septo-hippocampal connections. This view has been questioned since several studies have shown that oscillations in the θ range can be recorded in in vitro hippocampal preparations thus indicating that the hippocampus itself can act as a θ oscillator. In this review, we will describe how the paradigm of the intrinsic θ oscillator has been changing over the years from simple models that have proposed single hippocampal lamellae to contain the θ oscillator to the current models that include some degree of septo-temporal integration.

  10. MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity.

    PubMed

    Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z

    2016-12-01

    Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Hippocampal Morphology in a Rat Model of Depression: The Effects of Physical Activity

    PubMed Central

    Sierakowiak, Adam; Mattsson, Anna; Gómez-Galán, Marta; Feminía, Teresa; Graae, Lisette; Aski, Sahar Nikkhou; Damberg, Peter; Lindskog, Mia; Brené, Stefan; Åberg, Elin

    2015-01-01

    Accumulating in vivo and ex vivo evidences show that humans suffering from depression have decreased hippocampal volume and altered spine density. Moreover, physical activity has an antidepressant effect in humans and in animal models, but to what extent physical activity can affect hippocampal volume and spine numbers in a model for depression is not known. In this study we analyzed whether physical activity affects hippocampal volume and spine density by analyzing a rodent genetic model of depression, Flinders Sensitive Line Rats (FSL), with Magnetic Resonance Imaging (MRI) and ex vivo Golgi staining. We found that physical activity in the form of voluntary wheel running during 5 weeks increased hippocampal volume. Moreover, runners also had larger numbers of thin spines in the dentate gyrus. Our findings support that voluntary wheel running, which is antidepressive in FSL rats, is associated with increased hippocampal volume and spine numbers. PMID:25674191

  12. Hippocampal morphology in a rat model of depression: the effects of physical activity.

    PubMed

    Sierakowiak, Adam; Mattsson, Anna; Gómez-Galán, Marta; Feminía, Teresa; Graae, Lisette; Aski, Sahar Nikkhou; Damberg, Peter; Lindskog, Mia; Brené, Stefan; Åberg, Elin

    2014-01-01

    Accumulating in vivo and ex vivo evidences show that humans suffering from depression have decreased hippocampal volume and altered spine density. Moreover, physical activity has an antidepressant effect in humans and in animal models, but to what extent physical activity can affect hippocampal volume and spine numbers in a model for depression is not known. In this study we analyzed whether physical activity affects hippocampal volume and spine density by analyzing a rodent genetic model of depression, Flinders Sensitive Line Rats (FSL), with Magnetic Resonance Imaging (MRI) and ex vivo Golgi staining. We found that physical activity in the form of voluntary wheel running during 5 weeks increased hippocampal volume. Moreover, runners also had larger numbers of thin spines in the dentate gyrus. Our findings support that voluntary wheel running, which is antidepressive in FSL rats, is associated with increased hippocampal volume and spine numbers.

  13. Hippocampal dentation: Structural variation and its association with episodic memory in healthy adults.

    PubMed

    Fleming Beattie, Julia; Martin, Roy C; Kana, Rajesh K; Deshpande, Hrishikesh; Lee, Seongtaek; Curé, Joel; Ver Hoef, Lawrence

    2017-07-01

    While the hippocampus has long been identified as a structure integral to memory, the relationship between morphology and function has yet to be fully explained. We present an analysis of hippocampal dentation, a morphological feature previously unexplored in regard to its relationship with episodic memory. "Hippocampal dentation" in this case refers to surface convolutions, primarily present in the CA1/subiculum on the inferior aspect of the hippocampus. Hippocampal dentation was visualized using ultra-high resolution structural MRI and evaluated using a novel visual rating scale. The degree of hippocampal dentation was found to vary considerably across individuals, and was positively associated with verbal memory recall and visual memory recognition in a sample of 22 healthy adults. This study is the first to characterize the variation in hippocampal dentation in a healthy cohort and to demonstrate its association with aspects of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of unconventional breakup modes on incomplete fusion of weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Quraishi, Daanish

    2018-02-01

    The incomplete fusion dynamics of 6Li+209Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the platypus code is used to understand and quantify the impact of both 6Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as 8Be and 5Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of 6Li reduces the incomplete fusion cross sections and (ii) the neutron-stripping channel practically determines those cross sections.

  15. Imbalance of incidental encoding across tasks: an explanation for non-memory-related hippocampal activations?

    PubMed

    Reas, Emilie T; Brewer, James B

    2013-11-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Neuropsychology, autobiographical memory, and hippocampal volume in "younger" and "older" patients with chronic schizophrenia.

    PubMed

    Herold, Christina Josefa; Lässer, Marc Montgomery; Schmid, Lena Anna; Seidl, Ulrich; Kong, Li; Fellhauer, Iven; Thomann, Philipp Arthur; Essig, Marco; Schröder, Johannes

    2015-01-01

    Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21) with respect to AM, additional neuropsychological parameters, and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analyzed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group, significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume; executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution.

  17. Specific responses of human hippocampal neurons are associated with better memory.

    PubMed

    Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak

    2015-08-18

    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.

  18. Comparison of the force exerted by hippocampal and DRG growth cones.

    PubMed

    Amin, Ladan; Ercolini, Erika; Ban, Jelena; Torre, Vincent

    2013-01-01

    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm(2) and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.

  19. Comparison of the Force Exerted by Hippocampal and DRG Growth Cones

    PubMed Central

    Amin, Ladan; Ercolini, Erika; Ban, Jelena; Torre, Vincent

    2013-01-01

    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 µm2 and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties. PMID:23991169

  20. Mind-Wandering in People with Hippocampal Damage.

    PubMed

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2018-03-14

    Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30-50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with

  1. Mind-Wandering in People with Hippocampal Damage

    PubMed Central

    2018-01-01

    Subjective inner experiences, such as mind-wandering, represent the fundaments of human cognition. Although the precise function of mind-wandering is still debated, it is increasingly acknowledged to have influence across cognition on processes such as future planning, creative thinking, and problem-solving and even on depressive rumination and other mental health disorders. Recently, there has been important progress in characterizing mind-wandering and identifying the associated neural networks. Two prominent features of mind-wandering are mental time travel and visuospatial imagery, which are often linked with the hippocampus. People with selective bilateral hippocampal damage cannot vividly recall events from their past, envision their future, or imagine fictitious scenes. This raises the question of whether the hippocampus plays a causal role in mind-wandering and, if so, in what way. Leveraging a unique opportunity to shadow people (all males) with bilateral hippocampal damage for several days, we examined, for the first time, what they thought about spontaneously, without direct task demands. We found that they engaged in as much mind-wandering as control participants. However, whereas controls thought about the past, present, and future, imagining vivid visual scenes, hippocampal damage resulted in thoughts primarily about the present comprising verbally mediated semantic knowledge. These findings expose the hippocampus as a key pillar in the neural architecture of mind-wandering and also reveal its impact beyond episodic memory, placing it at the heart of our mental life. SIGNIFICANCE STATEMENT Humans tend to mind-wander ∼30–50% of their waking time. Two prominent features of this pervasive form of thought are mental time travel and visuospatial imagery, which are often associated with the hippocampus. To examine whether the hippocampus plays a causal role in mind-wandering, we examined the frequency and phenomenology of mind-wandering in patients with

  2. Prospective and Episodic Memory in Relation to Hippocampal Volume in Adults with Spina Bifida Myelomeningocele

    PubMed Central

    Treble-Barna, Amery; Juranek, Jenifer; Stuebing, Karla K.; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.

    2014-01-01

    The present study examined prospective and episodic memory in relation to age, functional independence, and hippocampal volume in younger to middle-aged adults with spina bifida myelomeningocele (SBM) and typically developing (TD) adults. Prospective and episodic memory, as well as hippocampal volume, were reduced in adults with SBM relative to TD adults. Neither memory performance nor hippocampal volume showed greater decrements in older adults. Lower hippocampal volume was associated with reduced prospective memory in adults with SBM, and this relation was specific to the hippocampus and not to a contrast structure, the amygdala. Prospective memory mediated the relation between hippocampal volume and functional independence in adults with SBM. The results add to emerging evidence for reduced memory function in adults with SBM, and provide quantitative evidence for compromised hippocampal macrostructure as a neural correlate of reduced memory in this population. PMID:25068670

  3. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    PubMed

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  4. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.

    PubMed

    Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja

    2016-11-01

    Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 32 CFR 651.44 - Incomplete information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... approaches or research methods generally accepted in the scientific community. ... 32 National Defense 4 2011-07-01 2011-07-01 false Incomplete information. 651.44 Section 651.44 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY...

  6. 32 CFR 651.44 - Incomplete information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approaches or research methods generally accepted in the scientific community. ... 32 National Defense 4 2010-07-01 2010-07-01 true Incomplete information. 651.44 Section 651.44 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY...

  7. Hippocampal Functioning and Verbal Associative Memory in Adolescents with Congenital Hypothyroidism

    PubMed Central

    Wheeler, Sarah M.; McLelland, Victoria C.; Sheard, Erin; McAndrews, Mary Pat; Rovet, Joanne F.

    2015-01-01

    Thyroid hormone (TH) is essential for normal development of the hippocampus, which is critical for memory and particularly for learning and recalling associations between visual and verbal stimuli. Adolescents with congenital hypothyroidism (CH), who lack TH in late gestation and early life, demonstrate weak verbal recall abilities, reduced hippocampal volumes, and abnormal hippocampal functioning for visually associated material. However, it is not known if their hippocampus functions abnormally when remembering verbal associations. Our objective was to assess hippocampal functioning in CH using functional magnetic resonance imaging (fMRI). Fourteen adolescents with CH and 14 typically developing controls (TDC) were studied. Participants studied pairs of words and then, during fMRI acquisition, made two types of recognition decisions: in one they judged whether the pairs were the same as when seen originally and in the other, whether individual words were seen before regardless of pairing. Hippocampal activation was greater for pairs than items in both groups, but this difference was only significant in TDC. When we directly compared the groups, the right anterior hippocampus was the primary region in which the TDC and CH groups differed for this pair memory effect. Results signify that adolescents with CH show abnormal hippocampal functioning during verbal memory processing. PMID:26539162

  8. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  9. Hippocampal interictal epileptiform activity disrupts cognition in humans

    PubMed Central

    Kleen, Jonathan K.; Scott, Rod C.; Holmes, Gregory L.; Roberts, David W.; Rundle, Melissa M.; Testorf, Markus; Lenck-Santini, Pierre-Pascal

    2013-01-01

    Objective: We investigated whether interictal epileptiform discharges (IED) in the human hippocampus are related to impairment of specific memory processes, and which characteristics of hippocampal IED are most associated with memory dysfunction. Methods: Ten patients had depth electrodes implanted into their hippocampi for preoperative seizure localization. EEG was recorded during 2,070 total trials of a short-term memory task, with memory processing categorized into encoding, maintenance, and retrieval. The influence of hippocampal IED on these processes was analyzed and adjusted to account for individual differences between patients. Results: Hippocampal IED occurring in the memory retrieval period decreased the likelihood of a correct response when they were contralateral to the seizure focus (p < 0.05) or bilateral (p < 0.001). Bilateral IED during the memory maintenance period had a similar effect (p < 0.01), particularly with spike-wave complexes of longer duration (p < 0.01). IED during encoding had no effect, and reaction time was also unaffected by IED. Conclusions: Hippocampal IED in humans may disrupt memory maintenance and retrieval, but not encoding. The particular effects of bilateral IED and those contralateral to the seizure focus may relate to neural compensation in the more functional hemisphere. This study provides biological validity to animal models in the study of IED-related transient cognitive impairment. Moreover, it strengthens the argument that IED may contribute to cognitive impairment in epilepsy depending upon when and where they occur. PMID:23685931

  10. Encoding of head direction by hippocampal place cells in bats.

    PubMed

    Rubin, Alon; Yartsev, Michael M; Ulanovsky, Nachum

    2014-01-15

    Most theories of navigation rely on the concept of a mental map and compass. Hippocampal place cells are neurons thought to be important for representing the mental map; these neurons become active when the animal traverses a specific location in the environment (the "place field"). Head-direction cells are found outside the hippocampus, and encode the animal's head orientation, thus implementing a neural compass. The prevailing view is that the activity of head-direction cells is not tuned to a single place, while place cells do not encode head direction. However, little work has been done to investigate in detail the possible head-directional tuning of hippocampal place cells across species. Here we addressed this by recording the activity of single neurons in the hippocampus of two evolutionarily distant bat species, Egyptian fruit bat and big brown bat, which crawled randomly in three different open-field arenas. We found that a large fraction of hippocampal neurons, in both bat species, showed conjunctive sensitivity to the animal's spatial position (place field) and to its head direction. We introduced analytical methods to demonstrate that the head-direction tuning was significant even after controlling for the behavioral coupling between position and head direction. Surprisingly, some hippocampal neurons preserved their head direction tuning even outside the neuron's place field, suggesting that "spontaneous" extra-field spikes are not noise, but in fact carry head-direction information. Overall, these findings suggest that bat hippocampal neurons can convey both map information and compass information.

  11. Inter-relationships among Diet, Obesity and Hippocampal-dependent Cognitive Function

    PubMed Central

    Davidson, Terry L.; Hargrave, Sara L.; Swithers, Susan E.; Sample, Camille H.; Fu, Xue; Kinzig, Kimberly P.; Zheng, Wei

    2013-01-01

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). Confirming and extending previous findings, diet-induced obese (DIO) rats fed WD showed impaired FN performance, increased BBB permeability, and increased fasting blood glucose levels compared to CHOW controls and to diet resistant (DR) rats that did not become obese when maintained on WD. For rats fed the KETO diet, FN performance and BBB integrity was more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO) with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent feature negative discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity. PMID:23999121

  12. Mice with experimental antiphospholipid syndrome display hippocampal dysfunction and a reduction of dendritic complexity in hippocampal CA1 neurones.

    PubMed

    Frauenknecht, Katrin; Katzav, Aviva; Weiss Lavi, Ronen; Sabag, Avishag; Otten, Susanne; Chapman, Joab; Sommer, Clemens J

    2015-08-01

    The antiphospholipid syndrome (APS) is an autoimmune disease characterized by high titres of auto-antibodies (aPL) leading to thrombosis and consequent infarcts. However, many affected patients develop neurological symptoms in the absence of stroke. Similarly, in a mouse model of this disease (eAPS), animals consistently develop behavioural abnormalities despite lack of ischemic brain injury. Therefore, the present study was designed to identify structural alterations of hippocampal neurones underlying the neurological symptoms in eAPS. Adult female Balb/C mice were subjected to either induction of eAPS by immunization with β2-Glycoprotein 1 or to a control group. After sixteen weeks animals underwent behavioural and cognitive testing using Staircase test (experiment 1 and 2) and Y-maze alternation test (experiment 1) and were tested for serum aPL levels (both experiments). Animals of experiment 1 (n = 7/group) were used for hippocampal neurone analysis using Golgi-Cox staining. Animals of experiment 2 (n = 7/group) were used to analyse molecular markers of total dendritic integrity (MAP2), presynaptic plasticity (synaptobrevin 2/VAMP2) and dendritic spines (synaptopodin) using immunohistochemistry. eAPS mice developed increased aPL titres and presented with abnormal behaviour and impaired short term memory. Further, they revealed a reduction of dendritic complexity of hippocampal CA1 neurones as reflected by decreased dendritic length, arborization and spine density, respectively. Additional decrease of the spine-associated protein expression of Synaptopodin points to dendritic spines as major targets in the pathological process. Reduction of hippocampal dendritic complexity may represent the structural basis for the behavioural and cognitive abnormalities of eAPS mice. © 2014 British Neuropathological Society.

  13. Three-Dimensional Mapping of Hippocampal Anatomy in Adolescents with Bipolar Disorder

    ERIC Educational Resources Information Center

    Bearden, Carrie E.; Soares, Jair C.; Klunder, Andrea D.; Nicoletti, Mark; Dierschki, Nicole; Hayashi, Kiralee M.; Narr, Katherine L.; Bhrambilla, Paolo; Sassi, Roberto B.; Axelson, David; Ryan, Neal; Birmaher, Boris; Thompson, Paul M.

    2008-01-01

    The article discusses the use of three-dimensional mapping methods in children and adolescents with bipolar disorder to find out if localized alterations in hippocampal structure are exhibited. It also explores the developmental differences where the patient with bipolar disorder showed increasing hippocampal size with increasing age.

  14. Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects

    NASA Astrophysics Data System (ADS)

    Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.

    2017-12-01

    Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.

  15. Effects of Early-Life Adversity on Hippocampal Structures and Associated HPA Axis Functions.

    PubMed

    Dahmen, Brigitte; Puetz, Vanessa B; Scharke, Wolfgang; von Polier, Georg G; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2018-01-01

    Early-life adversity (ELA) is one of the major risk factors for serious mental and physical health risks later in life. ELA has been associated with dysfunctional neurodevelopment, especially in brain structures such as the hippocampus, and with dysfunction of the stress system, including the hypothalamic-pituitary-adrenal (HPA) axis. Children who have experienced ELA are also more likely to suffer from mental health disorders such as depression later in life. The exact interplay of aberrant neurodevelopment and HPA axis dysfunction as risks for psychopathology is not yet clear. We investigated volume differences in the bilateral hippocampus and in stress-sensitive hippocampal subfields, behavior problems, and diurnal cortisol activity in 24 children who had experienced documented ELA (including out-of-home placement) in a circumscribed duration of adversity only in their first 3 years of life in comparison to data on 25 control children raised by their biological parents. Hippocampal volumes and stress-sensitive hippocampal subfields (Cornu ammonis [CA]1, CA3, and the granule-cell layer of the dentate gyrus [GCL-DG]) were significantly smaller in children who had experienced ELA, taking psychiatric diagnoses and dimensional psychopathological symptoms into account. ELA moderated the relationship between left hippocampal volume and cortisol: in the control group, hippocampal volumes were not related to diurnal cortisol, while in ELA children, a positive linear relationship between left hippocampal volume and diurnal cortisol was present. Our findings show that ELA is associated with altered development of the hippocampus, and an altered relationship between hippocampal volume and HPA axis activity in youth in care, even after they have lived in stable and caring foster family environments for years. Altered hippocampal development after ELA could thus be associated with a risk phenotype for the development of psychiatric disorders later in life. © 2017 S. Karger

  16. Reducing Unnecessary Accumulation of Incomplete Grades: A Quality Improvement Project

    ERIC Educational Resources Information Center

    Domocmat, Maria Carmela L.

    2015-01-01

    It has been noted that there is an increasing percentage of students accumulating incomplete (INC) grades. This paper aims to identify the factors that contribute to the accumulation of incomplete grades of students and, utilizing the best practices of various universities worldwide, it intends to recommend solutions in limiting the number of…

  17. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice.

    PubMed

    Empson, R M; Heinemann, U

    1995-05-01

    1. The perforant path projection from layer III of the entorhinal cortex to CA1 of the hippocampus was studied within a hippocampal-entorhinal combined slice preparation. We prevented contamination from the other main hippocampal pathways by removal of CA3 and the dentate gyrus. 2. Initially the projection was mapped using field potential recordings that suggested an excitatory sink in stratum lacunosum moleculare with an associated source in stratum pyramidale. 3. However, recording intracellularly from CA1 cells, stimulation of the perforant path produced prominent fast GABAA and slow GABAB IPSPs often preceded by small EPSPs. In a small number of cells we observed EPSPs only. 4. CNQX blocked excitatory and inhibitory responses. This indicated the presence of an intervening excitatory synapse between the inhibitory interneurone and the pyramidal cell. 5. Focal bicuculline applications revealed that the major site of GABAA inhibitory input was to stratum radiatum of CA1. 6. The inhibition activated by the perforant path was very effective at reducing simultaneously activated Schaffer collateral mediated EPSPs and suprathreshold-stimulated action potentials. 7. Blockade of fast inhibition increased excitability and enhanced slow inhibition. Both increases relied upon the activation of NMDA receptors. 8. Perforant path inputs activated prominent and effective disynaptic inhibition of CA1 cells. This has significance for the output of hippocampal processing during normal behaviour and also under pathological conditions.

  18. Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Yang, T. C.

    1998-01-01

    PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.

  19. Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons

    ERIC Educational Resources Information Center

    Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav

    2006-01-01

    A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…

  20. Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity.

    PubMed

    Stephen, Julia M; Ranken, Doug M; Aine, Cheryl J; Weisend, Michael P; Shih, Jerry J

    2005-12-01

    Previous studies have shown that magnetoencephalography (MEG) can measure hippocampal activity, despite the cylindrical shape and deep location in the brain. The current study extended this work by examining the ability to differentiate the hippocampal subfields, parahippocampal cortex, and neocortical temporal sources using simulated interictal epileptic activity. A model of the hippocampus was generated on the MRIs of five subjects. CA1, CA3, and dentate gyrus of the hippocampus were activated as well as entorhinal cortex, presubiculum, and neocortical temporal cortex. In addition, pairs of sources were activated sequentially to emulate various hypotheses of mesial temporal lobe seizure generation. The simulated MEG activity was added to real background brain activity from the five subjects and modeled using a multidipole spatiotemporal modeling technique. The waveforms and source locations/orientations for hippocampal and parahippocampal sources were differentiable from neocortical temporal sources. In addition, hippocampal and parahippocampal sources were differentiated to varying degrees depending on source. The sequential activation of hippocampal and parahippocampal sources was adequately modeled by a single source; however, these sources were not resolvable when they overlapped in time. These results suggest that MEG has the sensitivity to distinguish parahippocampal and hippocampal spike generators in mesial temporal lobe epilepsy.

  1. Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis.

    PubMed

    Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas

    2017-10-01

    The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (p<0.001). Cornu Ammonis 1 (CA1) hippocampal subfield was related to immediate and delayed recalls of verbal memory tests in left HS, while CA1 and epilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All

  2. Nonallelic heterogeneity in autosomal dominant retinitis pigmentosa with incomplete penetrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.K.; Berson, E.L.; Dryja, T.P.

    1994-08-01

    Retinitis pigmentosa is a group of retinal diseases in which photoreceptor cells throughout the retina degenerate. Although there is considerable genetic heterogeneity (autosomal dominant, autosomal recessive, and X-linked forms exist), there is a possibility that some clinically defined subtypes of the disease may be the result of mutations at the same locus. One possible clinically defined subtype is that of autosomal dominant retinitis pigmentosa (ADRP) with incomplete penetrance. Whereas in most families with ADRP, carriers can be clearly identified because of visual loss, ophthalmological findings, or abnormal electroretinograms (ERGs), in occasional families some obligate carriers are asymptomatic and have normalmore » or nearly normal ERGs even late in life. A recent paper reported the mapping of the diseases locus in one pedigree (designated adRP7) with ADRP with incomplete penetrance to chromosome 7p. To test the idea that ADRP with incomplete penetrance may be genetically homogeneous, we have evaluated whether a different family with incomplete penetrance also has a disease gene linked to the same region. 4 refs., 1 fig., 1 tab.« less

  3. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla)

    PubMed Central

    de Morais Magalhães, Nara Gyzely; Guerreiro Diniz, Daniel; Pereira Henrique, Ediely; Corrêa Pereira, Patrick Douglas; Matos Moraes, Isis Ananda; Damasceno de Melo, Mauro André; Sherry, David Francis; Wanderley Picanço Diniz, Cristovam

    2017-01-01

    Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering. PMID:28591201

  4. Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla).

    PubMed

    de Morais Magalhães, Nara Gyzely; Guerreiro Diniz, Cristovam; Guerreiro Diniz, Daniel; Pereira Henrique, Ediely; Corrêa Pereira, Patrick Douglas; Matos Moraes, Isis Ananda; Damasceno de Melo, Mauro André; Sherry, David Francis; Wanderley Picanço Diniz, Cristovam

    2017-01-01

    Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.

  5. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    PubMed

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  6. A three-plane architectonic atlas of the rat hippocampal region.

    PubMed

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  7. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.

    PubMed

    Parihar, V K; Hattiangady, B; Kuruba, R; Shuai, B; Shetty, A K

    2011-02-01

    Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.

  8. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    PubMed

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  9. Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users.

    PubMed

    Chye, Yann; Suo, Chao; Yücel, Murat; den Ouden, Lauren; Solowij, Nadia; Lorenzetti, Valentina

    2017-07-01

    Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.

  10. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats.

    PubMed

    Yuliani, S; Widyarini, S; Mustofa; Partadiredja, G

    2017-01-01

    The aim of the present study was to reveal the possible antiapoptotic effect of turmeric (Curcuma longa Linn.) on the hippocampal neurons of rats exposed to trimethyltin (TMT). Oxidative damage in the hippocampus can induce the apoptosis of neurons associated with the pathogenesis of dementiaMETHODS. The ethanolic turmeric extract and a citicoline (as positive control) solution were administered to the TMT-exposed rats for 28 days. The body weights of rats were recorded once a week. The hippocampal weights and imumunohistochemical expression of caspase 3 proteins in the CA1 and CA2-CA3 regions of the hippocampi were examined at the end of the experiment. Immunohistochemical analysis showed that the injection of TMT increased the expression of caspase 3 in the CA1 and CA2-CA3 regions of hippocampus. TMT also decreased the body and hippocampal weights. Furthermore, the administration of 200 mg/kg bw dose of turmeric extract decreased the caspase 3 expression in the CA2-CA3 pyramidal neurons but not in the CA1 neurons. It also prevented the decrease of the body and hippocampal weights. We suggest that the 200 mg/kg bw dose of turmeric extract may exert antiapoptotic effect on the hippocampal neurons of the TMT-exposed rats (Tab. 1, Fig. 3, Ref. 49).

  11. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    PubMed

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  12. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.

    PubMed

    Nanou, Evanthia; Lee, Amy; Catterall, William A

    2018-05-02

    Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V

  13. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function.

    PubMed

    Davidson, T L; Hargrave, S L; Swithers, S E; Sample, C H; Fu, X; Kinzig, K P; Zheng, W

    2013-12-03

    Intake of a Western diet (WD), which is high in saturated fat and sugar, is associated with deficits in hippocampal-dependent learning and memory processes as well as with markers of hippocampal pathology. In the present study, rats were trained to asymptote on hippocampal-dependent serial feature negative (FN) and hippocampal-independent simple discrimination problems. Performance was then assessed following 7 days on ad libitum chow and after 10, 24, 40, 60, and 90 days of maintenance on WD, on ketogenic (KETO) diet, which is high in saturated fat and low in sugar and other carbohydrates, or continued maintenance on chow (CHOW). Confirming and extending previous findings, diet-induced obese (DIO) rats fed WD showed impaired FN performance, increased blood-brain barrier (BBB) permeability, and increased fasting blood glucose levels compared to CHOW controls and to diet-resistant (DR) rats that did not become obese when maintained on WD. For rats fed the KETO diet, FN performance and BBB integrity were more closely associated with level of circulating ketone bodies than with obesity phenotype (DR or DIO), with higher levels of ketones appearing to provide a protective effect. The evidence also indicated that FN deficits preceded and predicted increased body weight and adiposity. This research (a) further substantiates previous findings of WD-induced deficits in hippocampal-dependent FN discriminations, (b) suggests that ketones may be protective against diet-induced cognitive impairment, and (c) provides evidence that diet-induced cognitive impairment precedes weight gain and obesity. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Regulation of Hippocampal α1d Adrenergic Receptor mRNA by Corticosterone in Adrenalectomized Rats

    PubMed Central

    Day, Heidi E.W.; Kryskow, Elisa M.; Watson, Stanley J.; Akil, Huda; Campeau, Serge

    2008-01-01

    The hippocampal formation receives extensive noradrenergic projections and expresses high levels of mineralocorticoid (MR) and glucocorticoid (GR) receptors. Considerable evidence suggests that the noradrenergic system influences hippocampal corticosteroid receptors. However, there is relatively little data describing the influence of glucocorticoids on noradrenergic receptors in the hippocampal formation. α1d adrenergic receptor (ADR) mRNA is expressed at high levels in the hippocampal formation, within cells that express MR or GR. In order to determine whether expression of α1d ADR mRNA is influenced by circulating glucocorticoids, male rats underwent bilateral adrenalectomy (ADX) or sham surgery, and were killed after 1, 3, 7 or 14 days. Levels of α1d ADR mRNA were profoundly decreased in hippocampal subfields CA1, CA2 and CA3 and the medial and lateral blades of the dentate gyrus, as early as 1 day after ADX, as determined by in situ hybridization. The effect was specific for the hippocampal formation, with levels of α1d mRNA unaltered by ADX in the lateral amygdala, reticular thalamic nucleus, retrosplenial cortex or primary somatosensory cortex. Additional rats underwent ADX or sham surgery and received a corticosterone pellet (10 or 50 mg) or placebo for 7 days. Corticosterone replacement prevented the ADX-induced decrease in hippocampal α1d ADR mRNA, with the magnitude of effect depending on corticosterone dose and hippocampal subregion. These data indicate that α1d ADR mRNA expression in the hippocampal formation is highly sensitive to circulating levels of corticosterone, and provides further evidence for a close interaction between glucocorticoids and the noradrenergic system in the hippocampus. PMID:18534559

  15. Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Serrano, Felipe G.; Montecinos-Oliva, Carla; Arredondo, Sebastián B.; Varela-Nallar, Lorena; Barja, Salesa; Vio, Carlos P.; Gomez-Pinilla, Fernando; Inestrosa, Nibaldo C.

    2017-01-01

    Metabolic syndrome (MetS) is a global epidemic, which involves a spectrum of metabolic disorders comprising diabetes and obesity. The impact of MetS on the brain is becoming to be a concern, however, the poor understanding of mechanisms involved has limited the development of therapeutic strategies. We induced a MetS-like condition by exposing mice to fructose feeding for 7 weeks. There was a dramatic deterioration in the capacity of the hippocampus to sustain synaptic plasticity in the forms of long-term potentiation (LTP) and long-term depression (LTD). Mice exposed to fructose showed a reduction in the number of contact zones and the size of postsynaptic densities (PSDs) in the hippocampus, as well as a decrease in hippocampal neurogenesis. There was an increase in lipid peroxidation likely associated with a deficiency in plasma membrane excitability. Consistent with an overall hippocampal dysfunction, there was a subsequent decrease in hippocampal dependent learning and memory performance, i.e., spatial learning and episodic memory. Most of the pathological sequel of MetS in the brain was reversed three month after discontinue fructose feeding. These results are novel to show that MetS triggers a cascade of molecular events, which disrupt hippocampal functional plasticity, and specific aspects of learning and memory function. The overall information raises concerns about the risk imposed by excessive fructose consumption on the pathology of neurological disorders. PMID:26300486

  16. Hippocampal declarative memory supports gesture production: Evidence from amnesia

    PubMed Central

    Hilliard, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2016-01-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action – supported by motor areas of the brain – is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. PMID:27810497

  17. Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.

    2017-10-01

    In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.

  18. Roles of hippocampal subfields in verbal and visual episodic memory.

    PubMed

    Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J

    2017-01-15

    Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, p<0.002) and FCSRT Delayed Recall (β=0.20, p=0.025). Our findings confirm previous research on the specific roles of CA1 and subiculum in episodic memory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  20. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.

    PubMed

    Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-21

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is

  1. Long-Term Treatment with Paroxetine Increases Verbal Declarative Memory and Hippocampal Volume in Posttraumatic Stress Disorder

    PubMed Central

    Vermetten, Eric; Vythilingam, Meena; Southwick, Steven M.; Charney, Dennis S.; Bremner, J. Douglas

    2011-01-01

    Background Animal studies have shown that stress is associated with damage to the hippocampus, inhibition of neurogenesis, and deficits in hippocampal-based memory dysfunction. Studies in patients with posttraumatic stress disorder (PTSD) found deficits in hippocampal-based declarative verbal memory and smaller hippocampal volume, as measured with magnetic resonance imaging (MRI). Recent preclinical evidence has shown that selective serotonin reuptake inhibitors promote neurogenesis and reverse the effects of stress on hippocampal atrophy. This study assessed the effects of long-term treatment with paroxetine on hippocampal volume and declarative memory performance in PTSD. Methods Declarative memory was assessed with the Wechsler Memory Scale–Revised and Selective Reminding Test before and after 9–12 months of treatment with paroxetine in PTSD. Hippocampal volume was measured with MRI. Of the 28 patients who started the protocol, 23 completed the full course of treatment and neuropsychological testing. Twenty patients were able to complete MRI imaging. Results Patients with PTSD showed a significant improvement in PTSD symptoms with treatment. Treatment resulted in significant improvements in verbal declarative memory and a 4.6% increase in mean hippocampal volume. Conclusions These findings suggest that long-term treatment with paroxetine is associated with improvement of verbal declarative memory deficits and an increase in hippocampal volume in PTSD. PMID:14512209

  2. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses

    PubMed Central

    Su, Jianmin; Gorse, Karen; Ramirez, Francesco; Fox, Michael A.

    2010-01-01

    Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses. PMID:19937713

  3. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    PubMed Central

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  4. Effects of combined nicotine and fluoxetine treatment on adult hippocampal neurogenesis and conditioned place preference.

    PubMed

    Faillace, M P; Zwiller, J; Bernabeu, R O

    2015-08-06

    Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. It is shown that repeated, but not a single injection of rats with fluoxetine was able to abolish the decrease in adult dentate cell proliferation produced by nicotine treatment. We measured the expression of several biochemical parameters known to be associated with neurogenesis in the dentate gyrus. Both drugs increased the expression of p75 neurotrophin receptor, which promotes proliferation and early maturation of dentate gyrus cells. Using the conditioned place preference (CPP) paradigm, we also gave both drugs in a context in which their rewarding properties could be measured. Fluoxetine produced a significant but less robust CPP than nicotine. A single injection of fluoxetine was found to reduce nicotine-induced CPP. Moreover, the rewarding properties of nicotine were completely abolished in response to repeated fluoxetine injections. Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. State estimation with incomplete nonlinear constraint

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Wang, Xueying; An, Wei

    2017-10-01

    A problem of state estimation with a new constraints named incomplete nonlinear constraint is considered. The targets are often move in the curve road, if the width of road is neglected, the road can be considered as the constraint, and the position of sensors, e.g., radar, is known in advance, this info can be used to enhance the performance of the tracking filter. The problem of how to incorporate the priori knowledge is considered. In this paper, a second-order sate constraint is considered. A fitting algorithm of ellipse is adopted to incorporate the priori knowledge by estimating the radius of the trajectory. The fitting problem is transformed to the nonlinear estimation problem. The estimated ellipse function is used to approximate the nonlinear constraint. Then, the typical nonlinear constraint methods proposed in recent works can be used to constrain the target state. Monte-Carlo simulation results are presented to illustrate the effectiveness proposed method in state estimation with incomplete constraint.

  6. Elevation of Hippocampal Neurogenesis Induces a Temporally Graded Pattern of Forgetting of Contextual Fear Memories.

    PubMed

    Gao, Aijing; Xia, Frances; Guskjolen, Axel J; Ramsaran, Adam I; Santoro, Adam; Josselyn, Sheena A; Frankland, Paul W

    2018-03-28

    Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory designer receptor exclusively activated by designer drugs, hM4Di, we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent (day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal neurogenesis at recent versus remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context 1 month later. In contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when mice were subsequently tested. These temporally graded forgetting effects were observed using both environmental and genetic interventions to increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and suggest that, as contextual fear memories mature, they become less sensitive to changes in hippocampal neurogenesis levels because they no longer depend on the hippocampus for their expression. SIGNIFICANCE STATEMENT New neurons are generated in the

  7. Circuit mechanisms of hippocampal reactivation during sleep.

    PubMed

    Malerba, Paola; Bazhenov, Maxim

    2018-05-01

    The hippocampus is important for memory and learning, being a brain site where initial memories are formed and where sharp wave - ripples (SWR) are found, which are responsible for mapping recent memories to long-term storage during sleep-related memory replay. While this conceptual schema is well established, specific intrinsic and network-level mechanisms driving spatio-temporal patterns of hippocampal activity during sleep, and specifically controlling off-line memory reactivation are unknown. In this study, we discuss a model of hippocampal CA1-CA3 network generating spontaneous characteristic SWR activity. Our study predicts the properties of CA3 input which are necessary for successful CA1 ripple generation and the role of synaptic interactions and intrinsic excitability in spike sequence replay during SWRs. Specifically, we found that excitatory synaptic connections promote reactivation in both CA3 and CA1, but the different dynamics of sharp waves in CA3 and ripples in CA1 result in a differential role for synaptic inhibition in modulating replay: promoting spike sequence specificity in CA3 but not in CA1 areas. Finally, we describe how awake learning of spatial trajectories leads to synaptic changes sufficient to drive hippocampal cells' reactivation during sleep, as required for sleep-related memory consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats.

    PubMed

    Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin

    2018-01-05

    Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.

  9. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    PubMed Central

    Ko, Hyoung-Gon; Jang, Deok-Jin; Son, Junehee; Kwak, Chuljung; Choi, Jun-Hyeok; Ji, Young-Hoon; Lee, Yun-Sil; Son, Hyeon; Kaang, Bong-Kiun

    2009-01-01

    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory. PMID:19138433

  10. Hippocampal amnesia.

    PubMed

    Spiers, H J; Maguire, E A; Burgess, N

    2001-01-01

    This article reviews 147 cases of amnesia following damage including the hippocampus or fornix as reported in 179 publications. The aetiology, mnestic abilities and reference(s) are tabulated for each case. Consistent findings across cases include the association of bilateral hippocampal damage with a deficit in anterograde episodic memory combined with spared procedural and working memory. The limited nature of retrograde amnesia following lesions to the fornix is also noted. Less consistent and thus more controversial findings, include effects of lesion size or laterality, deficits in semantic memory or familiarity-based recognition and the extent of retrograde amnesia. The evidence concerning these issues is reviewed across cases.

  11. DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis.

    PubMed

    Hua, Yao; Huang, Xin-Yan; Zhou, Li; Zhou, Qi-Gang; Hu, Yao; Luo, Chun-Xia; Li, Fei; Zhu, Dong-Ya

    2008-10-01

    Increasing evidence suggests that depression may be associated with a lack of hippocampal neurogenesis. Our recent study shows that endogenous nitric oxide (NO) contributes to chronic mild stress (CMS)-induced depression by suppressing hippocampal neurogenesis. The aim of this study was to investigate the effects of exogenous NO in CMS-induced depression in young adult mice. In normal mice, administration of a pure NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio] diazen-1-ium-1,2-diolate (DETA/NONOate; 0.4 mg/kg, i.p., for 7 days) produced an antidepressant-like effect and significantly increased hippocampal neurogenesis. The mice exposed to CMS exhibited behavioral changes typical of depression and impaired neurogenesis in the hippocampus. Treatment with DETA/NONOate (0.4 mg/kg, i.p., for 7 days) reversed CMS-induced behavioral despair and hippocampal neurogenesis impairment. We treated mice with a telomerase inhibitor 3'-azido-deoxythymidine (AZT; 100 mg/kg, i.p., for 14 days) to disrupt neurogenesis. From day 4 to day 11 of AZT treatment, mice were injected with DETA/NONOate (0.4 mg/kg, i.p., for 7 days). Disrupting hippocampal neurogenesis blocked the antidepressant effect of DETA/NONOate. Our findings suggest that exogenous NO benefits chronic stress-induced depression by stimulating hippocampal neurogenesis and may represent a novel approach for the treatment of depressive disorders.

  12. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    PubMed

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Autopsy-confirmed hippocampal-sparing Alzheimer's disease with delusional jealousy as initial manifestation.

    PubMed

    Fujishiro, Hiroshige; Iritani, Shuji; Hattori, Miho; Sekiguchi, Hirotaka; Matsunaga, Shinji; Habuchi, Chikako; Torii, Youta; Umeda, Kentaro; Ozaki, Norio; Yoshida, Mari; Fujita, Kiyoshi

    2015-09-01

    Alzheimer's disease (AD) is clinically characterized by gradual onset over years with worsening of cognition. The initial and most prominent cognitive deficit is commonly memory dysfunction. However, a subset of AD cases has less hippocampal atrophy than would be expected relative to the predominance of cortical atrophy. These hippocampal-sparing cases have distinctive clinical features, including the presence of focal cortical clinical syndromes. Given that previous studies have indicated that severe hippocampal atrophy corresponds to prominent loss of episodic memory, it is likely that memory impairment is initially absent in hippocampal-sparing AD cases. Here, we report on a patient with an 8-year history of delusional jealousy with insidious onset who was clinically diagnosed as possible AD and pathologically confirmed to have AD with relatively preserved neurons in the hippocampus. This patient had delusional jealousy with a long pre-dementia stage, which initially was characterized by lack of memory impairment. Head magnetic resonance imaging findings showed preserved hippocampal volume with bilateral enlarged ventricles and mild-to-moderate cortical atrophy. Head single-photon emission computed tomography revealed severely decreased regional cerebral blood flow in the right temporal lobe. The resolution of the delusion was attributed to pharmacotherapy by an acetylcholinesterase inhibitor, suggesting that the occurrence of delusional jealousy was due to the disease process of AD. Although the neural basis of delusional jealousy remains unclear, this hippocampal-sparing AD case may be classified as an atypical presentation of AD. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.

  14. Hippocampal-prefrontal input supports spatial encoding in working memory.

    PubMed

    Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A

    2015-06-18

    Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.

  15. Evidence for holistic episodic recollection via hippocampal pattern completion.

    PubMed

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  16. Increased hippocampal CA1 cerebral blood volume in schizophrenia

    PubMed Central

    Talati, Pratik; Rane, Swati; Kose, Samet; Blackford, Jennifer Urbano; Gore, John; Donahue, Manus J.; Heckers, Stephan

    2014-01-01

    Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia. However, there is a debate whether the CA1 or the CA2/3 subfield is selectively affected. We studied 15 schizophrenia patients and 15 matched healthy control subjects with 3T steady state, gadolinium-enhanced, absolute cerebral blood volume (CBV) maps, perpendicular to the long axis of the hippocampus. The subfields of the hippocampal formation (subiculum, CA1, CA2/3, and hilus/dentate gyrus) were manually segmented to establish CBV values. Comparing anterior CA1 and CA2/3 CBV between patients and controls revealed a significant subfield-by-diagnosis interaction. This interaction was due to the combined effect of a trend of increased CA1 CBV (p = .06) and non-significantly decreased CA2/3 CBV (p = 0.14) in patients relative to healthy controls. These results support the emerging hypothesis of increased hippocampal activity as a biomarker of schizophrenia and highlight the importance of subfield-level investigations. PMID:25161901

  17. Dangguijakyak-san ameliorates memory deficits in ovariectomized mice by upregulating hippocampal estrogen synthesis.

    PubMed

    Hwang, Deok-Sang; Kim, Namkwon; Choi, Jin Gyu; Kim, Hyo Geun; Kim, Hocheol; Oh, Myung Sook

    2017-11-25

    Dangguijakyak-san (DJS) is an herbal formulation that has been clinically applicable for treating postmenopausal symptoms and neurological disorders. It is reported that hippocampal estrogen attenuates memory impairment via neuroprotection and synaptogenesis. However, the effect of DJS on hippocampal estrogen synthesis remains unknown. In this study, we explored the effect of DJS and its neuroprotective mechanism against memory impairment in ovariectomized (OVX) mice, with respect to hippocampal estrogen stimulation. Cell cultures were prepared from the hippocampi of 18-day-old embryos from timed pregnant Sprague-Dawley rats. The hippocampi were dissected, collected, dissociated, and plated in 60-mm dishes. The cells were treated with DJS for 48 h and the supernatant was collected to determine estrogen levels. Female ICR mice (8-weeks-old) were housed for 1 week and ovariectomy was performed to remove the influence of ovary-synthesized estrogens. Following a 2-week post-surgical recovery period, the mice were administrated with DJS (50 and 100 mg/kg/day, p.o.) or 17β-estradiol (200 μg/kg/day, i.p.) once daily for 21 days. Hippocampal and serum estrogen levels were determined using enzyme-linked immunosorbent assay kit. Memory behavioral tests, western blot, and immunohistochemical analyses were performed to evaluate the neuroprotective effects of DJS in this model. DJS treatment promoted estrogen synthesis in primary hippocampal cells and the hippocampus of OVX mice, resulting in the amelioration of OVX-induced memory impairment. Hippocampal estrogen stimulated by DJS treatment contributed to the activation of cAMP response element-binding protein and synaptic protein in OVX mice. DJS may attenuate memory deficits in postmenopausal women via hippocampal estrogen synthesis.

  18. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    PubMed

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  19. 19 CFR 146.35 - Temporary deposit in a zone; incomplete documentation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Temporary deposit in a zone; incomplete... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Admission of Merchandise to a Zone § 146.35 Temporary deposit in a zone; incomplete documentation. (a) General. Temporary deposit of...

  20. 19 CFR 146.35 - Temporary deposit in a zone; incomplete documentation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Temporary deposit in a zone; incomplete... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Admission of Merchandise to a Zone § 146.35 Temporary deposit in a zone; incomplete documentation. (a) General. Temporary deposit of...

  1. 19 CFR 146.35 - Temporary deposit in a zone; incomplete documentation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Temporary deposit in a zone; incomplete... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Admission of Merchandise to a Zone § 146.35 Temporary deposit in a zone; incomplete documentation. (a) General. Temporary deposit of...

  2. 19 CFR 146.35 - Temporary deposit in a zone; incomplete documentation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Temporary deposit in a zone; incomplete... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Admission of Merchandise to a Zone § 146.35 Temporary deposit in a zone; incomplete documentation. (a) General. Temporary deposit of...

  3. 19 CFR 146.35 - Temporary deposit in a zone; incomplete documentation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Temporary deposit in a zone; incomplete... SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Admission of Merchandise to a Zone § 146.35 Temporary deposit in a zone; incomplete documentation. (a) General. Temporary deposit of...

  4. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.

    PubMed

    Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L

    2012-09-01

    To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. 27 CFR 22.124 - Incomplete shipments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS DISTRIBUTION AND USE OF TAX-FREE ALCOHOL Losses § 22.124 Incomplete... delivered to the consignee, the carrier may return the shipment to the distilled spirits plant. (b) When tax-free alcohol is returned to the distilled spirits plant, in accordance with this section, the carrier...

  6. Non-input analysis for incomplete trapping irreversible tracer with PET.

    PubMed

    Ohya, Tomoyuki; Kikuchi, Tatsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong; Irie, Toshiaki

    2013-07-01

    When using metabolic trapping type tracers, the tracers are not always trapped in the target tissue; i.e., some are completely trapped in the target, but others can be eliminated from the target tissue at a measurable rate. The tracers that can be eliminated are termed 'incomplete trapping irreversible tracers'. These incomplete trapping irreversible tracers may be clinically useful when the tracer β-value, the ratio of the tracer (metabolite) elimination rate to the tracer efflux rate, is under approximately 0.1. In this study, we propose a non-input analysis for incomplete trapping irreversible tracers based on the shape analysis (Shape), a non-input analysis used for irreversible tracers. A Monte Carlo simulation study based on experimental monkey data with two actual PET tracers (a complete trapping irreversible tracer [(11)C]MP4A and an incomplete trapping irreversible tracer [(18)F]FEP-4MA) was performed to examine the effects of the environmental error and the tracer elimination rate on the estimation of the k3-parameter (corresponds to metabolic rate) using Shape (original) and modified Shape (M-Shape) analysis. The simulation results were also compared with the experimental results obtained with the two PET tracers. When the tracer β-value was over 0.03, the M-Shape method was superior to the Shape method for the estimation of the k3-parameter. The simulation results were also in reasonable agreement with the experimental ones. M-Shape can be used as the non-input analysis of incomplete trapping irreversible tracers for PET study. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease.

    PubMed

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly ( n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = -0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method ( P < 0.05). Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients

  8. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    PubMed Central

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materials and Methods: We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. Results: There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly (n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = −0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method (P < 0.05). Conclusions: Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was

  9. Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting

    PubMed Central

    Yau, Suk-yu; Li, Ang; So, Kwok-Fai

    2015-01-01

    Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting. PMID:26380120

  10. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder.

    PubMed

    Simonetti, Alessio; Sani, Gabriele; Dacquino, Claudia; Piras, Fabrizio; De Rossi, Pietro; Caltagirone, Carlo; Coryell, William; Spalletta, Gianfranco

    2016-06-01

    Patients diagnosed with bipolar disorder (BP) may experience hippocampal atrophy. Lithium exposure has been associated with increased hippocampal volumes. However, its effects on hippocampal subfields remain to be clarified. We investigated the effects of short- and long-term lithium exposure on the hippocampus and its subfields in patients affected by bipolar I disorder (BP-I). Hippocampal subfields and total hippocampal volumes were measured in 60 subjects divided into four groups: 15 patients with BP-I who were never exposed to lithium [no-exposure group (NE)], 15 patients with BP-I exposed to lithium for < 24 months [short-exposure group (SE)], 15 patients with BP-I exposed to lithium for > 24 months [long-exposure group (LE)], and 15 healthy control subjects (HC). The SE and NE groups showed smaller total hippocampal volumes and smaller bilateral cornu ammonis CA2-3, CA4-dentate gyrus (DG), presubiculum, and subiculum volumes compared with HC. The LE group showed larger total hippocampal volumes and bilateral CA2-3, left CA4-DG, left presubiculum, and right subiculum volumes compared with the NE group, and larger volumes of the right CA2-3, left CA4-DG, left presubiculum, and right subiculum compared with the SE group. No differences were found between the LE group and HC or between the SE and NE groups. Long-term, but not short-term, exposure to lithium treatment may exert neuroprotective effects on specific hippocampal subfields linked to disease progression. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hippocampal shape deformation in female patients with unremitting major depressive disorder.

    PubMed

    Tae, W S; Kim, S S; Lee, K U; Nam, E C; Choi, J W; Park, J I

    2011-04-01

    The hippocampal atrophy of MDD has been known, but the region shape contractions of the hippocampus in MDD were inconsistent. Spheric harmonic shape analysis was applied to the hippocampus in female patients with unremitting MDD to evaluate morphometric changes of the hippocampus. Shape analysis was performed by using T1-weighted MR imaging in 21 female patients with MDD and 21 age- and sex-matched healthy controls. Manually segmented hippocampi were parameterized, and the point-to-point-based group difference was compared by using the Hotelling T-squared test. The partial correlation analyses were tested between clinical variables and shape changes. Both hippocampal volumes were small in patients with MDD compared with healthy controls, and the right hippocampal volume was negatively correlated with the number of episodes at marginal significance. Regional shape contractions were found in the ambient gyrus, basal hippocampal head, posterior subiculum, and dorsal hippocampus of the left hemisphere. The right hippocampus showed a similar pattern but was less atrophic compared with the left hippocampus. A negative correlation was found between the HDRS and shape deformation in the CA3, ambient gyrus, posterior subiculum, and gyrus fasciolaris of the left hippocampus. We showed atrophy and regional shape contractions in the hippocampi of patients with MDD, which were more dominant on the left side. The causes of hippocampal damage could be the hypersecretion of glucocorticoids contributing to neuronal death or the failing of adult neurogenesis in the dentate gyrus.

  12. Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model

    PubMed Central

    Ciupek, Sarah M.; Cheng, Jingheng; Ali, Yousuf O.; Lu, Hui-Chen

    2015-01-01

    The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329

  13. Metyrapone Reveals That Previous Chronic Stress Differentially Impairs Hippocampal-dependent Memory

    PubMed Central

    CONRAD, CHERYL D.; MAULDIN-JOURDAIN, MELISSA L.; HOBBS, REBECCA J.

    2007-01-01

    Chronic stress facilitates fear conditioning in rats with hippocampal neuronal atrophy and in rats in which the atrophy is prevented with tianeptine, a serotonin re-uptake enhancer. The purpose of this study was to determine whether the lack of dissociation between fear conditioning performance and hippocampal integrity was masked by the presence of endogenous corticosteroids during training. As in previous studies, rats were stressed by daily restraint (6 h/day for 21 days), trained in the conditioning chamber (day 23), and then assessed for conditioned fear (day 25) at a time when hippocampal dendritic atrophy persists. On the training day, half of the control and stressed rats were injected with metyrapone to reduce corticosterone release. Two hours later, two paired or unpaired presentations of tone and footshock were delivered. Although metyrapone reduced conditioned fear in all rats, only stressed rats showed dissociated fear conditioning (i.e. tone conditioning was reduced while contextual conditioning was eliminated). Chronically stressed rats, regardless of metyrapone treatment displayed more rearing in the open field when tested immediately after the completion of fear conditioning. These data support the hypothesis that increased emotionality and enhanced fear conditioning exhibited by chronically stressed rats may be due to endogenous corticosterone secretion at the time of fear conditioned training. Moreover, these data suggest that chronic stress impairs hippocampal-dependent processes more robustly than hippocampal-independent processes after metyrapone to reduce corticosterone secretion during aversive training. PMID:18301732

  14. Anticonvulsant Effects of Memantine and MK-801 in Guinea Pig Hippocampal Neurons.

    DTIC Science & Technology

    investigation we compared the anticonvulsant properties of Mem to those of MK-801 in guinea pig hippocampal slices. Extracellular recordings were...obtained from area CA1 of guinea pig hippocampal slices in a total submersion chamber at 32 deg C in normal oxygenated artificial cerebrospinal fluid (ACSF

  15. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention.

    PubMed

    Kim, Ah Hyun; Chun, Hye Jeong; Lee, Seulah; Kim, Hyung Sik; Lee, Jaewon

    2017-08-01

    Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    ERIC Educational Resources Information Center

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  17. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats.

    PubMed

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; Maclusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2010-01-15

    Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in female subjects is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant desipramine. Considering that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life might influence behavioral and synaptic responses to stress and depression. With electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n = 70), under different conditions of estradiol exposure. Stress induced an acute and persistent loss of hippocampal spine synapses, whereas subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either before stress or before escape testing of nonstressed animals increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. These findings suggest that hippocampal spine synapse remodeling might be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression.

  18. Identification of the miRNA targetome in hippocampal neurons using RIP-seq.

    PubMed

    Malmevik, Josephine; Petri, Rebecca; Klussendorf, Thies; Knauff, Pina; Åkerblom, Malin; Johansson, Jenny; Soneji, Shamit; Jakobsson, Johan

    2015-07-28

    MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this approach, we identified more than two thousand miRNA targets in hippocampal neurons, regulating essential neuronal features such as cell signalling, transcription and axon guidance. Furthermore, we found that stable inhibition of the highly expressed miR-124 and miR-125 in hippocampal neurons led to significant but distinct changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. These findings greatly enhance our understanding of the miRNA targetome in hippocampal neurons.

  19. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  20. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI.

    PubMed

    Adler, Daniel H; Pluta, John; Kadivar, Salmon; Craige, Caryne; Gee, James C; Avants, Brian B; Yushkevich, Paul A

    2014-01-01

    Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver-Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple

  1. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    PubMed

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  2. Hippocampal Damage Increases Deontological Responses during Moral Decision Making

    PubMed Central

    Rosenthal, Clive R.; Miller, Thomas D.

    2016-01-01

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses—rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. SIGNIFICANCE STATEMENT The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends

  3. Hippocampal Damage Increases Deontological Responses during Moral Decision Making.

    PubMed

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2016-11-30

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have

  4. Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer's Disease.

    PubMed

    Platero, Carlos; Lin, Lin; Tobar, M Carmen

    2018-05-21

    Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.

  5. Venlafaxine inhibits apoptosis of hippocampal neurons by up-regulating brain-derived neurotrophic factor in a rat depression model

    PubMed Central

    Huang, Xiao; Mao, Yue-Shi; Li, Chao; Wang, Hao; Ji, Jian-Lin

    2014-01-01

    Objective: To study the effect of venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) in rat hippocampal neurons, as well as its inhibitory effect on apoptosis of hippocampal neurons. Methods: Differences in behavioral ability between the depression model group and the Venlafaxine treatment group were observed using behavioral, sucrose-water and open field tests. The rat hippocampal tissue was sliced, stained and observed for BDNF distribution by immunohistochemistry. Apoptosis of hippocampal neurons was detected by TUNEL. BDNF expression in the hippocampal tissue was detected by Western blot. Injury and apoptosis of the hippocampal tissue were observed by electron microscopy. Results: Behavioral test showed that venlafaxine effectively improved the behavioral abilities of depressed rats. Immunohistochemistry showed that venlafaxine markedly increased the BDNF expression in the rat hippocampus. TUNEL showed that venlafaxine markedly inhibited apoptosis of hippocampal neurons, which was also confirmed by electron microscopic observation of the pathologic sections. Conclusion: Venlafaxine improved the expression of BDNF through working on PI3k/PKB/eNOS pathway and repressed the apoptosis of hippocampal neurons. PMID:25197330

  6. Effect of Exercise Training on Hippocampal Volume in Humans: A Pilot Study

    ERIC Educational Resources Information Center

    Parker, Beth A.; Thompson, Paul D.; Jordan, Kathryn C.; Grimaldi, Adam S.; Assaf, Michal; Jagannathan, Kanchana; Pearlson, Godfrey D.

    2011-01-01

    The hippocampus is the primary site of memory and learning in the brain. Both normal aging and various disease pathologies (e.g., alcoholism, schizophrenia, and major depressive disorder) are associated with lower hippocampal volumes in humans and hippocampal atrophy predicts progression of Alzheimers disease. In animals, there is convincing…

  7. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  8. Beyond Dizziness: Virtual Navigation, Spatial Anxiety and Hippocampal Volume in Bilateral Vestibulopathy

    PubMed Central

    Kremmyda, Olympia; Hüfner, Katharina; Flanagin, Virginia L.; Hamilton, Derek A.; Linn, Jennifer; Strupp, Michael; Jahn, Klaus; Brandt, Thomas

    2016-01-01

    Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular nerve section exhibit difficulties in spatial memory and navigation and show a loss of hippocampal volume. In clinical practice, most patients do not have a complete loss of function but rather an asymmetrical residual functioning of the vestibular system. The purpose of the current study was to investigate navigational ability and hippocampal atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and a group of age- and gender- matched healthy controls were examined. Self-reported questionnaires on spatial anxiety and wayfinding were used to assess the applied strategy of wayfinding and quality of life. Spatial memory and navigation were tested directly using a virtual Morris Water Maze Task. The hippocampal volume of these two groups was evaluated by voxel-based morphometry. In the patients, the questionnaire showed a higher spatial anxiety and the Morris Water Maze Task a delayed spatial learning performance. MRI revealed a significant decrease in the gray matter mid-hippocampal volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87) compared to those of healthy controls. In addition, a decrease in hippocampal formation volume correlated with a more dominant route-finding strategy. Our current findings demonstrate that even partial bilateral vestibular loss leads to anatomical and functional changes in the hippocampal formation and objective and subjective behavioral deficits. PMID:27065838

  9. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  10. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  11. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  12. Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia.

    PubMed

    Youssef, F F; Addae, J I; McRae, A; Stone, T W

    2001-07-13

    of propentofylline, a known neuroprotective compound. We conclude that LTP causes an appreciable protection of hippocampal slices to various models of acute hypoxia. This phenomenon does not appear to involve desensitisation of AMPA receptors or mediation by NO, but may account for the recognised inverse relationship between educational attainment and the development of dementia.

  13. Distributed control systems with incomplete and uncertain information

    NASA Astrophysics Data System (ADS)

    Tang, Jingpeng

    Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs

  14. CT colonography after incomplete optical colonoscopy

    PubMed Central

    Theis, Jake; Kim, David H.; Lubner, Meghan G.; del Rio, Alejandro Muñoz; Pickhardt, Perry J.

    2017-01-01

    Purpose To objectively compare the volume, density, and distribution of luminal fluid for same-day oral-contrast-enhanced CTC following incomplete optical colonoscopy (OC) versus deferred CTC on a separate day utilizing a dedicated CTC bowel preparation. Methods HIPAA-compliant, IRB-approved retrospective study compared 103 same-day CTC studies after incomplete OC (utilizing 30 ml oral diatrizoate) against 151 CTC examinations performed on a separate day after failed OC using a dedicated CTC bowel preparation (oral magnesium citrate/dilute barium/diatrizoate the evening before). A subgroup of 15 patients who had both same-day CTC and separate-day routine CTC was also identified and underwent separate analysis. CTC exams were analyzed for opacified fluid distribution within the GI tract, as well as density and volume. Data was analyzed utilizing Kruskal-Wallis and Wilcoxon Signed Rank tests. Results Opacified luminal fluid extended to the rectum in 56% (58/103) of same-day CTC versus 100% (151/151) of deferred separate-day CTC (p<0.0001). For same-day CTC, contrast failed to reach the colon in 11% (11/103) and failed to reach the left colon in 26% (27/103). Volumetric colonic fluid segmentation for fluid analysis (successful in 80 same-day and 147 separate-day cases) showed significantly more fluid in the same-day cohort (mean, 227 ml vs. 166 ml; p<0.0001); the actual difference is underestimated due to excluded cases. Mean colonic fluid attenuation was significantly lower in the same-day cohort (545 HU vs. 735 HU; p<0.0001). Similar findings were identified in the smaller cohort with direct intra-patient CTC comparison. Conclusions Dedicated CTC bowel preparation on a separate day following incomplete OC results in a much higher quality examination compared with same-day CTC. PMID:26830606

  15. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus.

    PubMed

    Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan

    2017-10-01

    Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against

  16. Neuropsychology, Autobiographical Memory, and Hippocampal Volume in “Younger” and “Older” Patients with Chronic Schizophrenia

    PubMed Central

    Herold, Christina Josefa; Lässer, Marc Montgomery; Schmid, Lena Anna; Seidl, Ulrich; Kong, Li; Fellhauer, Iven; Thomann, Philipp Arthur; Essig, Marco; Schröder, Johannes

    2015-01-01

    Despite a wide range of studies on neuropsychology in schizophrenia, autobiographical memory (AM) has been scarcely investigated in these patients. Hence, less is known about AM in older patients and hippocampal contribution to autobiographical memories of varying remoteness. Therefore, we investigated hippocampal volume and AM along with important neuropsychological domains in patients with chronic schizophrenia and the respective relationships between these parameters. We compared 25 older patients with chronic schizophrenia to 23 younger patients and an older healthy control group (N = 21) with respect to AM, additional neuropsychological parameters, and hippocampal volume. Personal episodic and semantic memory was investigated using a semi-structured interview. Additional neuropsychological parameters were assessed by using a battery of standard neuropsychological tests. Structural magnetic resonance imaging data were analyzed with an automated region-of-interest procedure. While hippocampal volume reduction and neuropsychological impairment were more pronounced in the older than in the younger patients, both groups showed equivalent reduced AM performance for recent personal episodes. In the patient group, significant correlations between left hippocampal volume and recent autobiographical episodes as well as personal semantic memories arose. Verbal memory and working memory were significantly correlated with right hippocampal volume; executive functions, however, were associated with bilateral hippocampal volumes. These findings underline the complexity of AM and its impairments in the course of schizophrenia in comparison to rather progressive neuropsychological deficits and address the importance of hippocampal contribution. PMID:25954208

  17. Pilot expertise and hippocampal size: associations with longitudinal flight simulator performance.

    PubMed

    Adamson, Maheen M; Bayley, Peter J; Scanlon, Blake K; Farrell, Michelle E; Hernandez, Beatriz; Weiner, Michael W; Yesavage, Jerome A; Taylor, Joy L

    2012-09-01

    Previous research suggests that the size of the hippocampus can vary in response to intensive training (e.g., during the acquisition of expert knowledge). However, the role of the hippocampus in maintenance of skilled performance is not well understood. The Stanford/Veterans Affairs Aviation MRI Study offers a unique opportunity to observe the interaction of brain structure and multiple levels of expertise on longitudinal flight simulator performance. The current study examined the relationship between hippocampal volume and three levels of aviation expertise, defined by pilot proficiency ratings issued by the U.S. Federal Aviation Administration (11). At 3 annual time points, 60 pilots who varied in their level of aviation expertise (ages ranging from 45 to 69 yr) were tested. At baseline, higher expertise was associated with better flight simulator performance, but not with hippocampal volume. Longitudinally, there was an Expertise x Hippocampal volume interaction, in the direction that a larger hippocampus was associated with better performance at higher levels of expertise. These results are consistent with the notion that expertise in a cognitively demanding domain involves the interplay of acquired knowledge ('mental schemas') and basic hippocampal-dependent processes.

  18. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.

    PubMed

    Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng

    2018-01-08

    Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.

  19. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  20. Incomplete Kochen-Specker coloring

    NASA Astrophysics Data System (ADS)

    Granström, Helena

    2007-09-01

    A particular incomplete Kochen-Specker coloring, suggested by Appleby [Stud. Hist. Philos. Mod. Phys. 36, 1 (2005)] in dimension three, is generalized to arbitrary dimension. We investigate its effectivity as a function of dimension, using two different measures. A limit is derived for the fraction of the sphere that can be colored using the generalized Appleby construction as the number of dimensions approaches infinity. The second, and physically more relevant measure of effectivity, is to look at the fraction of properly colored ON bases. Using this measure, we derive a "lower bound for the upper bound" in three and four real dimensions.

  1. Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model.

    PubMed

    Kilias, Antje; Häussler, Ute; Heining, Katharina; Froriep, Ulrich P; Haas, Carola A; Egert, Ulrich

    2018-06-01

    Mesial temporal lobe epilepsy is characterized by focal, recurrent spontaneous seizures, sclerosis and granule cell dispersion (GCD) in the hippocampal formation. Changes in theta rhythm properties have been correlated with the severity of hippocampal restructuring and were suggested as a cause of memory deficits accompanying epilepsy. For severe sclerosis, it has even been questioned whether theta band oscillations persist. We asked how theta oscillations change with graded restructuring along the longitudinal hippocampal axis and whether these changes correlate with the overall severity of temporal lobe epilepsy. We recorded local field potentials in the medial entorhinal cortex and along the septo-temporal axis of the dentate gyrus at sites with different degrees of GCD in freely behaving epileptic mice. Theta frequency was decreased at all recording positions throughout the dentate gyrus and in the medial entorhinal cortex, irrespective of the extent of GCD or the rate of severe epileptic events. The frequency reduction by up to 1.7 Hz, corresponding to 1/3 octaves within the theta range, was present during rest, exploration and running. Despite the frequency reduction, theta oscillations remained coherent across the hippocampal formation and were modulated by running speed as in controls. The reduction in theta frequency thus is likely not a consequence of the local restructuring but rather a global phenomenon affecting the hippocampal formation as a whole. © 2018 Wiley Periodicals, Inc.

  2. Cancer risk in HIV patients with incomplete viral suppression after initiation of antiretroviral therapy.

    PubMed

    Lee, Jennifer S; Cole, Stephen R; Achenbach, Chad J; Dittmer, Dirk P; Richardson, David B; Miller, William C; Mathews, Christopher; Althoff, Keri N; Moore, Richard D; Eron, Joseph J

    2018-01-01

    Cancer causes significant morbidity and mortality among HIV patients in the US due to extended life expectancy with access to effective antiretroviral therapy. Low, detectable HIV RNA has been studied as a risk factor for adverse health outcomes, but its clinical impact on cancer risk remains unclear. The objective of this study was to determine whether HIV RNA <1,000 copies/mL six months after starting therapy was associated with 10-year first cancer risk. We followed 7,515 HIV therapy initiators from a US-based multicenter clinical cohort from 1998 to 2014. We used nonparametric multiple imputation to account for viral loads that fell below assay detection limits, and categorized viral loads six months after therapy initiation into four groups: <20, 20-199, 200-999, and >999 copies/mL. We calculated estimates of the cumulative incidence of cancer diagnosis, accounting for death as a competing event. Inverse probability of exposure and censoring weights were used to control for confounding and differential loss to follow up, respectively. Crude 10-year first cancer risk in the study sample was 7.03% (95% CI: 6.08%, 7.98%), with the highest risk observed among patients with viral loads between 200 and 999 copies/mL six months after ART initiation (10.7%). After controlling for baseline confounders, 10-year first cancer risk was 6.90% (95% CI: 5.69%, 8.12%), and was similar across viral load categories. Overall risk of first cancer was not associated with incomplete viral suppression; however, cancer remains a significant threat to HIV patients after treatment initiation. As more HIV patients gain access to treatment in the current "treat all" era, occurrences of incomplete viral suppression will be observed more frequently in clinical practice, which supports continued study of the role of low-level HIV RNA on cancer development.

  3. VTA neurons coordinate with the hippocampal reactivation of spatial experience

    PubMed Central

    Gomperts, Stephen N; Kloosterman, Fabian; Wilson, Matthew A

    2015-01-01

    Spatial learning requires the hippocampus, and the replay of spatial sequences during hippocampal sharp wave-ripple (SPW-R) events of quiet wakefulness and sleep is believed to play a crucial role. To test whether the coordination of VTA reward prediction error signals with these replayed spatial sequences could contribute to this process, we recorded from neuronal ensembles of the hippocampus and VTA as rats performed appetitive spatial tasks and subsequently slept. We found that many reward responsive (RR) VTA neurons coordinated with quiet wakefulness-associated hippocampal SPW-R events that replayed recent experience. In contrast, coordination between RR neurons and SPW-R events in subsequent slow wave sleep was diminished. Together, these results indicate distinct contributions of VTA reinforcement activity associated with hippocampal spatial replay to the processing of wake and SWS-associated spatial memory. DOI: http://dx.doi.org/10.7554/eLife.05360.001 PMID:26465113

  4. Effects of Estradiol on Learned Helplessness and Associated Remodeling of Hippocampal Spine Synapses in Female Rats

    PubMed Central

    Hajszan, Tibor; Szigeti-Buck, Klara; Sallam, Nermin L; Bober, Jeremy; Parducz, Arpad; MacLusky, Neil J; Leranth, Csaba; Duman, Ronald S

    2009-01-01

    Background Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in females is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant, desipramine. Considering the fact that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life may influence behavioral and synaptic responses to stress and depression. Methods Using electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n=70), under different conditions of estradiol exposure. Results Stress induced an acute and persistent loss of hippocampal spine synapses, while subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either prior to stress or prior to escape testing of nonstressed animals both increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. Conclusions These findings suggest that hippocampal spine synapse remodeling may be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression. PMID:19811775

  5. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    PubMed

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  6. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    PubMed

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

    PubMed Central

    Kasperavičiūtė, Dalia; Catarino, Claudia B.; Matarin, Mar; Leu, Costin; Novy, Jan; Tostevin, Anna; Leal, Bárbara; Hessel, Ellen V. S.; Hallmann, Kerstin; Hildebrand, Michael S.; Dahl, Hans-Henrik M.; Ryten, Mina; Trabzuni, Daniah; Ramasamy, Adaikalavan; Alhusaini, Saud; Doherty, Colin P.; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J.; Zumsteg, Dominik; Duncan, Susan; Kälviäinen, Reetta K.; Eriksson, Kai J.; Kantanen, Anne-Mari; Pandolfo, Massimo; Gruber-Sedlmayr, Ursula; Schlachter, Kurt; Reinthaler, Eva M.; Stogmann, Elisabeth; Zimprich, Fritz; Théâtre, Emilie; Smith, Colin; O’Brien, Terence J.; Meng Tan, K.; Petrovski, Slave; Robbiano, Angela; Paravidino, Roberta; Zara, Federico; Striano, Pasquale; Sperling, Michael R.; Buono, Russell J.; Hakonarson, Hakon; Chaves, João; Costa, Paulo P.; Silva, Berta M.; da Silva, António M.; de Graan, Pierre N. E.; Koeleman, Bobby P. C.; Becker, Albert; Schoch, Susanne; von Lehe, Marec; Reif, Philipp S.; Rosenow, Felix; Becker, Felicitas; Weber, Yvonne; Lerche, Holger; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo M.; Kobow, Katja; Coras, Roland; Blumcke, Ingmar; Scheffer, Ingrid E.; Berkovic, Samuel F.; Weale, Michael E.; Delanty, Norman; Depondt, Chantal; Cavalleri, Gianpiero L.; Kunz, Wolfram S.

    2013-01-01

    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures

  9. SNAP-25 requirement for dendritic growth of hippocampal neurons.

    PubMed

    Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M

    1999-06-01

    Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.

  10. Hippocampal neural assemblies and conscious remembering.

    PubMed

    Shirvalkar, Prasad R

    2009-05-01

    The hippocampal formation is needed to encode episodic memories, which may be consciously recalled at some future time. This review examines recent advances in understanding recollection in the context of spatiotemporally organized relational memory coding and discusses predictions and challenges for future research on conscious remembering.

  11. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    PubMed

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  13. Unilateral hippocampal inactivation or lesion selectively impairs remote contextual fear memory.

    PubMed

    Zhou, Heng; Zhou, Qixin; Xu, Lin

    2016-10-01

    Contextual fear memory depends on the hippocampus, but the role of unilateral hippocampus in this type of memory remains unclear. Herein, pharmacological inactivation or excitotoxic lesions were used to study the role of unilateral hippocampus in the stages of contextual fear memory. The pharmacological experiments revealed that compared with the control groups, unilateral hippocampal blockade did not impair 1-day recent memory following learning, whereas bilateral hippocampal blockade significantly impaired this memory. The lesion experiments showed that compared with the control groups, the formed contextual fear memory was retained for 7 days and that 30-day remote memory was markedly reduced in unilateral hippocampal lesion groups. These results indicate that an intact bilateral hippocampus is required for the formation of remote memory and that unilateral hippocampus is sufficient for recent contextual fear memory.

  14. Prolonged Febrile Seizures in the Immature Rat Model Enhance Hippocampal Excitability Long Term

    PubMed Central

    Dube, Celine; Chen, Kang; Eghbal-Ahmadi, Mariam; Brunson, Kristen; Soltesz, Ivan; Baram, Tallie Z.

    2011-01-01

    Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry. However, whether these neuroanatomical and electrophysiological changes promote hippocampal excitability and lead to epilepsy has remained unknown. By using in vivo and in vitro approaches, we determined that prolonged hyperthermia-induced seizures in immature rats caused long-term enhanced susceptibility to limbic convulsants that lasted to adulthood. Thus, extensive hippocampal electroencephalographic and behavioral monitoring failed to demonstrate spontaneous seizures in adult rats that had experienced hyperthermic seizures during infancy. However, 100% of animals developed hippocampal seizures after systemic administration of a low dose of kainate, and most progressed to status epilepticus. Conversely, a minority of normothermic and hyperthermic controls had (brief) seizures, none developing status epilepticus. In vitro, spontaneous epileptiform discharges were not observed in hippocampal-entorhinal cortex slices derived from either control or experimental groups. However, Schaeffer collateral stimulation induced prolonged, self-sustaining, status epilepticus-like discharges exclusively in slices from experimental rats. These data indicate that hyperthermic seizures in the immature rat model of FSs do not cause spontaneous limbic seizures during adulthood. However, they reduce thresholds to chemical convulsants in vivo and electrical stimulation in vitro, indicating persistent enhancement of limbic excitability that may facilitate the development of epilepsy. PMID:10716253

  15. Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

    PubMed Central

    Kaplan, Raphael; Adhikari, Mohit H.; Hindriks, Rikkert; Mantini, Dante; Murayama, Yusuke; Logothetis, Nikos K.; Deco, Gustavo

    2016-01-01

    Summary The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1, 2, 3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]—particularly in DMN regions [6, 7, 8]. Mechanistic support for the DMN’s role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples—both during sleep [9, 10] and awake deliberative periods [11, 12, 13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16, 17, 18, 19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20, 21, 22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24, 25, 26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs—like the DMN—unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics. PMID:26898464

  16. Teacher Ratings from Incomplete Student Ranking Data.

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Cerny, Barbara A.

    1979-01-01

    A method for obtaining teacher ratings from incomplete student ranking data is presented. The procedure involves finding the scores for the teachers on the first principal component of a student intercorrelation matrix, where the missing data are supplied by least squares. (Author)

  17. NT-3 Facilitates Hippocampal Plasticity and Learning and Memory by Regulating Neurogenesis

    ERIC Educational Resources Information Center

    Sakata, Kazuko; Akbarian, Schahram; Bates, Brian; Jaenisch, Rudolf; Lu, Bai; Shimazu, Kazuhiro; Zhao, Mingrui

    2006-01-01

    In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the "NT-3" gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine…

  18. Phase matters: responding to and learning about peripheral stimuli depends on hippocampal θ phase at stimulus onset

    PubMed Central

    Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku

    2015-01-01

    Hippocampal θ (3–12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local θ oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular hippocampal θ-band responses (that predict good learning) were elicited by the CS when it was timed to commence at the fissure θ trough (Trough group). Regardless, learning in this group was not enhanced compared with a yoked control group, possibly due to a ceiling effect. However, when the CS was consistently presented to the peak of θ (Peak group), hippocampal θ-band responding was less organized and learning was retarded. In well-trained animals, the hippocampal θ phase at CS onset no longer affected performance of the learned response, suggesting a time-limited role for hippocampal processing in learning. To our knowledge, this is the first study to demonstrate that timing a peripheral stimulus to a specific phase of the hippocampal θ cycle produces robust effects on the synchronization of neural responses and affects learning at the behavioral level. Our results support the notion that the phase of spontaneous hippocampal θ oscillation is a means of regulating the processing of information in the brain to a behaviorally relevant degree. PMID:25979993

  19. Hippocampal harms, protection and recovery following regular cannabis use.

    PubMed

    Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N

    2016-01-12

    Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence.

  20. Hippocampal harms, protection and recovery following regular cannabis use

    PubMed Central

    Yücel, M; Lorenzetti, V; Suo, C; Zalesky, A; Fornito, A; Takagi, M J; Lubman, D I; Solowij, N

    2016-01-01

    Shifting policies towards legalisation of cannabis for therapeutic and recreational use raise significant ethical issues for health-care providers seeking evidence-based recommendations. We investigated whether heavy cannabis use is associated with persistent harms to the hippocampus, if exposure to cannabidiol offers protection, and whether recovery occurs with abstinence. To do this, we assessed 111 participants: 74 long-term regular cannabis users (with an average of 15.4 years of use) and 37 non-user healthy controls. Cannabis users included subgroups of participants who were either exposed to Δ9-tetrahydrocannabinol (THC) but not to cannabidiol (CBD) or exposed to both, and former users with sustained abstinence. Participants underwent magnetic resonance imaging from which three measures of hippocampal integrity were assessed: (i) volume; (ii) fractional anisotropy; and (iii) N-acetylaspartate (NAA). Three curve-fitting models across the entire sample were tested for each measure to examine whether cannabis-related hippocampal harms are persistent, can be minimised (protected) by exposure to CBD or recovered through long-term abstinence. These analyses supported a protection and recovery model for hippocampal volume (P=0.003) and NAA (P=0.001). Further pairwise analyses showed that cannabis users had smaller hippocampal volumes relative to controls. Users not exposed to CBD had 11% reduced volumes and 15% lower NAA concentrations. Users exposed to CBD and former users did not differ from controls on any measure. Ongoing cannabis use is associated with harms to brain health, underpinned by chronic exposure to THC. However, such harms are minimised by CBD, and can be recovered with extended periods of abstinence. PMID:26756903

  1. Erythropoietin and carbamylated erythropoietin promote histone deacetylase 5 phosphorylation and nuclear export in rat hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Hye-Ryeong; Kim, Yong-Seok; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791

    2016-01-29

    Erythropoietin (EPO) produces neurotrophic effects in animal model of neurodegeneration. However, clinical use of EPO is limited due to thrombotic risk. Carbamylated EPO (cEPO), devoid of thrombotic risk, has been proposed as a novel neuroprotective and neurotrophic agent although the molecular mechanisms of cEPO remain incomplete. Here, we show a previously unidentified role of histone deacetylase 5 (HDAC5) in the actions of EPO and cEPO. EPO and cEPO regulate the HDAC5 phosphorylation at two critical sites, Ser259 and Ser498 through a protein kinase D (PKD) dependent pathway. In addition, EPO and cEPO rapidly stimulates nuclear export of HDAC5 in ratmore » hippocampal neurons which expressing HDAC5-GFP. Consequently, EPO and cEPO enhanced the myocyte enhancer factor-2 (MEF2) target gene expression. Taken together, our results reveal that EPO and cEPO mediate MEF2 target gene expression via the regulation of HDAC5 phosphorylation at Ser259/498, and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of EPO and cEPO.« less

  2. Moclobemide up-regulates proliferation of hippocampal progenitor cells in chronically stressed mice.

    PubMed

    Li, Yun-feng; Zhang, You-zhi; Liu, Yan-qin; Wang, Heng-lin; Yuan, Li; Luo, Zhi-pu

    2004-11-01

    To explore the action mechanism of antidepressants. The PC12 cell proliferation was detected by flow cytometry. The proliferation of hippocampal progenitor cells and level of brain-derived neurotrophic factor (BDNF) were measured by immunohistochemistry. Treatment with N-methylaspartate (NMDA) 600 micromol/L for 3 d significantly decreased the percentage of S-phase in PC12 cells, while in the presence of classical antidepressant, moclobemide (MOC) 2 and 10 micromol/L, the percentage in S-phase increased. Furthermore, the proliferation of progenitor cells in hippocampal dentate gyrus (subgranular zone), as well as the level of BDNF in hippocampus significantly decreased in chronically stressed mice, while chronic administration with MOC 40 mg/kg (ip) up-regulated the progenitor cell proliferation and BDNF level in the same time course. Up-regulation of the proliferation of hippocampal progenitor cells is one of the action mechanisms for MOC, which may be closely related to the elevation of BDNF level at the same time. These results also extend evidence for our hypothesis that up-regulation of the hippocampal neurogenesis is one of the common mechanisms for antidepressants.

  3. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys.

    PubMed

    Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre

    2017-12-01

    Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.

  5. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis

    PubMed Central

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  6. Estimating inbreeding rates in natural populations: addressing the problem of incomplete pedigrees

    Treesearch

    Mark P. Miller; Susan M. Haig; Jonathan D. Ballou; Ashley Steel

    2017-01-01

    Understanding and estimating inbreeding is essential for managing threatened and endangered wildlife populations. However, determination of inbreeding rates in natural populations is confounded by incomplete parentage information. We present an approach for quantifying inbreeding rates for populations with incomplete parentage information. The approach exploits...

  7. Effect of projectile on incomplete fusion reactions at low energies

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  8. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection

    PubMed Central

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-01-01

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human’s hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors. PMID:28401913

  9. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection.

    PubMed

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-04-12

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human's hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors.

  10. Kv4.2 Knockout Mice Have Hippocampal-Dependent Learning and Memory Deficits

    ERIC Educational Resources Information Center

    Lugo, Joaquin N.; Brewster, Amy L.; Spencer, Corinne M.; Anderson, Anne E.

    2012-01-01

    Kv4.2 channels contribute to the transient, outward K[superscript +] current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit…

  11. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity

    PubMed Central

    2016-01-01

    Hippocampal–cortical interaction during sleep promotes transformation of memory for long-term storage in the cortex. In particular, hippocampal sharp-wave ripple-associated neural activation is important for this transformation during slow-wave sleep. The anterior cingulate cortex (ACC) has been shown to be crucial for expression and likely storage of long-term memory. However, little is known about how ACC activity is influenced by hippocampal ripple activity during sleep. We report here about coordinated interactions between hippocampal ripple activity and ACC neural firings. By recording from the ACC and hippocampal CA1 simultaneously in mice, we found that almost all ACC neurons showed increased activity before hippocampal ripple activity; moreover, a subpopulation (17%) displayed a further activation immediately after ripple activity. This postripple activation of ACC neurons correlated positively with ripple amplitude, and the same neurons were excited upon electrical stimulation of the CA1. Interestingly, the preripple activation of ACC neurons was present during the sleep state, but not during the awake state. These results suggest intimate interactions between hippocampal sharp-wave ripples and ACC neurons in a state-dependent manner. Importantly, sharp-wave ripples and associated activation appear to regulate activity of a small population of ACC neurons, a process that may play a critical role in memory consolidation. SIGNIFICANCE STATEMENT The hippocampus communicates with the cortex for memory transformation. Memories of previous experiences become less dependent on the hippocampus and increasingly dependent on cortical areas, such as the anterior cingulate cortex (ACC). However, little evidence is available to directly support this hippocampus-to-cortex information transduction hypothesis of memory consolidation. Here we show that a subpopulation of ACC neurons becomes active just after hippocampal ripple activity, and that electrical stimulation of

  12. Long-term neuropsychological, neuroanatomical, and life outcome in hippocampal amnesia

    PubMed Central

    Warren, David E.; Duff, Melissa C.; Magnotta, Vincent; Capizzano, Aristides A; Cassell, Martin D.; Tranel, Daniel

    2012-01-01

    Focal bilateral hippocampal damage typically causes severe and selective amnesia for new declarative information (facts and events), a cognitive deficit that greatly impacts the ability to live a normal, fully-independent life. We describe the case of 1846, a 48-year-old woman with profound hippocampal amnesia following status epilepticus and an associated anoxic episode at age 30. 1846 has undergone extensive neuropsychological testing on many occasions over the 18 years since her injury, and we present data indicating that her memory impairment has remained severe and stable during that time. New, high-resolution structural MRI studies of 1846's brain reveal substantial bilateral hippocampal atrophy resembling that of other well-known amnesic patients. In spite of severe amnesia, 1846 lives a full and mostly independent adult life, facilitated by an extensive social support network of family and friends. Her case provides an example of a rare and unlikely positive outcome in the face of severe memory problems. PMID:22401298

  13. Evidence of Hippocampal Structural Alterations in Gulf War Veterans With Predicted Exposure to the Khamisiyah Plume.

    PubMed

    Chao, Linda L; Raymond, Morgan R; Leo, Cynthia K; Abadjian, Linda R

    2017-10-01

    To replicate and expand our previous findings of smaller hippocampal volumes in Gulf War (GW) veterans with predicted exposure to the Khamisiyah plume. Total hippocampal and hippocampal subfield volumes were quantified from 3 Tesla magnetic resonance images in 113 GW veterans, 62 of whom had predicted exposure as per the Department of Defense exposure models. Veterans with predicted exposure had smaller total hippocampal and CA3/dentate gyrus volumes compared with unexposed veterans, even after accounting for potentially confounding genetic and clinical variables. Among veterans with predicted exposure, memory performance was positively correlated with hippocampal volume and negatively correlated with estimated exposure levels and self-reported memory difficulties. These results replicate and extend our previous finding that low-level exposure to chemical nerve agents from the Khamisiyah pit demolition has detrimental, lasting effects on brain structure and function.

  14. Glutaric aciduria type 1: neuroimaging features with clinical correlation.

    PubMed

    Mohammad, Shaimaa Abdelsattar; Abdelkhalek, Heba Salah; Ahmed, Khaled A; Zaki, Osama K

    2015-10-01

    Glutaric aciduria type 1 is a rare neurometabolic disease with high morbidity. To describe the MR imaging abnormalities in glutaric aciduria type 1 and to identify any association between the clinical and imaging features. MRI scans of 29 children (mean age: 16.9 months) with confirmed diagnosis of glutaric aciduria type 1 were retrospectively reviewed. Gray matter and white matter scores were calculated based on a previously published pattern-recognition approach of assessing leukoencephalopathies. Hippocampal formation and opercular topography were assessed in relation to the known embryological basis. MRI scores were correlated with morbidity score. The most consistent MRI abnormality was widened operculum with dilatation of the subarachnoid spaces surrounding underdeveloped frontotemporal lobes. Incomplete hippocampal inversion was also seen. The globus pallidus was the most frequently involved gray matter structure (86%). In addition to the central tegmental tract, white matter abnormalities preferentially involved the central and periventricular regions. The morbidity score correlated with the gray matter abnormality score (P = 0.004). Patients with dystonia had higher gray matter and morbidity scores. Morbidity is significantly correlated with abnormality of gray matter, rather than white matter, whether secondary to acute encephalopathic crisis or insidious onset disease.

  15. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  16. Methamphetamine self-administration attenuates hippocampal serotonergic deficits: role of brain-derived neurotrophic factor.

    PubMed

    McFadden, Lisa M; Vieira-Brock, Paula L; Hanson, Glen R; Fleckenstein, Annette E

    2014-08-01

    Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent 'binge' METH exposure. Previous work also demonstrates that brain-derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered in rats that self-administered METH prior to the binge METH exposure as assessed 24 h after the binge exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function.

  17. Neuroplastic effects of music lessons on hippocampal volume in children with congenital hypothyroidism.

    PubMed

    Zendel, Benjamin Rich; Willoughby, Karen A; Rovet, Joanne F

    2013-12-04

    Children with congenital hypothyroidism (CH) who experience a neonatal thyroid hormone deficiency have reduced hippocampal volumes compared with healthy controls. Interestingly, evidence suggests that musical training can contribute to structural plasticity in a number of brain areas, including the hippocampus. Therefore, we investigated whether taking music lessons could ameliorate the volumetric reductions of the hippocampus in children with CH. Left and right hippocampal volumes were measured in four groups of children: children with CH with and without music lessons, and healthy controls with and without music lessons. We found that the volume of the right hippocampus was comparable between children with CH who had taken music lessons and the healthy controls. Children with CH who had not taken music lessons had reduced hippocampal volumes compared with the other three groups. These results suggest that music lessons may induce structural neuroplasticity in children with atypical hippocampal development because of early thyroid hormone deficiencies.

  18. Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.

    PubMed

    Zhang, Zi-Gang; Wang, Xin; Zai, Jin-Hai; Sun, Cai-Hua; Yan, Bing-Chun

    2018-05-01

    To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.

  19. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    PubMed

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  20. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis.

    PubMed

    Griffin, Nicole G; Wang, Yu; Hulette, Christine M; Halvorsen, Matt; Cronin, Kenneth D; Walley, Nicole M; Haglund, Michael M; Radtke, Rodney A; Skene, J H Pate; Sinha, Saurabh R; Heinzen, Erin L

    2016-03-01

    Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology. Wiley Periodicals, Inc. © 2016

  1. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression

    PubMed Central

    Wolkowitz, Owen M.; Mellon, Synthia H.; Lindqvist, Daniel; Epel, Elissa S.; Blackburn, Elizabeth H.; Lin, Jue; Reus, Victor I.; Burke, Heather; Rosser, Rebecca; Mahan, Laura; Mackin, Scott; Yang, Tony; Weiner, Michael; Mueller, Susanne

    2015-01-01

    Accelerated cell aging, indexed in peripheral leukocytes by telomere length and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD. PMID:25773002

  2. Thalamic and hippocampal volume associated with memory functions in multiple sclerosis.

    PubMed

    Tremblay, Alexandra; Jobin, Céline; Demers, Mélanie; Dagenais, Emmanuelle; Narayanan, Sridar; Araújo, David; Douglas, Arnold L; Roger, Elaine; Chamelian, Laury; Duquette, Pierre; Rouleau, Isabelle

    2018-06-08

    Although multiple sclerosis (MS) has long been considered to primarily affect white matter, it is now recognized that cognitive deficits in MS are also related to neocortical, thalamic and hippocampal damage. However, the association between damage to these structures and memory deficits in MS is unclear. This study examines whether MS patients with cognitive impairment have a reduction of hippocampal and/or thalamic volumes compared to cognitively intact patients, and whether these volume reductions correlate with various aspects of memory function. Volumetric MRI measures of thalamus and hippocampus of forty-one patients with MS were performed. The patients were divided in two groups depending on the presence or absence of cognitive impairment, based on their neuropsychological tests scores. Right hippocampal volume was found to be associated with learning, and the left thalamic volume was found to predict performance in verbal memory. Cognitively impaired patients had a tendency to have a reduced left thalamic volume compared to cognitively intact patients. This study does not support a direct relationship between hippocampal atrophy and verbal memory. These results add to the growing evidence of the involvement of thalamus in cognitive impairment in MS and its association with verbal memory deficits. Copyright © 2018. Published by Elsevier Inc.

  3. Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Luque-García, Aina; Martínez-Ricós, Joana; Valverde-Navarro, Alfonso; Bataller, Manuel; Guerrero, Juan; Teruel-Marti, Vicent

    2017-03-01

    The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta-on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network. In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area

  4. Childhood Trauma and COMT Genotype Interact to Increase Hippocampal Activation in Resilient Individuals.

    PubMed

    van Rooij, Sanne J H; Stevens, Jennifer S; Ely, Timothy D; Fani, Negar; Smith, Alicia K; Kerley, Kimberly A; Lori, Adriana; Ressler, Kerry J; Jovanovic, Tanja

    2016-01-01

    Both childhood trauma and a functional catechol-O-methyltransferase (COMT) genetic polymorphism have been associated with posttraumatic stress disorder (PTSD) and depression; however, it is still unclear whether the two interact and how this interaction relates to long-term risk or resilience. Imaging and genotype data were collected on 73 highly traumatized women. DNA extracted from saliva was used to determine COMT genotype (Val/Val, n = 38, Met carriers, n = 35). Functional MRI data were collected during a Go/NoGo task to investigate the neurocircuitry underlying response inhibition. Self-report measures of adult and childhood trauma exposure, PTSD and depression symptom severity, and resilience were collected. Childhood trauma was found to interact with COMT genotype to impact inhibition-related hippocampal activation. In Met carriers, more childhood trauma was associated with decreased hippocampal activation, whereas in the Val/Val group childhood trauma was related to increased hippocampal activation. Second, hippocampal activation correlated negatively with PTSD and depression symptoms and positively with trait resilience. Moreover, hippocampal activation mediated the relationship between childhood trauma and psychiatric risk or resilience in the Val/Val, but not in the Met carrier group. These data reveal a potential mechanism by which childhood trauma and COMT genotype interact to increase risk for trauma-related psychopathology or resilience. Hippocampal recruitment during inhibition may improve the ability to use contextual information to guide behavior, thereby enhancing resilience in trauma-exposed individuals. This finding may contribute to early identification of individuals at risk and suggests a mechanism that can be targeted in future studies aiming to prevent or limit negative outcomes.

  5. Relationship Between Hippocampal Volume, Serum BDNF, and Depression Severity Following Electroconvulsive Therapy in Late-Life Depression

    PubMed Central

    Bouckaert, Filip; Dols, Annemiek; Emsell, Louise; De Winter, François-Laurent; Vansteelandt, Kristof; Claes, Lene; Sunaert, Stefan; Stek, Max; Sienaert, Pascal; Vandenbulcke, Mathieu

    2016-01-01

    Recent structural imaging studies have described hippocampal volume changes following electroconvulsive therapy (ECT). It has been proposed that serum brain-derived neurotrophic factor (sBDNF)-mediated neuroplasticity contributes critically to brain changes following antidepressant treatment. To date no studies have investigated the relationship between changes in hippocampal volume, mood, and sBDNF following ECT. Here, we combine these measurements in a longitudinal study of severe late-life unipolar depression (LLD). We treated 88 elderly patients with severe LLD twice weekly until remission (Montgomery–Åsberg Depression Rating Scale (MADRS) <10). sBDNF and MADRS were obtained before ECT (T0), after the sixth ECT (T1), 1 week after the last ECT (T2), 4 weeks after the last ECT (T3), and 6 months after the last ECT (T4). Hippocampal volumes were quantified by manual segmentation of 3T structural magnetic resonance images in 66 patients at T0 and T2 and in 23 patients at T0, T2, and T4. Linear mixed models (LMM) were used to examine the evolution of MADRS, sBDNF, and hippocampal volume over time. Following ECT, there was a significant decrease in MADRS scores and a significant increase in hippocampal volume. Hippocampal volume decreased back to baseline values at T4. Compared with T0, sBDNF levels remained unchanged at T1, T2, and T3. There was no coevolution between changes in MADRS scores, hippocampal volume, and sBDNF. Hippocampal volume increase following ECT is an independent neurobiological effect unrelated to sBDNF and depressive symptomatology, suggesting a complex mechanism of action of ECT in LLD. PMID:27272769

  6. 10 CFR 782.7 - Incomplete notice of infringement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... presented; and (2) Of the elements considered necessary to establish a claim. (b) A communication, such as a... § 782.7 Incomplete notice of infringement. (a) If a communication alleging patent or copyright...

  7. A Multivariate Twin Study of Hippocampal Volume, Self-Esteem and Well-Being in Middle Aged Men

    PubMed Central

    Kubarych, Thomas S.; Prom-Wormley, Elizabeth C.; Franz, Carol E.; Panizzon, Matthew S.; Dale, Anders M.; Fischl, Bruce; Eyler, Lisa T.; Fennema-Notestine, Christine; Grant, Michael D.; Hauger, Richard L.; Hellhammer, Dirk H.; Jak, Amy J.; Jernigan, Terry L.; Lupien, Sonia J.; Lyons, Michael J.; Mendoza, Sally P.; Neale, Michael C.; Seidman, Larry J.; Tsuang, Ming T.; Kremen, William S.

    2012-01-01

    Self-esteem and well-being are important for successful aging, and some evidence suggests that self-esteem and well-being are associated with hippocampal volume, cognition, and stress responsivity. Whereas most of this evidence is based on studies of older adults, we investigated self-esteem, well-being and hippocampal volume in 474 male middle-age twins. Self-esteem was significantly positively correlated with hippocampal volume (.09, p=.03 for left hippocampus, .10, p=.04 for right). Correlations for well-being were not significant (ps ≫.05). There were strong phenotypic correlations between self-esteem and well-being (.72, p<.001) and between left and right hippocampal volume (.72, p<.001). In multivariate genetic analyses, a 2-factor AE model with well-being and self-esteem on one factor and left and right hippocampal volumes on the other factor fit the data better than Cholesky, independent pathway or common pathway models. The correlation between the two genetic factors was .12 (p=.03); the correlation between the environmental factors was .09 (p>05). Our results indicate that largely different genetic and environmental factors underlie self-esteem and well-being on the one hand and hippocampal volume on the other. PMID:22471516

  8. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die.

    PubMed

    Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio; Court-Vazquez, Brenda; Bennett, Michael Vander Laan; Ofengeim, Dimitry; Zukin, Ruth Suzanne

    2017-02-01

    The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.

  9. Interstrain differences of ionotropic glutamate receptor subunits in the hippocampus and induction of hippocampal sclerosis with pilocarpine in mice.

    PubMed

    Dobó, Endre; Török, Ibolya; Mihály, András; Károly, Norbert; Krisztin-Péva, Beáta

    2015-01-01

    Rodent strains used in epilepsy research have various neurological characteristics. These differences were suggested to be attributed to the diverse densities of the ionotropic glutamate receptor (iGluR) subunits. However, previous studies failed to find interstrain differences in the hippocampal receptor levels. We supposed that a detailed layer-to-layer analysis of the iGluR subunits in the hippocampus might reveal strain-dependent differences in their base lines and reactions induced by pilocarpine (PILO) between two mouse strains without documented ancestors. Levels of iGluR subunits in Balb/c and NMRI mice were compared using semiquantitative immunohistochemistry. The alterations in the neuronal circuitry were validated by neuropeptide Y (NPY) and neuronal nuclear antigen (NeuN) immunostainings. Immunohistochemistry showed interstrain laminar differences in some subunits of both the control and PILO-treated animals. The seizure-induced irreversible neuronal changes were accompanied by reduced GluA1 and GluA2 levels. Their changes were inversely correlated in the individual NMRI mice by Pearson's method. Increase in NPY immunoreactivity showed positive correlation with GluA1, and negative correlation with GluA2. The NMRI strain was susceptible to PILO-induced hippocampal sclerosis, while the Balb/c animals showed resistance. Basal levels of iGluRs differ in mouse strains, which may account for the interstrain differences in their reactions to the convulsant. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    PubMed

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  11. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory

    PubMed Central

    Clemenson, Gregory D.

    2015-01-01

    The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many “enriching” aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. SIGNIFICANCE STATEMENT The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can

  12. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory.

    PubMed

    Clemenson, Gregory D; Stark, Craig E L

    2015-12-09

    The positive effects of environmental enrichment and their neural bases have been studied extensively in the rodent (van Praag et al., 2000). For example, simply modifying an animal's living environment to promote sensory stimulation can lead to (but is not limited to) enhancements in hippocampal cognition and neuroplasticity and can alleviate hippocampal cognitive deficits associated with neurodegenerative diseases and aging. We are interested in whether these manipulations that successfully enhance cognition (or mitigate cognitive decline) have similar influences on humans. Although there are many "enriching" aspects to daily life, we are constantly adapting to new experiences and situations within our own environment on a daily basis. Here, we hypothesize that the exploration of the vast and visually stimulating virtual environments within video games is a human correlate of environmental enrichment. We show that video gamers who specifically favor complex 3D video games performed better on a demanding recognition memory task that assesses participants' ability to discriminate highly similar lure items from repeated items. In addition, after 2 weeks of training on the 3D video game Super Mario 3D World, naive video gamers showed improved mnemonic discrimination ability and improvements on a virtual water maze task. Two control conditions (passive and training in a 2D game, Angry Birds), showed no such improvements. Furthermore, individual performance in both hippocampal-associated behaviors correlated with performance in Super Mario but not Angry Birds, suggesting that how individuals explored the virtual environment may influence hippocampal behavior. The hippocampus has long been associated with episodic memory and is commonly thought to rely on neuroplasticity to adapt to the ever-changing environment. In animals, it is well understood that exposing animals to a more stimulating environment, known as environmental enrichment, can stimulate neuroplasticity and

  13. A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.

    2012-01-01

    Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334

  14. Aging is accompanied by a subfield-specific reduction of serotonergic fibers in the tree shrew hippocampal formation.

    PubMed

    Keuker, Jeanine I H; Keijser, Jan N; Nyakas, Csaba; Luiten, Paul G M; Fuchs, Eberhard

    2005-12-01

    The hippocampal formation is a crucial structure for learning and memory, and serotonin together with other neurotransmitters is essential in these processes. Although the effects of aging on various neurotransmitter systems in the hippocampus have been extensively investigated, it is not entirely clear whether or how the hippocampal serotonergic innervation changes during aging. Rat studies, which have mostly focused on aging-related changes in the dentate gyrus, have implied a loss of hippocampal serotonergic fibers. We used the tree shrew (Tupaia belangeri), an intermediate between insectivores and primates, as a model of aging. We applied immunocytochemistry with an antibody against serotonin to assess serotonergic fiber densities in the various hippocampal subfields of adult (0.9-1.3 years) and old (5-7 years) tree shrews. Our results have revealed a reduction of serotonergic fiber densities in the stratum radiatum of CA1 and CA3, and in the stratum oriens of CA3. A partial depletion of serotonin in the hippocampal formation, as can be expected from our current observations, will probably have an impact on the functioning of hippocampal principal neurons. Our findings also indicate that the rat and the tree shrew hippocampal serotonergic innervation show some variations that seem to be differentially affected during aging.

  15. Effects of lamotrigine on hippocampal activation in corticosteroid-treated patients.

    PubMed

    Brown, E Sherwood; Zaidel, Liam; Allen, Greg; McColl, Roderick; Vazquez, Miguel; Ringe, Wendy K

    2010-11-01

    An extensive animal literature suggests that stress or excessive corticosteroid exposure is associated with changes in hippocampal function and memory. These findings are pertinent to psychiatric disorders with elevated cortisol, Cushing's disease and the millions of patients receiving prescription corticosteroids. In animals, agents that decrease glutamate release attenuate the effects of corticosteroids on the hippocampus. Minimal data are available on preventing or reversing the effects of corticosteroids on the human hippocampus. We previously reported improvement in memory in corticosteroid-treated patients given lamotrigine. In this report, we examined the impact of lamotrigine on task-related hippocampal activation in patients taking prescription corticosteroids. A total of 28 outpatients taking long-term oral prednisone for medical conditions, such as renal transplant rejection, were randomized to lamotrigine or placebo for 24 weeks. Hippocampal activation in response to a visual memory task was assessed with blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). Consistent with a reduction in glutamate release, the right posterior hippocampus showed a significant decrease in task-related activation in the lamotrigine group as compared to the placebo group. The modest sample size and an assessment period of only 24 weeks are study limitations. Between-group differences in hippocampal activation were observed. The results suggest that an agent that modulates glutamate may modify the effects of long-term corticosteroid exposure on the human hippocampus. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Hippocampal sclerosis dementia: an amnesic variant of frontotemporal degeneration

    PubMed Central

    Onyike, Chiadi U.; Pletnikova, Olga; Sloane, Kelly L.; Sullivan, Campbell; Troncoso, Juan C.; Rabins, Peter V.

    2013-01-01

    OBJECTIVE To describe characteristics of hippocampal sclerosis dementia. METHODS Convenience sample of Hippocampal sclerosis dementia (HSD) recruited from the Johns Hopkins University Brain Resource Center. Twenty-four cases with post-mortem pathological diagnosis of hippocampal sclerosis dementia were reviewed for clinical characterization. RESULTS The cases showed atrophy and neuronal loss localized to the hippocampus, amygdala and entorrhinal cortex. The majority (79.2%) had amnesia at illness onset, and many (54.2%) showed abnormal conduct and psychiatric disorder. Nearly 42% presented with an amnesic state, and 37.5% presented with amnesia plus abnormal conduct and psychiatric disorder. All eventually developed a behavioral or psychiatric disorder. Disorientation, executive dysfunction, aphasia, agnosia and apraxia were uncommon at onset. Alzheimer disease (AD) was the initial clinical diagnosis in 89% and the final clinical diagnosis in 75%. Diagnosis of frontotemporal dementia (FTD) was uncommon (seen in 8%). CONCLUSION HSD shows pathological characteristics of FTD and clinical features that mimic AD and overlap with FTD. The findings, placed in the context of earlier work, support the proposition that HSD belongs to the FTD family, where it may be identified as an amnesic variant. PMID:24363834

  17. Contribution of Genoarchitecture to Understanding Hippocampal Evolution and Development.

    PubMed

    Medina, Loreta; Abellán, Antonio; Desfilis, Ester

    2017-01-01

    The hippocampal formation is a highly conserved structure of the medial pallium that works in association with the entorhinal cortex, playing a key role in memory formation and spatial navigation. Although it has been described in several vertebrates, the presence of comparable subdivisions across species remained unclear. This panorama has started to change in recent years thanks to the identification of some of the genes that regulate the development of the hippocampal formation in the mouse and help to delineate its subdivisions based on molecular features. Some of these genes have been used to try to identify subdivisions in chicken and lizards comparable to those of the mammalian hippocampal formation and the entorhinal cortex. Here, we review some of these data, which suggest the existence of fields comparable to the dentate gyrus, CA3, CA1, subiculum, as well as medial and lateral parts of the entorhinal cortex in all amniotes. We also analyze available data suggesting the existence of serial connections between these fields, speculate on the possible existence of auto-associative loops in CA3, and discuss general principles governing the formation of the connections. © 2017 S. Karger AG, Basel.

  18. Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory

    PubMed Central

    Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo

    2012-01-01

    Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133

  19. Hippocampal Contribution to Implicit Configuration Memory Expressed via Eye Movements During Scene Exploration

    PubMed Central

    Ryals, Anthony J.; Wang, Jane X.; Polnaszek, Kelly L.; Voss, Joel L.

    2015-01-01

    Although hippocampus unequivocally supports explicit/ declarative memory, fewer findings have demonstrated its role in implicit expressions of memory. We tested for hippocampal contributions to an implicit expression of configural/relational memory for complex scenes using eye-movement tracking during functional magnetic resonance imaging (fMRI) scanning. Participants studied scenes and were later tested using scenes that resembled study scenes in their overall feature configuration but comprised different elements. These configurally similar scenes were used to limit explicit memory, and were intermixed with new scenes that did not resemble studied scenes. Scene configuration memory was expressed through eye movements reflecting exploration overlap (EO), which is the viewing of the same scene locations at both study and test. EO reliably discriminated similar study-test scene pairs from study-new scene pairs, was reliably greater for similarity-based recognition hits than for misses, and correlated with hippocampal fMRI activity. In contrast, subjects could not reliably discriminate similar from new scenes by overt judgments, although ratings of familiarity were slightly higher for similar than new scenes. Hippocampal fMRI correlates of this weak explicit memory were distinct from EO-related activity. These findings collectively suggest that EO was an implicit expression of scene configuration memory associated with hippocampal activity. Visual exploration can therefore reflect implicit hippocampal-related memory processing that can be observed in eye-movement behavior during naturalistic scene viewing. PMID:25620526

  20. Relationship between hippocampal subfield volumes and memory deficits in patients with thalamus infarction.

    PubMed

    Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang

    2016-09-01

    Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus.

  1. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders.

    PubMed

    Chambers, R Andrew

    2013-06-01

    As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Adult Hippocampal Neurogenesis in the Pathogenesis of Addiction and Dual Diagnosis Disorders

    PubMed Central

    Chambers, R. Andrew

    2013-01-01

    Background As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. Methods Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. Results While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. Conclusions Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders. PMID:23279925

  3. Effects of retinoic acids on the dendritic morphology of cultured hippocampal neurons.

    PubMed

    Liu, Ying; Kagechika, Hiroyuki; Ishikawa, Junko; Hirano, Hitoshi; Matsukuma, Satoshi; Tanaka, Kazuko; Nakamura, Shoji

    2008-08-01

    Vitamin A-derived retinoic acids (RAs) are known to exert a variety of biological actions, including modulatory effects on cell differentiation and apoptosis. A recent study has demonstrated that 13-cis-RA and all-trans-RA suppressed neurogenesis in the dentate gyrus of the hippocampus in adult mice. The present experiments were performed to see whether 13-cis-RA and all-trans-RA could alter the dendritic morphology of cultured hippocampal neurons via RA receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). High doses of 13-cis-RA and all-trans-RA exerted a negative effect on the cultured hippocampal neurons, while a low dose of 13-cis-RA but not all-trans-RA caused a positive effect. The negative changes induced by 13-cis-RA and all-trans-RA were antagonized by RXR antagonists and RAR antagonists, respectively. The positive changes induced by a low dose of 13-cis-RA were blocked by both RXR antagonists and RAR antagonists. These results suggest that RAs at high concentrations cause a negative effect on the dendritic morphology of cultured hippocampal neurons through RA receptors, while RAs at low concentrations exert a positive influence on cultured hippocampal neurons.

  4. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease.

    PubMed

    Starkman, M N; Giordani, B; Gebarski, S S; Berent, S; Schork, M A; Schteingart, D E

    1999-12-15

    Decreased hippocampal volume is observed in patients with Cushing's syndrome and other conditions associated with elevated cortisol levels, stress, or both. Reversibility of hippocampal neuronal atrophy resulting from stress occurs in animals. Our study investigated the potential for reversibility of human hippocampal atrophy. The study included 22 patients with Cushing's disease. Magnetic resonance brain imaging was performed prior to transsphenoidal microadenomectomy and again after treatment. Following treatment, hippocampal formation volume (HFV) increased by up to 10%. The mean percent change (3.2 +/- 2.5) was significantly greater (p < .04) than that of the comparison structure, caudate head volume (1.5 +/- 3.4). Increase in HFV was significantly associated with magnitude of decrease in urinary free cortisol (r = -.61, p < .01). This relationship strengthened after adjustments for age, duration of disease, and months elapsed since surgery (r = -.70, p < .001). There was no significant correlation between caudate head volume change and magnitude of cortisol decrease. Changes in human HFV associated with sustained hypercortisolemia are reversible, at least in part, once cortisol levels decrease. While many brain regions are likely affected by hypercortisolemia, the human hippocampus exhibits increased sensitivity to cortisol, affecting both volume loss and recovery.

  5. Hippocampal participation in navigational map learning in young homing pigeons is dependent on training experience.

    PubMed

    Ioalè, P; Gagliardo, A; Bingman, V P

    2000-02-01

    The homing pigeon navigational map is perhaps one of the most striking examples of a naturally occurring spatial representation of the environment used to guide navigation. In a previous study, it was found that hippocampal lesions thoroughly disrupt the ability of young homing pigeons held in an outdoor aviary to learn a navigational map. However, since that study an accumulation of anecdotal data has hinted that hippocampal-lesioned young pigeons allowed to fly during their first summer could learn a navigational map. In the present study, young control and hippocampal-lesioned homing pigeons were either held in an outdoor aviary or allowed to fly during the time of navigational map learning. At the end of their first summer, the birds were experimentally released to test for navigational map learning. Independent of training experience, control pigeons oriented homeward during the experimental releases demonstrating that they learned a navigational map. Surprisingly, while the aviary-held hippocampal-lesioned pigeons failed to learn a navigational map as reported previously, hippocampal-lesioned birds allowed flight experience learned a navigational map indistinguishable from the two control groups. A subsequent experiment revealed that the navigational map learned by the three groups was based on atmospheric odours. The results demonstrate that hippocampal participation in navigational map learning depends on the type of experience a young bird pigeon has, and presumably, the type of navigational map learned.

  6. Smaller hippocampal volumes predict lower antidepressant response/remission rates in depressed patients: A meta-analysis.

    PubMed

    Colle, Romain; Dupong, Irène; Colliot, Olivier; Deflesselle, Eric; Hardy, Patrick; Falissard, Bruno; Ducreux, Denis; Chupin, Marie; Corruble, Emmanuelle

    2016-08-15

    Whether hippocampal volume predicts response and/or remission after antidepressant treatment of major depressive episodes (MDE) in major depressive disorder (MDD) remains unclear. We meta-analysed prospective studies comparing baseline hippocampal volume in patients with or without response/remission after antidepressant treatment. Pubmed, Embase and Google Scholar were searched for studies of patients with current MDE in MDD, with hippocampal volume assessments at baseline, initiation of antidepressant drug treatment, and prospective assessment of response/remission after treatment. Six studies (374 patients), of which two were positive and four negative, were meta-analysed. Compared to responders/remitters, patients who failed to achieve response/remission had smaller total hippocampus volumes at baseline (mean volume difference = 260 mm 3 , 95% CI [93; 427], P = 0.002). These results remained significant in patients under 60 years of age (P = 0.02), in those over 60 years old (P = 0.04), and for right (P = 0.006) and left (P = 0.02) hippocampi. The probability of non-response/non-remission was 68.6% for patients with a total hippocampal volume at least 10% lower than the average, and 47.1% for patients with a total hippocampal volume 10% higher than the average. In depressed patients treated with antidepressant drugs, smaller hippocampal volumes predict lower response/remission rates.

  7. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Chenchen; Xing Tairan; Tang Mingliang

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronalmore » death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.« less

  8. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenlie; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550; Ichihara, Sahoko

    2015-01-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins.more » Changes in selected proteins were further confirmed by Manganese II (Mn{sup 2+})-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p < 0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn{sup 2+}-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity. - Highlights: • 1-BP modified hippocampal phosphoproteome in rat and 23 altered proteins were identified. • 1-BP changed

  9. COMT Val158Met polymorphism moderates the association between PTSD symptom severity and hippocampal volume.

    PubMed

    Hayes, Jasmeet P; Logue, Mark W; Reagan, Andrew; Salat, David; Wolf, Erika J; Sadeh, Naomi; Spielberg, Jeffrey M; Sperbeck, Emily; Hayes, Scott M; McGlinchey, Regina E; Milberg, William P; Verfaellie, Mieke; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Memory-based alterations are among the hallmark symptoms of posttraumatic stress disorder (PTSD) and may be associated with the integrity of the hippocampus. However, neuroimaging studies of hippocampal volume in individuals with PTSD have yielded inconsistent results, raising the possibility that various moderators, such as genetic factors, may influence this association. We examined whether the catechol-O-methyltransferase (COMT) Val158Met polymorphism, which has previously been shown to be associated with hippocampal volume in healthy individuals, moderates the association between PTSD and hippocampal volume. Recent war veterans underwent structural MRI on a 3 T scanner. We extracted volumes of the right and left hippocampus using FreeSurfer and adjusted them for individual differences in intracranial volume. We assessed PTSD severity using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to model the genotype (Val158Met polymorphism) × PTSD severity interaction and its association with hippocampal volume. We included 146 white, non-Hispanic recent war veterans (90% male, 53% with diagnosed PTSD) in our analyses. A significant genotype × PTSD symptom severity interaction emerged such that individuals with greater current PTSD symptom severity who were homozygous for the Val allele showed significant reductions in left hippocampal volume. The direction of proposed effects is unknown, thus precluding definitive assessment of whether differences in hippocampal volume reflect a consequence of PTSD, a pre-existing characteristic, or both. Our findings suggest that the COMT polymorphism moderates the association between PTSD and hippocampal volume. These results highlight the role that the dopaminergic system has in brain structure and suggest a possible mechanism for memory disturbance in individuals with PTSD.

  10. Remote infarct of the temporal lobe with coexistent hippocampal sclerosis in mesial temporal lobe epilepsy.

    PubMed

    Gales, Jordan M; Prayson, Richard A

    2016-02-01

    In patients undergoing surgery for temporal lobe epilepsy, hippocampal sclerosis remains the most commonly observed pathology. In addition to hippocampal sclerosis, 5% to 30% of these resections on magnetic resonance imaging contain a second independently epileptogenic lesion, commonly referred to as dual pathology. A second etiology of seizure activity, as seen in dual pathology, may serve as an important cause of treatment failure in striving for post-operative seizure control. Dual pathology, consisting of hippocampal sclerosis and a remote infarct of the adjacent cortex, has been rarely reported. Cases of pathologically confirmed hippocampal sclerosis diagnosed between January 2000 and December 2012 (n = 349) were reviewed, and 7 cases of coexistent infarct (2%) formed the study group. Seven individuals (mean age, 29years; range, 5-47 years) with a mean epilepsy duration of 12.5years (3.3-25 years) and a mean pre-surgery frequency of 15 seizures per week (range, 0.5-56 seizures/week) were followed up postoperatively for a mean duration of 64months (range, 3-137 months). Pathologically, the most common form of hippocampal sclerosis observed was International League against Epilepsy type Ib or severe variant (n = 4). Four of the six individuals with post-surgery follow-up were seizure free at last encounter. The reported incidence of dual pathology, including hippocampal sclerosis and remote infarct, is low (2% in the present study) but may indicate a slightly increased risk of developing hippocampal sclerosis in the setting of a remote infarct. Surgical intervention for such cases anecdotally appears effective in achieving seizure control. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. COMT Val158Met polymorphism moderates the association between PTSD symptom severity and hippocampal volume

    PubMed Central

    Hayes, Jasmeet P.; Logue, Mark W.; Reagan, Andrew; Salat, David; Wolf, Erika J.; Sadeh, Naomi; Spielberg, Jeffrey M.; Sperbeck, Emily; Hayes, Scott M.; McGlinchey, Regina E.; Milberg, William P.; Verfaellie, Mieke; Stone, Annjanette; Schichman, Steven A.; Miller, Mark W.

    2017-01-01

    Background Memory-based alterations are among the hallmark symptoms of posttraumatic stress disorder (PTSD) and may be associated with the integrity of the hippocampus. However, neuroimaging studies of hippocampal volume in individuals with PTSD have yielded inconsistent results, raising the possibility that various moderators, such as genetic factors, may influence this association. We examined whether the catechol-O-methyltransferase (COMT) Val158Met polymorphism, which has previously been shown to be associated with hippocampal volume in healthy individuals, moderates the association between PTSD and hippocampal volume. Methods Recent war veterans underwent structural MRI on a 3 T scanner. We extracted volumes of the right and left hippocampus using FreeSurfer and adjusted them for individual differences in intracranial volume. We assessed PTSD severity using the Clinician-Administered PTSD Scale. Hierarchical linear regression was used to model the genotype (Val158Met polymorphism) × PTSD severity interaction and its association with hippocampal volume. Results We included 146 white, non-Hispanic recent war veterans (90% male, 53% with diagnosed PTSD) in our analyses. A significant genotype × PTSD symptom severity interaction emerged such that individuals with greater current PTSD symptom severity who were homozygous for the Val allele showed significant reductions in left hippocampal volume. Limitations The direction of proposed effects is unknown, thus precluding definitive assessment of whether differences in hippocampal volume reflect a consequence of PTSD, a pre-existing characteristic, or both. Conclusion Our findings suggest that the COMT polymorphism moderates the association between PTSD and hippocampal volume. These results highlight the role that the dopaminergic system has in brain structure and suggest a possible mechanism for memory disturbance in individuals with PTSD. PMID:28234210

  12. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis.

    PubMed

    Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd

    2015-03-01

    Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL. Copyright © 2014. Published by Elsevier Inc.

  13. Fetal head detection and measurement in ultrasound images by a direct inverse randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2005-04-01

    Object detection in ultrasound fetal images is a challenging task for the relatively low resolution and low signal-to-noise ratio. A direct inverse randomized Hough transform (DIRHT) is developed for filtering and detecting incomplete curves in images with strong noise. The DIRHT combines the advantages of both the inverse and the randomized Hough transforms. In the reverse image, curves are highlighted while a large number of unrelated pixels are removed, demonstrating a "curve-pass filtering" effect. Curves are detected by iteratively applying the DIRHT to the filtered image. The DIRHT was applied to head detection and measurement of the biparietal diameter (BPD) and head circumference (HC). No user input or geometric properties of the head were required for the detection. The detection and measurement took 2 seconds for each image on a PC. The inter-run variations and the differences between the automatic measurements and sonographers" manual measurements were small compared with published inter-observer variations. The results demonstrated that the automatic measurements were consistent and accurate. This method provides a valuable tool for fetal examinations.

  14. Incompletely characterized incidental renal masses: emerging data support conservative management.

    PubMed

    Silverman, Stuart G; Israel, Gary M; Trinh, Quoc-Dien

    2015-04-01

    With imaging, most incidental renal masses can be diagnosed promptly and with confidence as being either benign or malignant. For those that cannot, management recommendations can be devised on the basis of a thorough evaluation of imaging features. However, most renal masses are either too small to characterize completely or are detected initially in imaging examinations that are not designed for full evaluation of them. These masses constitute a group of masses that are considered incompletely characterized. On the basis of current published guidelines, many masses warrant additional imaging. However, while the diagnosis of renal cancer at a curable stage remains the first priority, there is the additional need to reduce unnecessary healthcare costs and radiation exposure. As such, emerging data now support foregoing additional imaging for many incompletely characterized renal masses. These data include the low risk of progression to metastases or death for small renal masses that have undergone active surveillance (including biopsy-proven cancers) and a better understanding of how specific imaging features can be used to diagnose their origins. These developments support (a) avoidance of imaging entirely for those incompletely characterized renal masses that are highly likely to be benign cysts and (b) delay of further imaging of small solid masses in selected patients. Although more evidence-based data are needed and comprehensive management algorithms have yet to be defined, these recommendations are medically appropriate and practical, while limiting the imaging of many incompletely characterized incidental renal masses.

  15. Risk factors for incomplete immunization in children with HIV infection.

    PubMed

    Bhattacharya, Sangeeta Das; Bhattacharyya, Subhasish; Chatterjee, Devlina; Niyogi, Swapan Kumar; Chauhan, Nageshwar; Sudar, A

    2014-09-01

    To document the immunization rates, factors associated with incomplete immunization, and missed opportunities for immunizations in children affected by HIV presenting for routine outpatient follow-up. A cross-sectional study of immunization status of children affected by HIV presenting for routine outpatient care was conducted. Two hundred and six HIV affected children were enrolled. The median age of children in this cohort was 6 y. One hundred ninety seven of 206 children were HIV infected, nine were HIV exposed, but indeterminate. Fifty (25 %) children had incomplete immunizations per the Universal Immunization Program (UIP) of India. Hundred percent of children had received OPV. Ninety three percent of children got their UIP vaccines from a government clinic. Children with incomplete immunization were older, median age of 8 compared to 5 (p = 0.003). Each year of maternal education increased the odds of having a child with complete UIP immunizations by 1.18 (p = 0.008)-children of mothers with 6 y of education compared to those with no education were seven times more likely to have complete UIP vaccine status. The average number of visits to the clinic by an individual child in a year was 4. This represents 200 missed opportunities for immunizations. HIV infected children are at risk for incomplete immunization coverage though they regularly access medical care. Including routine immunizations, particularly catch-up immunizations in programs for HIV infected children maybe an effective way of protecting these children from vaccine preventable disease.

  16. Coordinated Excitation and Inhibition of Prefrontal Ensembles During Awake Hippocampal Sharp-Wave Ripple Events

    PubMed Central

    Jadhav, Shantanu P.; Rothschild, Gideon; Roumis, Demetris K.; Frank, Loren M.

    2016-01-01

    SUMMARY Interactions between the hippocampus and prefrontal cortex (PFC) are critical for learning and memory. Hippocampal activity during awake sharp wave ripple (SWR) events is important for spatial learning, and hippocampal SWR activity often represents past or potential future experiences. Whether or how this reactivation engages the PFC, and how reactivation might interact with ongoing patterns of PFC activity remains unclear. We recorded hippocampal CA1 and PFC activity in animals learning spatial tasks and found that many PFC cells showed spiking modulation during SWRs. Unlike in CA1, SWR-related activity in PFC comprised both excitation and inhibition of distinct populations. Within individual SWRs, excitation activated PFC cells with representations related to the concurrently reactivated hippocampal representation, while inhibition suppressed PFC cells with unrelated representations. Thus, awake SWRs mark times of strong coordination between hippocampus and PFC that reflects structured reactivation of representations related to ongoing experience. PMID:26971950

  17. Hippocampal Context Processing during Acquisition of a Predictive Learning Task Is Associated with Renewal in Extinction Recall.

    PubMed

    Lissek, Silke; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Tegenthoff, Martin

    2016-05-01

    Renewal is defined as the recovery of an extinguished response if extinction and retrieval contexts differ. The context dependency of extinction, as demonstrated by renewal, has important implications for extinction-based therapies. Persons showing renewal (REN) exhibit higher hippocampal activation during extinction in associative learning than those without renewal (NOREN), demonstrating hippocampal context processing, and recruit ventromedial pFC in retrieval. Apart from these findings, brain processes generating renewal remain largely unknown. Conceivably, processing differences in task-relevant brain regions that ultimately lead to renewal may occur already in initial acquisition of associations. Therefore, in two fMRI studies, we investigated overall brain activation and hippocampal activation in REN and NOREN during acquisition of an associative learning task in response to presentation of a context alone or combined with a cue. Results of two studies demonstrated significant activation differences between the groups: In Study 1, a support vector machine classifier correctly assigned participants' brain activation patterns to REN and NOREN groups, respectively. In Study 2, REN and NOREN showed similar hippocampal involvement during context-only presentation, suggesting processing of novelty, whereas overall hippocampal activation to the context-cue compound, suggesting compound encoding, was higher in REN. Positive correlations between hippocampal activation and renewal level indicated more prominent hippocampal processing in REN. Results suggest that hippocampal processing of the context-cue compound rather than of context only during initial learning is related to a subsequent renewal effect. Presumably, REN participants use distinct encoding strategies during acquisition of context-related tasks, which reflect in their brain activation patterns and contribute to a renewal effect.

  18. Role of medial cortical, hippocampal and striatal interactions during cognitive set-shifting.

    PubMed

    Graham, Steven; Phua, Elaine; Soon, Chun Siong; Oh, Tomasina; Au, Chris; Shuter, Borys; Wang, Shih-Chang; Yeh, Ing Berne

    2009-05-01

    To date, few studies have examined the functional connectivity of brain regions involved in complex executive function tasks, such as cognitive set-shifting. In this study, eighteen healthy volunteers performed a cognitive set-shifting task modified from the Wisconsin card sort test while undergoing functional magnetic resonance imaging. These modifications allowed better disambiguation between cognitive processes and revealed several novel findings: 1) peak activation in the caudate nuclei in the first instance of negative feedback signaling a shift in rule, 2) lowest caudate activation once the rule had been identified, 3) peak hippocampal activation once the identity of the rule had been established, and 4) decreased hippocampal activation during the generation of new rule candidates. This pattern of activation across cognitive set-shifting events suggests that the caudate nuclei play a role in response generation when the identity of the new rule is unknown. In contrast, the reciprocal pattern of hippocampal activation suggests that the hippocampi help consolidate knowledge about the correct stimulus-stimulus associations, associations that become inappropriate once the rule has changed. Functional connectivity analysis using Granger Causality Mapping revealed that caudate and hippocampal regions interacted indirectly via a circuit involving the medial orbitofrontal and posterior cingulate regions, which are known to bias attention towards stimuli based on expectations built up from task-related feedback. Taken together, the evidence suggests that these medial regions may mediate striato-hippocampal interactions and hence affect goal-directed attentional transitions from a response strategy based on stimulus-reward heuristics (caudate-dependent) to one based on stimulus-stimulus associations (hippocampus-dependent).

  19. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    PubMed

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  20. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF

    PubMed Central

    Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115

  1. MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis.

    PubMed

    Sun, Zu-Zhen; Lv, Zhan-Yun; Tian, Wen-Jing; Yang, Yan

    2017-09-01

    Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to OGD exposure by transfection of primary fetal rat hippocampal neurons with miR-132 mimic or miR-132 inhibitor. The effects of miR-132 overexpression and suppression on OGD-stimulated hippocampal neurons were evaluated by detection of cell viability, apoptotic cells rate, and the expression of apoptosis-related proteins. Besides, TargetScan database and dual luciferase activity assay were used to seek a target gene of miR-132. As a result, miR-132 was highly expressed in hippocampal neurons following 2 h of OGD exposure. MiR-132 overexpression significantly increased OGD-diminished cell viability and reduced OGD-induced apoptosis at 12, 24, and 48 h post-OGD. MiR-132 overexpression significantly down-regulated the expressions of Bax, cytochrome c, and caspase-9, but up-regulated BCl-2. Caspase-3 activity was also significantly decreased by miR-132 overexpression. Furthermore, FOXO3 was a direct target of miR-132, and it was negatively regulated by miR-132. To conclude, our results provide evidence that miR-132 protects hippocampal neurons against OGD injury by inhibiting apoptosis.

  2. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model

    PubMed Central

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong

    2014-01-01

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526

  3. Semantic Borders and Incomplete Understanding.

    PubMed

    Silva-Filho, Waldomiro J; Dazzani, Maria Virgínia

    2016-03-01

    In this article, we explore a fundamental issue of Cultural Psychology, that is our "capacity to make meaning", by investigating a thesis from contemporary philosophical semantics, namely, that there is a decisive relationship between language and rationality. Many philosophers think that for a person to be described as a rational agent he must understand the semantic content and meaning of the words he uses to express his intentional mental states, e.g., his beliefs and thoughts. Our argument seeks to investigate the thesis developed by Tyler Burge, according to which our mastery or understanding of the semantic content of the terms which form our beliefs and thoughts is an "incomplete understanding". To do this, we discuss, on the one hand, the general lines of anti-individualism or semantic externalism and, on the other, criticisms of the Burgean notion of incomplete understanding - one radical and the other moderate. We defend our understanding that the content of our beliefs must be described in the light of the limits and natural contingencies of our cognitive capacities and the normative nature of our rationality. At heart, anti-individualism leads us to think about the fact that we are social creatures, living in contingent situations, with important, but limited, cognitive capacities, and that we receive the main, and most important, portion of our knowledge simply from what others tell us. Finally, we conclude that this discussion may contribute to the current debate about the notion of borders.

  4. Decoding memory features from hippocampal spiking activities using sparse classification models.

    PubMed

    Dong Song; Hampson, Robert E; Robinson, Brian S; Marmarelis, Vasilis Z; Deadwyler, Sam A; Berger, Theodore W

    2016-08-01

    To understand how memory information is encoded in the hippocampus, we build classification models to decode memory features from hippocampal CA3 and CA1 spatio-temporal patterns of spikes recorded from epilepsy patients performing a memory-dependent delayed match-to-sample task. The classification model consists of a set of B-spline basis functions for extracting memory features from the spike patterns, and a sparse logistic regression classifier for generating binary categorical output of memory features. Results show that classification models can extract significant amount of memory information with respects to types of memory tasks and categories of sample images used in the task, despite the high level of variability in prediction accuracy due to the small sample size. These results support the hypothesis that memories are encoded in the hippocampal activities and have important implication to the development of hippocampal memory prostheses.

  5. Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.

    PubMed

    Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D

    2016-10-01

    Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of

  6. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling.

    PubMed

    Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki

    2012-10-15

    Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.

  7. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation.

    PubMed

    Isla, Arturo G; Vázquez-Cuevas, Francisco Gabriel; Peña-Ortega, Fernando

    2016-03-16

    Exercise is becoming a promising therapeutic approach to prevent alterations both in Alzheimer's disease (AD) patients and in transgenic models of AD. This neuroprotection has been associated with changes in hippocampal structure and function, as well as with the reduction of amyloid-β (Aβ) production and accumulation. However, whether exercise produces lasting changes in hippocampal population activity and renders it resistant to Aβ-induced network dysfunction is still unknown. Thus, we tested whether voluntary exercise changes hippocampal population activity and prevents its alteration in the presence of Aβ, which has been associated to glycogen synthase kinase-3β (GSK3β) activation. We found that the hippocampal population activity recorded in slices obtained from mice that exercised voluntarily (with free access to a running wheel for 21 days) exhibits higher power and faster frequency composition than slices obtained from sedentary animals. Moreover, the hippocampal network of mice that exercised becomes insensitive to Aβ-induced inhibition of spontaneous population activity. This protective effect correlates with the inability of Aβ to activate GSK3β, is mimicked by GSK3β inhibition with SB126763 (in slices obtained from sedentary mice), and is abolished by the inhibition of PI3K with LY294002 (in slices obtained from mice that exercised). We conclude that voluntary exercise produces a lasting protective state in the hippocampus, maintained in hippocampal slices by a PI3K-dependent mechanism that precludes its functional disruption in the presence of Aβ by avoiding GSK3β activation.

  8. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  9. Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization

    NASA Astrophysics Data System (ADS)

    Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane

    2003-01-01

    The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.

  10. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  11. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    PubMed

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  12. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat.

    PubMed

    Yang, Jiaqing; Song, Shilei; Li, Jian; Liang, Tao

    2014-06-01

    Clinically, Parkinson's disease (PD)-related neuronal lesions commonly occur. The purpose of this study is to investigate potential therapeutic effect of curcumin against hippocampal damage of 6-hydroxydopamine (6-OHDA)-PD rat model. These results showed that curcumin significantly increased the body weight of 6-OHDA-impaired rats (P<0.01), and reversed the anhedonia in rats induced by 6-OHDA impairment (P<0.01). Meanwhile, behavioral manifestations of curcumin-treated PD rats were effectively ameliorated as shown in open field test (P<0.01). In addition, curcumin increased the contents of monoaminergic neurotransmitters (P<0.01), such as dopamine (DA) and norepinephrine (NE), in hippocampal homogenate through high performance liquid chromatography (HPLC) assay. Curcumin effectively alleviated the 6-OHDA-induced hippocampal damage as observed in hematoxylin-eosin (H&E) staining. Furthermore, curcumin obviously up-regulated hippocampal brain derived neurotrophic factor (BDNF), TrkB, phosphatidylinositide 3-kinases (PI3K) protein expressions, respectively as shown in Western blot analysis. These findings demonstrated that curcumin mediated the neuroprotection against 6-OHDA-induced hippocampus neurons in rats, which the underlying mechanism is involved in activating BDNF/TrkB-dependent pathway for promoting neural regeneration of hippocampal tissue. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Unilateral hemispheric memory and hippocampal neuronal density in temporal lobe epilepsy.

    PubMed

    O'Rourke, D M; Saykin, A J; Gilhool, J J; Harley, R; O'Connor, M J; Sperling, M R

    1993-04-01

    We examined the relationship of preoperative unilateral memory function and quantitative hippocampal histology in patients undergoing anterior temporal lobectomy for the treatment of complex partial seizures. Recognition memory (objects, words, figures) was assessed preoperatively for each hemisphere by the intracarotid amobarbital procedure in 23 patients (mean age at the time of operation, 30.2 yr; standard deviation, 9.2; mean age at the time of seizure onset, 12.3 yr; standard deviation, 8.6) without tumor. Memory scores were the total number of items recognized, adjusted for guessing. Histological examination of the anterior 20 to 30 mm of hippocampal tissue was accomplished in all patients. The degree of unilateral memory impairment ipsilateral to the seizure focus was significantly correlated with decreased neuronal density in the hilar (r = 0.66, P < 0.001) and dentate granule (r = 0.61, P < 0.002) regions, but not in the CA1 (r = 0.10, P = not significant) or CA2-3 (r = 0.35, P = not significant) regions. Memory performance with the contralateral hemisphere was not significantly correlated with ipsilateral hippocampal densities. These data support the role of the hippocampus in human memory and show further evidence of hippocampal subfield specificity in the relationship between memory performance and neuronal cell loss. Further studies of the dentate granule and hilar regions in relation to human memory are warranted.

  15. Distributed encoding of spatial and object categories in primate hippocampal microcircuits

    PubMed Central

    Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. PMID:26500473

  16. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  17. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  18. Initial incomplete surgery modifies prognosis in advanced ovarian cancer regardless of subsequent management.

    PubMed

    Bacalbasa, Nicolae; Balescu, Irina; Dima, Simona; Herlea, Vlad; David, Leonard; Brasoveanu, Vladislav; Popescu, Irinel

    2015-04-01

    Prognosis in ovarian cancer is determined by completeness of cytoreduction and proper management by specialized oncological gynecologists. Incomplete initial debulking surgery in non-specialized Centers is, however, a reality and there is ongoing discussion about the best subsequent management of such patients. Patients with advanced ovarian cancer (International Federation of Gynecology and Obstetrics--FIGO FIGO stages IIIC-IV) who had biopsy by laparotomy or incomplete cytoreduction followed or not by chemotherapy further referred to our Institution between January 2002 and May 2014 were included. The two groups of incomplete cytoreduction [followed by upfront surgery or followed by chemotherapy and interval debulking surgery (IDS)] were compared and also compared against a cohort of 197 patients with similar characteristics who underwent upfront maximal surgery according to the standard at our Iinstitution during the same period. A total of 99 eligible patients were identified. Sixty-seven of them underwent biopsies by laparotomy and 32 underwent incomplete cytoreduction in other institutions. Twenty-eight patients underwent direct re-operation while 71 patients underwent neoadjuvant chemotherapy followed by IDS. The mean overall survival duration for patients with upfront reoperation was 31 months and 54 months for patients with neoadjuvant chemotherapy and IDS, considerably lower than the 72 months obtained for the group of 197 patients with maximal up-front complete cytoreduction at our Institution. Primary biopsy or incomplete cytoreduction reduces survival regardless of the subsequent approach. However, if incomplete cytoreduction has occurred, neoadjuvant chemotherapy followed by IDS is preferable to up-front reoperation. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Disruption of amygdala-entorhinal-hippocampal network in late-life depression.

    PubMed

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-04-01

    Episodic memory deficits are evident in late-life depression (LLD) and are associated with subtle synaptic and neurochemical changes in the medial temporal lobes (MTL). However, the particular mechanisms by which memory impairment occurs in LLD are currently unknown. We tested older adults with (DS+) and without (DS-) depressive symptoms using high-resolution fMRI that is capable of discerning signals in hippocampal subfields and amygdala nuclei. Scanning was conducted during performance of an emotional discrimination task used previously to examine the relationship between depressive symptoms and amygdala-mediated emotional modulation of hippocampal pattern separation in young adults. We found that hippocampal dentate gyrus (DG)/CA3 activity was reduced during correct discrimination of negative stimuli and increased during correct discrimination of neutral items in DS+ compared to DS- adults. The extent of the latter increase was correlated with symptom severity. Furthermore, DG/CA3 and basolateral amygdala (BLA) activity predicted discrimination performance on negative trials, a relationship that depended on symptom severity. The impact of the BLA on depressive symptom severity was mediated by the DG/CA3 during discrimination of neutral items, and by the lateral entorhinal cortex (LEC) during false recognition of positive items. These results shed light on a novel mechanistic account for amygdala-hippocampal network changes and concurrent alterations in emotional episodic memory in LLD. The BLA-LEC-DG/CA3 network, which comprises a key pathway by which emotion modulates memory, is specifically implicated in LLD. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Optimizing hippocampal segmentation in infants utilizing MRI post-acquisition processing.

    PubMed

    Thompson, Deanne K; Ahmadzai, Zohra M; Wood, Stephen J; Inder, Terrie E; Warfield, Simon K; Doyle, Lex W; Egan, Gary F

    2012-04-01

    This study aims to determine the most reliable method for infant hippocampal segmentation by comparing magnetic resonance (MR) imaging post-acquisition processing techniques: contrast to noise ratio (CNR) enhancement, or reformatting to standard orientation. MR scans were performed with a 1.5 T GE scanner to obtain dual echo T2 and proton density (PD) images at term equivalent (38-42 weeks' gestational age). 15 hippocampi were manually traced four times on ten infant images by 2 independent raters on the original T2 image, as well as images processed by: a) combining T2 and PD images (T2-PD) to enhance CNR; then b) reformatting T2-PD images perpendicular to the long axis of the left hippocampus. CNRs and intraclass correlation coefficients (ICC) were calculated. T2-PD images had 17% higher CNR (15.2) than T2 images (12.6). Original T2 volumes' ICC was 0.87 for rater 1 and 0.84 for rater 2, whereas T2-PD images' ICC was 0.95 for rater 1 and 0.87 for rater 2. Reliability of hippocampal segmentation on T2-PD images was not improved by reformatting images (rater 1 ICC = 0.88, rater 2 ICC = 0.66). Post-acquisition processing can improve CNR and hence reliability of hippocampal segmentation in neonate MR scans when tissue contrast is poor. These findings may be applied to enhance boundary definition in infant segmentation for various brain structures or in any volumetric study where image contrast is sub-optimal, enabling hippocampal structure-function relationships to be explored.

  1. Guidance for Avoiding Incomplete Premanufacture Notices or Bona Fides in the New Chemicals Program

    EPA Pesticide Factsheets

    This page contains documents to help you avoid having an incomplete Premanufacture notice or Bona Fide . The documents go over the chemical identity requirements and common errors that result in incompletes.

  2. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    PubMed Central

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  3. Role of Cyclic Nucleotide-Gated Channels in the Modulation of Mouse Hippocampal Neurogenesis

    PubMed Central

    Podda, Maria Vittoria; Piacentini, Roberto; Barbati, Saviana Antonella; Mastrodonato, Alessia; Puzzo, Daniela; D’Ascenzo, Marcello; Leone, Lucia; Grassi, Claudio

    2013-01-01

    Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage. PMID:23991183

  4. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.

    PubMed

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L; Szigeti-Buck, Klara; Sallam, Nermin L; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S

    2009-03-01

    Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.

  5. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood.

    PubMed

    Daugherty, Ana M; Flinn, Robert; Ofen, Noa

    2017-06-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood

    PubMed Central

    Daugherty, Ana M.; Flinn, Robert; Ofen, Noa

    2017-01-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution proton density-weighted images in a sample of healthy participants (age 8–25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. PMID:28342999

  7. Distinguishing Depressive Pseudodementia from Alzheimer Disease: A Comparative Study of Hippocampal Volumetry and Cognitive Tests

    PubMed Central

    Sahin, Sevki; Okluoglu Önal, Tugba; Cinar, Nilgun; Bozdemir, Meral; Çubuk, Rahmi; Karsidag, Sibel

    2017-01-01

    Background and Aim Depressive pseudodementia (DPD) is a condition which may develop secondary to depression. The aim of this study was to contribute to the differential diagnosis between Alzheimer disease (AD) and DPD by comparing the neurocognitive tests and hippocampal volume. Materials and Methods Patients who met criteria of AD/DPD were enrolled in the study. All patients were assessed using the Wechsler Memory Scale (WMS), clock-drawing test, Stroop test, Benton Facial Recognition Test (BFRT), Boston Naming Test, Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Hippocampal volume was measured by importing the coronal T1-weighted magnetic resonance images to the Vitrea 2 workstation. Results A significant difference was found between the AD and DPD groups on the WMS test, clock-drawing test, Stroop test, Boston Naming Test, MMSE, GDS, and left hippocampal volume. A significant correlation between BFRT and bilateral hippocampal volumes was found in the AD group. No correlation was found among parameters in DPD patients. Conclusions Our results suggest that evaluation of facial recognition and left hippocampal volume may provide more reliable evidence for distinguishing DPD from AD. Further investigations combined with functional imaging techniques including more patients are needed. PMID:28868066

  8. Effects of voluntary running on plasma levels of neurotrophins, hippocampal cell proliferation and learning and memory in stressed rats.

    PubMed

    Yau, S-Y; Lau, B W-M; Zhang, E-D; Lee, J C-D; Li, A; Lee, T M C; Ching, Y-P; Xu, A-M; So, K-F

    2012-10-11

    Previous studies have shown that a 2-week treatment with 40 mg/kg corticosterone (CORT) in rats suppresses hippocampal neurogenesis and decreases hippocampal brain-derived neurotrophic factor (BDNF) levels and impairs spatial learning, all of which could be counteracted by voluntary wheel running. BDNF and insulin-like growth factor (IGF-1) have been suggested to mediate physical exercise-enhanced hippocampal neurogenesis and cognition. Here we examined whether such running-elicited benefits were accompanied by corresponding changes of peripheral BDNF and IGF-1 levels in a rat model of stress. We examined the effects of acute (5 days) and chronic (4 weeks) treatment with CORT and/or wheel running on (1) hippocampal cell proliferation, (2) spatial learning and memory and (3) plasma levels of BDNF and IGF-1. Acute CORT treatment improved spatial learning without altered cell proliferation compared to vehicle treatment. Acute CORT-treated non-runners showed an increased trend in plasma BDNF levels together with a significant increase in hippocampal BDNF levels. Acute running showed no effect on cognition, cell proliferation and peripheral BDNF and IGF-1 levels. Conversely, chronic CORT treatment in non-runners significantly impaired spatial learning and suppressed cell proliferation in association with a decreased trend in plasma BDNF level and a significant increase in hippocampal BDNF levels. Running counteracted cognitive deficit and restored hippocampal cell proliferation following chronic CORT treatment; but without corresponding changes in plasma BDNF and IGF-1 levels. The results suggest that the beneficial effects of acute stress on cognitive improvement may be mediated by BDNF-enhanced synaptic plasticity that is hippocampal cell proliferation-independent, whereas chronic stress may impair cognition by decreasing hippocampal cell proliferation and BDNF levels. Furthermore, the results indicate a trend in changes of plasma BDNF levels associated with a

  9. Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder.

    PubMed

    Lindauer, Ramón J L; Olff, Miranda; van Meijel, Els P M; Carlier, Ingrid V E; Gersons, Berthold P R

    2006-01-15

    A proposed explanation for memory impairments in posttraumatic stress disorder (PTSD) is stress-induced hippocampal damage due to elevated cortisol levels. We have previously reported smaller hippocampi in police officers with PTSD. In this study, we examined changes in and associations between cortisol, learning, memory, attention, and hippocampal volume in PTSD. In a case-matched control study, 12 police officers with PTSD and 12 traumatized police officers without lifetime PTSD were examined with magnetic resonance imaging (for hippocampal volume), salivary cortisol tests, and neurocognitive assessments. Significantly smaller hippocampi and higher early morning salivary cortisol levels were found in PTSD. Subjects with PTSD performed worse on a delayed visual memory recall task at trend level, and made more perseverations and intrusions on a verbal memory task. Negative correlations were found between PTSD symptom severity and immediate recall function, and between re-experiencing symptoms and left hippocampal volume. A positive correlation was found between salivary cortisol level in early morning and right hippocampal volume; however, hippocampal volume did not correlate with memory. Smaller hippocampi, higher cortisol levels, and memory impairments were associated with PTSD but were not directly correlated to one another. Memory impairments in PTSD do not seem to be a direct consequence of hippocampal size.

  10. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    PubMed

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    PubMed

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  12. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    ERIC Educational Resources Information Center

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  13. Breakpoint structure of the Anopheles gambiae 2Rb chromosomal inversion.

    PubMed

    Lobo, Neil F; Sangaré, Djibril M; Regier, Allison A; Reidenbach, Kyanne R; Bretz, David A; Sharakhova, Maria V; Emrich, Scott J; Traore, Sekou F; Costantini, Carlo; Besansky, Nora J; Collins, Frank H

    2010-10-25

    Alternative arrangements of chromosome 2 inversions in Anopheles gambiae are important sources of population structure, and are associated with adaptation to environmental heterogeneity. The forces responsible for their origin and maintenance are incompletely understood. Molecular characterization of inversion breakpoints provides insight into how they arose, and provides the basis for development of molecular karyotyping methods useful in future studies. Sequence comparison of regions near the cytological breakpoints of 2Rb allowed the molecular delineation of breakpoint boundaries. Comparisons were made between the standard 2R+b arrangement in the An. gambiae PEST reference genome and the inverted 2Rb arrangements in the An. gambiae M and S genome assemblies. Sequence differences between alternative 2Rb arrangements were exploited in the design of a PCR diagnostic assay, which was evaluated against the known chromosomal banding pattern of laboratory colonies and field-collected samples from Mali and Cameroon. The breakpoints of the 7.55 Mb 2Rb inversion are flanked by extensive runs of the same short (72 bp) tandemly organized sequence, which was likely responsible for chromosomal breakage and rearrangement. Application of the molecular diagnostic assay suggested that 2Rb has a single common origin in An. gambiae and its sibling species, Anopheles arabiensis, and also that the standard arrangement (2R+b) may have arisen twice through breakpoint reuse. The molecular diagnostic was reliable when applied to laboratory colonies, but its accuracy was lower in natural populations. The complex repetitive sequence flanking the 2Rb breakpoint region may be prone to structural and sequence-level instability. The 2Rb molecular diagnostic has immediate application in studies based on laboratory colonies, but its usefulness in natural populations awaits development of complementary molecular tools.

  14. Test-retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer's disease populations.

    PubMed

    Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen

    2018-04-01

    The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum

  15. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  16. Hippocampal atrophy and altered brain responses to pleasant tastes among obese compared with healthy weight children.

    PubMed

    Mestre, Z L; Bischoff-Grethe, A; Eichen, D M; Wierenga, C E; Strong, D; Boutelle, K N

    2017-10-01

    The hippocampus is a key structure implicated in food motivation and intake. Research has shown that the hippocampus is vulnerable to the consumption of a western diet (i.e., high saturated fat and simple carbohydrates). Studies of patients with obesity (OB), compared with healthy weight (HW), show changes in hippocampal volume and response to food cues. Moreover, evidence suggests that OB children, relative to HW, have greater hippocampal response to taste. However, no study has examined the association of hippocampal volume with taste functioning in children. We hypothesized that OB children, relative to HW, would show a significant reduction in hippocampal volume and that decreased volume would be significantly associated with greater activation to taste. Finally, we explored whether hippocampal activation would be associated with measures on eating and eating habits. Twenty-five 8-12-year-old children (i.e., 13 HW, 12 OB) completed a magnetic resonance imaging scan while participating in a taste paradigm (i.e., 1 ml of 10% sucrose or ionic water delivered pseudorandomly every 20 s). Children with OB, relative to HW, showed reduced left hippocampal volume (t=1.994, P=0.03, 95% confidence interval (CI)=-40.23,  755.42), and greater response to taste in three clusters within the left hippocampus (z=3.3, P=0.001, 95% CI=-0.241, -0.041; z=3.3, P=0.001, 95% CI=-0.2711, -0.0469; z=2.7, P=0.007, 95% CI=-0.6032, -0.0268). Activation within the hippocampus was associated with eating in the absence of hunger (EAH%; t=2.408, P=0.025, 95% CI= 1.751708, 23.94109) and two subscales on a measure of eating behaviors (Food responsiveness, t=2.572, P=0.017, 95% CI= 0.9565195, 9.043440; Food enjoyment, t=2.298, P=0.032, 95% CI=0.2256749, 4.531298). As hypothesized, OB children, relative to HW, had significantly reduced hippocampal volume, and greater hippocampal activation to taste. Moreover, hippocampal activation was associated with measures of eating. These results

  17. Hippocampal Mismatch Signals Are Modulated by the Strength of Neural Predictions and Their Similarity to Outcomes.

    PubMed

    Long, Nicole M; Lee, Hongmi; Kuhl, Brice A

    2016-12-14

    The hippocampus is thought to compare predicted events with current perceptual input, generating a mismatch signal when predictions are violated. However, most prior studies have only inferred when predictions occur without measuring them directly. Moreover, an important but unresolved question is whether hippocampal mismatch signals are modulated by the degree to which predictions differ from outcomes. Here, we conducted a human fMRI study in which subjects repeatedly studied various word-picture pairs, learning to predict particular pictures (outcomes) from the words (cues). After initial learning, a subset of cues was paired with a novel, unexpected outcome, whereas other cues continued to predict the same outcome. Critically, when outcomes changed, the new outcome was either "near" to the predicted outcome (same visual category as the predicted picture) or "far" from the predicted outcome (different visual category). Using multivoxel pattern analysis, we indexed cue-evoked reactivation (prediction) within neocortical areas and related these trial-by-trial measures of prediction strength to univariate hippocampal responses to the outcomes. We found that prediction strength positively modulated hippocampal responses to unexpected outcomes, particularly when unexpected outcomes were close, but not identical, to the prediction. Hippocampal responses to unexpected outcomes were also associated with a tradeoff in performance during a subsequent memory test: relatively faster retrieval of new (updated) associations, but relatively slower retrieval of the original (older) associations. Together, these results indicate that hippocampal mismatch signals reflect a comparison between active predictions and current outcomes and that these signals are most robust when predictions are similar, but not identical, to outcomes. Although the hippocampus is widely thought to signal "mismatches" between memory-based predictions and outcomes, previous research has not linked

  18. Heritability and reliability of automatically segmented human hippocampal formation subregions

    PubMed Central

    Whelan, Christopher D.; Hibar, Derrek P.; van Velzen, Laura S.; Zannas, Anthony S.; Carrillo-Roa, Tania; McMahon, Katie; Prasad, Gautam; Kelly, Sinéad; Faskowitz, Joshua; deZubiracay, Greig; Iglesias, Juan E.; van Erp, Theo G.M.; Frodl, Thomas; Martin, Nicholas G.; Wright, Margaret J.; Jahanshad, Neda; Schmaal, Lianne; Sämann, Philipp G.; Thompson, Paul M.

    2016-01-01

    The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer’s disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test–retest reliability and transplatform reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N = 39), another elderly (Alzheimer’s Disease Neuroimaging Initiative, ADNI-2, N = 163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N = 598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N = 221). Finally, we estimated the heritability (h2) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N = 728). Test–retest reliability was high for all twelve subregions in the 3 T ADNI-2 sample (intraclass correlation coefficient (ICC) = 0.70–0.97) and moderate-to-high in the 4 T QTIM sample (ICC = 0.5–0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC = 0.66–0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5 T and

  19. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory

    PubMed Central

    Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.

    2016-01-01

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649

  20. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Luque-Garcia, Aina; Luque-Martinez, Aina; Blasco-Serra, Arantxa; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Teruel-Martí, Vicent

    2015-04-01

    This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons.

    PubMed

    Menegola, M; Misonou, H; Vacher, H; Trimmer, J S

    2008-06-26

    Voltage-gated potassium (Kv) channels are important and diverse determinants of neuronal excitability and exhibit specific expression patterns throughout the brain. Among Kv channels, Kv4 channels are major determinants of somatodendritic A-type current and are essential in controlling the amplitude of backpropagating action potentials (BAPs) into neuronal dendrites. BAPs have been well studied in a variety of neurons, and have been recently described in hippocampal and cortical interneurons, a heterogeneous population of GABAergic inhibitory cells that regulate activity of principal cells and neuronal networks. We used well-characterized mouse monoclonal antibodies against the Kv4.3 and potassium channel interacting protein (KChIP) 1 subunits of A-type Kv channels, and antibodies against different interneuron markers in single- and double-label immunohistochemistry experiments to analyze the expression patterns of Kv4.3 and KChIP1 in hippocampal Ammon's horn (CA1) neurons. Immunohistochemistry was performed on 40 mum rat brain sections using nickel-enhanced diaminobenzidine staining or multiple-label immunofluorescence. Our results show that Kv4.3 and KChIP1 component subunits of A-type channels are co-localized in the soma and dendrites of a large number of GABAergic hippocampal interneurons. These subunits co-localize extensively but not completely with markers defining the four major interneuron subpopulations tested (parvalbumin, calbindin, calretinin, and somatostatin). These results suggest that CA1 hippocampal interneurons can be divided in two groups according to the expression of Kv4.3/KChIP1 channel subunits. Antibodies against Kv4.3 and KChIP1 represent an important new tool for identifying a subpopulation of hippocampal interneurons with a unique dendritic A-type channel complement and ability to control BAPs.

  2. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  3. Workshop on Incomplete Network Data Held at Sandia National Labs – Livermore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soundarajan, Sucheta; Wendt, Jeremy D.

    2016-06-01

    While network analysis is applied in a broad variety of scientific fields (including physics, computer science, biology, and the social sciences), how networks are constructed and the resulting bias and incompleteness have drawn more limited attention. For example, in biology, gene networks are typically developed via experiment -- many actual interactions are likely yet to be discovered. In addition to this incompleteness, the data-collection processes can introduce significant bias into the observed network datasets. For instance, if you observe part of the World Wide Web network through a classic random walk, then high degree nodes are more likely to bemore » found than if you had selected nodes at random. Unfortunately, such incomplete and biasing data collection methods must be often used.« less

  4. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  5. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  6. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  7. Ca2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity.

    PubMed

    Yang, Tian; Britt, Jeremiah K; Cintrón-Pérez, Coral J; Vázquez-Rosa, Edwin; Tobin, Kevin V; Stalker, Grant; Hardie, Jason; Taugher, Rebecca J; Wemmie, John; Pieper, Andrew A; Lee, Amy

    2018-06-01

    Ca 2+ -binding protein 1 (CaBP1) is a Ca 2+ -sensing protein similar to calmodulin that potently regulates voltage-gated Ca 2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  9. Unilateral or bilateral punctate hippocampal hyperintensities on DW-MRI: seizures, amnesia, or both?

    PubMed

    Bocos-Portillo, Jone; Escalza-Cortina, Inés; Gómez-Beldarrain, Marian; Rodriguez-Sainz, Aida; Garcia-Monco, Juan Carlos

    2018-06-02

    The presence of small hippocampal hyperintense lesions on diffusion-weighted (DW) MRI can respond to different etiologies and represents a challenge where clinical judgment is imperative, since therapeutic approach may be quite different.We here report three patients with similar neuroradiological findings, i.e., hyperintense punctate hippocampal lesions on diffusion-weighted MRI sequences, yet of different origin. The first one presented with isolated amnesia (transient global amnesia), the second one with amnesia and seizures, and the third one with seizures.Thus, hippocampal punctate lesions appear after transient global amnesia, but the same pattern may be present after seizures, either focal-onset or generalized seizures. This peculiar radiological MRI pattern could indicate a pathogenic link between transient global amnesia (TGA) and seizures which should be further studied.

  10. 16 CFR 1061.11 - Incomplete or insufficient applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Incomplete or insufficient applications. 1061.11 Section 1061.11 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL APPLICATIONS... staff believes that additional information is necessary or useful for a proper evaluation of the...

  11. The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research.

    PubMed

    Avey, Marc T; Moher, David; Sullivan, Katrina J; Fergusson, Dean; Griffin, Gilly; Grimshaw, Jeremy M; Hutton, Brian; Lalu, Manoj M; Macleod, Malcolm; Marshall, John; Mei, Shirley H J; Rudnicki, Michael; Stewart, Duncan J; Turgeon, Alexis F; McIntyre, Lauralyn

    2016-01-01

    Incomplete reporting of study methods and results has become a focal point for failures in the reproducibility and translation of findings from preclinical research. Here we demonstrate that incomplete reporting of preclinical research is not limited to a few elements of research design, but rather is a broader problem that extends to the reporting of the methods and results. We evaluated 47 preclinical research studies from a systematic review of acute lung injury that use mesenchymal stem cells (MSCs) as a treatment. We operationalized the ARRIVE (Animal Research: Reporting of In Vivo Experiments) reporting guidelines for pre-clinical studies into 109 discrete reporting sub-items and extracted 5,123 data elements. Overall, studies reported less than half (47%) of all sub-items (median 51 items; range 37-64). Across all studies, the Methods Section reported less than half (45%) and the Results Section reported less than a third (29%). There was no association between journal impact factor and completeness of reporting, which suggests that incomplete reporting of preclinical research occurs across all journals regardless of their perceived prestige. Incomplete reporting of methods and results will impede attempts to replicate research findings and maximize the value of preclinical studies.

  12. Calcium phosphate transfection of primary hippocampal neurons.

    PubMed

    Sun, Miao; Bernard, Laura P; Dibona, Victoria L; Wu, Qian; Zhang, Huaye

    2013-11-12

    Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells.

  13. Volumetric magnetic resonance imaging evidence of bilateral hippocampal atrophy in mesial temporal lobe epilepsy.

    PubMed

    Quigg, M; Bertram, E H; Jackson, T; Laws, E

    1997-05-01

    We measured absolute volumes and volume differences of hippocampi in patients with mesial temporal lobe epilepsy (MTLE) using volumetric magnetic resonance imaging (MRI) to determine the extent of bilateral atrophy in MTLE and to relate hippocampal volumes (HV) to outcome of temporal lobectomy. HV and hippocampal differences (HD) were measured in 40 patients with MTLE determined by pathology of hippocampal sclerosis (HS) and compared with those of age-matched controls. Results were matched with surgical outcome. Hippocampi contralateral to lobectomy (right hippocampi 2.96 +/- 0.49 cm3, left 3.14 +/- 0.51 cm3) were significantly smaller than those of controls (right hippocampi 3.73 +/- 0.52 cm3, left 3.60 +/- 0.51 cm3) but were significantly larger than hippocampi ipsilateral to lobectomy (right hippocampi 2.63 +/- 0.61 cm3, 2.18 cm3) as compared across groups by analysis of variance (ANOVA: F = 27.2, p < 0.0001). The smaller hippocampus was ipsilateral to lobectomy in 39 of 40 cases. Seven of 40 MTLE patients (18%) had bilateral atrophy, defined by volumes of each hippocampi 2 SD lower than control means. Surgical outcome was independent of hippocampal asymmetry and bilateral atrophy measured by chi-square and Fisher's exact tests. We determined that most patients with MTLE have some degree of bilateral, asymmetric hippocampal pathology. However, asymmetry and bilateral atrophy have no clear relation to surgical outcome.

  14. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy.

    PubMed

    Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar

    2014-07-01

    To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative

  15. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    NASA Astrophysics Data System (ADS)

    Park, Juyong; Yook, Soon-Hyung

    2014-08-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest - essential in determining reward and penalty - is frequently an ambiguous task due to the incomplete (partially filled) nature of competition networks. Here we introduce the ``Natural Ranking,'' an unambiguous ranking method applicable to a round robin tournament, and formulate an analytical model based on the Bayesian formula for inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in resolving important issues of ranking by applying it to real-world competition networks.

  16. Occipitoparietal epilepsy, hippocampal atrophy, and congenital developmental abnormalities.

    PubMed

    Lawn, N; Londono, A; Sawrie, S; Morawetz, R; Martin, R; Gilliam, F; Faught, E; Kuzniecky, R

    2000-12-01

    Diagnostic uncertainty may arise in patients with occipitoparietal epilepsy when there is neuroimaging evidence of a posterior quadrant lesion and coexistent hippocampal abnormalities ("dual pathology"). It is not known whether hippocampal atrophy (HA) in these patients results from seizure propagation to temporolimbic structures or whether it is part of the pathological process underlying the occipitoparietal epilepsy. Clarification of this issue may have a significant bearing on the management of these patients. We studied 20 patients with occipitoparietal epilepsy and neuroimaging or pathologic evidence of a congenital developmental abnormality. Normalized hippocampal volumes were obtained in all patients. The medical records and video-EEG recordings were analyzed to correlate the MRI findings with clinical data, seizure semiology, and EEG findings. HA was found in seven patients (35%). Neuroimaging abnormalities concordant with the side of HA were seen in all cases. There was clinical or EEG evidence of temporal spread in 12 patients. There was no correlation between the presence of HA and temporal lobe spread. The only clinical factor associated with HA in this series was a younger age of seizure onset. HA in patients with occipitoparietal epilepsy due to congenital developmental abnormalities is most likely to be a marker of a more widespread process related to a common pathogenesis during prenatal or perinatal development. HA in these patients is unlikely to be the result of secondary spread from an extrahippocampal focus. Surgical treatment should be tailored toward the primary epileptogenic zone rather the site of seizure spread.

  17. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics.

    PubMed

    Harris, Kenneth D; Hochgerner, Hannah; Skene, Nathan G; Magno, Lorenza; Katona, Linda; Bengtsson Gonzales, Carolina; Somogyi, Peter; Kessaris, Nicoletta; Linnarsson, Sten; Hjerling-Leffler, Jens

    2018-06-18

    Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.

  18. Hippocampal atrophy and memory dysfunction associated with physical inactivity in community-dwelling elderly subjects: The Sefuri study.

    PubMed

    Hashimoto, Manabu; Araki, Yuko; Takashima, Yuki; Nogami, Kohjiro; Uchino, Akira; Yuzuriha, Takefumi; Yao, Hiroshi

    2017-02-01

    Physical inactivity is one of the modifiable risk factors for hippocampal atrophy and Alzheimer's disease. We investigated the relationship between physical activity, hippocampal atrophy, and memory using structural equation modeling (SEM). We examined 213 community-dwelling elderly subjects (99 men and 114 women with a mean age of 68.9 years) without dementia or clinically apparent depression. All participants underwent Mini-Mental State Examination (MMSE) and Rivermead Behavioral Memory Test (RBMT). Physical activities were assessed with a structured questionnaire. We evaluated the degree of hippocampal atrophy (z-score-referred to as ZAdvance hereafter), using a free software program-the voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) based on statistical parametric mapping 8 plus Diffeomorphic Anatomical Registration Through an Exponentiated Lie algebra. Routine magnetic resonance imaging findings were as follows: silent brain infarction, n  = 24 (11.3%); deep white matter lesions, n  = 72 (33.8%); periventricular hyperintensities, n  = 35 (16.4%); and cerebral microbleeds, n  = 14 (6.6%). Path analysis based on SEM indicated that the direct paths from leisure-time activity to hippocampal atrophy (β = -.18, p  < .01) and from hippocampal atrophy to memory dysfunction (RBMT) (β = -.20, p  < .01) were significant. Direct paths from "hippocampus" gray matter volume to RBMT and MMSE were highly significant, while direct paths from "whole brain" gray matter volume to RBMT and MMSE were not significant. The presented SEM model fit the data reasonably well. Based on the present SEM analysis, we found that hippocampal atrophy was associated with age and leisure-time physical inactivity, and hippocampal atrophy appeared to cause memory dysfunction, although we are unable to infer a causal or temporal association between hippocampal atrophy and memory dysfunction from the present observational study.

  19. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice.

    PubMed

    Kubo, Kin-ya; Yamada, Yukiko; Iinuma, Mitsuo; Iwaku, Fumihiko; Tamura, Yasuo; Watanabe, Kazuko; Nakamura, Hiroyuki; Onozuka, Minoru

    2007-03-06

    We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.

  20. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  1. Volume of hippocampal subfields and episodic memory in childhood and adolescence.

    PubMed

    Lee, Joshua K; Ekstrom, Arne D; Ghetti, Simona

    2014-07-01

    Episodic memory critically depends on the hippocampus to bind the features of an experience into memory. Episodic memory develops in childhood and adolescence, and hippocampal changes during this period may contribute to this development. Little is known, however, about how the hippocampus contributes to episodic memory development. The hippocampus is comprised of several cytoarchitectural subfields with functional significance for episodic memory. However, hippocampal subfields have not been assessed in vivo during child development, nor has their relation with episodic memory been assessed during this period. In the present study, high-resolution T2-weighted images of the hippocampus were acquired in 39 children and adolescents aged 8 to 14 years (M=11.30, SD=2.38), and hippocampal subfields were segmented using a protocol previously validated in adult populations. We first validated the method in children and adolescents and examined age-related differences in hippocampal subfields and correlations between subfield volumes and episodic memory. Significant age-related increases in the subfield volume were observed into early adolescence in the right CA3/DG and CA1. The right CA3/DG subfield volumes were positively correlated with accurate episodic memory for item-color relations, and the right CA3/DG and subiculum were negatively correlated with item false alarm rates. Subfield development appears to follow a protracted developmental trajectory, and likely plays a pivotal role in episodic memory development. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Higher glucose levels associated with lower memory and reduced hippocampal microstructure.

    PubMed

    Kerti, Lucia; Witte, A Veronica; Winkler, Angela; Grittner, Ulrike; Rujescu, Dan; Flöel, Agnes

    2013-11-12

    For this cross-sectional study, we aimed to elucidate whether higher glycosylated hemoglobin (HbA1c) and glucose levels exert a negative impact on memory performance and hippocampal volume and microstructure in a cohort of healthy, older, nondiabetic individuals without dementia. In 141 individuals (72 women, mean age 63.1 years ± 6.9 SD), memory was tested using the Rey Auditory Verbal Learning Test. Peripheral levels of fasting HbA1c, glucose, and insulin and 3-tesla MRI scans were acquired to assess hippocampal volume and microstructure, as indicated by gray matter barrier density. Linear regression and simple mediation models were calculated to examine associations among memory, glucose metabolism, and hippocampal parameters. Lower HbA1c and glucose levels were significantly associated with better scores in delayed recall, learning ability, and memory consolidation. In multiple regression models, HbA1c remained strongly associated with memory performance. Moreover, mediation analyses indicated that beneficial effects of lower HbA1c on memory are in part mediated by hippocampal volume and microstructure. Our results indicate that even in the absence of manifest type 2 diabetes mellitus or impaired glucose tolerance, chronically higher blood glucose levels exert a negative influence on cognition, possibly mediated by structural changes in learning-relevant brain areas. Therefore, strategies aimed at lowering glucose levels even in the normal range may beneficially influence cognition in the older population, a hypothesis to be examined in future interventional trials.

  3. Insular and hippocampal contributions to remembering people with an impression of bad personality.

    PubMed

    Tsukiura, Takashi; Shigemune, Yayoi; Nouchi, Rui; Kambara, Toshimune; Kawashima, Ryuta

    2013-06-01

    Our impressions of other people are formed mainly from the two possible factors of facial attractiveness and trustworthiness. Previous studies have shown the importance of orbitofrontal-hippocampal interactions in the better remembering of attractive faces, and psychological data have indicated that faces giving an impression of untrustworthiness are remembered more accurately than those giving an impression of trustworthiness. However, the neural mechanisms of the latter effect are largely unknown. To investigate this issue, we investigated neural activities with event-related fMRI while the female participants rated their impressions of the personalities of men in terms of trustworthiness. After the rating, memory for faces was tested to identify successful encoding activity. As expected, faces that gave bad impressions were remembered better than those that gave neutral or good impressions. In fMRI data, right insular activity reflected an increasing function of bad impressions, and bilateral hippocampal activities predicted subsequent memory success. Additionally, correlation between these insular and hippocampal regions was significant only in the encoding of faces associated with a bad impression. Better memory for faces associated with an impression of bad personality could reflect greater interaction between the avoidance-related insular region and the encoding-related hippocampal region.

  4. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults

    PubMed Central

    Niemann, Claudia; Godde, Ben; Voelcker-Rehage, Claudia

    2014-01-01

    Cardiovascular activity has been shown to be positively associated with gray and white matter volume of, amongst others, frontal and temporal brain regions in older adults. This is particularly true for the hippocampus, a brain structure that plays an important role in learning and memory, and whose decline has been related to the development of Alzheimer’s disease. In the current study, we were interested in whether not only cardiovascular activity but also other types of physical activity, i.e., coordination training, were also positively associated with the volume of the hippocampus in older adults. For this purpose we first collected cross-sectional data on “metabolic fitness” (cardiovascular fitness and muscular strength) and “motor fitness” (e.g., balance, movement speed, fine coordination). Second, we performed a 12-month randomized controlled trial. Results revealed that motor fitness but not metabolic fitness was associated with hippocampal volume. After the 12-month intervention period, both, cardiovascular and coordination training led to increases in hippocampal volume. Our findings suggest that a high motor fitness level as well as different types of physical activity were beneficial to diminish age-related hippocampal volume shrinkage or even increase hippocampal volume. PMID:25165446

  5. Automated volumetry for unilateral hippocampal sclerosis detection in patients with temporal lobe epilepsy.

    PubMed

    Martins, Cristina; Moreira da Silva, Nadia; Silva, Guilherme; Rozanski, Verena E; Silva Cunha, Joao Paulo

    2016-08-01

    Hippocampal sclerosis (HS) is the most common cause of temporal lobe epilepsy (TLE) and can be identified in magnetic resonance imaging as hippocampal atrophy and subsequent volume loss. Detecting this kind of abnormalities through simple radiological assessment could be difficult, even for experienced radiologists. For that reason, hippocampal volumetry is generally used to support this kind of diagnosis. Manual volumetry is the traditional approach but it is time consuming and requires the physician to be familiar with neuroimaging software tools. In this paper, we propose an automated method, written as a script that uses FSL-FIRST, to perform hippocampal segmentation and compute an index to quantify hippocampi asymmetry (HAI). We compared the automated detection of HS (left or right) based on the HAI with the agreement of two experts in a group of 19 patients and 15 controls, achieving 84.2% sensitivity, 86.7% specificity and a Cohen's kappa coefficient of 0.704. The proposed method is integrated in the "Advanced Brain Imaging Lab" (ABrIL) cloud neurocomputing platform. The automated procedure is 77% (on average) faster to compute vs. the manual volumetry segmentation performed by an experienced physician.

  6. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat.

    PubMed

    Villette, Vincent; Poindessous-Jazat, Frédérique; Simon, Axelle; Léna, Clément; Roullot, Elodie; Bellessort, Brice; Epelbaum, Jacques; Dutar, Patrick; Stéphan, Aline

    2010-08-18

    The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.

  7. Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow

    NASA Astrophysics Data System (ADS)

    Paster, A.; Aquino, T.; Bolster, D.

    2014-12-01

    Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, non-uniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave

  8. Incomplete Mixing and Reactions - A Lagrangian Approach in a Pure Shear Flow

    NASA Astrophysics Data System (ADS)

    Paster, Amir; Bolster, Diogo; Aquino, Tomas

    2015-04-01

    Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be expected from assuming perfect mixing. As reactions progress in a system and deplete reactant concentrations, initial fluctuations in the concentrations of reactions can be amplified relative to mean background concentrations and lead to spatial segregation of reactants. As the system evolves, in the absence of sufficient mixing, this segregation will increase, leading to a persistence of incomplete mixing that fundamentally changes the effective rate at which overall reactions will progress. On the other hand, nonuniform fluid flows are known to affect mixing between interacting solutes. Thus a natural question arises: Can non-uniform flows sufficiently enhance mixing to suppress incomplete mixing effects, and if so, under what conditions? In this work we address this question by considering one of the simplest possible flows, a laminar pure shear flow, which is known to significantly enhance mixing relative to diffusion alone. To study this system we adapt a novel Lagrangian particle-based random walk method, originally designed to simulate reactions in purely diffusive systems, to the case of advection and diffusion in a shear flow. To interpret the results we develop a semi-analytical solution, by proposing a closure approximation that aims to capture the effect of incomplete mixing. The results obtained via the Lagrangian model and the semi-analytical solutions consistently highlight that if shear effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will return to behaving as if it were well-mixed, but represented by a reduced effective reaction rate. If shear effects are sufficiently strong, the incomplete mixing regime never emerges and the system can behave

  9. Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in multiple sclerosis.

    PubMed

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2016-10-01

    Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.

  10. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    PubMed

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  11. Abnormal Hippocampal Morphology in Dissociative Identity Disorder and Posttraumatic Stress Disorder Correlates with Childhood Trauma and Dissociative Symptoms

    PubMed Central

    Chalavi, Sima; Vissia, Eline M.; Giesen, Mechteld E.; Nijenhuis, Ellert R.S.; Draijer, Nel; Cole, James H.; Dazzan, Paola; Pariante, Carmine M.; Madsen, Sarah K.; Rajagopalan, Priya; Thompson, Paul M.; Toga, Arthur W.; Veltman, Dick J.; Reinders, Antje A.T.S.

    2015-01-01

    Smaller hippocampal volume has been reported in individuals with posttraumatic stress disorder (PTSD) and dissociative identity disorder (DID), but the regional specificity of hippocampal volume reductions and the association with severity of dissociative symptoms and/or childhood traumatization are still unclear. Brain structural MRI scans were analyzed for 33 outpatients (17 with DID and 16 with PTSD only) and 28 healthy controls (HC), all matched for age, sex, and education. DID patients met criteria for PTSD (PTSD-DID). Hippocampal global and subfield volumes and shape measurements were extracted. We found that global hippocampal volume was significantly smaller in all 33 patients (left: 6.75%; right: 8.33%) compared to HC. PTSD-DID (left: 10.19%; right: 11.37%) and PTSD-only with a history of childhood traumatization (left: 7.11%; right: 7.31%) had significantly smaller global hippocampal volume relative to HC. PTSD-DID had abnormal shape and significantly smaller volume in the CA2-3, CA4-DG and (pre)subiculum compared to HC. In the patient groups, smaller global and subfield hippocampal volumes significantly correlated with higher severity of childhood traumatization and dissociative symptoms. These findings support a childhood trauma-related etiology for abnormal hippocampal morphology in both PTSD and DID and can further the understanding of neurobiological mechanisms involved in these disorders. PMID:25545784

  12. Effects of low-level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans.

    PubMed

    Chao, Linda L; Kriger, Stephen; Buckley, Shannon; Ng, Peter; Mueller, Susanne G

    2014-09-01

    More than 100,000 US troops were potentially exposed to chemical warfare agents sarin (GB) and cyclosarin (GF) when an ammunition dump at Khamisiyah, Iraq was destroyed during the 1991 Gulf War (GW). We previously reported reduced hippocampal volume in GW veterans with suspected GB/GF exposure relative to matched, unexposed GW veterans estimated from 1.5T magnetic resonance images (MRI). Here we investigate, in a different cohort of GW veterans, whether low-level GB/GF exposure is associated with structural alterations in specific hippocampal subfields, estimated from 4T MRI. The Automatic Segmentation of Hippocampal Subfields (ASHS) technique was used to quantify CA1, CA2, CA3 and dentate gyrus (DG), and subiculum (SUB) subfields volumes from high-resolution T2-weighted images acquired on a 4T MR scanner in 56 GW veterans with suspected GB/GF exposure and 56 "matched" unexposed GW veterans (mean age 49±7 years). GB/GF exposed veterans had smaller CA2 (p=0.003) and CA3/DG (p=0.01) subfield volumes compared to matched, unexposed GW veterans. There were no group difference in total hippocampal volume, quantified with FreeSurfer, and no dose-response relationship between estimated levels of GB/GF exposure and total hippocampal or subfield volume. These findings extend our previous report of structural alterations in the hippocampi of GW veterans with suspected GB/GF exposure to volume changes in the CA2, CA3, and DG hippocampal subfields in a different cohort of GW veterans with suspected GB/GF exposure. Published by Elsevier B.V.

  13. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  14. The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior Through a BDNF-Dependent Mechanism

    PubMed Central

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.

    2009-01-01

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270

  15. DEVELOPMENTAL LEAD (PB) CHANGES AND IN HIPPOCAMPAL FUNCTION.

    EPA Science Inventory

    Childhood lead (Pb) exposure has long been associated with reduced IQ, impaired cognitive function, and more recently increases in violence and aggression. We have studied the disruptive effects of developmental Pb exposure on an electrophysiological model of memory, hippocampal...

  16. Progressive contralateral hippocampal atrophy following surgery for medically refractory temporal lobe epilepsy.

    PubMed

    Elliott, Cameron A; Gross, Donald W; Wheatley, B Matt; Beaulieu, Christian; Sankar, Tejas

    2016-09-01

    Determine the extent and time course of volumetric changes in the contralateral hippocampus following surgery for medically refractory temporal lobe epilepsy (TLE). Serial T1-weighted MRI brain scans were obtained in 26 TLE patients pre- and post-temporal lobe epilepsy surgery as well as in 12 control subjects of similar age. Patients underwent either anterior temporal lobectomy (ATL) or selective amygdalohippocampectomy (SAH). Blinded, manual hippocampal volumetry (head, body, and tail) was performed in two groups: 1) two scan group [ATL (n=6); SAH (n=10)], imaged pre-surgery and on average at 5.4 years post-surgery; and 2) longitudinal group [ATL (n=8); SAH (n=2)] imaged pre-surgery and on post-operative day 1, 2, 3, 6, 60, 120 and a delayed time point (average 2.4 years). In the two scan group, there was atrophy by 12% of the unresected contralateral hippocampus (p<0.001), with atrophy being most pronounced (27%) in the hippocampal body (p<0.001) with no significant differences seen for the hippocampal head or tail. In the longitudinal group, significant atrophy was also observed for the whole hippocampus and the body with atrophy seen as early as post-operative day #1 which progressed significantly over the first post-operative week (1.3%/day and 3.0%./day, respectively) before stabilizing over the long-term to a 13% reduction in total volume. There was no significant difference in atrophy compared by surgical approach (ATL vs. SAH; p=0.94) or side (p=0.31); however, atrophy was significantly more pronounced in patients with ongoing post-operative seizures (hippocampal body, p=0.019; whole hippocampus, p=0.048). There were no detectable post-operative neuropsychological deficits attributable to contralateral hippocampal atrophy. Significant contralateral hippocampal atrophy occurs following TLE surgery, which begins immediately and progresses over the first post-operative week. The observation that seizure free patients had significantly less atrophy of the

  17. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis.

    PubMed

    O'Léime, Ciarán S; Cryan, John F; Nolan, Yvonne M

    2017-11-01

    Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Remodeling of Hippocampal Spine Synapses in the Rat Learned Helplessness Model of Depression

    PubMed Central

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L.; Szigeti-Buck, Klara; Sallam, Nermin L.; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S.

    2009-01-01

    Background Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. Methods We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Results Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for six days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared to nonstressed controls. Shorter, one-day or three-day desipramine treatments, however, had neither synaptic nor behavioral effects. Conclusions These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression. PMID:19006787

  19. Calcium Phosphate Transfection of Primary Hippocampal Neurons

    PubMed Central

    DiBona, Victoria L.; Wu, Qian; Zhang, Huaye

    2013-01-01

    Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells. PMID:24300106

  20. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    PubMed

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.