Science.gov

Sample records for incorporating electrokinetic effects

  1. Incorporating Electrokinetic Phenomena into EBNavierStokes

    SciTech Connect

    Chu, K; Trebotich, D

    2006-01-10

    Motivated by the recent interest in using electrokinetic effects within microfluidic devices, they have extended the EBNavierStokes code to be able to handle electrokinetic effects. With this added functionality, the code becomes more useful for understanding and designing microfluidic devices that take advantage of electrokinetic effects (e.g. pumping and mixing). Supporting the simulation of electrokinetic effects required three main extensions to the existing code: (1) addition of an electric field solver, (2) development of a module for accurately computing the Smulochowski slip-velocity at fluid-solid boundaries, and (3) extension of the fluid solver to handle nonuniform inhomogeneous Dirichlet boundary conditions. The first and second extensions were needed to compute the electrokinetically generated slip-velocity at fluid-solid boundaries. The third extension made it possible for the fluid flow to be driven by a slip-velocity boundary condition (rather than by a pressure difference between inflow and outflow). In addition, several small changes were made throughout the code to make it compatible with these extensions. This report documents the changes to the EBNavierStokes code required to support the simulation of electrokinetic effects. They begin with a brief overview of the problem of electrokinetically driven flow. Next, they present a detailed description of the changes to the EBNavierStokes code. Finally, they present some preliminary results and discuss future directions and improvements to the code.

  2. Electrokinetic effects near a membrane

    NASA Astrophysics Data System (ADS)

    Lacoste, David

    2009-03-01

    We discuss the electrostatic and electrokinetic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., 77, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; we predict similar ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions.

  3. Electrokinetic effects in power transformers

    SciTech Connect

    Nelson, J.K.; Lee, M.J. . Dept. of Electric Power Engineering)

    1990-06-01

    The behavior of dielectric fluids used for the cooling and insulation of power system equipment is significantly influenced by motion enforced by the action of circulating pumps. Not only can charges generated by streaming electrification accumulate to distort the electric field in positions where dielectric integrity is prejudiced, but the dielectric strength of the fluid is also altered per se by the actions of the flow in a complex, but predictable manner. Three important electrokinetic effects in transformer oil subjected to forced circulation are experimentally investigated using laboratory model ducts. Careful breakdown measurements with sustained voltage on flowing fluids have been extended to pulse voltages with a view to establishing the nature of time dependencies. The use of Schlieren optics on the duct has also demonstrated that flow patterns are modified by the imposition of electric fields through electrohydrodynamic (EHD) effects. Present model studies invite speculation that not only streaming electrification but also forced circulation per se may prejudice dielectric structure in power system equipment and these effects need to be understood to permit informed design and safe operation. These models are discussed in this paper. 122 refs., 82 figs., 10 tabs.

  4. Effect of Joule heating on electrokinetic transport.

    PubMed

    Cetin, Barbaros; Li, Dongqing

    2008-03-01

    The Joule heating (JH) is a ubiquitous phenomenon in electrokinetic flow due to the presence of electrical potential gradient and electrical current. JH may become pronounced for applications with high electrical potential gradients or with high ionic concentration buffer solutions. In this review, an in-depth look at the effect of JH on electrokinetic processes is provided. Theoretical modeling of EOF and electrophoresis (EP) with the presence of JH is presented and the important findings from the previous studies are examined. A numerical study of a fused-silica capillary PCR reactor powered by JH is also presented to extend the discussion of favorable usage of JH.

  5. Study of electrokinetic effects to quantify groundwater flow

    SciTech Connect

    Brown, S.R.; Haupt, R.W.

    1997-04-01

    An experimental study of electrokinetic effects (streaming potential) in earth materials was undertaken. The objective was to evaluate the measurement of electrokinetic effects as a method of monitoring and predicting the movement of groundwater, contaminant plumes, and other fluids in the subsurface. The laboratory experiments verified that the electrokinetic effects in earth materials are prominent, repeatable, and can be described well to first order by a pair of coupled differential equations.

  6. Electrokinetic effects on detection time of nanowire biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Guo, Qingjiang; Wang, Shunqiang; Hu, Walter

    2012-04-01

    We develop a multiphysics model to study the contribution of electrokinetics on the biomolecular detection process and provide a physical explanation of the two to three orders of magnitude difference in detection time between experimental results and theoretical predications at ultralow concentration. The electrokinetic effects, including electrophoretic force and electroosmotic flow, have been systematically studied under various sensor design and test conditions. In a typical single nanowire-based sensor, it is found that electrokinetic effects could result in a reduction of detection time over 90 times, compared with that induced by pure biomolecular diffusion. The detection time difference is further enhanced by increasing the applied gate voltage or the number of nanowires. It is proposed that accelerated biomolecular detection at ultralow concentration could be achieved by appropriate combinations of electrokinetic effects and nanowire sensor design.

  7. Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun

    We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  8. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.

    PubMed

    Davidson, Christian; Xuan, Xiangchun

    2008-03-01

    A thermo-electro-hydro-dynamic model is developed to analytically account for the effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. The optimum electrokinetic devices performance is dependent on a figure of merit, in which the Stern layer conductance appears as a nondimensional Dukhin number. Such surface conductance is found to significantly reduce the figure of merit and thus the efficiency and power output. This finding may explain why the recently measured electrokinetic devices performances are far below the theoretical predictions where the effects of Stern layer conductance have been ignored.

  9. Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion.

    PubMed

    Ahmadian Yazdi, Alireza; Sadeghi, Arman; Saidi, Mohammad Hassan

    2015-03-15

    The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio.

  10. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    PubMed

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community.

  11. Power-law electrokinetic behavior as a direct probe of effective surface viscosity

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2017-02-01

    An exact solution to the Poisson-Boltzmann and Stokes equations is derived to describe the electric double layer with inhomogeneous dielectric and viscosity profiles in a lateral electric field. In the limit of strongly charged surfaces and low salinity, the electrokinetic flow magnitude follows a power law as a function of the surface charge density. Remarkably, the power-law exponent is determined by the interfacial dielectric constant and viscosity, the latter of which has eluded experimental determination. Our approach provides a novel method to extract the effective interfacial viscosity from standard electrokinetic experiments. We find good agreement between our theory and experimental data.

  12. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this

  13. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.

    PubMed

    Yuan, Quan; Wu, Jie

    2013-02-01

    One major motivation for microfluidic research is to develop point of care diagnostic tools, which often demands a solution for chip-scale pumping that is of low cost, small size and light weight. Electrokinetics has been extensively studied for disposable pumping since only electrodes are needed to induce microflows. However, it encounters difficulties with conductive biofluids because of the associated high salt content. In electrokinetic pumps, electrodes are in direct contact with fluid, so high salt content will compress the electric double layer that is essential to electroosmostic flows. Alternating current electrothermal (ACET) effect is the only electrokinetic method found viable for biofluid actuation. While high frequency (>10 kHz) operation can suppress electrochemical reactions, electrical potential that could be applied over biofluids is still limited within several volts due to risk of electrolysis or impedance mismatch. Since ACET flow velocity has a quartic dependence on the voltage, ACET flows would be rather slow if electric field alone is used for actuation. This work studies the effect of a thermal bias on enhancing AC electrokinetic pumping. With proper imposition of external thermal gradients, significant improvement in flow velocity has been demonstrated by numerical simulation and preliminary experiments. Both showed that with 4 V(rms) at 100 kHz, flow velocity increased from ~10 μm/s when there was no thermal biasing to ~112 μm/s when a heat flux was applied.

  14. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    PubMed Central

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-01-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg−1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg−1·d−1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment. PMID:27032838

  15. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    NASA Astrophysics Data System (ADS)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg‑1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg‑1·d‑1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  16. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.

    PubMed

    Huang, Kuan-Da; Yang, Ruey-Jen

    2006-05-01

    In electrokinetically driven microfluidic systems, the driving voltage applied during operation tends to induce a Joule heating effect in the buffer solution. This heat source alters the solution's characteristics and changes both the electrical potential field and the velocity field during the transport process. This study performs a series of numerical simulations to investigate the Joule heating effect and analyzes its influence on the electrokinetic focusing performance. The results indicate that the Joule heating effect causes the diffusion coefficient of the sample to increase, the potential distribution to change, and the flow velocity field to adopt a nonuniform profile. These variations are particularly pronounced under tighter focusing conditions and at higher applied electrical intensities. In numerical investigations, it is found that the focused bandwidth broadens because thermal diffusion effect is enhanced by Joule heating. The variation in the potential distribution induces a nonuniform flow field and causes the focused bandwidth to tighten and broaden alternately as a result of the convex and concave velocity flow profiles, respectively. The present results confirm that the Joule heating effect exerts a considerable influence on the electrokinetic focusing ratio.

  17. Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils.

    PubMed

    Lee, G T; Ro, H M; Lee, S M

    2007-08-01

    Bench-scale experiments for electrokinetically enhanced bioremediation of diesel in low permeability soils were conducted. An electrokinetic reactor (ER) was filled with kaolin that was artificially contaminated with diesel at a level of 2500 mg kg(-1). A constant voltage gradient of 1.0 V cm(-1) was applied. In phosphorus transport experiments, KH2PO4 was not distributed homogeneously along the ER, and most of the transported phosphorus was converted to water-insoluble aluminum phosphate after 12 days of electrokinetic (EK) operation. However, the advancing P front of triethyl phosphate (TEP) progressed with time and resulted in uniform P distribution. The treatments employed in the electrokinetically enhanced bioremediation of diesel were control (no addition of nitrogen and phosphorus), NP (KNO3+ KH2PO4), NT (KNO3+ TEP), UP (urea+ KH2PO4), and UT (urea+TEP). Analysis of effluent collected during the first 12 days of EK operation showed that diesel was not removed from the kaolin. After nutrient delivery, using the EK operation, the ER was transferred into an incubator for the biodegradation process. After 60 days of biodegradation, the concentrations of diesel in the kaolin for the NP, NT, UP, UT, and control treatments were 1356, 1002, 1658, 1612, and 2003 mg kg(-1), respectively. The ratio of biodegraded diesel concentration to initial concentration (2465 mg kg(-1)) in NP, NT, UP, UT, and control were 45.0%, 59.4%, 32.7%, 34.6%, and 18.7%, respectively. This result showed that TEP, treated along with NO3-, was most effective for the biodegradation of diesel. TEP was delivered more efficiently to the target zones and with less phosphorus loss than KH2PO4. However, this facilitated phosphorus delivery was effective in biodegrading diesel under anaerobic conditions only when electron acceptors, such as NO3-, were present.

  18. Effect of cosolvents on the desorption and electrokinetic transport of PAHs in soils

    SciTech Connect

    Li, A.; Cheung, K.A.; Reddy, K.R.; Wadden, R.A.

    1999-07-01

    This research was carried out to evaluate feasibility of using electrokinetic technique to remove hydrophobic organic pollutants from soils, with the assistance of cosolvent added to the conducting fluid. The experiments were carried out on glacial till clay with phenanthrene as the test compound. Three Organic cosolvents, n-butylamine; detrahydrofuran; and acetone were evaluated for their potential to enhance the phenanthrene desorption and transport in soil under electrical field. Results showed that the present of n-butylamine significantly enhance the desorption and electrokinetic transport of phenanthrene, about 43% of the phenanthrene added was removed after 127 days or 9 pore volumes. The effect of acetone on electrokinetic transport of phenanthrene was not as obvious as butylamine. With a constant effluent flow rate of only 0.25 ml/hr, phenanthrene was not detected after 144 days. The effluent flow in the tetrahydofuran experiments was minimal, and phenanthrene was no detected in the effluent. The use of water as conducting solution did not cause observable phenanthrene migration.

  19. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    NASA Astrophysics Data System (ADS)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, Armand

    2006-05-01

    Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities ˜mm/s ) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by physical arguments.

  20. Effect of electrokinetic transport on the vulnerability of PAH-degrading bacteria in a model aquifer.

    PubMed

    Shi, Lei; Müller, Susann; Harms, Hauke; Wick, Lukas Y

    2008-04-01

    There has been increasing interest in employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics, to overcome the low bioavailability of hydrophobic organic contaminants (HOC) by homogenizing sorption-retarded HOC and immobilised microorganisms. Present electro-remediation approaches mainly aim at macroscale pollutant extraction and tend to neglect possible impacts of direct current (DC) on the physiology of microorganisms. The effect of weak electric fields (X = 1 V cm(-1)) on the fitness of electrokinetically dispersed fluorene-degrading Sphingomonas sp. LB126 in bench-scale model aquifers was investigated by flow cytometry using propidium iodide (PI) as an indicator that distinguishes between PI-permeable (cells with porous membranes, i.e. dead or vulnerable) and PI-impermeable bacteria. After 15.5 h of DC treatment 56% of all cells recovered were dispersed at the centimetre scale relative to 29% in the absence of DC. There was no overall negative effect of the 15.5-h DC treatment on cell vulnerability, as 7.0% of the DC-treated bacteria exhibited PI-staining compared to 6.5% of the control population. Minor differences were observed in the subpopulation that had been mobilised by electroosmosis with an approximately twofold increase in the percentage of PI-stained cells relative to the control. Enhanced PI staining did not correlate with reduced culturability of the cells on rich-medium agar plates. Relative to the control, DC-treated cells mobilised by electroosmosis were threefold more culturable, confirming earlier data that that PI-cell membrane permeability does not always indicate reduced viability of oligotrophic environmental bacteria. Our findings suggest that electrokinetics is a valuable mechanism to transport viable and culturable polycyclic aromatic hydrocarbon (PAH)-degrading bacteria in soil or sediments.

  1. Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Bald, Edward; Kubalczyk, Paweł

    Since the introduction of micellar electrokinetic chromatography by Terabe, several authors have paid attention to the fundamental characteristics of this separation method. In this chapter the theoretical and practical aspects of resolution optimization, as well as the effect of different separation parameters on the migration behavior are discussed. These among others include fundamentals of separation, retention factor and resolution equation, efficiency, selectivity, and various surfactants and additives. Initial conditions for method development and instrumental approaches such as mass spectrometry detection are also mentioned covering the proposals for overcoming the difficulties arising from the coupling micellar electrokinetic chromatography with mass spectrometry detection.

  2. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  3. Induced Charge Electrokinetics Over ``Controllably Contaminated'' Surfaces: The Effects of Dielectric Thin Films and Surface Chemistry on Slip Velocity

    NASA Astrophysics Data System (ADS)

    Pascall, Andrew; Squires, Todd

    2009-11-01

    Microfluidics has renewed interest in utilizing electrokinetics (EK) for transporting fluids on small scales, and has subjected EK theories and understanding to new challenges. For example, induced-charge electro-osmosis (ICEO), a non-linear EK effect in which an externally applied AC electric field both induces and drives a layer of charged fluid near an electrically conductive surface, could provide an on-chip means to drive high pressures with low voltage [1]. Experimental data on ICEO and related phenomena have shown that the standard theory consistently overpredicts slip velocities by up to a factor of 1000[2]. Here we present experiments in which we controllably ``contaminate'' the metallic surface with a thin dielectric film or Au-thiol self assembled monolayer, and derive a theory for ICEO that incorporates both dielectric effects and surface chemistry, which both act to decrease the slip velocity relative to a `clean' metal. Data for over a thousand combinations of electric field strength and frequency, electrolyte composition, dielectric thickness and surface chemistry show essentially unprecedented quantitative agreement with our theory. [1] Squires & Bazant. J. Fluid Mech. 2004 [2] Bazant, et al. arXiv. 0903.4790

  4. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.

    PubMed

    Chein, Reiyu; Yang, Yeong Chin; Lin, Yushan

    2006-02-01

    In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity.

  5. Preliminary results from the investigation of thermal effects in electrokinetics soil remediation

    SciTech Connect

    Krause, T.R.; Tarman, B.

    1993-10-01

    Electrokinetics is an emerging soil remediation technology. Contaminants are extracted from the soil as a result of a complex set of phenomena that occur when an electric gradient is imposed across a soil-water system. The primary phenomena include electroosmosis, electromigration, and electrophoresis. Secondary phenomena, such as changes in solubility or speciation of various chemical components, may occur as a result of electrically induced changes in the chemical environment of the system. Numerous factors, such as temperature, may affect each of these phenomena and, consequently, the overall process efficiency. We have begun an investigation of thermal effects in the extraction of potassium dichromate from kaolinite soils under conditions of constant saturation and dewatering. Preliminary results suggest that increasing the soil temperature from 21 to 55{degrees}C may decrease the processing time under saturated conditions. However, increasing the soil temperature under dewatering, conditions causes soil cracking, which reduces the overall process efficiency.

  6. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Alshawabkeh, Akram N; Cang, Long

    2005-08-01

    Effect of electrokinetic treatment on copper partitioning and distribution in mine tailings were studied. In particular the effects of catholyte enhancement by HAc-NaAc, HCl, HAc-NaAc+EDTA and lactic acid+NaOH were evaluated. The results show that conditioning the catholyte plays a very important role in improving Cu removal. When HAc-NaAc is used in the catholyte, the removal percentage of total Cu from the mine tailings sample reached 12.3% under 40 V in 15 days of treatment. The removal percentage of Cu increased to 31.2% when EDTA was used together with HAc-NaAc in the catholyte. At the same time, increasing the applied voltage and treatment time result in an increase in the Cu removal from the mine tailings. Compared with HAc-NaAc (pH=3.52), the use of lactic acid+NaOH (pH=3.15) in the catholyte resulted in better performance in Cu removal from the mine tailings. HCl treatment resulted in removal of about 17.5% of Cu from the mine tailings; however, it resulted in production of significant amounts of toxic chlorine gas. Copper partitioning in the mine tailings was analyzed before and after the electrokinetic treatments. The analysis was conducted using 0.25 mol/l MgCl2 and 0.5 mol/l HCl as extractants, consequently, to assess the mobility of Cu after treatment. The results showed that lowering the pH of the mine tailings increased the exchangeable Cu fraction (or the portion extracted by MgCl2). Accordingly, further acidification results in an increased mobility of Cu and increase in the environmental risk of mine tailings.

  7. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  8. Electric Potential Variations on a Poplar: Beyond Electrokinetic Effects Associated With Sap Flow

    NASA Astrophysics Data System (ADS)

    Gibert, D.; Le Mouël, J.; Lambs, L.; Nicollin, F.; Conil, F.; Perrier, F.

    2004-12-01

    Electric potential has been monitored since December 2003 in the roots and at two circumferences and one vertical profile in a standing poplar (Populus incognitus). Electric potential is sampled using 5 mm diameter stainless steel rods, inserted 5 mm deep in the cambium, and is referenced to an unpolarizable Petiau electrode installed 80 cm deep in the soil. Various types of signals are observed. Transient signals with long relaxation times affecting some electrodes simultaneously, may be contact potentials triggered by condensation and evaporation. Diurnal variations are observed which present a seasonal variation. During winter, diurnal variations depend on the measurement point, with variable amplitudes and sometimes anticorrelations between electrodes. By contrast, a stable and coherent organization is established in the spring, with larger amplitudes, and lasts during summer. Such signals have been reported previously (Koppan et al., 2000; Morat et al., 1994; Fensom, 1963), have been interpreted as electrokinetic effects associated with sap flow. However, a comparison of the electrical signals with a measurement of the sap flow by a heat flow method, shows that the electrical variation, although clearly correlated to sap flow, is not simply proportional to it. In a living system, electrokinetic effects, in addition to thermoelectrical effects, are probably modified significantly by additional electrochemical effects, such as membrane diffusion potentials, ion active transport by proteins, and action potentials. Such effects have been evidenced in laboratory experiments with plants (e.g., Fromm and Hei, 1998). Electric potential variations in trees may thus reveal mechanisms not accessible by other methods, and maybe reveal new aspects of the physics of living systems. A better understanding of the electrical response of trees to meteorological, chemical or biological forcing may improve the knowledge of transfer processes between the soil and the atmosphere

  9. ELECTROKINETIC PHENOMENA

    PubMed Central

    Abramson, H. A.; Grossman, E. B.

    1931-01-01

    1. The conditions are described which are necessary for the comparison of certain types of electrokinetic potentials. An experimental comparison is made of (a) electrophoresis of quartz particles covered with egg albumin; and (b) similar experiments by Briggs on streaming potentials. A slight, consistent, difference is found between the electrophoretic potential and the streaming potential. This difference is probably due to the difference in the protein preparations used rather than to real difference in the electrophoretic and streaming potentials. 2. Data are given which facilitate the measurements and enhance the precision of the estimation of electrical mobilities of microscopic particles. PMID:19872605

  10. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.

    PubMed

    Gui, Lin; Ren, Carolyn L

    2008-03-18

    Joule heating is an inevitable phenomenon for microfluidic chips involving electrokinetic pumping, and it becomes a more important issue when chips are made of polymeric materials because of their low thermal conductivities. Therefore, it is very important to develop methods for evaluating Joule heating effects in microfluidic chips in a relatively easy manner. To this end, two analytical models have been established and solved using the Green's function for evaluating Joule heating effects on the temperature distribution in a microfluidic-based PCR chip. The first simplified model focuses on the understanding of Joule heating effects by ignoring the influences of the boundary conditions. The second model aims to consider practical experimental conditions. The analytical solutions to the two models are particularly useful in providing guidance for microfluidic chip design and operation prior to expensive chip fabrication and characterization. To validate the analytical solutions, a 3-D numerical model has also been developed and the simultaneous solution to this model allows the temperature distribution in a microfluidic PCR chip to be obtained, which is used to compare with the analytical results. The developed numerical model has been applied for parametric studies of Joule heating effects on the temperature control of microfluidic chips.

  11. Effects of ammonioalkyl sulfonate internal salts on electrokinetic micropump performance and reversed-phase high-performance liquid chromatographic separations.

    PubMed

    Reichmuth, David S; Kirby, Brian J

    2003-09-26

    Ammonioalkyl sulfonate internal salts are explored owing to their potential for improving electrokinetic pumps used to perform miniaturized HPLC separations. The internal salts investigated can be added at high molarity since they are net-neutral, and furthermore show potential for increasing electroosmotic pumping owing to their large positive dielectric increment. Streaming potential measurements of buffered aqueous systems with varying concentrations of ammonioalkyl sulfonate internal salts have been used to measure these dielectric increments, which increase with the length of the alkyl linker. Due to their positive dielectric increments and their decremental effect on solution conductivity, all of the measured species are predicted to improve the pressure generation (up to 85%) and efficiency performance (up to 140%) of electrokinetic pumps when added at 1 M concentration. RP-HPLC separations with an ammonioalkyl sulfonate (TMAPS) have been performed and indicate that separation performance is essentially unaffected by these species. These results indicate the potential for a variety of ammonioalkyl sulfonates to be used to improve electrokinetic pump performance for miniaturized HPLC.

  12. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  13. Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale

    PubMed Central

    Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.

    2016-01-01

    Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257

  14. Characterization of chemical selectivity in micellar electrokinetic chromatography. 4. Effect of surfactant headgroup.

    PubMed

    Trone, M D; Khaledi, M G

    1999-04-01

    The influence of surfactant headgroups on migration behavior in micellar electrokinetic chromatography is examined. Using linear solvation energy relationships (LSER) and functional group selectivity studies, the effect of six anionic headgroups on chemical selectivity is characterized. The sodium dodecyl surfactants of the sulfate [SO4-], sulfonate [SO3-], carboxylate [CO2-], carbonyl valine [OC(O)NHCH(CH(CH3)2)CO2-], and sulfoacetate [OC(O)CH2SO3-] anions are investigated. Solute size and the hydrogen-bond-donating ability of the micellar phase play the most significant roles in solute retention in all of the surfactants studied. While solute-micelle hydrogen bonding plays a dominant role in the observed selectivity, the dipolarity and polarizability of the micellar phase also have a small influence. The results also suggest that the hydrogen-bond-accepting ability for surfactants is inversely proportional to the proton acidity (pKa) of its headgroup. The observed hydrogen-bond-donating ability and dipolarity of surfactant systems are believed to be a result of the water that resides near the micelle surface.

  15. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water

    PubMed Central

    Maw, Myint Myint; Wang, Junsheng; Li, Fabo; Jiang, Jinhu; Song, Younan; Pan, Xinxiang

    2015-01-01

    Ship ballast water treatment methods face many technical challenges. The effectiveness of every treatment method usually is evaluated by using large scale equipment and a large volume of samples, which involves time-consuming, laborious, and complex operations. This paper reports the development of a novel, simple and fast platform of methodology in evaluating the efficiency and the best parameters for ballast water treatment systems, particularly in chemical disinfection. In this study, a microfluidic chip with six sample wells and a waste well was designed, where sample transportation was controlled by electrokinetic flow. The performance of this microfluidic platform was evaluated by detecting the disinfection of Dunaliella salina (D. salina) algae in ballast water treated by sodium hypochlorite (NaClO) solution. Light-induced chlorophyll fluorescence (LICF) intensity was used to determine the viability of microalgae cells in the system, which can be operated automatically with the dimension of the detector as small as 50 mm × 24 mm × 5 mm. The 40 µL volume of sample solution was used for each treatment condition test and the validity of detection can be accomplished within about five min. The results show that the viability of microalgae cells under different treatment conditions can be determined accurately and further optimal treatment conditions including concentrations of NaClO and treatment time can also be obtained. These results can provide accurate evaluation and optimal parameters for ballast water treatment methods. PMID:26516836

  16. Specific ion effects on the electrokinetic properties of iron oxide nanoparticles: experiments and simulations.

    PubMed

    Vereda, Fernando; Martín-Molina, Alberto; Hidalgo-Alvarez, Roque; Quesada-Pérez, Manuel

    2015-07-14

    We report experimental and simulation studies on ion specificity in aqueous colloidal suspensions of positively charged, bare magnetite nanoparticles. Magnetite has the largest saturation magnetization among iron oxides and relatively low toxicity, which explain why it has been used in multiple biomedical applications. Bare magnetite is hydrophilic and the sign of the surface charge can be changed by adjusting the pH, its isoelectric point being in the vicinity of pH = 7. Electrophoretic mobility of our nanoparticles in the presence of increasing concentrations of different anions showed that anions regarded as kosmotropic are more efficient in decreasing, and even reversing, the mobility of the particles. If the anions were ordered according to the extent to which they reduced the particle mobility, a classical Hofmeister series was obtained with the exception of thiocyanate, whose position was altered. Monte Carlo simulations were used to predict the diffuse potential of magnetite in the presence of the same anions. The simulations took into account the ion volume, and the electrostatic and dispersion forces among the ions and between the ions and the solid surface. Even though no fitting parameters were introduced and all input data were estimated using Lifshitz theory of van der Waals forces or obtained from the literature, the predicted diffusion potentials of different anions followed the same order as the mobility curves. The results suggest that ionic polarizabilities and ion sizes are to a great extent responsible for the specific ion effects on the electrokinetic potential of iron oxide particles.

  17. The effect of critical operational parameters on the circulation-enhanced electrokinetics.

    PubMed

    Chang, Jih-Hsing; Liao, Ying-Chih

    2006-02-28

    Electrokinetics (EK) is a technique for soil remediation. However, the acid produced due to the water electrolysis at the anode will cause soil acidification, which may destroy the soil constituents, and reduce contaminant removal efficiency. The formation of a base front produced at the cathode will result in the precipitation of metal hydroxides and a concomitant clogging of pore space. In this study, a circulation-enhanced EK (CEEK) system is designed to neutralize the pH of the working solution and soils for avoiding the above problems. Experiments are conducted by controlling different voltage gradients, electrode materials, and electrode emplacement, respectively. According to the experimental results, the CEEK system could effectively stabilize the current and the pH of processing solution at a neutral range. The strength of voltage gradient is proportional to the current magnitude of the CEEK system. The graphite electrode for CEEK is the better choice than the metal electrodes because graphite electrodes can achieve the lower electricity consumption. The electrode installed in the reservoir without attachment on soils can decrease the pH deviation of the soil matrix.

  18. [Effects of ionic liquids on micellar microstructures and separation performance in micellar electrokinetic chromatography].

    PubMed

    Yu, Meijuan; Hang, Dong; Cao, Yuhua

    2011-02-01

    The effects of ionic liquids on micellar microstructures and separation performance in micellar electrokinetic chromatography (MEKC) were investigated. The experimental results showed that the addition of ionic liquids into micellar system would result in a decreased micellar surface charge density, an enlarged size of micelle and a slight enhancement of the polarity in the inner core of micelle. Prednisone, hydrocortisone and prednisolone were analyzed with MEKC to evaluate the separation performance. Hydrocortisone and prednisolone could not be separated in sodium lauryl sulfate (SDS) micellar system. However, the three analytes could be baseline separated in the mixed system of ionic liquids and SDS (20 mmol/L SDS-10 mmol/L 1-butyl-3-methyl imidazolium tetrafluoroborate-50 mmol/L borax, pH 8.4) within 17 min. Notably, the linearities of the three analytes ranged from 2 to 100 mg/L and the detection limits based on the ratio of signal to noise of 3 were 1.0, 1.1 and 1.0 mg/L for prednisone, hydrocortisone and prednisolone, respectively. The method has been used in the analysis of corticosteroids in cosmetic samples. The recoveries for the three analytes were between 95. 1% and 117%. This method has the advantages of simple pretreatment, high accuracy, good reproducibility, and can be applied to the quality control of cosmetics.

  19. Electrokinetics of non-Newtonian fluids: a review.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-12-01

    This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted.

  20. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities.

    PubMed

    Cang, Long; Zhou, Dong-Mei; Wang, Quan-Ying; Wu, Dan-Ya

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm(-1) of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P<0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  1. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.

    PubMed

    Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei

    2014-12-01

    Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system.

  2. Joule heating in electrokinetic flow.

    PubMed

    Xuan, Xiangchun

    2008-01-01

    Electrokinetic flow is an efficient means to manipulate liquids and samples in lab-on-a-chip devices. It has a number of significant advantages over conventional pressure-driven flow. However, there exists inevitable Joule heating in electrokinetic flow, which is known to cause temperature variations in liquids and draw disturbances to electric, flow and concentration fields via temperature-dependent material properties. Therefore, both the throughput and the resolution of analytic studies performed in microfluidic devices are affected. This article reviews the recent progress on the topic of Joule heating and its effect in electrokinetic flow, particularly the theoretical and experimental accomplishments from the aspects of fluid mechanics and heat/mass transfer. The primary focus is placed on the temperature-induced flow variations and the accompanying phenomena at the whole channel or chip level.

  3. Modeling electrokinetics in ionic liquids.

    PubMed

    Wang, Chao; Bao, Jie; Pan, Wenxiao; Sun, Xin

    2017-03-17

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electro-osmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on a curved ion-selective surface. We also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems. This article is protected by copyright. All rights reserved.

  4. Electrokinetics: insights from simulation on the microscopic scale

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Pagonabarraga, Ignacio

    2013-04-01

    Electrokinetic effects, i.e. the coupled hydrodynamic and electric phenomena which occur near charged interfaces, constitute a challenge to theorists due to the variety of length and time scales involved. We discuss recent advances in the modelling of these phenomena, emphasising the interplay between the molecular specificity and the collective induced flows that emerge. We discuss the complementary simulation methodologies that have been developed either to focus on the molecular aspects of electrokinetics or on their effective properties on larger scales, as well as the proposed hybrid schemes that can incorporate both aspects. We highlight the insights that molecular studies have brought on the nature of interfacial charges and their implications for kinetic phenomena in confined fluids and also discuss advances in a number of relevant contexts.

  5. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  6. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods.

    PubMed

    Fan, Guangping; Cang, Long; Gomes, Helena I; Zhou, Dongmei

    2016-02-01

    Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate.

  7. Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil.

    PubMed

    Barba, Silvia; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2017-03-03

    This work studies the feasibility of the periodic polarity reversal strategy (PRS) in a combined electrokinetic-biological process for the remediation of clayey soil polluted with a herbicide. Five two-weeks duration electrobioremediation batch experiments were performed in a bench scale set-up using spiked clay soil polluted with oxyfluorfen (20 mg kg(-1)) under potentiostatic conditions applying an electric field between the electrodes of 1.0 V cm(-1) (20.0 V) and using PRS with five frequencies (f) ranging from 0 to 6 d(-1). Additionally, two complementary reference tests were done: single bioremediation and single electrokinetic. The microbial consortium used was obtained from an oil refinery wastewater treatment plant and acclimated to oxyfluorfen degradation. Main soil conditions (temperature, pH, moisture and conductivity) were correctly controlled using PRS. On the contrary, the electroosmotic flow clearly decreased as f increased. The uniform soil microbial distribution at the end of the experiments indicated that the microbial activity remained in every parts of the soil after two weeks when applying PRS. Despite the adapted microbial culture was capable of degrade 100% of oxyfluorfen in water, the remediation efficiency in soil in a reference test, without the application of electric current, was negligible. However, under the low voltage gradients and polarity reversal, removal efficiencies between 5% and 15% were obtained, and it suggested that oxyfluorfen had difficulties to interact with the microbial culture or nutrients and that PRS promoted transport of species, which caused a positive influence on remediation. An optimal f value was observed between 2 and 3 d(-1).

  8. Electrokinetic Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Santiago, Juan

    2005-03-01

    Microfabrication technology has enabled the application of electrokinetics as a method of performing chemical analyses and achieving liquid pumping in electronically-controlled microchip systems with no moving parts. Electrokinetics involves the interaction of solid surfaces, ionic solutions, and electric fields. Electric fields can be used to generate bulk fluid motion (electroosmosis) and to separate charged species (electrophoresis). Microfabrication technology has enabled the application of electrokinetics as a method of performing chemical analyses and achieving liquid pumping in electronically-controlled microsystems with no moving parts. This seminar reviews progress at Stanford including methods for sample stacking in capillary electrophoresis assays and fundamental studies of electrokinetic flow instabilities. Field amplified sample stacking (FASS) leverages conductivity gradients as a robust method of increasing sample concentration prior to electrophoretic separation. A major challenge to achieving robust, high-efficiency FASS is the role of electrokinetic instabilities (EKI) generated by a coupling of electric fields and ionic conductivity gradients. This coupling results in electric body forces in the bulk liquid that can generate instabilities. Suppression and/or control of electrokinetic flow instabilities is critical as they dramatically increase dispersion rates and thereby limit stacking efficiency. We have identified the key physical mechanisms in EKI; developed generalized models for electrokinetic systems; and validated the models with experiments. We have applied this understanding to the development of chip systems that achieve signal increases of more than 20,000 fold using FASS. This stacking ratio is over 200 times larger than previous on-chip FASS devices.

  9. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  10. Characterization of chemical selectivity in micellar electrokinetic chromatography. VI. Effects of surfactant counter-ion.

    PubMed

    Trone, M D; Mack, J P; Goodell, H P; Khaledi, M G

    2000-08-04

    Linear solvation energy relationships and free energy of transfer data were used to evaluate the influence of the surfactant counter-ion on selectivity in micellar electrokinetic chromatography. It was determined that selectivity differences are dependent on the valency of the counter-ion but not the type of counter-ion. Monovalent surfactants, sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate, have nearly identical selectivity behavior. The divalent surfactants, magnesium didodecyl sulfate and copper didodecyl sulfate also show very similar behavior. However, when the divalent counter-ion species is compared to SDS under similar conditions, significant differences are observed. Most notably, the utilization of divalent counter-ion species of dodecyl sulfate surfactants causes the micelles to become more hydrophobic and a weaker hydrogen bond donating pseudo-stationary phases. It is believed that the divalent counter-ions reduce the electrostatic repulsion between the surfactant head groups and therefore, increase the chain packing of the monomers in the micelle aggregates. This reduces the degree of hydration of the micellar palisade layer leading to a decreased ability of the micelle to participate in polar/polarizable and hydrogen bonding interactions with solute molecules.

  11. Hybrid electrokinetic manipulation in high-conductivity media.

    PubMed

    Gao, Jian; Sin, Mandy L Y; Liu, Tingting; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2011-05-21

    This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (∼1 S m(-1)). The hybrid electrokinetic technique combines short-range electrophoresis and dielectrophoresis, and long-range AC electrothermal flow to improve its effectiveness. The major technical hurdle of electrode instability for manipulating high conductivity samples is tackled by using a Ti-Au-Ti sandwich electrode and a 3-parallel-electrode configuration is designed for continuous isolation of bacteria. The device operates directly with biological samples including urine and buffy coats. We show that pathogenic bacteria and biowarfare agents can be concentrated for over 3 orders of magnitude using hybrid electrokinetics.

  12. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    PubMed

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample.

  13. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-10-15

    The printed circuit boards (PCBs) contains large number of heavy metal such as Cd, Cr, As, Ni, Zn and Mn. In this study, the use of electrokinetic (EK) treatment with different assisting agents has been investigated to recover the heavy metals from waste PCBs, and the effectiveness of different assisting agents (HNO(3), HCl, citric acid) was evaluated. The PCBs were first pre-treated by supercritical water oxidation (SCWO) process, then subjected to EK process. The heavy metal speciation, migration and recovery efficiency in the presence of different assisting agents during EK process were discussed. The mass loss of Cd, Cr, As and Zn during the SCWO process was negligible, but approximately 52% of Ni and 56% of Mn were lost in such a process. Experimental results showed that different assisting agents have significant effect on the behavior and recovery efficiency of different heavy metals. HCl was highly efficient for the recovery of Cd in waste PCBs due to the low pH and the stable complexation of Cl(-). Citric acid was highly efficient for the recovery of Cr, Zn and Mn. HNO(3) was low efficient for recovery of most heavy metals except for Ni.

  14. Alumina interaction with AMPS-MPEG random copolymers III. Effect of PEG segment length on adsorption, electrokinetic and rheological behavior.

    PubMed

    Bouhamed, H; Magnin, A; Boufi, S

    2006-06-01

    The effect of different 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS)-methoxypolyethyleneglycol methacrylate (MPEG) comb-like copolymers on the adsorption behavior, electrokinetic and rheological properties of alumina suspensions has been investigated. The change in adsorption isotherms with the content of the two monomers, the medium pH and the ionic strength indicated that the interaction of these copolymers was found to be controlled by both the fraction of ionic groups on the polymer and by the length of the polyethyleneglycol (PEG) segments. Adsorption of the copolymers on alumina particles is accompanied by a shift in the IEP toward acid pH values and may lead to a charge reversal above a certain level. The presence of the PEG segment equally affects the magnitude of the zeta potential by moving the shear plane forward. Addition of the copolymers greatly affects the rheological behavior of the suspension; the viscosity at a defined shear rate decreases and reaches an optimum, which is all the lower as the fraction of the ionic groups is higher. The dispersing effect of the copolymer was controlled by both the ionization level of the copolymer and by the length of the PEG segments.

  15. Effects of heavy metals on the electrokinetic properties of bacteria, yeast, and clay minerals

    SciTech Connect

    Collins, Y.E.

    1987-01-01

    The electrokinetic patterns of four bacteria (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae, Canida albicans), and two clay minerals (montmorillonite, kaolinite) in the presence of the chloride salts of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and of Na and Mg were determined by microelectrophoresis. The cells and clays were net negatively charged at pH values above their isoelectric point (pI) in solutions of Na, Mg, Hg, and Pb with an ionic strength (..mu..) of 3 x 10/sup -4/. However, at pH values above pH 5.0, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn. The charge of the bacteria and S. cerevisiae also reversed in solution of Ni and Cu with a ..mu.. > 3 x 10/sup -4/, whereas there was no reversal in solutions with a ..mu.. < 3 x 10/sup -4/. The clays became net positively charged when the ..mu.. of Cu was > 3 x 10/sup -4/ and that of Ni was > 1.5 x 10/sup -4/. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (..mu.. = 3 x 10/sup -4/). The pI of the cells in the presence of some heavy metals, especially Ni and Cr, was at higher pH values than in the presence of Na and Mg.

  16. [Effectiveness of incorporating a quality management system].

    PubMed

    Seki, Akira; Hankins, Raleigh W; Miya, Tetsumasa

    2010-01-01

    In 2003, the ISO 15189 international standardization program on the quality and competence of the clinical reference laboratory was introduced. To date, 46 facilities have committed themselves to providing a higher level of medical service by incorporating a quality management system (QMS) and acquiring accreditation. QMS is defined as "setting up a policy and goals pertaining to quality, and adopting an appropriate system," and is a scheme that includes all managerial and technical factors that can affect test results. Regarding the Health Sciences Research Institute Group, 4 facilities have previously received the accreditation described above, but in the process of implementing the QMS, a number of problems have been identified. Here, we report on the effectiveness of adopting such a QMS based on the results of employee questionnaires, internal audits, customer complaint analyses, and external audits by the Japan Accreditation Board for Conformity Assessment (JAB), the official inspection body for accreditation.

  17. Electrokinetic Microstrirring to Enhance Immunoassays

    NASA Astrophysics Data System (ADS)

    Feldman, Hope; Sigurdson, Marin; Meinhart, Carl

    2006-11-01

    Electrokinetic microstirring is used to improve the sensitivity of microfluidic heterogeneous immuno-sensors by enhancing the transport in diffusion-limited reactions. The AC electrokinetic force, Electrothermal Flow, is exploited to create a circular stirring fluid motion, thereby providing more binding opportunities between suspended and wall-immobilized molecules. This process can significantly reduce test times, important for both field-portable biosensors and for lab-based assays. A 2-D numerical simulation model is used to predict the effect of electrothermal flow on a heterogeneous immunoassay resulting from an AC potential applied to two parallel electrodes. The binding is increased by a factor of 7 for an applied voltage of 10 Vrms. The effect was investigated experimentally using a high affinity biotin-streptavidin reaction. Microstirred reaction rates were compared with passive reactions. The measurements show on average an order of magnitude increase in binding between immobilized biotin and fluorescently-labeled streptavidin after 5 minutes. Therefore, this technique shows significant promise for reducing incubation time and enhancing the sensitivity of immunoassays.

  18. Investigations of Induced Charge Electrokinetic Phenomena

    NASA Astrophysics Data System (ADS)

    Pascall, Andrew James

    Recent developments in microfluidics have highlighted the importance of efficiently transporting fluids at the micron scale. This has lead to a resurgence of interest in utilizing electrokinetic phenomena, which scale favorably with the small channel dimensions encountered in microfluidics, to drive fluid flows. This dissertation focuses on induced charge electro-osmosis (ICEO), a nonlinear electrokinetic effect in which an applied electric field both induces and drives a layer of charged fluid near an electrically conductive surface. ICEO has been shown to produce time-averaged flows with AC electric fields and may provide an on-chip means of generating high pressure flows with low applied voltages. Experimental studies of ICEO have shown that standard theories generally overpredict the observed slip velocity, frequently by orders of magnitude. This discrepancy could be explained by the presence of a thin coating of an adventitious dielectric over the conductive surface. In this work, I develop a modified theory of ICEO that incorporates the effects of a dielectric coating and its surface chemistry, both of which act to decrease the slip velocity relative to a clean metal. This theory shows that a layer of dielectric contaminant of only nanometer thickness can lead to significantly suppressed ICEO flows. In order to test this theory, I developed a novel experimental apparatus, the details of which are presented herein, that allows for the observation of ICEO flows over planar surfaces coated with dielectrics of controlled physical properties. Data for over 8000 combinations of parameters over both an oxide dielectric and alkanethiol self-assembled monolayer show unprecedented quantitative agreement with this modified theory. The goal for engineering practical microfluidic devices is to generate the fastest flows possible for a given set of conditions. I end the dissertation with a discussion of how to generate flows that are orders of magnitude faster than those

  19. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  20. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  1. ELECTROKINETICS, INC. INSITU BIO REMEDIATION BY ELECTROKINETIC INJECTION EMERGING TECHNOLOGY SUMMARY

    EPA Science Inventory

    Electrokinetics, Inc. through a cooperative agreement with USEPA's NRMRL conducted a laboratory evaluation of electrokinetic transport as a means to enhance in-situ bioremediation of trichloroethene (TCE). Four critical aspects of enhancing bioremediation by electrokinetic inject...

  2. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    PubMed

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  3. Electrode kinetic and electro-kinetic effects in electroosmotic dewatering of clay suspensions

    SciTech Connect

    Vijh, A.K.

    1997-05-01

    Lockhart`s remarks on the author`s previous interpretation of the electrochemical aspects of the electroosmotic dewatering (EOD) of clay suspensions are analyzed to provide some further clarification. Based on Lockhart`s excellent work, the authors put forward here novel electrochemical interpretations of some features of the following experimental observations: (1) Galvani dewatering; (2) the dewatering efficiency; and (3) high voltage needed for dewatering Al-kaolinite and aluminum electrode effect.

  4. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  5. Effects of natural microbial preparations on the electrokinetic potential of bacterial cells and clay minerals.

    PubMed

    Kiremidjian, L; Stotzky, G

    1973-06-01

    A complex mixture of fermentation residues and eutrophication products used commercially as a soil amendment and in various phases of sewage treatment was effective in reducing the electrophoretic mobility of clay minerals (kaolinite and montmorillonite) and cells of Agrobacterium radiobacter. The active fraction(s), which is active at very low concentrations, appears to be a stable (to heat, dialysis, concentration, and storage), net negatively charged polymer which may have several positively charged sites. The material does not significantly alter the viscosity or surface tension of aqueous systems and is probably a microbial metabolite(s).

  6. Polymer nanoparticles in electrokinetic chromatography

    NASA Astrophysics Data System (ADS)

    Hyslop, Jesse Samuel

    This dissertation reports the mobility, methylene selectivity, efficiency, linear solvation relationship (LSER) parameters, and practical chromatographic performance of a large set of NP PSPs and develops the first empirical relationships between NP architecture and chromatographic performance of NP PSPs in EKC. It is found that under typical EKC conditions ionic block chemistry has little effect on performance for 5-10 mer blocks. Solute-PSP interactions appear to be localized on the hydrophobic block of the copolymer with the length of alkyl chains on the hydrophobic block controlling the cohesively and hydrophobicity of the PSP. Small (100 nm) NP PSPs with small hydrophobic NP PSPs providing the best overall performance. This work provides the fundamental understanding of the behavior of RAFT polymerized NP PSPs essential for their further development and application in electrokinetic chromatography. (Abstract shortened by ProQuest.).

  7. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.

    PubMed

    Mondal, Sourav; De, Sirshendu

    2013-03-01

    Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.

  8. Chitosan nanocapsules: Effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability.

    PubMed

    Santander-Ortega, M J; Peula-García, J M; Goycoolea, F M; Ortega-Vinuesa, J L

    2011-02-01

    In recent years, chitosan nanocapsules have shown promising results as carriers for oral drug or peptide delivery. The success in their applicability strongly depends on the stability of these colloidal systems passing through the digestive tract. In gastric fluids, clear stability comes from the high surface charge density of the chitosan shell, which is completely charged at acidic pH values. However, in the intestinal fluid (where the pH is almost neutral) the effective charge of these nanocapsules approaches zero, and the electrostatic forces cannot provide any stabilization. Despite the lack of surface charge, chitosan nanocapsules remain stable in simulated intestinal fluids. Recently, we have demonstrated that this anomalous stability (at zero charge) is owed to short-range repulsive forces that appear between hydrophilic particles when immersed in saline media. The present work examines the influence of the chitosan hydrophobicity, as well as molecular weight, in the stability of different chitosan nanocapsules. A study has been made of the size, polydispersity, electrophoretic mobility, and colloidal stability of eight core-shell nanocapsule systems, in which the chitosan-shell properties have been modified using low-molecular-weight (LMW) and high-molecular-weight (HMW) chitosan chains having different degrees of acetylation (DA). With regard to the stability mediated by repulsive hydration forces, the LMW chitosan provided the best results. In addition, contrary to initial expectations, greater stability (also mediated by hydration forces) was found in the samples formed with chitosan chains of high DA values (i.e. with less hydrophilic chitosan). Finally, a theoretical treatment was also tested to quantify the hydrophilicity of the chitosan shells.

  9. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  10. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  11. Electrokinetic extraction of chromate from unsaturated soils

    SciTech Connect

    Mattson, E.D.; Lindgren, E.R.

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  12. Competition between Dukhin's and Rubinstein's electrokinetic modes

    NASA Astrophysics Data System (ADS)

    Chang, H.-C.; Demekhin, E. A.; Shelistov, V. S.

    2012-10-01

    The combined effect of two modes of electroconvection, i.e., (a) the electro-osmotic flow of the second kind induced by a curved membrane surface and (b) electrokinetic instability, is studied numerically. Both physical mechanisms are responsible for electric current enhancement to the surface, and these modes are strongly nonlinearly coupled. For the limiting regimes, their resonant interaction near the threshold of instability with a corresponding resonantly amplified current enhancement is found. For the overlimiting regimes, inside the unstable region, their interaction becomes more complex with negative “sideband” and positive “subharmonic” resonant interactions. Wall corrugation can still be in resonance with the unstable modes. At some wave numbers of corrugation, these two mechanisms compete and electrokinetic instability can even be completely suppressed by the wall corrugation.

  13. Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation

    PubMed Central

    Hansenová Maňásková, Silvie; Nazmi, Kamran; van ‘t Hof, Wim; van Belkum, Alex; Martin, Nathaniel I.; Bikker, Floris J.; van Wamel, Willem J. B.; Veerman, Enno C. I.

    2016-01-01

    The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall. PMID:26799839

  14. Electrokinetically controlled fluid injection into unicellular microalgae.

    PubMed

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-04-04

    Electrokinetically-controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely-studied model microalga Chlamydomonas reinhardtii. Microinjection system using glass capillary pipettes was developed to capture and impale the motile cell. To apply an electric field and induce electrokinetic flow (e.g. electrophoresis and electroosmosis), an electrode was inserted directly to the solution inside the impaling injection pipette (IP) and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate (FDA)/propidium iodide (PI) dual fluorescent dye-based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the IP. Successful electrokinetic microinjection into the cell was confirmed by both the increase in the cell volume under an applied voltage and the electric-field dependent delivery of fluorescent fluorescein molecule into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. This article is protected by copyright. All rights reserved.

  15. Electrokinetic remediation prefield test methods

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor)

    2000-01-01

    Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.

  16. Enhancing Clinical Trials by Incorporating Side Effects

    ERIC Educational Resources Information Center

    Schrag, Francis

    2009-01-01

    Evidence-based medicine is often seen as a model for evidence-based education, and deservedly so, but evaluators in education have been slow to adopt one of its salient features, attention to side effects. Many education evaluations focus almost exclusively on efficacy, that is on achievement test scores. Regardless of domain, all interventions…

  17. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  18. Ultrastrong optomechanics incorporating the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Nation, P. D.; Suh, J.; Blencowe, M. P.

    2016-02-01

    We propose a superconducting circuit comprising a dc superconducting quantum interference device with a mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or nondegenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon ultrastrong-coupling regime while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.

  19. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.

  20. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  1. Reducing spurious flow in simulations of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Rempfer, Georg; Davies, Gary B.; Holm, Christian; de Graaf, Joost

    2016-07-01

    Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our method for both the electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a charged sphere in an electrolyte solution and flow through a nanopore. We also show that previous attempts to suppress these spurious currents introduce other sources of error.

  2. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    PubMed

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS.

  3. Estimation of electrokinetic and hydrodynamic global properties of relevant amyloid-beta peptides through the modeling of their effective electrophoretic mobilities and analysis of their propensities to aggregation.

    PubMed

    Deiber, Julio A; Piaggio, Maria V; Peirotti, Marta B

    2014-09-01

    Neuronal activity loss may be due to toxicity caused by amyloid-beta peptides forming soluble oligomers. Here amyloid-beta peptides (1-42, 1-40, 1-39, 1-38, and 1-37) are characterized through the modeling of their experimental effective electrophoretic mobilities determined by a capillary zone electrophoresis method as reported in the literature. The resulting electrokinetic and hydrodynamic global properties are used to evaluate amyloid-beta peptide propensities to aggregation through pair particles interaction potentials and Brownian aggregation kinetic theories. Two background electrolytes are considered at 25°C, one for pH 9 and ionic strength I = 40 mM (aggregation is inhibited through NH4OH) the other for pH 10 and I = 100 mM (without NH4OH). Physical explanations of peptide oligomerization mechanisms are provided. The effect of hydration, electrostatic, and dispersion forces in the amyloidogenic process of amyloid-beta peptides (1-40 and 1-42) are quantitatively presented. The interplay among effective charge number, hydration, and conformation of chains is described. It is shown that amyloid-beta peptides (1-40 and 1-42) at pH 10, I = 100 mM and 25°C, may form soluble oligomers, mainly of order 2 and 4, after an incubation of 48 h, which at higher times evolve and end up in complex structures (protofibrils and fibrils) found in plaques associated with Alzheimer's disease.

  4. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  5. Nonlinear studies of AC electrokinetic micropumps

    NASA Astrophysics Data System (ADS)

    Bruus, Henrik; Olesen, Laurits H.; Ajdari, Armand

    2006-03-01

    Recent experiments have demonstrated that AC electrokinetic micropumps permit integrable, local, and fast pumping (velocities ˜ mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by physical arguments.

  6. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  7. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community.

    PubMed

    Cang, Long; Zhou, Dong-Mei; Alshawabkeh, Akram N; Chen, Hai-Feng

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  8. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.

  9. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  10. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  11. [Anolyte enhanced electrokinetic remediation of fluorine-contaminated soils].

    PubMed

    Zhu, Shu-Fa; Yan, Chun-Li; Dong, Tie-You; Tang, Hong-Yan

    2009-07-15

    An experimental study was carried out in order to determine the characteristics of migration and its influencing factor of soil fluorine in the electrokinetic process under different applied voltage and concentration of anolyte. The feasibility of anolyte enhanced on electrokinetic remediation of fluorine-contaminated soil was analyzed. The results show that when deionized water is used as anolyte with the 1.0 V/cm voltage gradient, the cumulative mass of fluorine in catholyte and anolyte are 8.2 mg and 47.7 mg respectively and the removal rate of fluorine is only 8.8%. Anolyte enhanced electrokinetic process can promote effectively the migration of fluoride in soil. When 0.02 mol/L NaOH solutionis employed as the anolyte, the removal rates are 25.9%, 31.2% and 47.3% with 1.0, 1.5 and 2.0 V/cm voltage gradient respectively. As the concentration of anolyte increased to 0.1 mol/L, the removal rates are 55.4%, 61.1% and 73.0%. The electromigration is the main transport mechanism and the electroosmotic flow has an effect on the migration of fluorine in soil. The voltage gradient and the concentration of anolyte are the main factors influencing the removal rate of fluorine in soil. Appropriate anolyte enhanced electrokinetic method can be applied to remediate fluorine from contaminated soil.

  12. Electrokinetic removal of caesium from kaolin.

    PubMed

    Al-Shahrani, S S; Roberts, E P L

    2005-06-30

    Soil, in the form of kaolin and a sample of natural soil from an industrial site, was artificially contaminated with caesium and subjected to electrokinetic treatment. The effect of catholyte pH control on the process was investigated using different acids to control the catholyte pH. During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment the pore fluid conductivity and the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, catholyte pH control is essential in order to create a suitable environment throughout the soil to enable contaminant removal. It was found that the type of acid used to control the catholyte pH affected the rate of caesium removal (nitric, sulphuric, acetic and citric acids were tested). All of the acids tested were effective, but the highest caesium extraction was achieved when nitric acid was used to control the catholyte pH. The relatively high adsorption capacity of the soil for caesium was found to significantly reduce the rate of removal. After 240 h of treatment at 1 Vcm(-1) (using sulphuric acid to control the catholyte pH), less than 80% of the caesium was removed from a 30 cm long sample of kaolin. Electrokinetic treatment of the industrial soil sample was slower than for the kaolin, but a significant extraction rate for caesium was achieved.

  13. Electrokinetic ion transport through unsaturated soil: 2. Application to a heterogeneous field site.

    PubMed

    Mattson, Earl D; Bowman, Robert S; Lindgren, Eric R

    2002-01-01

    Results of a field demonstration of electrokinetic transport of acetate through an unsaturated heterogeneous soil are compared to numerical modeling predictions. The numerical model was based on the groundwater flow and transport codes MODFLOW and MT3D modified to account for electrically induced ion transport. The 6-month field demonstration was conducted in an unsaturated layered soil profile where the soil moisture content ranged from 4% to 28% (m3 m(-3)). Specially designed ceramic-cased electrodes maintained a steady-state moisture content and electric potential field between the electrodes during the field demonstration. Acetate, a byproduct of acetic acid neutralization of the cathode electrolysis reaction, was transported from the cathode to the anode by electromigration. Field demonstration results indicated preferential transport of acetate through soil layers exhibiting higher moisture content/electrical conductivity. These field transport results agree with theoretical predictions that electromigration velocity is proportional to a power function of the effective moisture content. A numerical model using a homogeneous moisture content/electrical conductivity domain did not adequately predict the acetate field results. Numerical model predictions using a three-layer electrical conductivity/moisture content profile agreed qualitatively with the observed acetate distribution. These results suggest that field heterogeneities must be incorporated into electrokinetic models to predict ion transport at the field-scale.

  14. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    SciTech Connect

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  15. Atomistic simulations of nanoscale electrokinetic transport

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Moran; Chen, Shiyi; Robbins, Mark

    2011-11-01

    An efficient and accurate algorithm for atomistic simulations of nanoscale electrokinetic transport will be described. The long-range interactions between charged molecules are treated using the Particle-Particle Particle-Mesh method and the Poisson equation for the electric potential is solved using an efficient multi-grid method in physical space. Using this method, we investigate two important applications in electrokinetic transport: electroosmotic flow in rough channels and electowetting on dielectric (EWOD). Simulations of electroosmotic and pressure driven flow in exactly the same geometries show that surface roughness has a much more pronounced effect on electroosmotic flow. Analysis of local quantities shows that this is because the driving force in electroosmotic flow is localized near the wall where the charge density is high. In atomistic simulations of EWOD, we find the contact angle follows the continuum theory at low voltages and always saturates at high voltages. Based on our results, a new mechanism for saturation is identified and possible techniques for controlling saturation are proposed. This work is supported by the National Science Foundation under Grant No. CMMI 0709187.

  16. Moving charged particles in lattice Boltzmann-based electrokinetics

    NASA Astrophysics Data System (ADS)

    Kuron, Michael; Rempfer, Georg; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-12-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions into the Capuani scheme has been lacking. Moving boundary conditions are needed to simulate multiple arbitrarily moving colloids. In this paper, we detail how to introduce such a particle coupling scheme, based on an analogue to the moving boundary method for the pure lattice Boltzmann solver. The key ingredients in our method are mass and charge conservation for the solute species and a partial-volume smoothing of the solute fluxes to minimize discretization artifacts. We demonstrate our algorithm's effectiveness by simulating the electrophoresis of charged spheres in an external field; for a single sphere we compare to the equivalent electro-osmotic (co-moving) problem. Our method's efficiency and ease of implementation should prove beneficial to future simulations of the dynamics in a wide range of complex nanoscopic and colloidal systems that were previously inaccessible to lattice-based continuum algorithms.

  17. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  19. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  20. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    DTIC Science & Technology

    2001-03-01

    laboratory from what is currently being observed in the field. In addition to the retarding effects produced by the naturally occurring ions, the...military need to develop cost- effective remediation tools for cleaning up metals-contaminated soil. In -situ electrokinetic remediation was identified as a...Facilities. Priority: Medium • Air Force 95-2009- More Cost Effective Treatment Methods to Remediate Sites with Metal Contaminants in Vadose. Priority

  1. Electrokinetic decontamination of concrete. Final report, August 3, 1993--September 15, 1996

    SciTech Connect

    1998-12-31

    The ELECTROSORB{reg_sign} {open_quotes}C{close_quotes} process is an electrokinetic process for decontaminating concrete. ELECTROSORB{reg_sign} {open_quotes}C{close_quotes} uses a carpet-like extraction pad which is placed on the contaminated concrete surface. An electrolyte solution is circulated from a supporting module. This module keeps the electrolyte solution clean. The work is advancing through the engineering development stage with steady progress toward a full scale demonstration unit which will be ready for incorporation in the DOE Large Scale Demonstration Program by Summer 1997. A demonstration was carried out at the Mound Facility in Miamisburg, Ohio, in June 1996. Third party verification by EG&G verified the effectiveness of the process. Results of this work and the development work that proceeded are described herein.

  2. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  3. Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen

    2017-01-01

    In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.

  4. Effects of MMP inhibitors incorporated within dental adhesives.

    PubMed

    Almahdy, A; Koller, G; Sauro, S; Bartsch, J W; Sherriff, M; Watson, T F; Banerjee, A

    2012-06-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the "hybrid layer" and to the "adhesive", respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability.

  5. Effects of MMP Inhibitors Incorporated within Dental Adhesives

    PubMed Central

    Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.W.; Sherriff, M.; Watson, T.F.; Banerjee, A.

    2012-01-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the “hybrid layer” and to the “adhesive”, respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability. PMID:22518030

  6. Modeling electrokinetic flow by Lagrangian particle-based method

    NASA Astrophysics Data System (ADS)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre; Parks, Mike

    2015-11-01

    This work focuses on mathematical models and numerical schemes based on Lagrangian particle-based method that can effectively capture mesoscale multiphysics (hydrodynamics, electrostatics, and advection-diffusion) associated in applications of micro-/nano-transport and technology. The order of accuracy is significantly improved for particle-based method with the presented implicit consistent numerical scheme. Specifically, we show simulation results on electrokinetic flows and microfluidic mixing processes in micro-/nano-channel and through semi-permeable porous structures.

  7. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    PubMed

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively.

  8. Dielectrophoretic concentration of particles under electrokinetic flow

    DOEpatents

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  9. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  10. AC Electrokinetics of Physiological Fluids for Biomedical Applications

    PubMed Central

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C.; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2016-01-01

    AC electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration and separation, makes it possible to develop integrated systems for clinical diagnostics in non-traditional healthcare settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented. PMID:25487557

  11. A rotating disk electrokinetic method for characterizing polyelectrolyte pharmaceutical gels.

    PubMed

    Qu, Beibei; Lee, Ping I

    2012-05-01

    Charge groups in polyelectrolyte gels can affect the entrapment and release of ionic drugs as well as influencing the stability of colloidal and nanoparticulate drug delivery systems. An accurate knowledge of gel charge properties is therefore important to the understanding and design of such drug delivery systems. Existing rotating disk method for quantifying the surface potential of flat surfaces is based on the classical electrokinetic model that neglects the effect of surface conductivity and is therefore only applicable to ion-impenetrable hard surfaces. This classical electrokinetic model would be inaccurate for polyelectrolyte gel systems involving ion-penetrable charged layers or "soft" surfaces. In this study, we developed a new rotating disk model for characterizing charge properties of ion penetrable soft surfaces and tested it on polyvinyl alcohol (PVA)/polyacrylic acid (PAA), gelatin, and gelatin/PAA polyelectrolyte gels. In addition to classical electrokinetic parameters, the contribution of surface conductivity known to be very significant for soft and ion-penetrable gel surfaces has been taken into account in this new rotating disk model. Based on this new approach, two rotating gel disks of different radius but with identical gel composition and preparation procedures were employed for determining the gel surface potential and density of fixed charge groups. A comparison of the resulting data with that obtained from existing rotating disk model ignoring the surface conductivity reveals a significant underestimation of the gel surface potential and the density of fixed charge groups by the ion-impenetrable hard surface approach. Our results thus confirm that the contribution of surface conductivity is significant in the electrokinetic characterization of polyelectrolyte gels that can be evaluated with our new rotating disk model.

  12. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene

    SciTech Connect

    Li, A.; Cheung, K.A.; Reddy, K.R.

    2000-06-01

    This research was carried out to evaluate feasibility of using an electrokinetic technique to remove hydrophobic organic pollutants from soils, with the assistance of a cosolvent (n-butylamine, tetrahydrofuran, or acetone) added to the conducting fluid. The experiments were carried out on glacial till clay with phenanthrene as the test compound. Desorption equilibrium was investigated by batch tests. The electrokinetic experiments were conducted using a 19.1 cm long x 6.2 cm inside diameter column under controlled voltage. Water or 20% (volume) cosolvent solution was constantly supplied at the anode. The concentration of phenanthrene in the effluent collected at the cathode was monitored. Each experiment lasted for 100 to 145 days. Results showed that the presence of n-butylamine significantly enhanced the desorption and electrokinetic transport of phenanthrene; about 43% of the phenanthrene was removed after 127 days or 9 pore volumes. The effect of acetone was not as significant as butylamine. The effluent flow in the tetrahydrofuran experiments was minimal, and phenanthrene was not detected in the effluent. The use of water as the conducting solution did not cause observable phenanthrene migration.

  13. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Castellano, Richard J.; Akin, Cevat; Giraldo, Gabriel; Kim, Sangil; Fornasiero, Francesco; Shan, Jerry W.

    2015-06-01

    Composite thin films incorporating vertically aligned carbon nanotubes (VACNTs) offer promise for a variety of applications where the vertical alignment of the CNTs is critical to meet performance requirements, e.g., highly permeable membranes, thermal interfaces, dry adhesives, and films with anisotropic electrical conductivity. However, current VACNT fabrication techniques are complex and difficult to scale up. Here, we describe a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an alternating-current (AC) electric field, and electrophoretically concentrated to one side of the thin film with a direct-current (DC) component to the electric field. This approach enables the fabrication of highly concentrated, individually aligned nanotube composites from suspensions of very dilute ( ϕ = 4 × 10 - 4 ) volume fraction. We experimentally investigate the basic electrokinetics of nanotube alignment under AC electric fields, and show that simple models can adequately predict the rate and degree of nanotube alignment using classical expressions for the induced dipole moment, hydrodynamic drag, and the effects of Brownian motion. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.

  14. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  15. Capillary Separation: Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Terabe, Shigeru

    2009-07-01

    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  16. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel

  17. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  18. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em

    2016-10-01

    We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.

  19. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design.

    PubMed

    Yang, Kai; Wu, Jie

    2008-04-04

    Orthogonal electrodes have been reported to produce high velocity microflows when excited by ac signals, showing potential for micropumping applications. This paper investigates the microflow reversal phenomena in such orthogonal electrode micropumps. Three types of microflow fields were observed by changing the applied electric signals. Three ac electrokinetic processes, capacitive electrode polarization, Faradaic polarization, and the ac electrothermal effect, are proposed to explain the different flow patterns, respectively. The hypotheses were corroborated by impedance analysis, numerical simulations, and velocity measurements. The investigation of microflow reversal can improve the understanding of ac electrokinetics and hence effectively manipulate fluids.

  20. Effectiveness of Incorporating Adversary Probability Perception Modeling in Security Games

    DTIC Science & Technology

    2015-01-30

    security game (SSG) algorithms. Given recent work on human decision-making, we adjust the existing subjective utility function to account for...data from previous security game experiments with human subjects. Our results show the incorporation of probability perceptions into the SUQR can...provide improvements in the ability to predict probabilities of attack in certain games .

  1. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.

    PubMed

    Ouhadi, V R; Yong, R N; Shariatmadari, N; Saeidijam, S; Goodarzi, A R; Safari-Zanjani, M

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of "calcite or carbonate" (CaCO(3)) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  2. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil.

    PubMed

    Lear, G; Harbottle, M J; Sills, G; Knowles, C J; Semple, K T; Thompson, I P

    2007-03-01

    Electrokinetic techniques have been used to stimulate the removal of organic pollutants within soil, by directing contaminant migration to where remediation may be more easily achieved. The effect of this and other physical remediation techniques on the health of soil microbial communities has been poorly studied and indeed, largely ignored. This study reports the impact on soil microbial communities during the application of an electric field within ex situ laboratory soil microcosms contaminated with pentachlorophenol (PCP; 100mg kg(-1) oven dry soil). Electrokinetics reduced counts of culturable bacteria and fungi, soil microbial respiration and carbon substrate utilisation, especially close to the acidic anode where PCP accumulated (36d), perhaps exacerbated by the greater toxicity of PCP at lower soil pH. There is little doubt that a better awareness of the interactions between soil electrokinetic processes and microbial communities is key to improving the efficacy and sustainability of this remediation strategy.

  3. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems.

  4. Frequency dispersion of electrokinetically activated Janus particles

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Balli, Tov; Yossifon, Gilad; Miloh, Touvia

    2015-11-01

    We examine the influence of the applied frequency of the electric field on the induced-charge electroosmotic flow around a metallo-dielectric Janus particle. Previously, we have used three dimensional-two component micro-particle-image-velocimetry (3D-2C μ PIV) around a stagnant particle, to illustrate the presence of a number of competing effects including dielectrophoresis and electrohydrodynamic flow which distort both the strength and shape of the frequency dispersion predicted for pure induced-charge effects. Here, we extend this work by examining the frequency dispersion of mobile Janus particles of different sizes (3 - 15 μm in diameter) at different electrolyte concentrations. In all cases, towards the DC limit, and in the frequency domain where previously EHD flow was shown to dominate, the velocity of a mobile particle decays to zero. At the same time significant variations in the frequency dispersion, including its shape and the value for maximum velocity are recorded as a function of both electrolyte concentration and particle size. This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the application of Janus particles as carriers in lab-on-a-chip analysis systems.

  5. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  6. Incorporating geometric and radiative effects into infrared scanning computer analysis

    NASA Technical Reports Server (NTRS)

    Myrick, D. L.; Kantsios, A. G.

    1983-01-01

    A NASA program, the SILTS experiment (Shuttle Infrared Leeside Temperature Sensing) will utilize an infrared scanning system mounted at the tip of the vertical stabilizer to remotely measure the surface temperature of the leeside of the Space Shuttle during entry from orbit. Scans of the fuselage and one wing will be made alternately. The experiment will correlate real full scale data to ground-based information. In order to quantitatively assess the temperature profile of the surface, an algorithm is required which incorporates the Space Shuttle shape, location of specific materials on the surface, and the measurement geometry between the camera and the surface. This paper will discuss the algorithm.

  7. Investigation of the surfactant type and concentration effect on the retention factors of glutathione and its analogues by micellar electrokinetic chromatography.

    PubMed

    Kazarjan, Jana; Mahlapuu, Riina; Hansen, Mats; Soomets, Ursel; Kaljurand, Mihkel; Vaher, Merike

    2015-10-01

    In the present study, a micellar electrokinetic chromatographic method was used to determine the retention factors of hydrophilic monomeric and homodimeric forms of glutathione analogues. Ionic-liquid-based surfactant, 1-tetradecyl-3-methylimidazolium chloride, as well as cetyltrimethylammonium bromide and phosphate buffer (pH 7.4) were employed in the experiments. Since the studied peptides possess a negative charge under physiological conditions, it is expected that the peptides interact with the oppositely charged 1-tetradecyl-3-methylimidazolium chloride and cetyltrimethylammonium bromide micelles via hydrophobically assisted electrostatic forces. The dependence of the retention factor on the micellar concentration of 1-tetradecyl-3-methylimidazolium chloride and cetyltrimethylammonium bromide is nonlinear and the obtained curves converge to a limiting value. The retention factor values of GSH analogues were in the range of 0.36-2.22 for glutathione analogues and -1.21 to 0.37 for glutathione when 1-tetradecyl-3-methylimidazolium chloride was used. When cetyltrimethylammonium bromide was employed, the retention factor values were in the range of 0.27-2.17 for glutathione analogues and -1.22 to 0.06 for glutathione. If sodium dodecyl sulfate was used, the retention factor values of glutathione analogues with carnosine moiety were in the range of -1.54 to 0.38.

  8. Electrokinetics for removal of low-level radioactivity from soil

    SciTech Connect

    Pamukcu, S.; Wittle, J.K.

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  9. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  10. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect

    Kwon, Jae-Sung; Ravindranath, Sandeep; Kumar, Aloke; Irudayaraj, Joseph; Wereley, Steven T.

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  11. Particle tracking techniques for electrokinetic microchannel flows.

    PubMed

    Devasenathipathy, Shankar; Santiago, Juan G; Takehara, Kohsei

    2002-08-01

    We have applied particle tracking techniques to obtain spatially resolved velocity measurements in electrokinetic flow devices. Both micrometer-resolution particle image velocimetry (micro-PMV) and particle tracking velocimetry (PTV) techniques have been used to quantify and study flow phenomena in electrokinetic systems applicable to microfluidic bioanalytical devices. To make the flow measurements quantitative, we performed a series of seed particle calibration experiments. First, we measure the electroosmotic wall mobility of a borosilicate rectangular capillary (40 by 400 microm) using current monitoring. In addition to this wall mobility characterization, we apply PTV to determine the electrophoretic mobilities of more than 1,000 fluorescent microsphere particles in aqueous buffer solutions. Particles from this calibrated particle/ buffer mixture are then introduced into two electrokinetic flow systems for particle tracking flow experiments. In these experiments, we use micro-PIV, together with an electric field prediction, to obtain electroosmotic flow bulk fluid velocity measurements. The first example flow system is a microchannel intersection where we demonstrate a detailed documentation of the similitude between the electrical fields and the velocity fields in an electrokinetic system with uniform zeta potential, zeta. In the second system, we apply micro-PIV to a microchannel system with nonuniform zeta. The latter experiment provides a simultaneous measurement of two distinct wall mobilities within the microchannel.

  12. Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of Trinitrotoluene in Mixtures of Other Nitroaromatic Compounds

    DTIC Science & Technology

    2014-02-24

    ABSTRACT Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of...Unclassified Unlimited Unclassified Unlimited 13 Braden C. Giordano (202) 404-6320 Micellar electrokinetic chromatography Nitroaromatic explosives...Capillary electrophoresis DNT – Dinitrotoluene EOF – Electroosmotic flow MEKC – Micellar electrokinetic chromatography PLS – Partial least squares regression TNT – Trinitrotoluene 11

  13. Electrokinetics for control of on-chip chemical reactions.

    NASA Astrophysics Data System (ADS)

    Erickson, David; Venditti, Roberto

    2005-03-01

    It is well known that electrokinetics affords precise control over flow and species transport in microfluidic systems through simple manipulation of externally applied electric potentials. In this work it is demonstrated how electrokinetic effects can be extended to provide simultaneous control over on-chip chemical reactions through manipulation of the local thermal (ohmic/joule heating), shear (electroosmosis) and electrical (electrophoresis) energies at the reaction site. The coupling of the electrical, flow and ``whole-chip'' thermal effects in both the fluidic and substrate domains are investigated through extensive finite element simulations and experimentally validated using microscale fluorescence thermometry. The simulations reveal changes in viscosity and local conductivity on the order of 50% induced by changes in the fluidic geometry. General chip design guidelines for maximizing or minimizing these effects will also be discussed. The degree of precision available and clinical utility of the technique is demonstrated through the detection of a single base pair mutation (single nucleotide polymorphism) in a DNA microarray integrated into a PDMS/glass microfluidic chip.

  14. Incorporating Teacher Effectiveness into Teacher Preparation Program Evaluation

    ERIC Educational Resources Information Center

    Henry, Gary T.; Kershaw, David C.; Zulli, Rebecca A.; Smith, Adrienne A.

    2012-01-01

    New federal and state policies require that teacher preparation programs (TPP) be held accountable for the effectiveness of their graduates as measured by test score gains of the students they teach. In this article, the authors review the approaches taken in several states that have already estimated TPP effects and analyze the proposals for…

  15. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning.

    PubMed

    Makino, Azusa; Klein, Carissa J; Beger, Maria; Jupiter, Stacy D; Possingham, Hugh P

    2013-01-01

    Establishing different types of conservation zones is becoming commonplace. However, spatial prioritization methods that can accommodate multiple zones are poorly understood in theory and application. It is typically assumed that management regulations across zones have differential levels of effectiveness ("zone effectiveness") for biodiversity protection, but the influence of zone effectiveness on achieving conservation targets has not yet been explored. Here, we consider the zone effectiveness of three zones: permanent closure, partial protection, and open, for planning for the protection of five different marine habitats in the Vatu-i-Ra Seascape, Fiji. We explore the impact of differential zone effectiveness on the location and costs of conservation priorities. We assume that permanent closure zones are fully effective at protecting all habitats, open zones do not contribute towards the conservation targets and partial protection zones lie between these two extremes. We use four different estimates for zone effectiveness and three different estimates for zone cost of the partial protection zone. To enhance the practical utility of the approach, we also explore how much of each traditional fishing ground can remain open for fishing while still achieving conservation targets. Our results show that all of the high priority areas for permanent closure zones would not be a high priority when the zone effectiveness of the partial protection zone is equal to that of permanent closure zones. When differential zone effectiveness and costs are considered, the resulting marine protected area network consequently increases in size, with more area allocated to permanent closure zones to meet conservation targets. By distributing the loss of fishing opportunity equitably among local communities, we find that 84-88% of each traditional fishing ground can be left open while still meeting conservation targets. Finally, we summarize the steps for developing marine zoning that

  16. Pore network model of electrokinetic transport through charged porous media

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Jardat, Marie; Coelho, Daniel; Bekri, Samir; Rotenberg, Benjamin

    2014-04-01

    We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.

  17. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  18. Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    NASA Astrophysics Data System (ADS)

    Lacoste, D.; Menon, G. I.; Bazant, M. Z.; Joanny, J. F.

    2009-03-01

    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented by D. Lacoste, M. Cosentino Lagomarsino, and J.F. Joanny (EPL 77, 18006 (2007)), by providing a physical explanation for a destabilizing term proportional to k ⊥ 3 in the fluctuation spectrum, which we relate to a nonlinear (E2) electrokinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives the flow along the field axis toward surface protrusions; in contrast, we predict “reverse” ICEO flows around driven membranes, due to curvature-induced tangential fields within a nonequilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.

  19. [Effects of straw incorporation on rice carbon sequestration characteristics and grain yield formation].

    PubMed

    Pei, Peng-Gang; Zhang, Jun-Hua; Zhu, Lian-Feng; Yu, Sheng-Miao; Hu, Zhi-Hua

    2014-10-01

    A field experiment was conducted to study the effects of straw incorporation on rice dry matter accumulation and transportation, rice carbon sequestration and grain yield formation. The experiment included four levels of straw incorporation: 0 (control), 4000, 6000 and 8000 kg · hm(-2). Hybrid rice cultivar Zhongzheyou 1 was used in this experiment. The results showed that the average rice dry matter accumulation amount of the three straw incorporation treatments was increased by 63.03 g · m(-2) compared with the control, and that of straw incorporation of 6000 kg · hm(-2) showed the most favorable result, which was 154.40 g · m(-2) higher than the control. Effects of straw incorporation on rice dry matter accumulation showed the best performance from the maximum tillering stage to the full heading stage, and the dry matter accumulation at this stage was 71.25 g · m(-2) higher than the control. Compared with the control, the average dry matter exportation rate and apparent transformation rate from rice stem and leaf in the straw incorporation treatments were increased by 4.2% and 3.7%, respectively. The highest dry matter exportation rate and apparent transformation rate from rice stem and leaf were observed in the straw incorporation treatment of 6000 kg · hm(-2), which were increased by 12.8% and 11.1% compared to the control, respectively. The average rice carbon sequestration from the straw incorporation treatments was increased by 55.38 g · m(-2) compared with the control, and straw incorporation of 6000 kg · hm(-2) performed best with an increase of 17.8% compared with the control. Straw incorporation played a positive role in regulating the carbon sequestration of stem and leaf at the early growth stage and carbon sequestration of spike at the late growth stage. The average grain yield from the straw incorporation treatments was increased by 794.59 kg · hm(-2) (9.5% higher) compared with the control. Rice grain yields from the straw incorporation

  20. Electrokinetic remediation of mercury-contaminated soils using iodine/iodide lixiviant

    SciTech Connect

    Cox, C.D.; Shoesmith, M.A.; Ghosh, M.M.

    1996-06-01

    In-situ remediation of mercury-contaminated soils, by electrokinetic or other means, is difficult because of the low solubility of mercury and its compounds. In this research, enhanced electrokinetic remediation of HgS-contaminated soils using I{sub 2}/I{sup -} lixiviant was investigated using bench-scale electrokinetic cells. The thermodynamic conditions under which the lixiviant could be effective were determined by constructing a pE-pH diagram for the Hg-S-I system. Introduced near the cathode, the lixiviant migrated through the soil to the anode by electromigration. Mercury, released by the oxidation of HgS compounds by I{sub 2}, was complexed as HgI{sub 4}{sup 2-}. The negative complex continued to electromigrate toward the anode. Up to 99% of the Hg present in laboratory-contaminated soils could be removed. Electrokinetic treatment of a field-contaminated soil, containing more organic matter than the laboratory-contaminated soil, occurred much slower. The critical issues in determining the efficacy of the process are the oxidation of reduced Hg by I{sub 2} and I{sub 3}{sup -} and the transport of the resultant HgI{sub 4}{sup 2-} complex. 17 refs., 7 figs., 2 tabs.

  1. Nonlinear Electroosmosis and Biomolecule Electrokinetic Trapping Induced by Ion Selective Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Chih; Han, Jongyoon

    2006-03-01

    This paper describes a nanofluidic device that can concentrate dilute biomolecule by electrokinetic trapping mechanism. This device has nanofluidic channels with a depth down to 40 nm, therefore, having significant Debye layer overlap. Depending on the strength of the applied potential across the nanochannel, one can observe phenomena such as concentration polarization; charge depletion and nonlinear electrokinetic flow in the adjacent microfluidic channel using fluorescent microscopy. By manipulating the electric field, the device can generate an extended space charge region, maintained for several hours, within a microchannel as a mean to collect and trap biomolecules. Our studies demonstrate such device can achieve up to 10 million fold sample preconcentration within 30 minutes. Besides, if applied a higher potential, a much faster chaotic flow can be seen in the microchannel adjacent to nanochannels. This kind of nonlinear electrokinetic flow is often called the electroosmosis of the second kind or induced-charge electroosmosis in electrode and ion exchange membrane studies. The presented device can be used as either a preconcentrator or an injector to other separation and detection systems preferred its performance and integrabilty. Also, it is an ideal experimental platform for studying such nonlinear electrokinetic effects, by directly tracking molecules in situ.

  2. Incorporating Effects-Based Operations into Military Operations

    DTIC Science & Technology

    2005-06-01

    some suggest EBO is another term for “ thinking strategically ” and in many ways it is. The benefits from an effects-based approach are in lives and...It is thinking strategically 1 Figures 1 and 2 come from the Air Combat Command (ACC) White Paper on EBO

  3. Liposomes for entrapping local anesthetics: a liposome electrokinetic chromatographic study.

    PubMed

    Lokajová, Jana; Laine, Jaana; Puukilainen, Esa; Ritala, Mikko; Holopainen, Juha M; Wiedmer, Susanne K

    2010-05-01

    Bupivacaine is a lipophilic, long-acting, amide class local anesthetic commonly used in clinical practice to provide local anesthesia during surgical procedures. Several cases of accidental overdose with cardiac arrest and death have been reported since bupivacaine was introduced to human use. Recent case reports have suggested that Intralipid (Fresenius Kabi) is an effective therapy for cardiac toxicity from high systemic concentrations of, e.g. bupivacaine, even though the mechanism behind the interaction is not fully clear yet. Our long-term aim is to develop a sensitive, efficient, and non-harmful lipid-based formulation to specifically trap harmful substances in vivo. In this study, the in vitro interaction of local anesthetics (bupivacaine, prilocaine, and lidocaine) with Intralipid or lipid vesicles containing phosphatidylglycerol, phosphatidylcholine, cardiolipin, cholesterol, and N-palmitoyl-D-erythro-sphingosine (ceramide) was determined by liposome electrokinetic chromatography. The interactions were evaluated by calculating the retention factors and distribution constants. Atomic force microscopy measurements were carried out to confirm that the interaction mechanism was solely due to interactions between the analytes and the moving pseudostationary phase and not by interactions with a stationary lipid phase adsorbed to the fused-silica wall. The heterogeneity of the liposomes was also studied by atomic force microscopy. The liposome electrokinetic chromatography results demonstrate that there is higher interaction between the drugs and negatively charged liposome dispersion than with the commercial Intralipid dispersion.

  4. Computing the Electrokinetic Response with Simple Models via Eigenvalue Decomposition

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Malama, B.

    2010-12-01

    The efficient solution of coupled hydrogeophysical problems both numerically and analytically is important to their use in parameter estimation. We present a general approach for decoupling the governing equations for groundwater flow and the associated electrokinetic problem. The approach can use either a symbolic or numerical eigenvector decomposition of the matrix that arises when writing the two equations in vector form. The two coupled problems, once uncoupled, can then be solved using any existing approaches for the simple non-coupled component problems. Solutions can be either analytic or numerical in nature with the effective parameters being computed in the decomposition. The final solution, in terms of the physical potentials of interest, is computed through a simple matrix multiplication. We solve the fully coupled electrokinetic problem (water flow driving electrical flow and electrical flow driving water flow) for a single layer using the Theis solution, and for multilayer problems using MODFLOW. The approach is quite general, with the main limitation being a required symmetry between the coupled processes in their differential equation (e.g., both processes must be governed by the diffusion equation). The solution obtained with this approach is shown to agree with that obtained by Malama et al. (2009). Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  5. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2014-07-01

    The voltage-operating window for many electrokinetic microdevices is limited by electrolysis gas bubbles that destabilize microfluidic system causing noise and irreproducible responses above ∼3 V DC and less than ∼1 kHz AC at 3 Vpp. Surfactant additives, SDS and Triton X-100, and an integrated semipermeable SnakeSkin® membrane were employed to control and assess electrolysis bubbles from platinum electrodes in a 180 by 70 μm, 10 mm long microchannel. Stabilized current responses at 100 V DC were observed with surfactant additives or SnakeSkin® barriers. Electrolysis bubble behaviors, visualized via video microscopy at the electrode surface and in the microchannels, were found to be influenced by surfactant function and SnakeSkin® barriers. Both SDS and Triton X-100 surfactants promoted smaller bubble diameters and faster bubble detachment from electrode surfaces via increasing gas solubility. In contrast, SnakeSkin® membranes enhanced natural convection and blocked bubbles from entering the microchannels and thus reduced current disturbances in the electric field. This data illustrated that electrode surface behaviors had substantially greater impacts on current stability than microbubbles within microchannels. Thus, physically blocking bubbles from microchannels is less effective than electrode functionalization approaches to stabilize electrokinetic microfluidic systems.

  6. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    PubMed

    Quirino, Joselito P; Kato, Masaru

    2014-09-01

    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  7. Preparation and evaluation of bonded linear polymethacrylate stationary phases for open tubular capillary electrokinetic chromatography

    SciTech Connect

    Tan, Z.J.; Remcho, V.T.

    1997-02-15

    A new procedure for the preparation of thick polymethacrylate films bonded in 25 {mu}m i.d. fused-silica capillaries is developed. The etched silica surface is first modified with an unsaturated organosilane, which is later incorporated into the polymer film. The capillary is then filled with a monomer solution, and polymerization is initiated by incubation at elevated temperature. This thermoinitiation method enables the use of ordinary polyimide-jacketed capillaries in preparing the columns. The effect of monomer concentration on the resulting polymer film was studied by open tubular capillary electrokinetic chromatography using p-hydroxybenzoates (parabens) as test solutes. Good separations were achieved using short capillaries. Run-to-run retention time reproducibility was excellent, with RSDs of 2% (n = 50) being representative. For the linear polymer films produced, retention of analytes increased as the monomer concentration increased to a certain value, at which point the capacity factors level off with further increases in monomer concentration. The electroosmotic flow velocity decreases with increasing monomer concentration. The efficiency for an unretained test probe (acetone) reaches 270 000 plates/m. 13 refs., 10 figs., 1 tab.

  8. Laboratory scale electrokinetic remediation and geophysical monitoring of metal-contaminated marine sediments

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Pazzi, Veronica; Losito, Gabriella

    2013-04-01

    Electrokinetic remediation is an emerging technology that can be used to remove contaminants from soils and sediments. This technique relies on the application of a low-intensity electric field to extract heavy metals, radionuclides and some organic compounds. When the electric field is applied three main transport processes occur in the porous medium: electromigration, electroosmosis and electrophoresis. Monitoring of electrokinetic processes in laboratory and field is usually conducted by means of point measurements and by collecting samples from discrete locations. Geophysical methods can be very effective in obtaining high spatial and temporal resolution mapping for an adequate control of the electrokinetic processes. This study investigates the suitability of electrokinetic remediation for extracting heavy metals from dredged marine sediments and the possibility of using geophysical methods to monitor the remediation process. Among the geophysical methods, the spectral induced polarization technique was selected because of its capability to provide valuable information about the physico-chemical characteristics of the porous medium. Electrokinetic remediation experiments in laboratory scale were made under different operating conditions, obtained by varying the strength of the applied electric field and the type of conditioning agent used at the electrode compartments in each experiment. Tap water, 0.1M citric acid and 0.1M ethylenediamine tetraacetic acid (EDTA) solutions were used respectively as processing fluids. Metal removal was relevant when EDTA was used as conditioning agent and the electric potential was increased, as these two factors promoted the electroosmotic flow which is considered to be the key transport mechanism. The removal efficiencies ranged from 9.5% to 27% depending on the contaminant concerned. These percentages are likely to be raised by a further increase of the applied electric field. Furthermore, spectral induced polarization

  9. 46 CFR 162.017-1 - Preemptive effect; incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Pressure-Vacuum Relief, for Tank Vessels § 162.017-1 Preemptive effect; incorporation by reference. (a) The... Technology—Pressure/Vacuum Valves for Cargo Tanks, First Edition (Sep. 1, 2000), (“ISO 15364”), IBR...

  10. 46 CFR 162.017-1 - Preemptive effect; incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Pressure-Vacuum Relief, for Tank Vessels § 162.017-1 Preemptive effect; incorporation by reference. (a) The... Technology—Pressure/Vacuum Valves for Cargo Tanks, First Edition (Sep. 1, 2000), (“ISO 15364”), IBR...

  11. Effectively incorporating selected multimedia content into medical publications

    PubMed Central

    2011-01-01

    Until fairly recently, medical publications have been handicapped by being restricted to non-electronic formats, effectively preventing the dissemination of complex audiovisual and three-dimensional data. However, authors and readers could significantly profit from advances in electronic publishing that permit the inclusion of multimedia content directly into an article. For the first time, the de facto gold standard for scientific publishing, the portable document format (PDF), is used here as a platform to embed a video and an audio sequence of patient data into a publication. Fully interactive three-dimensional models of a face and a schematic representation of a human brain are also part of this publication. We discuss the potential of this approach and its impact on the communication of scientific medical data, particularly with regard to electronic and open access publications. Finally, we emphasise how medical teaching can benefit from this new tool and comment on the future of medical publishing. PMID:21329532

  12. Dissipative particle dynamics incorporating non-Markovian effect

    NASA Astrophysics Data System (ADS)

    Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu

    2015-11-01

    The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.

  13. Incorporating plant functional diversity effects in ecosystem service assessments.

    PubMed

    Díaz, Sandra; Lavorel, Sandra; de Bello, Francesco; Quétier, Fabien; Grigulis, Karl; Robson, T Matthew

    2007-12-26

    Global environmental change affects the sustained provision of a wide set of ecosystem services. Although the delivery of ecosystem services is strongly affected by abiotic drivers and direct land use effects, it is also modulated by the functional diversity of biological communities (the value, range, and relative abundance of functional traits in a given ecosystem). The focus of this article is on integrating the different possible mechanisms by which functional diversity affects ecosystem properties that are directly relevant to ecosystem services. We propose a systematic way for progressing in understanding how land cover change affects these ecosystem properties through functional diversity modifications. Models on links between ecosystem properties and the local mean, range, and distribution of plant trait values are numerous, but they have been scattered in the literature, with varying degrees of empirical support and varying functional diversity components analyzed. Here we articulate these different components in a single conceptual and methodological framework that allows testing them in combination. We illustrate our approach with examples from the literature and apply the proposed framework to a grassland system in the central French Alps in which functional diversity, by responding to land use change, alters the provision of ecosystem services important to local stakeholders. We claim that our framework contributes to opening a new area of research at the interface of land change science and fundamental ecology.

  14. In situ soil remediation using electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive {sup 137}Cs and {sup 60}Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented.

  15. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel

  16. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined.

  17. Electrokinetic profiles of nonowoven cotton for absorbent incontinence material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper discusses recent work on cotton/synthetic nonwovens, their electrokinetic analysis, and their potential use in incontinence materials. Electrokinetic analysis is useful in exploring fiber surface polarity properties, and it is a useful tool to render a snap shot of the role of fiber char...

  18. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors

    DTIC Science & Technology

    2010-11-01

    1 ELECTROKINETICS MODELS FOR MICRO AND NANO FLUIDIC IMPEDANCE SENSORS Yi Wang*, Hongjun Song, Ketan Bhatt, Kapil Pant CFD Research Corporation...analysis, design, and protocol development of novel micro - and nano - fluidics based impedance sensors. 1. INTRODUCTION Exposure to toxic...electrokinetic transport process at the micro - and nano -scale and to interrogate the sensor performance subject to the variations in design

  19. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  20. The effect of dopant incorporation on the elastic properties of Ti metal

    NASA Astrophysics Data System (ADS)

    Wilson, N. C.; McGregor, K.; Gibson, M. A.; Russo, S. P.

    2015-01-01

    The effect of dopant atoms on the structural and elastic properties of α titanium is examined through the use of density functional theory. The effect of 66 dopant atoms, from H through the third row transition metal elements, were considered in this study. In all cases the dopant concentration was approximately 3 at%, with substitutional incorporation investigated for all atoms considered and interstitial incorporation investigated for a smaller subset of elements. Interstitial incorporation was calculated to be more energetically favourable for the elements H, B to F, S and Cl with these dopants coordinating octahedrally with the surrounding Ti atoms, while substitutional incorporation was found to be more stable for the other elements. The five independent single crystal elastic constants are calculated, along with the bulk and shear moduli. The energetics and mechanically stability associated with the alloying of various dopants is also discussed.

  1. Electrokinetic transport in unsteady flow through peristaltic microchannel

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham

    2016-04-01

    We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.

  2. Electrokinetics dependence on water-content: laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Allègre, Vincent; Sénéchal, Pascale; Lehmann, François; Bordes, Clarisse; Jouniaux, Laurence; Sailhac, Pascal; Bano, Maksim

    2010-05-01

    Electrokinetics results from the coupling between the water flow and the electrical current through the electrokinetic coefficient. The Self-Potential (SP) method, which is based on this phenomenon, is currently used to investigate shallow transport in the vadose zone. Thus, the understanding of the electrokinetic coefficient behaviour in unsaturated conditions is crucial to interpret such methods. Empirical and theoretical models proposed in the literature to describe this behaviour are still discussed. Consequently, physical processes involved in the electrokinetic coefficient behaviour in unsaturated conditions need to be futher investigate. We propose here to study the electrokinetics dependence on water content through an experimental approach and the numerical solving of the Richards' equation. We show several continuous records of the electrokinetic coefficient as a function of water saturation. We found that the normalized electrokinetic coefficient behaviour in unsaturated conditions is more complex than it was previously proposed. Indeed, we first observed its increasing with decreasing water saturation. After it reaches a maximum, identified around 80 % of water saturation, it begins to decrease with decreasing saturation. It is an important result since previous works predicted a monotically decreasing of the electrokinetic coefficient with decreasing saturation. We found that the normalized value of the measured electrokinetic coefficient could be two orders of magnitude greater than the classical value in saturated conditions, Csat. We performed several experiments and tried to invert the electrokinetic coefficient data and interpret it in terms of physical processes. We also propose a field study through several geophysical methods, as electrical resistivity tomography, seismoelectrics, and GPR, in order to combine the results in terms of water-content dependence in soils.

  3. Numerical Simulation of Conductivity Gradient-Induced Electrokinetic Flow Instabilities

    NASA Astrophysics Data System (ADS)

    Bradford, Stephen; Meinhart, Carl

    2006-03-01

    This research is focused on the electrokinetic flow instabilities observed in long, thin microchannels with conductivity gradients orthogonal to the streamwise direction and applied potential. This situation often occurs in field amplified sample stacking (FASS) and isoelectric focusing, where control of the instabilities is imperative. Alternatively, the inherently chaotic flow patterns can be leveraged to fabricate an efficient micromixer under specific conditions. These instabilities arise from fluid body forces generated by the action of applied electric fields on electrolyte concentration-based conductivity gradients. A model is developed to describe the phenomena in general and applied specifically to thin microchannels with the conductivity gradient perpendicular to the applied field (both DC and AC). A higher-order, depth averaged correlation is proposed to account for the out of plane effects. Numerical simulations performed using COMSOL 3.2 are compared to 2-D and 3-D simulations as well as experimental data for multiple geometries with good agreement.

  4. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1997-04-30

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. They then address the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  5. Separation of bisbenzylisoquinoline alkaloids by micellar electrokinetic chromatography.

    PubMed

    Kuo, Ching-Hua; Sun, Shao-Wen

    2002-01-01

    The micellar electrokinetic chromatographic (MEKC) separation of seven bisbenzylisoquinoline alkaloids has been developed. The effects of various separating factors were studied. Optimum separation was achieved using a buffer (pH 9.2) of 20 mM sodium borate and 20 mM sodium dihydrogen phosphate buffer containing 55 mM sodium cholate; the optimum voltage and injection time were 21 kV and 0.05 min, respectively. Highest peak efficiency was obtained when the analytes were dissolved in 10 mM sodium dodecyl sulphate as sample matrix for injection. The elution order of the bisbenzylisoquinoline alkaloids was related to their lipophilicity. The resolution, run time and detection limits of the MEKC method were compared with those of an HPLC method developed previously.

  6. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  7. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation.

    PubMed

    Liu, Gengbo; Pastakia, Meet; Fenn, Michael B; Kishore, Vipuil

    2016-05-01

    Plastic compression is a collagen densification process that has been widely used for the development of mechanically robust collagen-based materials. Incorporation of bioglass within plastically compressed collagen gels has been shown to mimic the microstructural properties of native bone and enhance in vitro cell-mediated mineralization. The current study seeks to decouple the effects of collagen densification and bioglass incorporation to understand the interplay between collagen packing density and presence of bioglass on cell-mediated mineralization. Saos-2 cell-mediated mineralization was assessed as a measure of the osteoconductivity of four different collagen gels: (1) uncompressed collagen gel (UC), (2) bioglass incorporated uncompressed collagen gel (UC + BG), (3) plastically compressed collagen gel (PC), and (4) bioglass incorporated plastically compressed collagen gel (PC + BG). The results indicated that collagen densification enhanced mineralization as shown by SEM, increased alkaline phosphatase activity and produced significantly higher amounts of mineralized nodules on PC gels compared to UC gels. Further, the amount of nodule formation on PC gels was significantly higher compared to UC + BG gels indicating that increase in matrix stiffness due to collagen densification had a greater effect on cell-mediated mineralization compared to bioglass incorporation into loosely packed UC gels. Incorporation of bioglass into PC gels further enhanced mineralization as evidenced by significantly larger nodule size and higher amount of mineralization on PC + BG gels compared to PC gels. In conclusion, collagen densification via plastic compression improves the osteoconductivity of collagen gels. Further, incorporation of bioglass within PC gels has an additive effect and further enhances the osteoconductivity of collagen gels.

  8. Nonlinear Amplification in Electrokinetic Pumping in Nanochannels in the Presence of Hydrophobic Interactions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chatterjee, Dipankar; Bakli, Chirodeep

    2013-05-01

    We discover a nonlinear coupling between the hydrophobicity of a charged substrate and electrokinetic pumping in narrow fluidic confinements. Our analyses demonstrate that the effective electrokinetic transport in nanochannels may get massively amplified over a regime of bare surface potentials and may subsequently get attenuated beyond a threshold surface charging condition because of a complex interplay between reduced hydrodynamic resistance on account of the spontaneous inception of a less dense interfacial phase and ionic transport within the electrical double layer. We also show that the essential physics delineated by our mesoscopic model, when expressed in terms of a simple mathematical formula, agrees remarkably with that portrayed by molecular dynamics simulations. The nontrivial characteristics of the initial increment followed by a decrement of the effective zeta potential with a bare surface potential may open up the realm of hitherto-unexplored operating regimes of electrohydrodynamically actuated nanofluidic devices.

  9. Electrokinetic Transport in Nanochannels Grafted with Polyelectrolyte Brushes with End-Charging

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Chen, Guang

    2015-11-01

    Electrokinetic transport in nanochannels grafted with polyelectrolyte (PE) brushes is important for applications such as ion transport, ion manipulation, flow valving, etc. We discuss here a semi-analytical mean field theory approach to study electrokinetic transport in nanochannels grafted with polyelectrolyte brushes with end-charging. The model first probes the thermodynamics and the electrostatics of the PE brushes by appropriately accounting for the entropic (elastic), excluded volume, and electrostatic effects. The resulting knowledge on the electrostatic potential and the PE configuration is next used to obtain the electroosmotic transport. Results demonstrate the role of surface charges (at the end of the PE brushes) in modifying (shrinking or swelling) the brush height. This, in turn, alters the electroosmotic body force and the PE brush layer induced drag force on the fluid flow; therefore, the flow field eventually evolves from a non-trivial interplay of the PE electrostatic, entropic, and excluded volume effects.

  10. A method of producing electrokinetic power through forward osmosis

    NASA Astrophysics Data System (ADS)

    Cherng Hon, Kar; Zhao, Cunlu; Yang, Chun; Chay Low, Seow

    2012-10-01

    A power generation method for harvesting renewable energy from salinity gradient is proposed. The principle of the proposed method encompasses forward osmosis (FO) and electrokinetic phenomena. With the salinity difference between draw and feed solutions, FO allows spontaneous water flow across a semi-permeable membrane. The flow of water is then directed through a porous medium where the electric power is generated from the electrokinetic streaming potential. With a glass porous medium and a commercial flat sheet FO membrane in a batch mode configuration, our lab scale experimental system has demonstrated the produced electrokinetic voltages of about several hundreds of milli-volts.

  11. Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms

    DOE PAGES

    Gebraad, Pieter M. O.; Churchfield, Matthew J.; Fleming, Paul A.

    2016-10-03

    Atmospheric stability conditions have an effect on wind turbine wakes. This is an important factor in wind farms in which the wake properties affect the performance of downstream turbines. In the stable atmosphere, wind direction shear has a lateral skewing effect on the wakes. In this study, we describe changes to the FLOw Redirection and Induction in Steady-state (FLORIS) wake engineering model to incorporate and parameterize this effect.

  12. Selective Label-free Electrokinetic Cell Tracker (SELECT): a novel liquid platform for cell characterization

    NASA Astrophysics Data System (ADS)

    Taruvai Kalyana Kumar, Rajeshwari; de Mello Gindri, Izabelle; Kinnamon, David; Kanchustambham, Pradyotha; Rodrigues, Danieli; Prasad, Shalini; BiomaterialsOsseointegration; Novel Engineering Lab Collaboration

    2015-03-01

    Characterization and analysis of rare cells provide critical cues for early diagnosis of diseases. Electrokinetic cell separation has been previously established to have greater efficiency when compared to traditional flow cytometry methods. It has been shown by many researchers that buffer solutions in which cells are suspended in, have enormous effects on producing required dielectrophoretic (DEP) forces to characterize cells. Most commonly used suspension buffers used are deionized water and cell media. However, these solutions exhibit high level of intrinsic noise, which greatly masks the electrokinetic signals from cells under study. Ionic liquids (ILs) show promise towards the creation of conductive fluids with required electrical properties. The goal of this project is to design and test ILs for enhancing DEP forces on cells while creating an environment for preserving their integrity. We analyzed two methylimidazolium based ILs as suspension medium for cell separation. These dicationic ILs possess slight electrical and structural differences with high thermal stability. The two ILs were tested for cytotoxicity using HeLa and bone cells. The effects of electrical neutrality, free charge screening due to ILs towards enhanced electrokinetic signals from cells were studied with improved system resolution and no harmful effects.

  13. Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes

    PubMed Central

    Yang Ng, Wee; Ramos, Antonio; Cheong Lam, Yee; Rodriguez, Isabel

    2012-01-01

    This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics. PMID:22662084

  14. Analysis of insecticidal proteins from Bacillus thuringiensis and recombinant Escherichia coli by capillary electrokinetic chromatography.

    PubMed

    Luong, John H T; Male, Keith B; Mazza, Alberto; Masson, Luke; Brousseau, Roland

    2004-10-01

    Bacillus thuringiensis and recombinant Escherichia coli proteinaceous protoxins were subject to proteolysis and analyzed by capillary electrokinetic chromatography. Three resulting toxins (65 kDa) were baseline-resolved within 22 min using a 10 mM borate, pH 11 separation buffer consisting of 25 mM sodium dodecyl sulfate (SDS) and 30 mM phytic acid. The toxins displayed differential interactions with the SDS and phytic acid phases to effect their separation. The ion-pairing interaction between the analyte and phytic acid was also useful in preventing adsorption to the capillary walls and thus enhanced separation resolution and efficiency. The use of electrokinetic chromatography allows achievement of the separation in a significantly shorter time than conventional high-performance liquid chromatography (HPLC) using a diethylaminoethyl (DEAE) weak-anion exchanger.

  15. Rapid antimicrobial susceptibility testing with electrokinetics enhanced biosensors for diagnosis of acute bacterial infections.

    PubMed

    Liu, Tingting; Lu, Yi; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2014-11-01

    Rapid pathogen detection and antimicrobial susceptibility testing (AST) are required in diagnosis of acute bacterial infections to determine the appropriate antibiotic treatment. Molecular approaches for AST are often based on the detection of known antibiotic resistance genes. Phenotypic culture analysis requires several days from sample collection to result reporting. Toward rapid diagnosis of bacterial infection in non-traditional healthcare settings, we have developed a rapid AST approach that combines phenotypic culture of bacterial pathogens in physiological samples and electrochemical sensing of bacterial 16S rRNA. The assay determines the susceptibility of pathogens by detecting bacterial growth under various antibiotic conditions. AC electrokinetic fluid motion and Joule heating induced temperature elevation are optimized to enhance the sensor signal and minimize the matrix effect, which improve the overall sensitivity of the assay. The electrokinetics enhanced biosensor directly detects the bacterial pathogens in blood culture without prior purification. Rapid determination of the antibiotic resistance profile of Escherichia coli clinical isolates is demonstrated.

  16. Alcohol Treatment and Cognitive-Behavioral Therapy: Enhancing Effectiveness by Incorporating Spirituality and Religion

    ERIC Educational Resources Information Center

    Hodge, David R.

    2011-01-01

    Cognitive-behavioral therapy (CBT) is an effective modality for the treatment of alcoholism. Given widespread interest in incorporating spirituality into professional treatment, this article orients practitioners to spiritually modified CBT, an approach that may enhance outcomes with some spiritually motivated clients. More specifically, by…

  17. The Effect of Incorporating Cooperative Learning Principles in Pair Programming for Student Teachers

    ERIC Educational Resources Information Center

    Mentz, E.; van der Walt, J. L.; Goosen, L.

    2008-01-01

    Based on their quantitative and qualitative investigations, the authors conclude that pair programming as a strategy for teaching student teachers could be made more effective through the incorporation of principles associated with cooperative learning. They substantiate this claim by referring to a literature study about the advantages and…

  18. 46 CFR 162.017-1 - Preemptive effect; incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Pressure-Vacuum Relief, for Tank Vessels § 162.017-1 Preemptive effect; incorporation by reference. (a) The.../Vacuum Valves for Cargo Tanks, First Edition (Sep. 1, 2000), (“ISO 15364”), IBR approved for § 162.017-3....

  19. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid.

    PubMed

    Crisp, S; Wilson, A D

    1976-01-01

    A description is give of the effect on the ASPA cement reaction of tartaric acid incorporated in the cement liquid. Tartaric acid acts as an accelerator that aids in the extraction of ions from the aluminosilicate glass and facilitates their binding to the polyanion chains. Postgelation hardening is significantly increased. Working time is unaffected possibly because cations are initially present as complexes.

  20. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods

    PubMed Central

    2014-01-01

    Background Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. Methods We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. Results In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. Conclusions The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes. PMID:24888356

  1. The effectiveness of incorporating a real-time oculometer system in a commercial flight training program

    NASA Technical Reports Server (NTRS)

    Jones, D. H.; Coates, G. D.; Kirby, R. H.

    1982-01-01

    The effectiveness on pilot and trainee performance and scanning behavior of incorporating a real time oculometer system in a commerical flight training program was assessed. Trainees received simulator training in pairs requiring the trainees to alternate the order of training within a session. The 'third day phenomenon' of performance decrement was investigated, including the role of order of training on performance.

  2. Effect of the mode of croscarmellose sodium incorporation on tablet dissolution and friability.

    PubMed

    Gordon, M S; Chatterjee, B; Chowhan, Z T

    1990-01-01

    A computer-optimized experimental design was used to study the effect of incorporating a "super disintegrant", croscarmellose sodium, intragranularly, extragranularly, or distributed equally between the two phases of a tablet in which a poorly soluble drug constituted at least 92.5% of the formulation. The results were analyzed by means of a general quadratic response surface model and suggest that tablets with the same total concentration of super disintegrant dissolve at a faster rate when the super disintegrant is included intragranularly. Tablet friability was not affected by the method of super disintegrant incorporation.

  3. Electro-kinetic dewatering of oily sludges.

    PubMed

    Yang, Lin; Nakhla, George; Bassi, Amarjeet

    2005-10-17

    An oily sludge from a rendering facility was treated using electro-kinetic (EK) techniques employing two different experimental designs. The bench scale used vertical electrodes under different operational conditions, i.e. varied electrode spacing at 4, 6 and 8 cm with electric potential of 10, 20 and 30 V, respectively. The highest water removal efficiency (56.3%) at bench scale was achieved at a 4 cm spacing and 30 V. Comparison of the water removal efficiency (51.9%) achieved at the 20 V at 4 cm spacing showed that power consumption at 30 V was 1.5 times larger than that at 20 V, suggesting a further increase of electric potential is unnecessary. The solids content increased from an initial 5 to 11.5 and 14.1% for 20 and 30 V, respectively. The removal of oil and grease (O&G) was not significant at this experimental design. Another larger scale experiment using a pair of horizontal electrodes in a cylinder with 15 cm i.d. was conducted at 60 V at an initial spacing of 22 cm. More than 40.0% of water was removed and a very efficient oil separation from the sludge was achieved indicating the viability of electro-kinetic recovery of oil from industrial sludge.

  4. Coherent structures of electrokinetic instability in microflows

    NASA Astrophysics Data System (ADS)

    Dubey, Kaushlendra; Gupta, Amit; Bahga, Supreet Singh

    2016-11-01

    Electrokinetic instabilities occur in fluid flow where gradients in electrical properties of fluids, such as conductivity and permittivity, lead to a destabilizing body force. We present an experimental investigation of electrokinetic instability (EKI) in a microchannel flow with orthogonal conductivity gradient and electric field, using time-resolved visualization of a passive fluorescent scalar. This particular EKI has applications in rapid mixing at low Reynolds number in microchannels. Previous studies have shown that such EKI can be characterized by the electric Rayleigh number (Rae) which is the ratio of diffusive and electroviscous time scales. However, these studies were limited to temporal power spectra and time-delay phase maps of fluorescence data at a single spatial location. In the current work, we use dynamic mode decomposition (DMD) of time-resolved snapshots of EKI to investigate the spatio-temporal coherent structures of EKI for a wide range of Rae . Our analysis yields spatial variation of modes in EKI along with their corresponding temporal frequencies. We show that EK instability with orthogonal conductivity-gradient and electric field can be characterized by transverse and longitudinal coherent structures which depend strongly on Rae .

  5. Electrokinetic Fingering In Hele-Shaw Cells

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin

    2016-11-01

    Large scale flow problems in porous media, such as those encountered in underground oil reservoirs, are typically described by the Darcy's law. However, it is well known that many underground rock formations contain surface groups and minerals that dissociate in the presence of water. Convection of these charges by the pressure driven flow can then set up streaming current and streaming potential that affects the flow. Furthermore, electric fields that are often used to enhance oil recovery, e.g. by reducing the oil's viscosity through electro-thermal heating, drive electro-osmotic flows that could set up very large pressure in small pores. The full description of fluid flow thus requires a solution to the fully coupled electrokinetic problem. In their seminal work, Saffman and Taylor showed that the moving interface between two immiscible fluids in a porous medium becomes unstable if pushed by the low-viscosity fluid. Here we report on the role of electrokinetic phenomena on stability of these viscous fronts in Hele-Shaw cells by using analytic as well as numerical approaches. Interestingly, we find that the instability could be suppressed if the right physical conditions are met or otherwise enhanced, leading to greater mixing of two fluids.

  6. Microtubule alignment and manipulation using AC electrokinetics.

    PubMed

    Uppalapati, Maruti; Huang, Ying-Ming; Jackson, Thomas N; Hancock, William O

    2008-09-01

    The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.

  7. Development of microtitre plates for electrokinetic assays

    NASA Astrophysics Data System (ADS)

    Burt, J. P. H.; Goater, A. D.; Menachery, A.; Pethig, R.; Rizvi, N. H.

    2007-02-01

    Electrokinetic processes have wide ranging applications in microsystems technology. Their optimum performance at micro and nano dimensions allows their use both as characterization and diagnostic tools and as a means of general particle manipulation. Within analytical studies, measurement of the electrokinesis of biological cells has the sensitivity and selectivity to distinguish subtle differences between cell types and cells undergoing changes and is gaining acceptance as a diagnostic tool in high throughput screening for drug discovery applications. In this work the development and manufacture of an electrokinetic-based microtitre plate is described. The plate is intended to be compatible with automated sample loading and handling systems. Manufacturing of the microtitre plate, which employs indium tin oxide microelectrodes, has been entirely undertaken using excimer and ultra-fast pulsed laser micromachining due to its flexibility in materials processing and accuracy in microstructuring. Laser micromachining has the ability to rapidly realize iterations in device prototype design while also having the capability to be scaled up for large scale manufacture. Device verification is achieved by the measurement of the electrorotation and dielectrophoretic properties of yeast cells while the flexibility of the developed microtitre plate is demonstrated by the selective separation of live yeast from polystyrene microbeads.

  8. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  9. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.

    PubMed

    Daghighi, Yasaman; Li, Dongqing

    2010-03-01

    A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated.

  10. Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil.

    PubMed

    Shu, Rui; Dang, Fei; Zhong, Huan

    2016-02-01

    Differently-treated crops straw is being widely used to fertilize soil, while the potential impacts of straw amendment on the biogeochemistry and phytoavailability of mercury in contaminated soils are largely unknown. In the present study, differently-treated rice straw (dry straw, composted straw, straw biochar, and straw ash) was incorporated into mercury-contaminated soil at an environment relevant level (1/100, w/w), and mercury speciation, methylmercury (MeHg) phytoavailability (using ammonium thiosulfate extraction method, validated elsewhere) and bioaccumulation (in Indian mustard Brassica junceas) were quantified. Our results indicated that incorporating straw biochar or composted straw into soil would decrease phytoavailable MeHg levels, possibly due to the strong binding of MeHg with particulate organic matter in amended straw ('MeHg immobilization effect'). Consequently, MeHg accumulation in aboveground tissue of Indian mustard harvested from straw biochar-amended soil decreased by 20% compared to the control. Differently, incorporation of dry straw resulted in elevated MeHg levels in soil ('Mercury methylation effect'). Decomposition of amended dry straw in soil would evidently increase DOC levels (averagely 40%-195% higher than the control), which may subsequently mobilize MeHg in the soil ('MeHg mobilization effect'). Accordingly, incorporation of dry straw led to increased phytoavailable MeHg levels in the soil and doubled MeHg accumulation in Indian mustard. Our results provided the first evidence that incorporating differently-treated rice straw into soil could have diverse effects on mercury biogeochemistry and phytoavailability, which should be taken into account in risk assessment or soil remediation.

  11. [Modifying effect of incorporated 137Cs on the mechanism of adrenergic control of myocardial contraction].

    PubMed

    Lobanok, L M; Bulanova, K Ia; Gerasimovich, N V; Sineleva, M V; Miliutin, A A

    1994-01-01

    Incorporated 137Cs (absorbed dose of 0.26 Gy) causes decrease of myocardial's contractile function and inotropic response to beta-adrenagonists effect, isoproterenol-stimulated adenylate cyclase activity and beta-adrenoreceptors affinity. Adrenergic effects, mediated by alpha-adrenergic structures on heart contractile function, on the contrary, become stronger, that is due to the increase of the receptors' density on sarcolemma surface.

  12. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  13. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material.

    PubMed

    Thomas, Roshmi; Soumya, K R; Mathew, Jyothis; Radhakrishnan, E K

    2015-08-01

    Biosynthesized silver nanoparticles (AgNPs) incorporated polycaprolactone (PCL) nanomembrane was prepared by electrospinning as a cost-effective nanocomposite for application as an antimicrobial agent against wound infection. The nanocomposite membrane was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis and Scanning Electron microscopy (SEM). The hydrophilicity analysis of electrospun membranes as evaluated by water contact angle measurement showed the change of hydrophobicity of PCL to hydrophilic upon incorporation of silver nanoparticles. Better mechanical properties were also observed for PCL membrane due to the incorporation of silver nanoparticles and are highly supportive to explore its biomedical applications. Further antibacterial analysis of silver nanoparticle-incorporated PCL membrane against common wound pathogens coagulase-negative Staphylococcus epidermidis and Staphylococcus haemolyticus showed remarkable activity. As biosynthesized AgNPs are least explored for clinical applications, the current study is a promising cost-effective method to explore the development of silver nanoparticle-based electrospun nanocomposite to resist wound-associated infection.

  14. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  15. Electrokinetics dependence on water-content in sand

    NASA Astrophysics Data System (ADS)

    Allègre, V.; Lehmann, F.; Jouniaux, L.; Sailhac, P.; Matthey, P.

    2009-12-01

    The electrokinetic potential results from the coupling between the water flow and the electrical current because of the presence of ions within water. This coupling is well described in fluid-saturated media, however its behavior under unsaturated flow conditions is still discussed. We propose here an experimental approach which can clearly describe streaming potential variations in unsaturated conditions. Several drainage experiments have been performed within a column filled with a clean sand. Streaming potential measurements are combined to capillary pressure and to water content measurements each 10 centimeter along the column. In order to model hydrodymanics during each experiment, we solve Richards equation in an inverse way which allows us to establish the relation between hydraulic conductivity and water content, and retention relation. The electrokinetic coefficient C shows a more complex behavior than it was previously reported and can not be fitted by the existing models. We show that the normalized electrokinetic coefficient increases first when water saturation decreases from 100% to about 80% - 95%, and then decreases as the water saturation decreases, whereas all previous works described a unifrom decrease of the normalized electrokinetic coefficient as water saturation decreases. We delimited two water saturation domains, and deduced two different empirical laws describing the evolution of the electrokinetic coefficient in unsaturated conditions. Finally, electrical potentials data from four different drainage experiments and hydrodynamics were jointly inversed, including electrical conductivity measurements in order to find a robust description of the electrokinetic coefficient behavior in unsaturated conditions.

  16. Electrokinetic sample injection for high-sensitivity CZE (part 2): improving the quantitative repeatability and application of electrokinetic supercharging-CZE to the detection of atmospheric electrolytes.

    PubMed

    Xu, Zhongqi; Koshimidzu, Eiji; Hirokawa, Takeshi

    2009-10-01

    Electrokinetic supercharging (EKS) is defined as a technique that combines electrokinetic sample injection with transient ITP. Quantitative repeatability of EKS-CZE and the other CE methods using electrokinetic sample injection process is usually inferior in comparison with the CE methods using hydrodynamic or hydrostatic injection. This is due to some effects, such as the temperature change and the convection of the sample solution in the reservoir, as well as the change of the distance between an electrode and a capillary end (D(ec)). In particular, we have found that the D(ec) change might most seriously affect the repeatability, especially when the electrode is a thin Pt wire that could be unintentionally bent during sampling. By using a Teflon spacer to fix D(ec) to 1.1 mm, the RSD of peak area (n=5) was decreased from 20 to 3.4% in EKS-CZE for several metal cations. This D(ec) dependence of the sample amount injected was supported by computer simulation using CFD-ACE+ software. The improved repeatability (down to 5.1% at n=5, averaged RSD for Co(2+), Li(+), Ni(2+), Zn(2+) and Pb(2+)) was also experimentally attained by increasing the D(ec) to ca. 20 mm, which was also effective to obtain high sensitivity. Since the temperature and the convection effects on the repeatability are comparatively small in a proper laboratory environment, these effects were estimated from the EKS-CZE experiments using conditions such as warming and agitating the sample solution during EKS process. Finally, EKS-CZE was applied to the detection of ions from atmospheric electrolytes in high-purity water exposed to ambient air for 2 h. The microgram per liter levels of anions (chloride, sulfate, nitrate, formate, acetate and lactate) and cations (ammonium, calcium, sodium and magnesium) could be detected using conventional UV detector.

  17. Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Sintonen, Sakari; Kivisaari, Pyry; Pimputkar, Siddha; Suihkonen, Sami; Schulz, Tobias; Speck, James S.; Nakamura, Shuji

    2016-12-01

    The ammonothermal method is one of the most promising candidates for large-scale bulk GaN growth due to its scalability and high crystalline quality. However, emphasis needs to be put on understanding the incorporation and effects of impurities during growth. This article discusses how impurities are incorporated in different growth zones in basic ammonothermal GaN, and how they affect the structural, electrical and optical properties of the grown crystal. The influence of growth time on the impurity incorporation is also studied. We measure the oxygen, silicon, and carbon impurity concentrations using secondary ion mass spectrometry, and measure their effect on the lattice constant by high resolution x-ray diffraction (HR-XRD). We determine the resulting free carrier concentration by spatially resolved Fourier transform infrared spectroscopy and study the optical properties by spatially resolved low-temperature photoluminescence. We find that oxygen is incorporated preferentially in different growth regions and its incorporation efficiency depends on the growth direction. The oxygen concentration varies from 6.3×1020 cm-3 for growth on the { 11 2 bar 2 } planes to 2.2×1019 cm-3 for growth on the (0001) planes, while silicon and carbon concentration variation is negligible. This results in a large variation in impurity concentration over a small length scale, which causes significant differences in the strain within the boule, as determined by HR-XRD on selected areas. The impurity concentration variation induces large differences in the free carrier concentration, and directly affects the photoluminescence intensity.

  18. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  19. Effect of the mode of super disintegrant incorporation on dissolution in wet granulated tablets.

    PubMed

    Gordon, M S; Rudraraju, V S; Dani, K; Chowhan, Z T

    1993-02-01

    The effect of the mode of super disintegrant incorporation in wet granulated tablets was investigated with three super disintegrants: sodium starch glycolate, crospovidone, and croscarmellose sodium. The disintegrants were incorporated extragranularly or intragranularly or distributed equally between the two phases. Lactose, naproxen, or dibasic calcium phosphate was used as the principal tablet component to provide various degrees of solubility to the formulations. The formulations were dried to three different levels of moisture content. The results indicated that, for the formulations studied, extragranular incorporation resulted in faster dissolution than did equal distribution intragranularly and extragranularly, which in turn was superior to intragranular incorporation. Granulation moisture content was found to have a formulation-specific impact on tablet dissolution, with each main tablet component behaving in a different fashion. When all other factors were kept constant, there was a tendency for croscarmellose sodium to produce faster tablet dissolution than sodium starch glycolate or crospovidone. The super disintegrants tended to promote faster dissolution in a neutral pH medium than in an acidic medium.

  20. Electrokinetics of pH-regulated zwitterionic polyelectrolyte nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Li-Hsien; Tai, Yi-Hsuan; Wang, Nan; Hsu, Jyh-Ping; Qian, Shizhi

    2012-11-01

    The electrokinetic behavior of pH-regulated, zwitterionic polyelectrolyte (PE) nanoparticles (NPs) in a general electrolyte solution containing multiple ionic species is investigated for the first time. The NPs considered are capable of simulating entities such as proteins, biomolecules, and synthetic polymers. The applicability of the model proposed is verified by the experimental data of succinoglycan nanoparticles available in the literature. We show that, in addition to their effective charge density, counterion condensation, double-layer polarization, and electro-osmotic flow of unbalanced counterions inside the double layer all significantly affect the electrophoretic behaviors of NPs. Our model successfully predicts many interesting electrophoretic behaviors, which qualitatively agree with experimental observations available in the literature. In contrast, because the effects of double-layer polarization and charge regulation are neglected, the existing theoretical models fail to explain the experimental results. The results gathered provide necessary information for the interpretation of relevant electrophoresis data in practice, and for nanofluidic applications such as biomimetic ion channels and nanopore-based sensing of single biomolecules.The electrokinetic behavior of pH-regulated, zwitterionic polyelectrolyte (PE) nanoparticles (NPs) in a general electrolyte solution containing multiple ionic species is investigated for the first time. The NPs considered are capable of simulating entities such as proteins, biomolecules, and synthetic polymers. The applicability of the model proposed is verified by the experimental data of succinoglycan nanoparticles available in the literature. We show that, in addition to their effective charge density, counterion condensation, double-layer polarization, and electro-osmotic flow of unbalanced counterions inside the double layer all significantly affect the electrophoretic behaviors of NPs. Our model successfully

  1. Method and apparatus for electrokinetic transport

    NASA Technical Reports Server (NTRS)

    James, Patrick Ismail (Inventor); Stejic, George (Inventor)

    2012-01-01

    Controlled electrokinetic transport of constituents of liquid media can be achieved by connecting at least two volumes containing liquid media with at least one dielectric medium with opposing dielectric surfaces in direct contact with said liquid media, and establishing at least one conduit across said dielectric medium, with a conduit inner surface surrounding a conduit volume and at least a first opening and a second opening opposite to the first opening. The conduit is arranged to connect two volumes containing liquid media and includes a set of at least three electrodes positioned in proximity of the inner conduit surface. A power supply is arranged to deliver energy to the electrodes such that time-varying potentials inside the conduit volume are established, where the superposition of said potentials represents at least one controllable traveling potential well that can travel between the opposing conduit openings.

  2. Electrokinetic coupling in hydraulic fracture propagation

    NASA Astrophysics Data System (ADS)

    Cuevas, Nestor Herman

    2009-12-01

    Electrokinetic coupling is the most popular mechanism proposed to explain observed electromagnetic signals associated with the hydraulic fracturing of rocks. Measurements in both controlled laboratory and in situ conditions show clear evidence of the phenomenon. However there have been no reports on the description of the source mechanism, its relationship to a propagating crack, nor the electromagnetic field distribution due to such a source advancing through an electrically conductive medium. In this work it is shown that a surface electric current density arising on the walls of a fluid driven propagating crack can explain the measurements of electric streaming potential recorded during hydraulic fracturing experiments. The properties of the streaming current source are studied at the microscopic scale in light of the electrokinetic coupling expected at the outermost grains of the crack's surface. Expressions are derived for the average macroscopic transport equations describing the coupled fluid, and electrical current flow, at the interface between a fluid continuum and a homogeneous porous medium, where a Darcy flow regime (porous medium) competes with a rather Poiseuille type (fracture channels). The properties of the electrokinetic boundary sources are analyzed in light of the average electrical current density arising on the interface, as the fluid electrolyte flows in both the porous media and the adjacent fluid continuum. It is found that two coupling coefficients are required to describe the streaming current density. Indeed the flow is driven by both, a tangential pressure gradient, as well as by forward momentum transfer across the permeable boundary. The coupling coefficients are obtained from the spatial average of the tangential stress exerted on the pore surfaces, and they are found to be position dependent, as the tangential stress transitions from that on the porous conduits, to that on the surface of the outer most grains. Furthermore each

  3. Incorporating many-body effects into modeling of semiconductor lasers and amplifiers

    SciTech Connect

    Ning, C.Z.; Moloney, J.V.; Indik, R.A.

    1997-06-01

    Major many-body effects that are important for semiconductor laser modeling are summarized. The authors adopt a bottom-up approach to incorporate these many-body effects into a model for semiconductor lasers and amplifiers. The optical susceptibility function ({Chi}) computed from the semiconductor Bloch equations (SBEs) is approximated by a single Lorentzian, or a superposition of a few Lorentzians in the frequency domain. Their approach leads to a set of effective Bloch equations (EBEs). The authors compare this approach with the full microscopic SBEs for the case of pulse propagation. Good agreement between the two is obtained for pulse widths longer than tens of picoseconds.

  4. Electrokinetic concentration of charged molecules

    DOEpatents

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  5. Characteristics of near-surface electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Beamish, David

    1999-04-01

    Naturally occurring electric potentials at the Earth's surface are traditionally studied using self-potential geophysics. Recent theoretical and experimental work has reinvestigated the manner in which the measurement can be made dynamically using a pressure source. The methodology, often referred to as seismoelectric, relies on electrokinetic coupling at interfaces in the streaming potential coefficient. The ultimate aim of the developing methodologies lies in the detection of zones of high fluid mobility (permeability) and fluid geochemical contrasts within the subsurface. As yet there are no standard methods of recording and interpretation: the technique remains experimental. Field measurements are made using a seismic source and by recording electric voltage across arrays of surface dipoles. This study presents observational characteristics of electrokinetic coupling based on experiments carried out in a wide range of environments. Theory concerning the coupled elastic and electromagnetic wave equations in a saturated porous medium is discussed. It is predicted that coupling will produce electromagnetic radiation patterns from vertical electric dipoles generated at interfaces. Surface- and body-wave coupling mechanisms should provide different time-distance patterns. Vertical electric dipole radiation sources are modelled and their spatial characteristics presented. A variety of experimental configurations have been used, and geometries that exploit phase asymmetry to enhance the separation of signal and noise are emphasized. The main experimental results presented are detailed observations in the immediate vicinity of the source. Simultaneous arrivals across arrays of surface dipoles are not common. The majority of such experiments have indicated that shot-symmetric voltages which display low-velocity moveout are the dominant received waveforms.

  6. Implementation of Electrokinetic-ISCO Remediation

    NASA Astrophysics Data System (ADS)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  7. Electrokinetic Stretching of Tethered DNA

    PubMed Central

    Ferree, Sean; Blanch, Harvey W.

    2003-01-01

    During electrophoretic separations of DNA in a sieving medium, DNA molecules stretch from a compact coil into elongated conformations when encountering an obstacle and relax back to a coil upon release from the obstacle. These stretching dynamics are thought to play an important role in the separation mechanism. In this article we describe a silicon microfabricated device to measure the stretching of tethered DNA in electric fields. Upon application of an electric field, electro-osmosis generates bulk fluid flow in the device, and a protocol for eliminating this flow by attaching a polymer brush to all silicon oxide surfaces is shown to be effective. Data on the steady stretching of DNA in constant electric fields is presented. The data corroborate the approximate theory of hydrodynamic equivalence, indicating that DNA is not free-draining in the presence of both electric and nonelectric forces. Finally, these data provide the first quantitative test of a Stigter and Bustamante's detailed theory of electrophoretic stretching of DNA without adjustable parameters. The agreement between theory and experiment is good. PMID:14507716

  8. Improvement of reproducibility and sensitivity by reducing matrix effect in micellar electrokinetic chromatography for determination of amino acids in turtle jelly.

    PubMed

    Li, Lin-Qiu; Cai, Yue; Yang, Mei; Shen, Qing; Yu, Ka-Ming; Cheung, Hon-Yeung

    2015-05-01

    Matrix effect (ME) is commonly seen in electrophoretic separation, but this phenomenon lacks any systematic study. Our work aimed to find out the relationship between separation efficiency and current, and then figure out an effective, simple, and economic solution to overcome the negative impact of ME. This present study showed that small amount of NaCl (≤0.005 mg/mL) in the sample had no impact on the separation but enhanced the sensitivity. However, when concentration of NaCl increased above 0.005 mg/mL, it alleviated the separation efficiency, sensitivity, and migration time. Besides, increasing NaCl concentration resulted in increasing turning point. The study of relationship of current and NaCl concentration indicated that when the TP of a sample is higher than 62.36 μA, desalination is necessary. Since the reported desalination methods are either expensive or complicated, we developed a simple and economic method by simply adding 12 times (volume) of chloroform/methanol (2:1, v/v) into the sample. When applied this method to turtle jelly, the number of theoretical plate (N) of 20 amino acids got up to threefold enhancement.

  9. Effect of antimony incorporation on the density, shape, and luminescence of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, J. F.; Chiang, C. H.; Wu, Y. H.; Chang, L.; Chi, J. Y.

    2008-07-01

    This work investigates the surfactant effect on exposed and buried InAs quantum dots (QDs) by incorporating Sb into the QD layers with various Sb beam equivalent pressures (BEPs). Secondary ion mass spectroscopy shows the presence of Sb in the exposed and buried QD layers with the Sb intensity in the exposed layer substantially exceeding that in the buried layer. Incorporating Sb can reduce the density of the exposed QDs by more than two orders of magnitude. However, a high Sb BEP yields a surface morphology with a regular periodic structure of ellipsoid terraces. A good room-temperature photoluminescence (PL) at ˜1600 nm from the exposed QDs is observed, suggesting that the Sb incorporation probably improves the emission efficiency by reducing the surface recombination velocity at the surface of the exposed QDs. Increasing Sb BEP causes a blueshift of the emission from the exposed QDs due to a reduction in the dot height as suggested by atomic force microscopy. Increasing Sb BEP can also blueshift the ˜1300 nm emission from the buried QDs by decreasing the dot height. However, a high Sb BEP yields a quantum well-like PL feature formed by the clustering of the buried QDs into an undulated planar layer. These results indicate a marked Sb surfactant effect that can be used to control the density, shape, and luminescence of the exposed and buried QDs.

  10. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles.

    PubMed

    Manca, Maria Letizia; Castangia, Ines; Caddeo, Carla; Pando, Daniel; Escribano, Elvira; Valenti, Donatella; Lampis, Sandrina; Zaru, Marco; Fadda, Anna Maria; Manconi, Maria

    2014-11-01

    Quercetin was incorporated in glycerosomes, new phospholipid-glycerol vesicles, and their protective effect against oxidative stress skin damages was extensively evaluated. In particular, the concentration-dependent effect of glycerol (from 10 to 50%) on vesicle suitability as cutaneous carriers of quercetin was carefully assessed. All vesicles were unilamellar and small in size (∼80-110 nm), as confirmed by cryo-TEM observation, with a drug incorporation efficiency ranging between 81 and 91%. SAXS studies, performed to investigate the bilayer arrangement, indicated a strong, dose-dependent interaction of glycerol with the polar portions of the phospholipid molecules, while quercetin did not significantly change the bilayer packing. In vitro studies on newborn pig skin underlined the concentration-dependent ability of glycerosomes to promote quercetin accumulation in the different layers, also confirmed by confocal microscopic observation of skin treated with fluorescent vesicles. Quercetin incorporated into liposomal and glycerosomal nanoformulations showed a strong ability to scavenge free radicals (DPPH test) and protect human keratinocytes in vitro against hydrogen peroxide damage. Moreover, quercetin-loaded vesicles were avidly taken up by keratinocytes in vitro. Overall, results indicate 40 and 50% glycerosomes as promising nanosystems for the improvement of cutaneous quercetin delivery and keratinocyte protection against oxidative stress damage.

  11. Effect of chlorphentermine on incorporation of (/sup 14/C)choline in the rat lung phospholipids

    SciTech Connect

    Gonmori, K.; Morita, T.; Mehendale, H.M.

    1986-03-01

    The effect of chlorphentermine (CP) treatment (50 mg/kg/day, per os (po)) on the incorporation of (/sup 14/C)choline into rat lung phospholipid was studied. Total phospholipid content was increased 2.0-fold and 1.7-fold after seven and /sup 14/ days, respectively, compared with the pair-fed rats. The incorporation of (14C)choline into phosphatidylcholine (PC) was significantly inhibited by either seven or 14 days of CP treatment. Nevertheless, the PC content was significantly increased by day 7 and stayed elevated at day 14 of CP treatment. Choline and phosphorylcholine contents were significantly decreased by the CP treatment. These results suggest that the higher accumulation of PC is due to inhibition of enzymes involved in the hydrolysis of phospholipids rather than to a stimulation of the phospholipid synthesis.

  12. Electrokinetic demonstration at the unlined chromic acid pit

    SciTech Connect

    Lindgren, E.R.; Hankins, M.G.; Mattson, E.D.; Duda, P.M.

    1998-01-01

    Heavy-metal contaminated soils are a common problem at Department of Energy (DOE)-operated sites and privately owned facilities throughout the nation. One emerging technology which can remove heavy metals from soil in situ is electrokinetics. To conduct electrokinetic (EK) remediation, electrodes are implanted into the ground, and a direct current is imposed between the electrodes. Metal ions dissolved in the soil pore water migrate towards an electrode where they can be removed. The electrokinetic program at Sandia National Laboratories (SNL) has been focusing on electrokinetic remediation for unsaturated soils. A patent was awarded for an electrokinetic electrode system designed at SNL for applications to unsaturated soils. Current research described in this report details an electrokinetic remediation field demonstration of a chromium plume that resides in unsaturated soil beneath the SNL Chemical Waste Landfill (CWL). This report describes the processes, site investigation, operation and monitoring equipment, testing procedures, and extraction results of the electrokinetic demonstration. This demonstration successfully removed chromium contamination in the form of chromium(VI) from unsaturated soil at the field scale. After 2700 hours of operation, 600 grams of Cr(VI) was extracted from the soil beneath the SNL CWL in a series of thirteen tests. The contaminant was removed from soil which has moisture contents ranging from 2 to 12 weight percent. This demonstration was the first EK field trial to successfully remove contaminant ions from and soil at the field scale. Although the new patented electrode system was successful in removing an anionic contaminant (i.e., chromate) from unsaturated sandy soil, the electrode system was a prototype and has not been specifically engineered for commercialization. A redesign of the electrode system as indicated by the results of this research is suggested for future EK field trials.

  13. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films

    SciTech Connect

    Jolly Bose, R.; Kumar, R. Vinod; Sudheer, S. K.; Mahadevan Pillai, V. P.; Reddy, V. R.; Ganesan, V.

    2012-12-01

    Silver incorporated tungsten oxide thin films are prepared by RF magnetron sputtering technique. The effect of silver incorporation in micro structure evolution, phase enhancement, band gap tuning and other optical properties are investigated using techniques such as x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and UV-Visible spectroscopy. Effect of silver addition in phase formation and band gap tuning of tungsten oxide thin films are investigated. It is found that the texturing and phase formation improves with enhancement in silver content. It is also found that as the silver incorporation enhances the thickness of the films increases at the same time the strain in the film decreases. Even without annealing the desired phase can be achieved by doping with silver. A broad band centered at the wavelength 437 nm is observed in the absorption spectra of tungsten oxide films of higher silver incorporation and this can be attributed to surface plasmon resonance of silver atoms present in the tungsten oxide matrix. The transmittance of the films is decreased with increase in silver content which can be due to increase in film thickness, enhancement of scattering, and absorption of light caused by the increase of grain size, surface roughness and porosity of films and enhanced absorption due to surface plasmon resonance of silver. It is found that silver can act as the seed for the growth of tungsten oxide grains and found that the grain size increases with silver content which in turn decreases the band gap of tungsten oxide from 3.14 eV to 2.70 eV.

  14. Effects of NO3(-) and NH4(+) and urea on each other's uptake and incorporation

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Ward, M. R.

    1986-01-01

    The purpose was to determine the optimal use by wheat plants of the N sources expected from processing biological waste products, NO3(-),NO2(-)NH4(+), and urea. The approach was to determine the uptake and metabolic products of each N source (from single and multiple component solutions), inhibitory effects of each, feedback inhibition, and overall in vivo regulation of the rates of assimilation of each by wheat plants. Previously, researchers determined the interactions of NO3(-),NO2(-),NH4(+) on each other's uptake and incorporation. The assimilation and some of its effects on NO3(-) and NH4(+) assimilation which have been completed to data are discussed.

  15. Inhibitory Effect of Solar Radiation on Thymidine and Leucine Incorporation by Freshwater and Marine Bacterioplankton

    PubMed Central

    Sommaruga, R.; Obernosterer, I.; Herndl, G. J.; Psenner, R.

    1997-01-01

    We studied the effect of solar radiation on the incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) and [(sup14)C]leucine ([(sup14)C]Leu) by bacterioplankton in a high mountain lake and the northern Adriatic Sea. After short-term exposure (3 to 4 h) of natural bacterial assemblages to sunlight just beneath the surface, the rates of incorporation of [(sup3)H]TdR and [(sup14)C]Leu were reduced at both sites by up to (symbl)70% compared to those for the dark control. Within the solar UV radiation (290 to 400 nm), the inhibition was caused exclusively by UV-A radiation (320 to 400 nm). However, photosynthetically active radiation (PAR) (400 to 700 nm) contributed almost equally to this effect. Experiments with samples from the high mountain lake showed that at a depth of 2.5 m, the inhibition was caused almost exclusively by UV-A radiation. At a depth of 8.5 m, where chlorophyll a concentrations were higher than those in the upper water column, the rates of incorporation of [(sup3)H]TdR were higher in those samples exposed to full sunlight or to UV-A plus PAR than in the dark control. In laboratory experiments with artificial UV light, the incorporation of [(sup3)H]TdR and [(sup14)C]Leu by mixed bacterial lake cultures was also inhibited mainly by UV-A. In contrast, in the presence of the green alga Chlamydomonas geitleri at a chlorophyll a concentration of 2.5 (mu)g liter(sup-1), inhibition by UV radiation was significantly reduced. These results suggest that there may be complex interactions among UV radiation, heterotrophic bacteria, and phytoplankton and their release of extracellular organic carbon. Our findings indicate that the wavelengths which caused the strongest inhibition of TdR and Leu incorporation by bacterioplankton in the water column were in the UV-A range. However, it may be premature to extrapolate this effect to estimates of bacterial production before more precise information on how solar radiation affects the transport of TdR and Leu into the cell

  16. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties.

    PubMed

    Dallan, Paula Rulf Marreco; Moreira, Patrícia da Luz; Petinari, Leandro; Malmonge, Sônia Maria; Beppu, Marisa Masumi; Genari, Selma Candelária; Moraes, Angela Maria

    2007-02-01

    The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions).

  17. Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Nardi, Rachel Prado Russo Delorenzo; Braz, Celso Eduardo; de Camargo, Andrea S. S.; Ribeiro, Sidney J. L.; Rocha, Lucas A.; Cassanjes, Fábia Castro; Poirier, Gael

    2015-11-01

    Tungsten phosphate glasses are known to be promising materials for several applications in optics such as non linear optical properties, lower phonon energy or photochromic effects related with tungsten oxide incorporation inside the phosphate network. In this study, lead fluoride has been incorporated in a 60NaPO3-40WO3 glass composition according to the ternary molar compositions (100 - x)[0.6NaPO3-0.4WO3]-xPbF2 with x varying from 0 to 60 mol%. The structural changes as a function of composition were investigated by thermal analysis, UV-visible absorption, Raman spectroscopy, X-ray diffraction of the crystallized samples, and Eu3+ emission in the visible. While DSC analyzes points out a strong decrease in the glass network connectivity and higher crystallization tendency with increasing PbF2 contents, Raman spectra clearly identify a progressive incorporation of PbF2 in the phosphate network with the formation of terminal Psbnd F and Wsbnd F bonds. These results are also in agreement with the crystallization of β-PbF2 observed for the most lead fluoride concentrated samples. Investigation of Eu3+ emission data in the visible showed longer 5D0 excited state lifetime values and higher quantum efficiencies. These results are discussed in terms of the assumption of higher local symmetry around Eu3+ with increasing PbF2 contents.

  18. Charged colloids and polyelectrolytes: from statics to electrokinetics

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Esztermann, A.; Wysocki, A.; Allahyarov, E.; Messina, R.; Jusufi, A.; Hoffmann, N.; Gottwald, D.; Kahl, G.; Konieczny, M.; Likos, C. N.

    2005-01-01

    A review is given on recent studies of charged colloidal suspensions and polyelectrolytes both in static and non-equilibrium situations. As far as static equilibrium situations are concerned, we discuss three different problems: 1) Sedimentation density profiles in charged suspensions are shown to exhibit a stretched non-bariometric wing at large heights and binary suspensions under gravity can exhibit an analog of the brazil-nut effect known from granular matter, i.e. the heavier particles settle on top of the lighter ones. 2) Soft polyelectrolyte systems like polyelectrolyte stars and microgels show an ultra-soft effective interaction and this results into an unusual equilibrium phase diagram including reentrant melting transitions and stable open crystalline lattices. 3) The freezing transition in bilayers of confined charged suspensions is discussed and a reentrant behaviour is obtained. As far as nonequilibrium problems are concerned, we discuss an interface instability in oppositely driven colloidal mixtures and discuss possible approaches to simulate electrokinetic effects in charged suspensions.

  19. Effects of tumour necrosis factor-α on BrdU incorporation in cultured human enterocytes

    PubMed Central

    McDevitt, J.; Feighery, C.; O'Farrelly, C.; Martin, G.; Weir, D. G.

    1995-01-01

    Bromodeoxyuridine incorporation is a useful method for studying the pattern of DNA synthesis in proliferating cells. The distribution pattern of incorporated BrdU in villus enterocytes of duodenal explants was analysed after exposure to TNFα in organ culture. TNFα caused a consistent, low level uptake of BrdU in the portion of the nucleus close to the nuclear membrane, this pattern was absent from the control cultures. As these epithelial cells are terminally arrested in G0, the BrdU incorporation was thought not to be due to S phase DNA synthesis, but rather a response to the cytotoxic influence of TNFα. Microtitre plate proliferation assays of cell density and DNA synthesis were devised to study the effects of TNFα on confluent monolayers of the human foetal jejunal cell line I407 and the mouse fibrosarcoma cell line L929. Both cell lines showed a similar response to TNFα. Exposure to TNFα alone did not reduce cell numbers but did cause a significant increase in DNA synthesis (p < 0.05). When cycloheximtde was added in tandem with TNFα there was a significant reduction in cell number (p < 0.001) and level of DNA synthesis (p < 0.01) indicative of cell death. The DNA of cells exposed to TNFα and cycloheximide was fragmented when viewed on an electrophoresis gel. The results show that BrdU incorporation might be a good indicator of damage to the DNA of cells after cytotoxic insult. TNFα may be responsible for villus enterocyte damage in enteropathies such as coeliac disease and GVHR of the small bowel. PMID:18475613

  20. Effects of Incorporating Carboxymethyl Chitosan into PMMA Bone Cement Containing Methotrexate.

    PubMed

    Liu, Bo-Ming; Li, Ming; Yin, Bao-Sheng; Zou, Ji-Yang; Zhang, Wei-Guo; Wang, Shou-Yu

    2015-01-01

    Treatment of bone metastases usually includes surgical resection with local filling of methotrexate (MTX) in polymethyl methacrylate (PMMA) cement. We investigated whether incorporating carboxymethyl chitosan (CMCS) in MTX-PMMA cement might overcome disadvantages associated with MTX. To determine the optimal CMCS+MTX concentration to suppress the viability of cancer cells, an integrated microfluidic chip culturing highly metastatic lung cancer cells (H460) was employed. The mechanical properties, microstructure, and MTX release of (CMCS+MTX)-PMMA cement were evaluated respectively by universal mechanical testing machine, scanning electron microscopy (SEM), and incubation in simulated body fluid with subsequent HPLC-MS. Implants of MTX-PMMA and (CMCS+MTX)-PMMA cement were evaluated in vivo in guinea pig femurs over time using spiral computed tomography with three-dimensional image reconstruction, and SEM at 6 months. Viability of H460 cells was significantly lowest after treatment with 57 μg/mL CMCS + 21 μg/mL MTX, which was thus used in subsequent experiments. Incorporation of 1.6% (w/w) CMCS to MTX-PMMA significantly increased the bending modulus, bending strength, and compressive strength by 5, 2.8, and 5.2%, respectively, confirmed by improved microstructural homogeneity. Incorporation of CMCS delayed the time-to-plateau of MTX release by 2 days, but increased the fraction released at the plateau from 3.24% (MTX-PMMA) to 5.34%. Relative to the controls, the (CMCS+MTX)-PMMA implants integrated better with the host bone. SEM revealed pores in the cement of the (CMCS+MTX)-PMMA implants that were not obvious in the controls. In conclusion, incorporation of CMCS in MTX-PMMA appears a feasible and effective modification for improving the anti-tumor properties of MTX-PMMA cement.

  1. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Haynes, J. A.; Wright, G.; Pint, B. A.; Cooley, K. M.; Lee, W. Y.; Liaw, P. K.

    2001-07-01

    The effects of Pt incorporation on the isothermal oxidation and diffusion behavior of low-sulfur aluminide bond coatings were investigated. Aluminide (NiAl) coatings and Pt-modified aluminide (Ni,Pt)Al coatings were synthesized on a low-sulfur, yttrium-free single-crystal Ni-based superalloy by a high-purity, low-activity chemical vapor deposition (CVD) aluminizing procedure. The isothermal oxidation kinetics and scale adhesion behavior of CVD NiAl and (Ni,Pt)Al coatings before and after isothermal oxidation were determined by electron microprobe analysis. Platinum did not reduce oxide-scale growth kinetics. No significant differences in bulk refractory metal (W, Ta, Re, and Mo) distributions were observed as a result of Pt incorporation. Spallation of the alumina scale and the formation of large voids along the oxide-metal interface were commonly observed over the NiAl coating grain boundaries after 100 hours at 1150 °C. In contrast, no spallation of Al2O3 scales occurred on (Ni,Pt)Al coating surfaces or grain boundaries, although the sulfur content in the CVD (Ni,Pt)Al coatings was higher than that of the CVD NiAl coatings. Most significantly, no voids were observed at the oxide-metal interface on (Ni,Pt)Al coating surfaces or cross sections after 200 hours at 1150 °C. It was concluded that a major beneficial effect of Pt incorporation on an aluminide coatings oxidation resistance is the elimination of void growth at the oxide-metal interface, likely by mitigation of detrimental sulfur effects.

  2. [Effect of the incorporation of additives on the aging of corn starch gels and "arepas"].

    PubMed

    Rivero de Padua, M; Verde, O; Lucena de Orellana, M; Arias, J

    1988-12-01

    This research was carried out to investigate the effect of the incorporation of various additives on the ageing of corn starch and arepas. Starches were extracted from the endosperm of degerminated corn by a wet milling process, and its retrogradation, with or without the incorporation of additives was evaluated using the Brabender amilograph and by measuring the viscosity changes of the starch gels through time, using a Brookfield viscometer model RVT. The most effective additives in retarding the rate of ageing of starch gels, were used in the arepas. Likewise, trained panelists were utilized to find the levels of the additives incorporated in the arepas, by running taste threshold tests for each one of the additives. Textural changes of the arepas--maintained at two different storage temperatures, 9 degrees and 23 degrees C--were evaluated using an Instron texturometer. Preliminary tests with the corn starch allowed to choose the following additives: distilled monoglicerides, guar gum and hydrogenated vegetable oil. The effect of 15 different combinations of these additives on the texture of arepas was then studied, and findings revealed that only three of them were able to totally revert the retrogradation process, and maintain the hardness and elasticity within the expected range of a fresh-made arepa, when this is reheated until reaching a maximum temperature of 49 degrees C. A 66% of the hardening of the arepas prepared without additives can be reverted with the reheating process, but only if the product has not suffered dehydration. When stored for 24 hours at room temperature, unpacked arepas have a surface moisture loss of 47%, and even if reheated, hardening becomes irreversible in 84.6% of them.

  3. Electrokinetically modulated peristaltic transport of power-law fluids.

    PubMed

    Goswami, Prakash; Chakraborty, Jeevanjyoti; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-01-01

    The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields.

  4. Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Okiyama, Yoshio; Nakano, Tatsuya; Tanaka, Shigenori

    2010-11-01

    We developed FMO-PB method, which incorporates solvation effects into the Fragment Molecular Orbital calculation with the Poisson-Boltzmann equation. This method retains good accuracy in energy calculations with reduced computational time. We calculated the solvation free energies for polyalanines, Alpha-1 peptide, tryptophan cage, and complex of estrogen receptor and 17 β-estradiol to show the applicability of this method for practical systems. From the calculated results, it has been confirmed that the FMO-PB method is useful for large biomolecules in solution. We also discussed the electric charges which are used in solving the Poisson-Boltzmann equation.

  5. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    PubMed

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH4) and nitrous oxide (N2O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH4 and N2O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH4 emissions and GWP per unit of grain yield (yield-scaled CH4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH4 emissions and GWP, leading to higher yield-scaled CH4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  6. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-05

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content.

  7. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.

    PubMed

    Kim, Do-Hyung; Jeon, Chil-Sung; Baek, Kitae; Ko, Sung-Hwan; Yang, Jung-Seok

    2009-01-15

    The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.

  8. Transport of radioactive ions in soil by electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, {sup 137}Cs and {sup 60}60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications.

  9. Method for eliminating gas blocking in electrokinetic pumping systems

    DOEpatents

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  10. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  11. Microchip separations of neutral species via micellar electrokinetic capillary chromatography

    SciTech Connect

    Moore, A.W. Jr.; Jacobson, S.C.; Ramsey, J.M.

    1995-11-15

    Micellar electrokinetic capillary chromatography (MECC) of three neutral coumarin dyes was performed on glass microchips. Manifolds of channels for analyte injection and separation were machined into one surface of the glass substrates using standard photolithographic, etching, and deposition techniques. Cover plates were then directly bonded over these channels to form capillary networks, with fluid flow in these networks controlled by varying the applied high-voltage potentials at the outlets. The separation capillary was 16.5 cm long for a serpentine channel chip and 1.3 cm long for a straight channel chip. Detection of analyte zones was accomplished by laser-induced fluorescence using the UV lines (nearly 350 nm) of an argon ion laser. At low applied electric field strengths, MECC analyses with on-chip injections gave high reproducibilities in peak areas and migration times (<1% for two of the three coumarins) and near constant separation efficiencies throughout the analysis. At high fields (>400 V/cm), analysis times were shorter, but separation efficiency decreased at later migration times. These peaks showed significant broadening, consistent with mass transfer effects. 14 refs., 6 figs., 2 tabs.

  12. Micellar electrokinetic chromatography of organic and peroxide-based explosives.

    PubMed

    Johns, Cameron; Hutchinson, Joseph P; Guijt, Rosanne M; Hilder, Emily F; Haddad, Paul R; Macka, Mirek; Nesterenko, Pavel N; Gaudry, Adam J; Dicinoski, Greg W; Breadmore, Michael C

    2015-05-30

    CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25°C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m(-1)) and high sensitivity (LOD typically less than 0.5 mg L(-1); around 1-1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25°C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L(-1) (or 31.2-304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.

  13. Elementary framework for cold field emission: Incorporation of quantum-confinement effects

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2013-12-21

    Although the Fowler-Nordheim (FN) equation serves as the foundation of cold field emission theory, it may not be suitable for predicting the emitted current density (ECD) from emitters with a quantum-confined electron supply. This work presents an analytical framework for treating cold field emission from metals that includes the effects of a quantum-confined electron supply. Within the framework, quantum confinement in emitters is classified into transverse and normal quantum confinement based on the orientation of the confinement relative to the emission direction. The framework is used to generate equations predicting the ECD from rectangular and cylindrical emitter geometries comprised of electron supplies of reduced dimensionality. Transverse quantum confinement of the electron supply leads to a reduction in the total ECD as transverse emitter dimensions decrease and normal quantum confinement results in an oscillatory ECD as a function of the normal quantum well width. Incorporating a geometry-dependent field enhancement factor into the model reveals an optimal transverse well width for which quantum confinement of the electron supply and field enhancement equally affect the ECD and a maximum total ECD for the emitter geometry at a given applied field is obtained. As a result, the FN equation over-predicts the ECD from emitters with transverse dimensions under approximately 5 nm, and in those cases, geometry-specific ECD equations incorporating quantum-confinement effects should be employed instead.

  14. Electrolysis-reducing electrodes for electrokinetic devices.

    PubMed

    Erlandsson, Per G; Robinson, Nathaniel D

    2011-03-01

    Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH⁻ in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O₂ and H₂ can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2 V, and the electrodes are stable for potentials of at least 100 V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices.

  15. Electrokinetic control of bacterial deposition and transport.

    PubMed

    Qin, Jinyi; Sun, Xiaohui; Liu, Yang; Berthold, Tom; Harms, Hauke; Wick, Lukas Y

    2015-05-05

    Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices.

  16. Determining the Effectiveness of Incorporating Geographic Information Into Vehicle Performance Algorithms

    SciTech Connect

    Sera White

    2012-04-01

    This thesis presents a research study using one year of driving data obtained from plug-in hybrid electric vehicles (PHEV) located in Sacramento and San Francisco, California to determine the effectiveness of incorporating geographic information into vehicle performance algorithms. Sacramento and San Francisco were chosen because of the availability of high resolution (1/9 arc second) digital elevation data. First, I present a method for obtaining instantaneous road slope, given a latitude and longitude, and introduce its use into common driving intensity algorithms. I show that for trips characterized by >40m of net elevation change (from key on to key off), the use of instantaneous road slope significantly changes the results of driving intensity calculations. For trips exhibiting elevation loss, algorithms ignoring road slope overestimated driving intensity by as much as 211 Wh/mile, while for trips exhibiting elevation gain these algorithms underestimated driving intensity by as much as 333 Wh/mile. Second, I describe and test an algorithm that incorporates vehicle route type into computations of city and highway fuel economy. Route type was determined by intersecting trip GPS points with ESRI StreetMap road types and assigning each trip as either city or highway route type according to whichever road type comprised the largest distance traveled. The fuel economy results produced by the geographic classification were compared to the fuel economy results produced by algorithms that assign route type based on average speed or driving style. Most results were within 1 mile per gallon ({approx}3%) of one another; the largest difference was 1.4 miles per gallon for charge depleting highway trips. The methods for acquiring and using geographic data introduced in this thesis will enable other vehicle technology researchers to incorporate geographic data into their research problems.

  17. Incorporation Effect of Silver Nanoparticles on Inverted Type Bulk-Heterojunction Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Matsumoto, Taisuke; Oku, Takeo; Akiyama, Tsuyoshi

    2013-04-01

    A series of bulk-heterojunction organic solar cells incorporating silver nanoparticles was fabricated and evaluated. Silver nanoparticles were incorporated in the hole-transport layer of the solar cells. Plasmonic absorption and the generation of localized surface plasmon resonance of silver nanoparticles were confirmed by absorption and surface enhanced Raman scattering spectra even in the hole-transport material. The incorporation of silver nanoparticles increased photoelectric conversion efficiencies, whose enhancement properties were varied by the incorporation amount of silver nanoparticles.

  18. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1996-04-01

    The objective of this research is to apply electrokinetics to remove colloidal coal and mineral particles from coal washing ponds without the addition of chemical additives. Colloidal particles do not settle gravitationally, but because their surfaces are charged one can produce settling by applying an external electric field. Of specific interest is a lake near Centralia, Washington used to wash coal prior to combustion in an electrical power generation facility. Laboratory experiments have demonstrated that electrokinetic treatment is feasible, so this project is examining how to scale up laboratory results to an industrial level. Electrode configurations, power requirements, and system properties are being studied.

  19. Fast Myoglobin Detection Using Nanofluidic Electrokinetic Trapping Technique

    NASA Astrophysics Data System (ADS)

    Chun, DongWon; Kim, Sang Hui; Song, Hyungwan; Kwak, Seungmin; Kim, YooChan; Seok, HyunGwang; Lee, Sang-Myung; Lee, Jeong Hoon

    2013-01-01

    We report on the preconcentration-enhanced fast collection of myoglobin protein for the rapid detection of myocardial infarction. We use a one-dimensional micro/nanofluidic chip for electrokinetic preconcentration and demonstrate that the preconcentration factor of 1 ng/ml Alexa Fluor 488-labeled myoglobin is ˜1000 within 200 s, where the protein had a weak negative charge, thereby making it hard to perform electrokinetic trapping for neutral-like proteins. The potential feasibility with new assay strategies for use in a rapid immunoassay screening test for myocardial infarction is discussed.

  20. [Evaluation of capillary chromatographic columns packed by electrokinetic packing method].

    PubMed

    Li, Z; You, H; Hu, S; Wei, W; Luo, G

    1997-01-01

    In this paper, a method for electrokinetic packing capillary columns is reported. A higher column effeciency was obtained by performing electrochromatography on electrokinetic packing columns. The highest column efficiency in number of theoretical plate per meter was more than 200000, corresponding to reduced plate height less than 2. The reproducibilities of the same column in different intervals and different columns prepared from the same or different batches were compared. The relative standard deviations of the number of theoretical plate and retention time were less than 10% and 8%, respectively. The results indicated that high column efficiency and good reproducibility can be obtained on these new capillary packed columns.

  1. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Han, I.-H.; Lee, I.-S.; Song, J.-H.; Lee, M.-H.; Park, J.-C.; Lee, G.-H.; Sun, X.-D.; Chung, S.-M.

    2007-09-01

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO3 concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  2. A data-driven model for influenza transmission incorporating media effects.

    PubMed

    Mitchell, Lewis; Ross, Joshua V

    2016-10-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of 'big data' coming from online social media and the like, large volumes of data on a population's engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies.

  3. A data-driven model for influenza transmission incorporating media effects

    PubMed Central

    Ross, Joshua V.

    2016-01-01

    Numerous studies have attempted to model the effect of mass media on the transmission of diseases such as influenza; however, quantitative data on media engagement has until recently been difficult to obtain. With the recent explosion of ‘big data’ coming from online social media and the like, large volumes of data on a population’s engagement with mass media during an epidemic are becoming available to researchers. In this study, we combine an online dataset comprising millions of shared messages relating to influenza with traditional surveillance data on flu activity to suggest a functional form for the relationship between the two. Using this data, we present a simple deterministic model for influenza dynamics incorporating media effects, and show that such a model helps explain the dynamics of historical influenza outbreaks. Furthermore, through model selection we show that the proposed media function fits historical data better than other media functions proposed in earlier studies. PMID:27853563

  4. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A

    USGS Publications Warehouse

    Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.

    2010-01-01

    The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.

  5. Separations of compounds of biological and environmental interest by micellar electrokinetic capillary chromatography

    SciTech Connect

    Balchunas, A.T.; Swaile, D.F.; Powell, A.C.; Sepaniak, M.J.

    1988-10-01

    Important criteria for the effective separation of compounds of biological or environmental interest by micellar electrokinetic capillary chromatography are discussed. Efficiencies of approximately 100,000 plates/meter are achieved in the separations of samples of derivatized amines, aflatoxins, and hydroxy aromatic compounds. Laser fluorometric detection is shown to be capable of detecting subpicogram injected quantities. Organic solvents such as 2-propanol and acetonitrile are added to the aqueous mobile phases normally used to improve the separation of hydrophobic compounds, impart different selectivities, and provide a means for gradient programming. Column diameter is found to influence efficiency, analysis time, and detection.

  6. Quantitative determination of amygdalin epimers by cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Isoza, T; Matano, Y; Yamamoto, K; Kosaka, N; Tani, T

    2001-07-20

    A new capillary electrophoresis method was developed for the quantitative determination of the amygdalin epimers, amygdalin and neoamygdalin, which are biologically significant constituents in the crude drugs, namely Persicae Semen and Armeniacae Semen. The effects of surfactants, additives and other analytical parameters were studied. As a result, the resolution of two epimers was performed by cyclodextrin-modified micellar electrokinetic chromatography with a buffer containing alpha-cyclodextrin and sodium deoxycholate. By the application of this method, a simple, fast and simultaneous quantitative determinations of amygdalin epimers in the crude drugs (Persicae Semen and Armeniacae Semen) and the Chinese herbal prescriptions (Keishi-bukuryo-gan and Mao-to) were achieved.

  7. Bile salt surfactants in micellar electrokinetic capillary chromatography: Application to hydrophobic molecule separations

    SciTech Connect

    Cole, R.O.; Sepaniak, M.J. . Dept. of Chemistry); Hinze, W.L. . Dept. of Chemistry); Gorse, J.; Oldiges, K. . Dept. of Chemistry)

    1990-01-01

    Bile Salt surfactants are used in the micellar electrokinetic capillary chromatography (MECC) separation of various hydrophobic compounds. The use of methanol in the mobile phase allows the separation of previously intractable compounds including polyaromatic hydrocarbons. The effects of methanol on critical micelle concentration is investigated for sodium dodecyl sulfate (SDS) and the bile salt sodium cholate. It is determined that the unique structure of the bile salt micelle is much more tolerant to the addition of organic solvents than SDS, thereby increasing the scope of applications of MECC to include hydrophobic compounds. 30 refs., 9 figs.

  8. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    PubMed

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect.

  9. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    SciTech Connect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  10. Is the societal approach wide enough to include relatives? Incorporating relatives' costs and effects in a cost-effectiveness analysis.

    PubMed

    Davidson, Thomas; Levin, Lars-Ake

    2010-01-01

    It is important for economic evaluations in healthcare to cover all relevant information. However, many existing evaluations fall short of this goal, as they fail to include all the costs and effects for the relatives of a disabled or sick individual. The objective of this study was to analyse how relatives' costs and effects could be measured, valued and incorporated into a cost-effectiveness analysis. In this article, we discuss the theories underlying cost-effectiveness analyses in the healthcare arena; the general conclusion is that it is hard to find theoretical arguments for excluding relatives' costs and effects if a societal perspective is used. We argue that the cost of informal care should be calculated according to the opportunity cost method. To capture relatives' effects, we construct a new term, the R-QALY weight, which is defined as the effect on relatives' QALY weight of being related to a disabled or sick individual. We examine methods for measuring, valuing and incorporating the R-QALY weights. One suggested method is to estimate R-QALYs and incorporate them together with the patient's QALY in the analysis. However, there is no well established method as yet that can create R-QALY weights. One difficulty with measuring R-QALY weights using existing instruments is that these instruments are rarely focused on relative-related aspects. Even if generic quality-of-life instruments do cover some aspects relevant to relatives and caregivers, they may miss important aspects and potential altruistic preferences. A further development and validation of the existing caregiving instruments used for eliciting utility weights would therefore be beneficial for this area, as would further studies on the use of time trade-off or Standard Gamble methods for valuing R-QALY weights. Another potential method is to use the contingent valuation method to find a monetary value for all the relatives' costs and effects. Because cost-effectiveness analyses are used for

  11. Resistivity imaging during electrokinetic remediation of sediments: practical challenges in the field

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Ceccarini, Alessio; Iannelli, Renato

    2016-04-01

    The use of geophysical techniques such as electrical resistivity and impedance tomography have proven to be effective for the investigation and monitoring of a variety of environmental processes. This study investigates the possibility of using resistivity imaging to monitor the progress of electrokinetic remediation, a decontamination process based on electrochemical methods. The resistivity is a parameter of great theoretical and practical interest. On one side, resistivity is strictly related to the pore fluid composition and provides information about the chemical state of the material subjected to remediation. On the other side, knowing the evolution and distribution of resistivity is of practical importance both at the design stage and during operation because it directly affects the electrical energy expenditures. Monitoring of electrokinetic processes both in laboratory and in field is usually carried out by point measurements and sample collection from discrete locations. Resistivity imaging is effective in providing low-cost, non-destructive, high space and time resolution mapping. During electrokinetic remediation an electric field is applied to the contaminated matrix to extract the pollutants. In the field, array of electrodes are generally employed to apply the electric field, arranged in a two-dimensional grid. The electrodes are installed inside wells to allow the circulation of electrolytes employed to enhance the extraction of the pollutants. In this study we describe the practical challenges both in the measurements and in the data processing encountered during the tomographic imaging of marine sediments subjected to electrokinetic remediation in a 150 m3 ex-situ treatment plant. In such system there are a number of constraints to overcome in order to obtain an effective tomographic image of the sediments: (1) the electric field applied for remediation cannot be powered off, thus this field represents the source for current injection for the

  12. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-01

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  13. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    SciTech Connect

    Li, Zhen; Bian, Xin; Karniadakis, George Em; Li, Xiantao

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  14. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism.

    PubMed

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  15. Alcohol treatment and cognitive-behavioral therapy: enhancing effectiveness by incorporating spirituality and religion.

    PubMed

    Hodge, David R

    2011-01-01

    Cognitive-behavioral therapy (CBT) is an effective modality for the treatment of alcoholism. Given widespread interest in incorporating spirituality into professional treatment, this article orients practitioners to spiritually modified CBT, an approach that may enhance outcomes with some spiritually motivated clients. More specifically, by integrating clients' spiritual beliefs and practices into treatment, this modality may speed recovery, enhance treatment compliance, prevent relapse, and reduce treatment disparities by providing more culturally congruent services. The process of constructing spiritually modified CBT self-statements is described and illustrated, and suggestions are provided for working with client spirituality in an ethical manner. The article concludes by emphasizing the importance of this approach in light of the growing spiritual diversity that characterizes contemporary society.

  16. River flow forecasting using a rainfall disaggregation model incorporating small-scale topographic effects

    NASA Astrophysics Data System (ADS)

    Misumi, R.; Bell, V. A.; Moore, R. J.

    2001-09-01

    River flow forecasting using rainfall predictions from a mesoscale weather prediction model in combination with a physically-based rainfall disaggregation model incorporating small-scale topographic variability is demonstrated. Rainfall predicted by the UK Met Office Mesoscale Model on a 16.8 km grid is disaggregated onto a 2 km grid using a rainfall model which adds the effect of small-scale topography. River flow is calculated by a distributed rainfall-runoff model using the output from the rainfall model. A thunderstorm event on 7 June 1996 over the Brue catchment in Somerset, England is used to evaluate the models. The rainfall model successfully forecasts the band-shaped rainfall field within the catchment and the error in the total amount of flow during the storm is only -12%. An error of -40% in the peak flow is attributed to the treatment of convective clouds in the model.

  17. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  18. Release property and antioxidant effectiveness of tocopherol-incorporated LDPE/PP blend films.

    PubMed

    Zhu, X; Lee, D S; Yam, K L

    2012-01-01

    Low-density polyethylene (LDPE)/polypropylene (PP) blend films in various blending ratios containing 3000 mg  kg⁻¹ of tocopherol were manufactured by an extrusion process. Tocopherol release properties were characterised and correlated with antioxidant effectiveness in retarding the oxidation of linoleic acid contacting the films at 40°C. The conditions without tocopherol (control) and with instant tocopherol addition corresponding to the amount included in the films were also prepared and compared with the film-contacting solutions. The effect of tocopherol inclusion and the blending ratio on their physical properties was also examined. A wide range of tocopherol diffusivity in 6.6 × 10⁻¹⁶-4.6 × 10⁻¹⁴m² s⁻¹ were obtained by blend films. As PP content increases, the diffusivity decreased sharply at the beginning and levelled off later. The slower release of tocopherol in LDPE/PP blend films corresponding to lower tocopherol diffusivity retained the higher tocopherol concentration in the linoleic acid system providing better antioxidant effectiveness of the extended induction period in oxidation. The tocopherol inclusion reduced tensile strength and transparency significantly in an affordable range with higher tensile strength given by a higher PP ratio. LDPE/PP blending can be a useful tool to modulate the release profile of tocopherol and thus the antioxidant effectiveness of the tocopherol-incorporated antioxidant packaging film.

  19. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.

    2015-12-01

    In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.

  20. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    EPA Science Inventory

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  1. Use of a fluorosurfactant in micellar electrokinetic capillary chromatography.

    PubMed

    de Ridder, R; Damin, F; Reijenga, J; Chiari, M

    2001-05-04

    A fluorosurfactant, the anionic N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]glycine potassium salt, trade name FC-129 [CAS 2991-51-7] was investigated for possible application in micellar electrokinetic capillary chromatography (MEKC). The surfactant was characterized with conductometric titration and test sample mixtures were investigated in MEKC systems, and compared with sodium dodecylsulphate. An increased efficiency and interesting selectivity differences were observed.

  2. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments

    SciTech Connect

    Reddy, K.R.; Chinthamreddy, S. . Dept. of Civil and Materials Engineering)

    1999-01-01

    This paper describes the migration of hexavalent chromium, Cr(VI), nickel, Ni(II), and cadmium, Cd(II), in clayey soils that contain different reducing agents under an induced electric potential. Bench-scale electrokinetic experiments were conducted using two different clays, kaolin and glacial till, both with and without a reducing agent. The reducing agent used was either humic acid, ferrous iron, or sulfide, in a concentration of 1000 mg/kg. These soils were then spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1000, 500 and 250 mg/kg, respectively, and tested under an induced electric potential of 1 VDC/cm for a duration of over 200 h. The reduction of chromium from Cr(VI) to Cr(III) occurred prior to electrokinetic treatment. The extent of this Cr(VI) reduction was found to be dependent on the type and amount of reducing agents present in the soil. The maximum reduction occurred in the presence of sulfides, while the minimum reduction occurred in the presence of humic acid. The concentration profiles in both soils following electrokinetic treatment showed that Cr(VI) migration was retarded significantly in the presence of sulfides due both to the reduction of Cr(VI) to Cr(III) as well as an increase in soil pH. This low migration of chromium is attributed to: (1) migration of Cr(VI) and the reduced Cr(III) fraction in opposite directions, (2) low Cr(III) migration due to adsorption and precipitation in high pH regions near the cathode in kaolin and throughout the glacial till, and (3) low Cr(VI) migration due to adsorption in the pH regions near the anode in both soils. Ni(II) and Cd(II) migrated towards the cathode in kaolin; however, the migration was significantly retarded in the presence of sulfides due to increased pH through most of the soil. Initial high pH conditions within the glacial till resulted in Ni(II) and Cd(II) precipitation, so the effects of reducing agents were inconsequential. Overall, this study demonstrated that the reducing

  3. Time-dependent electrokinetic flows of non-Newtonian fluids in microchannel-array for energy conversion

    NASA Astrophysics Data System (ADS)

    Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team

    2016-11-01

    We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).

  4. Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.

    PubMed

    Louie, Stacey M; Phenrat, Tanapon; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V

    2012-07-17

    Soft particle electrokinetic models have been used to determine adsorbed nonionic polymer and polyelectrolyte layer properties on nanoparticles or colloids by fitting electrophoretic mobility data. Ohshima first established the formalism for these models and provided analytical approximations ( Ohshima, H. Adv. Colloid Interface Sci.1995, 62, 189 ). More recently, exact numerical solutions have been developed, which account for polarization and relaxation effects and require fewer assumptions on the particle and soft layer properties. This paper characterizes statistical uncertainty in the polyelectrolyte layer charge density, layer thickness, and permeability (Brinkman screening length) obtained from fitting data to either the analytical or numerical electrokinetic models. Various combinations of particle core and polymer layer properties are investigated to determine the range of systems for which this analysis can provide a solution with reasonably small uncertainty bounds, particularly for layer thickness. Identifiability of layer thickness in the analytical model ranges from poor confidence for cases with thick, highly charged coatings, to good confidence for cases with thin, low-charged coatings. Identifiability is similar for the numerical model, except that sensitivity is improved at very high charge and permeability, where polarization and relaxation effects are significant. For some poorly identifiable cases, parameter reduction can reduce collinearity to improve identifiability. Analysis of experimental data yielded results consistent with expectations from the simulated theoretical cases. Identifiability of layer charge density and permeability is also evaluated. Guidelines are suggested for evaluation of statistical confidence in polymer and polyelectrolyte layer parameters determined by application of the soft particle electrokinetic theory.

  5. Effect of prehydrogenation on hydroconversion of Maya residuum: Part 2, Hydrogen incorporation

    SciTech Connect

    Beret, S.; Reynolds, J.G.

    1988-01-19

    Maya 650/sup 0/F residuum (Maya AR) was prehydrogenated over a standard hydroprocessing catalyst. The 650/sup 0/F residuum of this product (HMaya AR) and Maya AR were then separately hydroprocessed further at selected conditions. The products were examined by elemental, /sup 1/H, and /sup 13/C NMR analyses. For all processing steps, hydrogen was incorporated in capping fragments formed during cracking reactions, as well as in hydrogenation reactions, heteroatom removal, and hydrocarbon gas formation, but the distribution of the hydrogen was dependent upon the type and severity of the process. For the direct hydroconversion of Maya AR, 25 to 30% of the total hydrogen was incorporated for heteroatom removal and hydrocarbon gas formation. The remaining hydrogen was incorporated in hydrogenation and cracking reactions. For the two-step hydroconversion process, 30 to 40% of the total hydrogen was incorporated for heteroatom removal and hydrocarbon gas formation. The remaining was primarily incorporated in hydrogenation reactions. Some was incorporated into cracking reactions in the moderate severity case, but none was seen in the low severity case. The hydrogen incorporation during each specific processing step is discussed, along with an evaluation of the prehydrogenation step as a residuum conversion process option. These results will be also compared to previously reported hydrogen incorporation measurements on other feeds and processing methods. 8 figs., 8 tabs.

  6. Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity.

    PubMed

    Adamovich, Sergei V; Fluet, Gerard G; Merians, Alma S; Mathai, Abraham; Qiu, Qinyin

    2009-10-01

    Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study.

  7. The effects of catabolic and anabolic steroids on amino acid incorporation by skeletal-muscle ribosomes

    PubMed Central

    Bullock, Gillian; White, A. M.; Worthington, Judy

    1968-01-01

    1. A method is described for the routine isolation of ribosomes from small quantities of skeletal muscle that have been homogenized with the Ultra-Turrax tissue disintegrator. 2. Ribosomes prepared by this method from rats receiving triamcinolone acetonide or rabbits receiving cortisone acetate show a marked fall in their ability to incorporate amino acids when compared with ribosomes from control animals. 3. This fall in activity can be partially prevented in rats by pretreating the animals with an anabolic steroid, steroid 36644-Ba. 4. Testosterone (5mg./kg.) administered to rabbits in conjunction with cortisone acetate is not effective in maintaining ribosomal activity. However, steroid 36644-Ba at one-tenth of an equiandrogenic dose (0·05mg./kg.) is extremely effective. 5. The results with ribosomes isolated from rabbits support the concept that steroid 36644-Ba and possibly all anabolic steroids have an ability to counteract the catabolic action of corticosteroids that is greater than their androgenic activity would suggest. PMID:5673936

  8. The effectiveness of incorporating a real-time oculometer system in a commercial flight training program

    NASA Technical Reports Server (NTRS)

    Jones, D. H.; Coates, G. D.; Kirby, R. H.

    1983-01-01

    The effectiveness of incroporating a real-time oculometer system into a Boeing 737 commercial flight training program was studied. The study combined a specialized oculometer system with sophisticated video equipment that would allow instructor pilots (IPs) to monitor pilot and copilot trainees' instrument scan behavior in real-time, and provide each trainee with video tapes of his/her instrument scanning behavior for each training session. The IPs' performance ratings and trainees' self-ratings were compared to the performance ratings by IPs and trainees in a control group. The results indicate no difference in IP ratings or trainees' self-ratings for the control and experimental groups. The results indicated that the major beneficial role of a real-time oculometer system for pilots and copilots having a significant amount of flight experience would be for problem solving or refinement of instrument scanning behavior rather than a general instructional scheme. It is suggested that this line of research be continued with the incorporation of objective data (e.g., state of the aircraft data), measures of cost effectiveness and with trainees having less flight experience.

  9. Economic impacts of noxious facilities: Incorporating the effects of risk aversion

    SciTech Connect

    Nieves, L.A.

    1993-09-01

    Developing new sites for noxious facilities has become a complex process with many potential pitfalls. In addition to the need to negotiate conditions acceptable to the host community, siting success may depend on the facility proposer`s ability to identify a candidate site that not only meets technical requirements, but that is located in a community or region whose population is not highly averse to the risks associated with the type of facility being proposed. Success may also depend on the proposer accurately assessing potential impacts of the facility and offering an equitable compensation package to the people affected by it. Facility impact assessments, as typically performed, include only the effects of changes in population, employment and economic activity associated with facility construction and operation. Because of their scope, such assessments usually show a short-run, net economic benefit for the host region, making the intensely negative public reaction to some types and locations of facilities seem unreasonable. The impact component excluded from these assessments is the long-run economic effect of public perceptions of facility risk and nuisance characteristics. Recent developments in psychological and economic measurement techniques have opened the possibility of correcting this flaw by incorporating public perceptions in projections of economic impacts from noxious facilities.

  10. Effect of incorporation of ethylene glycol into PEDOT:PSS on electron phonon coupling and conductivity

    SciTech Connect

    Lin, Yow-Jon Ni, Wei-Shih; Lee, Jhe-You

    2015-06-07

    The effect of incorporation of ethylene glycol (EG) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on electron phonon coupling and conductivity is investigated. It is shown that the carrier density (N{sub C}) increases significantly and the carrier mobility (μ) increases slightly at 300 K. The increased intensity of the Raman spectrum between 1400 and 1450 cm{sup −1}, following EG treatment (that is, the quinoid-dominated structures of the PEDOT chain), leads to an increase in the number of polarons (bipolarons), which leads to an increase in N{sub C}. In addition, μ in PEDOT:PSS samples with or without EG addition exhibits a strong temperature dependence, which demonstrates the dominance of tunneling (hopping) at low (high) temperatures. The high conductivity of PEDOT:PSS samples with the addition of EG is attributed to the combined effect of the modification of the electron-phonon coupling and the increase in N{sub C} (μ)

  11. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  12. Unlimited-volume Electrokinetic Stacking Injection in Sweeping Capillary Electrophoresis Using a Cationic Surfactant

    PubMed Central

    Gong, Maojun; Wehmeyer, Kenneth R.; Limbach, Patrick A.; Heineman, William R.

    2008-01-01

    Sweeping is an effective and convenient way for online sample preconcentration in micellar electrokinetic chromatography (MEKC). The usual procedure includes a hydrodynamic injection step carried out by applying pressure to the sample vial followed by the subsequent sweeping and separation processes. The injected sample volume is limited by the dimensions of the capillary because a part of the capillary has to be left free of sample solution for the subsequent sweeping and separation steps. In addition, when a short capillary, such as 4-10 cm, is used for sweeping, the injected sample volume is small even if the entire capillary is filled with sample solution. In order to solve this problem, an electrokinetic stacking injection (EKSI) scheme was developed by using a cationic surfactant, dodecyltrimethylammonium bromide, for sweeping in capillary electrophoresis. An experimental model was proposed, and the entire process was theoretically analyzed. According to the theoretical discussion, the optimal conditions for two model analytes, 5-carboxyfluorescein (5-FAM) and sodium fluorescein (FL), were experimentally determined. The injected sample plug lengths for 5-FAM and FL under 20.1 kV for 60 min were experimentally estimated as 836 and 729 cm, corresponding to 28- and 24-fold the effective capillary length, respectively. The EKSI scheme resulted in increased detection factors for 5-FAM and FL of 4.5×103 and 4.0×103 using 60-minute injection relative to a traditional pressure injection. PMID:16944881

  13. Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay

    PubMed Central

    Mao, Xuhui; Wang, James; Ciblak, Ali; Cox, Evan E.; Riis, Charlotte; Terkelsen, Mads; Gent, David B.; Alshawabkeh, Akram N.

    2012-01-01

    Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK–enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective forestablis hingmicrobial reductive dechlorination capacity in low-permeability soils. PMID:22365139

  14. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  15. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil.

    PubMed

    Zhang, Peng; Jin, Chunji; Zhao, Zhenhuan; Tian, Guobin

    2010-05-15

    Chromium contaminated soil can be remediated by electrokinetic techniques. However, in practical application, Cr(VI) may migrate with water deep into the soil, contaminating previously unpolluted layers. Both horizontal and vertical electric fields were applied simultaneously to improve traditional electrokinetic remediation. Contrasting experiments using four operation modes (none, solely horizontal, solely vertical and 2D crossed electric field) were designed and tested at the bench-scale with the practical sample of chromium contaminated soil (1.3 x 10(5)mg/kg) from a chemical plant to investigate Cr(VI) migration downward in each test and the effectiveness and feasible of the new design. During the tests, Cr(VI) could migrate deep into the soil in the solely horizontal mode. Cr(VI) migration downward could be prevented by vertical barrier in the solely vertical mode. However, using the 2D crossed mode, Cr(VI) was significantly prevented from migrating downward and the chromium contaminated soil was treated effectively. Thus, the 2D crossed electric field is a promising and practical method for the remediation of contaminated soils.

  16. In-Situ Electrokinetic Remediation of Metal Contaminated Soils Technology Status Report

    DTIC Science & Technology

    2000-07-01

    demonstration of electrokinetic remediation at Naval Air Weapons Station (NAWS) Point Mugu. Dr. R. Mark Bricka, David Gent , and Chris Fetter of the...Profile 23 5 I. Introduction Electrokinetic remediation is an in-situ process in which an electrical field is created in a soil matrix by...technology at its current stage of development. 6 II. Technology Description Electrokinetic remediation is an in-situ process in which an

  17. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation.

  18. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  19. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  20. Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes.

    PubMed

    Barbosa, Ana Andréa Teixeira; Silva de Araújo, Hyrla Grazielle; Matos, Patrícia Nogueira; Carnelossi, Marcelo Augusto Guitierrez; Almeida de Castro, Alessandra

    2013-06-17

    The aim of this study is to examine the effects of nisin-incorporated cellulose films on the physicochemical and microbiological qualities of minimally processed mangoes. The use of antimicrobial films did not affect the physicochemical characteristics of mangoes and showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Alicyclobacillus acidoterrestris and Bacillus cereus. The mango slices were inoculated with S. aureus and L. monocytogenes (10(7)CFU/g), and the viable cell numbers remained at 10(5) and 10(6)CFU/g, respectively, after 12days. In samples packed with antimicrobial films, the viable number of L. monocytogenes cells was reduced below the detection level after 4days. After 6days, a reduction of six log units was observed for S. aureus. In conclusion, nisin showed antimicrobial activity in mangoes without interfering with the organoleptic characteristics of the fruit. This result suggests that nisin could potentially be used in active packing to improve the safety of minimally processed mangoes.

  1. Effect of flaxseed flour incorporation on the physical properties and consumer acceptability of cereal bars.

    PubMed

    Khouryieh, H; Aramouni, F

    2013-12-01

    Extensive research has revealed numerous nutritional and health benefits of flaxseed due primarily to its nutrients content. The objective of this study was to evaluate the effect of flaxseed flour addition on the physical and sensory characteristics of cereal bars. Four formulations of the flaxseed cereal bars were prepared by partially replacing oats with flaxseed flour added at levels of 0 (control), 6%, 12% and 18%. There were no significant differences (p > 0.05) in water activity, moisture and firmness values between the flaxseed bars and control. Flaxseed addition significantly (p < 0.05) decreased lightness and increased redness of the bars. There were no significant differences (p > 0.05) between the 12% flax cereal bars and the control with respect to sensory attributes and overall acceptability. The overall acceptability for both 12% flax bars and the control was in between 'like moderately' and 'like slightly' on the 9-point hedonic scale. The overall acceptability was most highly correlated with flavor acceptability for both control (r = 0.80) and 12% flax (r = 0.82) cereal bars. Flaxseed bars provided 12% dietary fiber of the daily recommended value. These results indicated that flaxseed flour incorporation up to 12% substantially enhanced the nutritional qualities of the cereal bars without affecting their sensory and quality properties.

  2. Effect of polymer microsphere incorporation on impact performance of STF cotton fabric composite

    NASA Astrophysics Data System (ADS)

    Suhaimi, M. S.; Mohamed, R.; Faiza, M. A.

    2010-05-01

    Liquid body armor system is recently being used compared to conventional body armor due to its lightweight, highly flexibility and reduced layered fabric. Shear thickening fluid (STF) system comprising of Polymer Microsphere (PMS) and solvent media are exploited in this study. Polymer Microsphere (eg: PMS) in solvent media varies with viscosity upon different PMS composition with and without surfactant. Fabrication of STF fabric system using Cotton laminate were performed using hand lay up with fixed areal density of 40% PMS content. Impact performance was evaluated using knife pendulum impact tester. Impact strength was found to increase with incorporation of STF system. STF addition significantly improves stab resistance of fabric. There were improvements of impact energy absorption for cotton fabric at different volume of STF used with 3 layers. For the three layer systems, impact performance showed improvement of 27.62% using 4ml of STF compared to use of 8ml of STF (12.44% impact improvement). For Cotton STF fabric composite, the effectiveness of the penetration was raised upon higher fabric layers. Overall, the STF-Cotton fabric composite are totally failure during testing, because of the cotton fabric is a fabric, which has very low strength. The addition of STF onto the cotton fabric system will not make the fabric becomes highly impact resistance.

  3. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes.

    PubMed

    Mei, Shenglin; Wang, Huaiyu; Wang, Wei; Tong, Liping; Pan, Haobo; Ruan, Changshun; Ma, Qianli; Liu, Mengyuan; Yang, Huiling; Zhang, Liang; Cheng, Yicheng; Zhang, Yumei; Zhao, Lingzhou; Chu, Paul K

    2014-05-01

    Most commercial dental implants are made of titanium (Ti) because Ti possesses excellent properties such as osseointegration. However, many types of Ti products still suffer from insufficient antibacterial capability and bacterial infection after surgery remains one of the most common and intractable complications. In this study, a dual process encompassing anodization and silver plasma immersion ion implantation (Ag PIII) is utilized to produce titania nanotubes (TiO₂-NTs) containing Ag at different sites and depths. The concentration and depth of the incorporated Ag can be tailored readily by changing the PIII parameters. The Ag-embedded TiO₂-NTs which retain the nanotubular morphology are capable of sterilizing oral pathogens as opposed to pure Ti plates and pristine TiO₂-NTs. Biological assays indicate that the in vitro and in vivo biocompatibility of the sample plasma-implanted at a lower voltage of 0.5 kV (NT-Ag-0.5) is significantly compromised due to the large amount of surface Ag. On the other hand, the sample implanted at 1 kV (NT-Ag-1.0) exhibits unimpaired effects due to the smaller surface Ag accumulation. Sample NT-Ag-1.0 is further demonstrated to possess sustained antibacterial properties due to the large embedded depth of Ag and the technique and resulting materials have large potential in dental implants.

  4. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins

    PubMed Central

    KÖROĞLU, Ayşegül; ŞAHİN, Onur; KÜRKÇÜOĞLU, Işın; DEDE, Doğu Ömür; ÖZDEMİR, Tonguç; HAZER, Baki

    2016-01-01

    ABSTRACT Objective The aim of the present study was to evaluate the mechanical and thermal characteristics of two denture base acrylic resins containing silver nanoparticles (AgNPs). Material and Methods Two different acrylic denture base resins (heat-polymerized and microwave polymerized) containing 0.3, 0.8 and 1.6 wt% AgNPs were evaluated for flexural strength, elastic modulus and impact strength. The glass transition temperature (Tg) and relative heat capacity (Cp) of the samples were determined from the Differential Scanning Calorimetry (DSC) results. For statistical analysis, two-way ANOVA and Tukey-HSD tests were performed. Results Addition of 0.8% and 1.6% AgNPs in microwave-polymerized resin significantly decreased the transverse strength and elastic modulus. In terms of impact strength, the addition of AgNPs has no effect on both resin groups. Glass transition temperature (Tg) was decreased with the addition of AgNPs for both denture base resins. Conclusions The incorporation of AgNPs, generally used for antimicrobial efficiency, affected the transverse strength of the denture base acrylic resins depending on the concentration of nanoparticles. Tg was decreased with the addition of AgNPs for both denture base resins. PMID:28076464

  5. Effect of 5-fluorouracil incorporation into pre-mRNA on RNA splicing in vitro

    SciTech Connect

    Doong, S.L.

    1988-01-01

    5-Fluorouracil(FUra) has been proven useful in the chemotherapy of a number of cancers. The mechanism underlying its cytotoxicity is controversial. We are interested in studying the FUra effect on the fidelity of the pre-mRNA splicing process. ({sup 32}P)-labeled human {beta}-globin pre-mRNA containing the first two exons and the first intervening sequence was synthesized in the presence of UTP, FUTP, or both. The appearance of a new minor spliced product was dependent on both the pH of the splicing reaction and the extent of FUra incorporation into pre-mRNA. At least 84% substitution of U by FUra was required to observe the presence of the abnormal splicing pathway. The new spliced product was sequenced and found to contain an additional 20 bases derived from the 3{prime} end of the intervening sequence. Nearest neighbor analysis, RNase T{sub 1} fingerprinting, and short primer extension experiments were carried out to assess the extent of transcription infidelity induced by FUra. Site directed mutagenesis was performed to determine the sequence(s) of FUra substitution which contribute to missplicing in vitro.

  6. Effect of incorporating sugar beet pulp in the finisher diet on performance of geese.

    PubMed

    Arroyo, J; Brachet, M; Dubois, J P; Lavigne, F; Molette, C; Bannelier, C; Fortun-Lamothe, L

    2015-04-01

    The aim of this work was to study the effects of incorporating sugar beet pulp (SBP) into the diet on the development of the crop and performance of geese. A total of 480 1-day-old ganders were divided into three groups differing in the composition and mode of distribution of the diet offered from day 56 to 89. The following two diets were used: a standard diet (nitrogen-corrected apparent metabolizable energy, AMEn 11.44 MJ/kg; 160 g/kg CP) or a diet containing 10% of SBP (SBP diet; AMEn 11.47 MJ/kg; 160 g/kg CP). The swelling capacity (SC) hydration was higher for SBP than for the standard diet (3.62 v. 2.72 ml of H2O/g of dry matter at 60 min; P<0.05). In the Control group, birds were fed with a controlled time of access to a standard diet. Other birds were fed the SBP diet with a controlled time of access (SBPt group) or a controlled quantity offered (SBPq). From day 90 to 104, 88 birds/group were overfed with a mixture containing mainly corn. Body traits including volume of the crop were measured at day 89. Fatty liver weight and commercial grading were measured at d 104. Feed intake from day 56 to 89 was higher in the Control group than in the SBPt group (8097 v. 7545 g; P<0.05), feed intake in the SBPq group being intermediate (7801 g); however, live weights (LW) of the birds were similar in the three groups measured at day 89 (5746 g; P>0.05). At day 89, the volume of the crop tended to be higher in the SBPt compared with the Control group (52.8 v. 48.8 ml/kg of LW; P=0.101). After overfeeding, feed intake (12 922 g), weight gain (2412 g), LW (8170 g), fatty liver weight (875 g) and commercial grading of the fatty liver were similar (P>0.1) for all the three groups. Therefore, SBP could help adapt the digestive tract of waterfowl to high feed intake through an increase in the crop volume, but its method of use - that is, level of incorporation and mode of distribution - should continue to be investigated.

  7. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1994

    SciTech Connect

    Sepaniak, M.J.

    1993-10-01

    This program seeks the development of capillary electrokinetic separation techniques and associated optical methods of detection. Fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on understanding systems that include highly-ordered assemblies as running buffer additives. The additives include cyclodextrins, affinity reagents, and soluble (entangled) polymers and are employed with capillary electrophoresis, CE and/or micellar electrokinetic capillary chromatography, MECC modes of separation. The utility of molecular modeling techniques for predicting the effects of highly ordered assemblies on the retention behavior of isomeric compounds is under investigation. The feasibility of performing separations using a non-aqueous solvent/fullerene electrochromatographic system is being explored. The analytical methodologies associated with these capillary separation techniques are being advanced through the development of retention programming instumentation/techniques and new strategies for performing optical detection. The advantages of laser fluorimetry are extended through the inclusion of fluorogenic, reagents in the running buffer. These reagents include oligonucleotide intercalation reagents for detecting DNA fragments. Chemiluminescence detection using post-capillary reactors/flow cells is also in progress. Successful development of these separation and detection systems will fill current voids in the capabilities of capillary separation techniques.

  8. Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media.

    PubMed

    Chowdhury, Ahmed I A; Gerhard, Jason I; Reynolds, David; Sleep, Brent E; O'Carroll, Denis M

    2017-04-15

    Back diffusion of contaminants from low permeability strata has inhibited site remediation and closure due to an inability to deliver remediants into these strata. This study demonstrates the potential of electrokinetics (EK) to significantly reduce back diffusion of chlorinated compounds from low permeability porous media. Experiments were conducted in a two-dimensional sandbox packed with vertical layers of coarse sand and silt contaminated with aqueous trichloroethene (TCE). Three experiments, each approximately 41 days in duration, compared EK-enhanced in situ chemical oxidation (EK-ISCO) to EK or ISCO alone. EK-ISCO successfully delivered the oxidant (permanganate, PM) throughout the silt cross-section while ISCO without EK resulted only in PM delivery to the edges of the silt layer fringes. EK-ISCO resulted in a 4.4-fold reduction in TCE concentrations in the coarse sand compared to a 3.5-fold reduction from ISCO alone. EK-ISCO with a 25 mA current was found to be more effective than with 300 mA current. Overall, this study suggests that electrokinetics coupled with an appropriate in situ remediation technique, such as ISCO, can enhance remediation of lower permeability strata and limit the extent of contaminant back diffusion.

  9. Development and validation of a microemulsion electrokinetic chromatography method for patulin quantification in commercial apple juice.

    PubMed

    Murillo-Arbizu, M; González-Peñas, E; Hansen, S H; Amézqueta, S; Ostergaard, J

    2008-06-01

    A microemulsion electrokinetic chromatography (MEECK) method for patulin (PAT) quantification in apple juice samples has been developed. The effects of several important factors such as co-surfactant type, concentration of surfactant, acetonitrile percentage in the microemulsion, and running voltage and temperature were investigated to determine the optimum conditions. They resulted to be: a background electrolyte (BGE) composed of 25mM of sodium tetraborate, SDS (2.16%w/w), ethanol (6.49%w/w), n-octanol (0.82%w/w) and 2%v/v acetonitrile; applied voltage of +15kV; and a capillary temperature of 35 degrees C. PAT was detected at 276nm. Quantification and detection limits (LOQ and LOD) in apple juice samples were 8.0microgL(-1) and 3.2microgL(-1), respectively. Patulin was extracted from apple juice using ethyl acetate with a mean recovery value of 75.3% (RSD=4.5). This method was applied to the measurement of patulin in twenty commercial apple juice samples obtained from different Danish supermarkets. The PAT apple juice mean and median levels obtained were 35.9 and 10.9microgL(-1), respectively. The comparison with a previously validated micellar electrokinetic chromatography (MEKC) method for PAT analysis showed the suitability of using MEEKC for this mycotoxin analysis. However, the expectations of obtaining a higher efficiency and thus lower limits of detection and quantitation when using MEEKC were not met.

  10. Effects of vestibular nerve transection on the calcium incorporation of fish otoliths

    NASA Astrophysics Data System (ADS)

    Anken, Ralf H.; Edelmann, Elke; Rahmann, Hinrich

    2001-08-01

    Previous investigations revealed that the growth of fish inner ear otoliths (otolith size and calcium-incorporation) depends on the amplitude and the direction of gravity, suggesting the existence of a (negative) feedback mechanism. In search for the regulating unit, the vestibular nerve was transected unilaterally in neonate swordtail fish ( Xiphophorus helleri) which were subsequently incubated in the calcium-tracer alizarin-complexone. Calcium incorporation ceased on the transected head sides, indicating that calcium uptake is neurally regulated.

  11. Effect of prehydrogenation on hydroconversion of Maya residuum; Part II: Hydrogen incorporation

    SciTech Connect

    Beret, S. )

    1990-04-01

    Maya 650{sup 0}F residuum (Maya AR) was prehydrogenated over a standard hydroprocessing catalyst. The 650{sup 0}F residuum of this product (HMaya AR) and Maya AR were then separately hydroprocessed further at selected conditions. The products were examined by elemental, {sup 1}H and {sup 13}C NMR analyses to determine the how hydrogen was incorporated during processing. For all processing steps, hydrogen was incorporated in capping fragments formed during cracking reactions, as well as in hydrogenation reactions, heteroatom removal, and hydrocarbon gas formation, but the distribution of the hydrogen was dependent upon the type and severity of the process. For the direct hydroconversion of Maya AR, 25 to 30% of the total hydrogen was incorporated for heteroatom removal and hydrocarbon gas formation. The remaining hydrogen was incorporated in hydrogenation and cracking reactions. The hydrogen incorporation during each specific processing step is discussed, along with an evaluation of the prehydrogenation step as a residuum conversion process option. These results are compared to previously reported hydrogen incorporation measurements on other feeds and processing methods.

  12. Effects of bFGF incorporated into a gelatin sheet on wound healing.

    PubMed

    Miyoshi, Michiyo; Kawazoe, Takeshi; Igawa, Hiroharu H; Tabata, Yasuhiko; Ikada, Yoshito; Suzuki, Shigehiko

    2005-01-01

    Basic fibroblast growth factor (bFGF) is well known to promote the proliferation of almost all cells associated with wound healing. However, as the activation duration of bFGF is very short in vivo, we incorporated bFGF into an acidic gelatin hydrogel and studied the sustained release of bFGF in vivo. In addition, we investigated the effects of the acidic gelatin sheet containing bFGF on wound healing. To distinguish wound contraction from neoepithelialization, we measured both the wound area and neoepithelium length. Other histological parameters such as thickness of granulation tissue and number of capillaries were also determined as indices of wound healing. Fibrous tissue was assessed using an Elastica van Gieson and Azan stain. A skin defect (1.5 x 1.5 cm) of full thickness was created on the back of each test mouse and the wound was covered with an acidic gelatin hydrogel, referred to as a gelatin sheet in this study (2 x 2 cm), with bFGF (100 microg/site) (A) or without bFGF (B). 1, 2, 3, 5, 7 and 14 days after covering, mice were killed and an enzyme-linked immunosorbent assay (ELISA) was performed to estimate the concentration of bFGF in the plasma. In another experiment, each wound was covered with (A), (B) or a hydrogel dressing (control group, C) and the wound area was measured 1 or 2 weeks postoperatively with a computer planimeter. The histological parameters, as mentioned above, were assessed using a light microscope. Sustained release of bFGF from the gelatin sheet was observed and the gelatin sheet containing bFGF promoted neoepithelialization, granulation, neovascularization and wound closure. This gelatin sheet containing bFGF was concluded to be effective for wound healing and promising for clinical use.

  13. The effects of music therapy incorporated with applied behavior analysis verbal behavior approach for children with autism spectrum disorders.

    PubMed

    Lim, Hayoung A; Draper, Ellary

    2011-01-01

    This study compared a common form of Applied Behavior Analysis Verbal Behavior (ABA VB) approach and music incorporated with ABA VB method as part of developmental speech-language training in the speech production of children with Autism Spectrum Disorders (ASD). This study explored how the perception of musical patterns incorporated in ABA VB operants impacted the production of speech in children with ASD. Participants were 22 children with ASD, age range 3 to 5 years, who were verbal or pre verbal with presence of immediate echolalia. They were randomly assigned a set of target words for each of the 3 training conditions: (a) music incorporated ABA VB, (b) speech (ABA VB) and (c) no-training. Results showed both music and speech trainings were effective for production of the four ABA verbal operants; however, the difference between music and speech training was not statistically different. Results also indicated that music incorporated ABA VB training was most effective in echoic production, and speech training was most effective in tact production. Music can be incorporated into the ABA VB training method, and musical stimuli can be used as successfully as ABA VB speech training to enhance the functional verbal production in children with ASD.

  14. Effect of boron incorporation on slow interface traps in SiO2/4H-SiC structures

    NASA Astrophysics Data System (ADS)

    Okamoto, Dai; Sometani, Mitsuru; Harada, Shinsuke; Kosugi, Ryoji; Yonezawa, Yoshiyuki; Yano, Hiroshi

    2017-02-01

    The reason for the effective removal of interface traps in SiO2/4H-SiC (0001) structures by boron (B) incorporation was investigated by employing low-temperature electrical measurements. Low-temperature capacitance-voltage and thermal dielectric relaxation current measurements revealed that the density of electrons captured in slow interface traps in B-incorporated oxide is lower than that in dry and NO-annealed oxides. These results suggest that near-interface traps can be removed by B incorporation, which is considered to be an important reason for the increase in the field-effect mobility of 4H-SiC metal-oxide-semiconductor devices. A model for the passivation mechanism is proposed that takes account of stress relaxation during thermal oxidation.

  15. Feasibility of electrokinetic soil remediation in horizontal Lasagna cells.

    PubMed

    Roulier, M; Kemper, M; Al-Abed, S; Murdoch, L; Cluxton, P; Chen, J; Davis-Hoover, W

    2000-10-02

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The technology was developed by two groups, one involving industrial partners and the DOE and another involving US EPA and the University of Cincinnati, who pursued different electrode geometries. The Industry/DOE group has demonstrated the technology using electrodes and treatment zones installed vertically from the soil surface. We have demonstrated the feasibility of installing horizontal electrodes and treatment zones in subsurface soils by hydraulic fracturing, a process that we adapted from petroleum industry practices. When horizontal electrodes were connected to a dc power supply, uniform electrical potential gradients of 10-40 V/m were created in soil between the electrodes, inducing electroosmotic flow that facilitated movement of water and contaminants into treatment zones between the electrodes.

  16. Application of electrokinetic soil flushing to four herbicides: A comparison.

    PubMed

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.

  17. Bubble-free electrokinetic flow with propylene carbonate.

    PubMed

    Sritharan, Deepa; Chen, Abraham Simpson; Aluthgama, Prabhath; Naved, Bilal; Smela, Elisabeth

    2015-10-01

    For electroosmotic pumping, a large direct-current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps.

  18. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  19. Modeling Electrokinetic Flows by the Smoothed Profile Method

    PubMed Central

    Luo, Xian; Beskok, Ali; Karniadakis, George Em

    2010-01-01

    We propose an efficient modeling method for electrokinetic flows based on the Smoothed Profile Method (SPM) [1–4] and spectral element discretizations. The new method allows for arbitrary differences in the electrical conductivities between the charged surfaces and the the surrounding electrolyte solution. The electrokinetic forces are included into the flow equations so that the Poisson-Boltzmann and electric charge continuity equations are cast into forms suitable for SPM. The method is validated by benchmark problems of electroosmotic flow in straight channels and electrophoresis of charged cylinders. We also present simulation results of electrophoresis of charged microtubules, and show that the simulated electrophoretic mobility and anisotropy agree with the experimental values. PMID:20352076

  20. Manure composition and incorporation effects on phosphorus in runoff following corn biomass removal.

    PubMed

    Yagüe, María R; Andraski, Todd W; Laboski, Carrie A M

    2011-01-01

    Greater demand for corn ( L.) stover for bioenergy use may lead to increased corn production acreage with minimal surface residue cover, resulting in greater risk for soil erosion and phosphorus (P) losses in runoff. A rainfall simulation study was conducted to determine the effects of spring-applied dairy cow () manure (none, in-barn composted, and exterior walled-enclosure pit) with >200 g kg organic solids content following fall corn biomass removal with and without incorporation (chisel plow [CP] and no-till [NT]) on sediment and P in runoff. Runoff was collected from a 0.83-m area for 60 min following the onset of rainfall simulation (76 mm h), once in spring and once in fall. Runoff dissolved reactive P (DRP) and dissolved organic P (DOP) concentrations were positively correlated with manure P rate and were higher in NT compared with CP. Conversely, sediment and particulate P (PP) concentrations in runoff were inversely correlated with manure P rate (and manure solids) and were higher in CP compared with NT. Runoff volume where no manure was applied was higher in NT than in CP in spring but similar in fall. The addition of manure reduced runoff volumes by an average of 82% in NT and 42% in CP over spring and fall. Results from this study indicate that surface application of dairy manure with relatively high solids content may reduce sediment and PP losses in runoff without increasing the risk of increased DRP and DOP losses in the year of application where corn biomass is harvested.

  1. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  2. Hydrodynamics and electrokinetics of spherical liposomes with coatings of terminally anchored poly(ethylene glycol): Numerically exact electrokinetics with self-consistent mean-field polymer

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.

    2004-11-01

    A detailed theoretical model is presented to interpret electrokinetic experiments performed on colloids with uncharged polymer layers. The methodology removes many of the degrees of freedom that otherwise have to be accounted for by adopting multiple empirical fitting parameters. Furthermore, the level of detail provides a firm basis for future studies examining liposome surface chemistry and charge, surface-charge mobility, and the dynamics of adsorbed polymer on fluidlike membranes. The model predictions are compared with experimental measurements of the electrophoretic mobility of stealth liposomes with molecular weights of terminally anchored poly(ethylene glycol) (PEG) in the range 0.35-10kgmol-1 [J. A. Cohen and V. A. Khorosheva, Colloids Surf. A 195, 113 (2001)]. The experimental data are interpreted by drawing upon self-consistent mean-field calculations of the polymer segment density distributions and numerically exact solutions of the governing transport equations [R. J. Hill, D. A. Saville, and W. B. Russel, J. Colloid Interface Sci. 258, 56 (2003)]. The approach leads to excellent agreement between theory and experiment with one adjustable parameter—the hydrodynamic size (Stokes radius) as≈0.175Å of the statistical PEG segments with (Kuhn) length l=7.1Å . The remarkably small Stokes radius is demonstrated to be consistent with other applications of the well-known Debye-Brinkman model and, consequently, this work reveals important limitations of the mean-field hydrodynamic model. Despite such limitations, the “full” electrokinetic model is robust in its predictive capacity. The molecular weights of the terminally anchored PEG span the range where the coatings undergo a transition from mushroomlike to brushlike conformations, and the hydrodynamic size and electrophoretic mobility of the liposomes are demonstrated to be sensitive to the PEG chain length and the effects of double-layer polarization.

  3. AC Electrokinetic Cell Separation on a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary; Chang, Hsueh-Chia

    2009-03-01

    Rapid cell separation and collection is demonstrated through the integration of electrokinetic pumps, dielectrophoretic (DEP) traps and field driven valves into a well designed microfluidic channel loop. We present the ground-up design and analysis of this fully functional microfluidic device for the rapid separation and collection of live and dead yeast cells and malaria red blood cells (RBCs) at low concentrations. DEP cell sorting and concentration schemes are based on the exploitation of cell specific DEP crossover frequencies (cof's). A rigorous DEP study of yeast and RBCs is presented and used to determine optimal conditions for cell separation. By utilizing a glutaraldehyde crosslinking cell fixation reaction that is sensitive to cell membrane protein concentration, we demonstrate the ability to further amplify these differences between healthy and unhealthy cells as well as stabilize their DEP cof's. Pumping is achieved with a new type of electrokinetic flow, AC electrothermal electro-osmosis (ETEO) and is shown to scale inversely with the field induced debye length and drive fluid velocities in excess of 6 mm/sec. The well characterized electrokinetic phenomena are integrated into a microchannel loop with a specifically designed electrode field penetration length for low concentration cell separation and concentration.

  4. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.

    PubMed

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  5. Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas

    PubMed Central

    Wei, Ting; Zhang, Peng; Wang, Ke; Ding, Ruixia; Yang, Baoping; Nie, Junfeng; Jia, Zhikuan; Han, Qingfang

    2015-01-01

    Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four—year (2007–2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm-2, M: 6000 kg hm-2, and L: 3000 kg hm-2) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0–40 cm soil layers after straw incorporation treatments, i.e., 9.1–30.5%, 9.8–69.5%, 10.3–27.3%, 0.7–23.4%, and 44.4–49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0–40 cm soil layers were 24.4–31.3%, 9.9–36.4%, and 42.9–65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively. PMID:25880452

  6. The Effects of Pair Problem Solving Technique Incorporating Polya's Problem Solving Strategy on Undergraduate Students' Performance in Chemistry

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim

    2006-01-01

    The purpose of this study was to investigate the effects of pair problem solving technique incorporating Polya's problem solving strategy on undergraduate students' performance in conceptual and algorithmic questions in chemistry. The subjects of this study were 89 students enrolled from two first year chemistry classes. The experimental group was…

  7. The Effect of an Instructional Unit Incorporating Live Animals on Knowledge of Nutrition for Different Age Levels.

    ERIC Educational Resources Information Center

    Roth, Anne I.; Wunderlich, Kenneth W.

    A nutrition education unit, Rat Pak, developed by Dairy Council, Inc., is an attempt to influence students to make wise food choices. It consists of eleven lessons in an instructional sequence which incorporates the use of white rats as a means of illustrating the effect of improper diet while teaching proper diet. The purpose of this…

  8. The Effect of Incorporation of HNO(sub 3) Into Liquid Sulfuric Acid on Heterogeneous Reaction Probabilities

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Leu, M-T.; Keyser, L.

    1994-01-01

    Using a fast-flow reactor coupled to a quadrupole mass spectrometer, the heterogeneous reactions of C1ONO2 + HCl and HOCl + HCl as well as hydrolysis of N2O5 and C1ONO2 were investigated on liquid sulfuric acid, with particular emphasis on the effect of incorporation of HNO3 on the reaction probabilities.

  9. 3D porous sol-gel matrix incorporated microdevice for effective large volume cell sample pretreatment.

    PubMed

    Lee, Chan Joo; Jung, Jae Hwan; Seo, Tae Seok

    2012-06-05

    In this study, we demonstrated an effective sample pretreatment microdevice that could perform the capture, purification, and release of pathogenic bacteria with a large-volume sample and at a high speed and high-capture yield. We integrated a sol-gel matrix into the microdevice which forms three-dimensional (3D) micropores for the cell solution to pass through and provides a large surface area for the immobilization of antibodies to capture the target Staphylococcus aureus (S. aureus) cells. The antibody was linked to the surface of the sol-gel via a photocleavable linker, allowing the cell-captured antibody moiety to be released by UV irradiation. In addition to the optimization of the antibody immobilization and UV cleavage processes, the cell-capture efficiency was maximized by controlling the sample flow rate with a pumping scheme (3 steps, 5 steps: 3 steps with one flutter step, 7 steps: 3 steps with two flutter steps) and the pumping time (100, 200, and 300 ms). A quantitative capture analysis was performed by targeting a specific gene site of protein A of S. aureus in real-time PCR (RT-PCR). While the 3-step process with an actuation time of 100 ms showed the fastest flow rate (1 mL sample processing time in 10 min), the pumping scheme with the 7-step process and the 300 ms actuation time revealed the highest cell-capture efficiency. A limit of detection study with the 7-step and the 300 ms pumping scheme demonstrated that 100 cells per 100 μL were detected with a 70% yield, and even a single cell could be analyzed via on-chip sample preparation. Thus, our novel sol-gel based microdevice was proven more cost-effective, simple, and efficient in terms of its sample pretreatment ability compared to the use of a conventional 2D flat microdevice. This proposed sample pretreatment device can be further incorporated to an analytical functional unit to realize a micrototal analysis system (μTAS) with sample-in-answer-out capability in the fields of biomedical

  10. Metabolic changes in deafferented central neurons of an insect, Acheta domesticus. I. Effects upon amino acid uptake and incorporation

    SciTech Connect

    Meyer, M.R.; Edwards, J.S.

    1982-11-01

    Chronic cercal deafferentation of the terminal ganglion in developing crickets (Acheta domesticus), which is known to suppress normal development of giant interneuron dendritic arborizations is shown here to reduce (/sup 3/H)leucine uptake and incorporation into ganglion proteins. Short term deafferentation of adult crickets, in contrast, does not depress amino acid uptake and incorporation significantly. Following unilateral long term deafferentation of the terminal ganglion, a comparison was made of the (/sup 3/H)leucine incorporation into primary dendritic processes and somata of deafferented and normally innervated medial giant interneurons (MGIs) within the same ganglion by means of quantitative autoradiography. Grain densities within dendrites of deafferented MGIs were significantly lower than in paired control MGIs' grain densities within somata of deafferented MGIs also were reduced, although the effects of deafferentation were less pronounced in somata than in target dendrites. These results imply a specific influence of afferent innervation on protein metabolism during growth and development of target postsynaptic elements.

  11. Effectiveness of insecticide-incorporated bags to control stored-product beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...

  12. Effect of incorporation of distillers' dried grain with solubles (DDGS) on quality of cornbread

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent increase in biofuel production creates a sizable stockpile of its co-product in the form of Distiller’s Dried Grain with Solubles (DDGS) that needs to be utilized beyond animal feeds. We evaluated cornbreads, which were formulated incorporating 0, 5, 10, 15, 20, 25, and 30% corn DDGS into co...

  13. Progress report for mutagenic effect of radionuclides incorporated into DNA of Drosophilia melangaster

    SciTech Connect

    Lee, W.R.

    1981-01-01

    One objective is to determine the proportion of tritium incorporated into different macromolecules of Drosophila germ cells. The other objective is to determine the nature of mutagenic lesions induced by tritium decay. A specific locus detection system for point mutations that can be analyzed at the molecular level was developed. (ACR)

  14. The Perceived Effect of Time on HIV/AIDS Identity Incorporation

    ERIC Educational Resources Information Center

    Baumgartner, Lisa M.

    2012-01-01

    Individuals experience disease in a variety of contexts. In this study, I examined how the temporal context (e.g., historical time, social time, chronological age and the passage of time) affected the incorporation of the HIV/AIDS identity into the self. I used semi structured interviews to collect data from 36 individuals living with HIV/AIDS.…

  15. Effects of oxygen incorporation in GeSbTe films on electrical properties and thermal stability

    SciTech Connect

    Jang, Moon Hyung; Park, Seung Jong; Lim, Dong Hyeok; Park, Sung Jin; Cho, Mann-Ho; Cho, Seong Jin; Cho, Yoon Ho; Lee, Jong-Heun

    2010-03-01

    Oxygen incorporated Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) films were prepared by an ion beam sputtering deposition method. I-V curves of the oxygen incorporated GST active layer showed that the threshold voltage (V{sub th}) varied, depending on the level of incorporated oxygen. In the case of a GST film with an elevated oxygen content of 30.8%, the GST layer melted at 9.02 V due to the instability conferred by the high oxygen content. The formation of Ge-deficient hexagonal phases such as GeSb{sub 2}Te{sub 4} and Sb{sub 2}Te{sub 3} appear to be responsible for the V{sub th} variation. Impedance analyses indicated that the resistance in GST films with oxygen contents of 16.7% and 21.7% had different origins. Thermal desorption spectroscopy data indicate that moisture and hydrocarbons were more readily desorbed at higher oxygen content because the oxygen incorporated GST films are more hydrophilic than undoped GST films.

  16. Effect of surface incorporation of broiler litter applied to no-till cotton on runoff quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study was conducted on an Atwood silt loam (fine-silty, mixed, thermic Typic Paleudalfs) marginal upland soil to evaluate if incorporation of broiler litter into the soil surface in a no-till cotton affect runoff nutrient concentrations. The treatments consisted of 7.8 Mg ha-1 broiler l...

  17. Effect of fish oil encapsulates incorporation on the physico-chemical and sensory properties of cookies.

    PubMed

    Jeyakumari, A; Janarthanan, G; Chouksey, M K; Venkateshwarlu, G

    2016-01-01

    A great deal of attention has been focused on the various health benefits apparently associated with consumption of fish oil. The incorporation of fish oils in food products is becoming increasingly widespread and a large variety of products is being marketed. However, the use of fish oil as functional nutritional ingredients in foods has been limited by its oxidative susceptibility. In the present study, attempts were made to develop fish oil fortified cookies as healthy snack foods by incorporating fish oil microencapsulate. Microencapsulation of fish oil was done by spray drying. Commercially available milk was used to form micro sized complexes with fish oil. Fish gelatin/maltodextrin were used as a wall material for encapsulation. Fish oil was added in three forms (fish oil as such, fish oil-in-water emulsion and fish oil microencapsulate) for the preparation of cookies. Cookies prepared without incorporating fish oil was served as control. The physical, chemical and sensory attributes of cookies were evaluated. Encapsulation significantly (P < 0.05) decreased lipid oxidation in the cookies. The sensory evaluation of cookies showed significant (P < 0.05) difference in the overall acceptability. Results from this study, demonstrated the possibility of fish oil incorporation into cookies through emulsification and microencapsulation which may increase the intake of omega-3 fatty acids for nutritional benefits.

  18. The Perceived Effect of the Sociocultural Context on HIV/AIDS Identity Incorporation

    ERIC Educational Resources Information Center

    Baumgartner, Lisa M.

    2012-01-01

    Contexts influence the experience of disease. In this study, I examined how the sociocultural context (e.g., race, class, gender, and sexual orientation) affected the experience of living with HIV/AIDS and the incorporation of the HIV/AIDS identity into the self. I interviewed 36 individuals living with HIV/AIDS. Findings indicate that race,…

  19. Stability and electrokinetic potential of silicon carbide suspensions in aqueous organic media

    NASA Technical Reports Server (NTRS)

    Yeremenko, B. V.; Lyubchenko, I. N.; Skobets, I. Y.

    1984-01-01

    The method of electroosmosis was used to study the dependence of the electrokinetic potential of silicon carbide suspensions in mixtures of water -n. alcohol. The reasons for the dependence of the electrokinetic potential on the composition of the intermicellar liquid are discussed.

  20. Electrokinetic Ion Transport through Unsaturated Soil: 1) Theory, Model Development, and Testing 2) Application to a Heterogeneous Field Site

    SciTech Connect

    Mattson, Earl Douglas; Bowman, R. S.; Lindgren, E. R.

    2002-01-01

    demonstration was conducted in an unsaturated layered soil profile where the soil moisture content ranged from 4% to 28% (m3 m-3). Specially designed ceramic-cased electrodes maintained a steady-state moisture content and electric potential field between the electrodes during the field demonstration. Acetate, a byproduct of acetic acid neutralization of the cathode electrolysis reaction, was transported from the cathode to the anode by electromigration. Field demonstration results indicated preferential transport of acetate through soil layers exhibiting higher moisture content/electrical conductivity. These field transport results agree with theoretical predictions that electromigration velocity is proportional to a power function of the effective moisture content. A numerical model using a homogeneous moisture content/electrical conductivity domain did not adequately predict the acetate field results. Numerical model predictions using a three-layer electrical conductivity/moisture content profile agreed qualitatively with the observed acetate distribution. These results suggest that field heterogeneities must be incorporated into electrokinetic models to predict ion transport at the field-scale.

  1. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  2. Effect of incorporation of uncertainty in PCB bioaccumulation factors on modeled receptor doses

    SciTech Connect

    Welsh, C.; Duncan, J.; Purucker, S.; Richardson, N.; Redfearn, A.

    1995-12-31

    Bioaccumulation factors (BAFs) are regularly employed in ecological risk assessments to model contaminant transfer through ecological food chains. The authors compiled data on bioaccumulation of PCBs in plants, invertebrates, birds, and mammals from published literature and used these data to develop regression equations relating soil or food concentrations to bioaccumulation. They then used Latin Hypercube simulation techniques and simple food chain models to incorporate uncertainty in the BAF regressions into the derivation of exposure dose estimates for selected wildlife receptors. The authors present their preliminary results in this paper. Dose estimates ranged over several orders of magnitude for herbivorous, insectivorous, and carnivorous receptors. These results suggest incorporating the uncertainty in BAF values into food chain exposure models could provide risk assessors and risk managers with information on the probability of a given outcome that can be used in interpreting the potential risks at hazardous waste sites.

  3. The Effects of Incorporating Classroom Pets into the Fourth Grade Science Curriculum

    NASA Astrophysics Data System (ADS)

    Admire, Maegan

    The purpose of this study was to identify and promote successful teaching strategies that incorporate classroom pets in order to influence student engagement, achievement, and perceptions of animals. This was a small action research study conducted in a fourth grade science classroom. Both quantitative and qualitative data were obtained including, pre- and post-assessments, student interviews, researcher field notes, researcher journal, and student work. The results of this study revealed an increased academic achievement from the pre- to post-assessment, increased student observations and descriptions when discussing the animals, and increased student empathy toward the animals. The results also revealed that the teacher's incorporation of the animals within the science curriculum grew in ease over time, and that the animals provided the educator with opportunities to teach non-content related lessons and also a concrete experience for the teacher to apply and extend the science content.

  4. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  5. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    SciTech Connect

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; Weinberger, Christopher R.

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa. The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.

  6. The effect of ascorbic acid oxidation on the incorporation of sulfate by slices of calf costal cartilage.

    PubMed

    KLEBANOFF, S J; DZIEWIATKOWSKI, D D; OKINAKA, G J

    1958-11-20

    A marked inhibition of the incorporation of S(35)-sulfate by normal calf costal cartilage was produced by potassium ascorbate in the presence of catalytic amounts of cupric ions. The effect of the various components of the ascorbic acid oxidizing system (potassium ascorbate, cupric ions, cuprous ions, hydrogen peroxide, dehydroascorbic acid) was investigated. The results of experiments in which hydrogen peroxide, catalase, or sodium azide were used singly or in combination suggest that the inhibition produced by the ascorbic acid oxidizing system is due, to a considerable extent, to the production of hydrogen peroxide. Dehydroascorbic acid was also found to inhibit the incorporation of S(35)-sulfate by cartilage slices. However, the gradual fall in pH which resulted from the addition of dehydroascorbic acid could account to a large extent for the inhibitory effect observed because the incorporation of S(35)-sulfate by cartilage slices decreases sharply as the pH is lowered. The incorporation of S(35)-sulfate by cartilage slices is inhibited also by increasing the concentration of phosphate.

  7. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil.

    PubMed

    Shin, Su-Yeon; Park, Sang-Min; Baek, Kitae

    2017-03-07

    Electrokinetic remediation (EKR) is the most efficient technique for remediation of fine-grained soil. The primary removal mechanisms of heavy metal in EKR are the electromigration and electroosmosis flow under appropriate electric gradients. Most EKR studies have researched the variation according to the electrolyte and electric voltage. Also, EKR could be influenced by the migration velocity of ions, while few studies have investigated the effect of moisture content. In this study, soil moisture was controlled by using tap water and NaOH as electrolytes to enhance electromigration and electroosmosis flow. In both electrolytes, the higher moisture content led to the more As removal efficiency, but there were no differences between tap water and NaOH. Therefore, tap water was the most cost-effective electrolyte to remove As from fine-grained soil.

  8. Nitrogen incorporation effects on gain properties of GaInNAs lasers : experiment and theory.

    SciTech Connect

    Thranhardt, A.; Mawst, L. J.; Hader, J.; Schlichenmaier, C.; Tansu, N.; Yeh, J. -Y.; Belenky, G.; Chow, Weng Wah; Shterengas, L.; Moloney, Jerome V.; Koch, S. W.; Kuznetsova, I.

    2005-05-01

    Gain properties of GaInNAs lasers with different nitrogen concentrations in the quantum wells are investigated experimentally and theoretically. Whereas nitrogen incorporation induces appreciable modifications in the spectral extension and the carrier density dependence of the gain, it is found that the linewidth enhancement factor is reduced by inclusion of nitrogen, but basically unaffected by different nitrogen content due to the balancing between gain and index changes.

  9. Low-disturbance manure incorporation effects on ammonia and nitrate loss.

    PubMed

    Dell, Curtis J; Kleinman, Peter J A; Schmidt, John P; Beegle, Douglas B

    2012-01-01

    Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3⁻) leaching. We sought to assess the trade-offs in NH3 and NO3⁻ losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3⁻ leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha⁻), and the lowest emissions were from unamended soil (<1 kg NH-N ha⁻¹). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3⁻ leaching losses were small (<25 kg NO3-N ha⁻¹) and similar between treatments, except for the first winter when NO3⁻ leaching was fivefold greater with injection. Because NO3⁻ leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3⁻ leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.

  10. The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Lemoine, P.; Liu, Z. H.; Quinn, J. P.; McLaughlin, J. A.

    2000-11-01

    A small amount of silicon incorporation into diamond-like carbon (DLC) films prepared by plasma-enhanced chemical vapour deposition (PECVD) onto Al2O3:TiC substrates was studied by a combination of surface analysis and nanomechanical measurement techniques, namely XPS, Raman spectroscopy, nanoindentation and nanoscratch methods. Addition of silicon to the DLC films leads to an increase in the fraction of sp3, as deduced from XPS analysis, and a decrease in the Raman band intensity ratio ID/IG. Although the coated substrates exhibit better scratch resistance and lubricity, the films as deposited are softer than the Al2O3:TiC substrates. Upon silicon incorporation, the mechanical and tribological properties are degraded. Wear protection of the Al2O3:TiC substrate by DLC coating corresponds to the competition between the reduction in friction coefficient and the softening of the films. It is suggested that, for such a PECVD process, the degradation of the mechanical properties is caused by the increased hydrogen content in the deposits when silicon is incorporated, as is shown by the increased Raman spectral background slope. These tendencies are attributable to the development of polymer-like chains, which can weaken the inter-molecular structure of the films.

  11. Saline or plant-incorporated methylmercury effects on distribution, demethylation, and blood parameters in rats

    SciTech Connect

    Czuba, M.; Komsta-Szumska, E.; Mortimer, D.C.; Champagne, C.

    1987-03-01

    The influence of diet is recognized as a significant factor in the expression of toxicity. This applies particularly to toxins like methylmercury (MeHg) which are metabolically incorporated into growing food plants and biotransformed within the plant before ingestion. Methylmercury in this form may influence the early physiological and biochemical events which lead to development of toxicity. In a previous study, a single dose of plant-incorporated methylmercury (MeHg) had a different route of distribution and accumulation in rat organs after 48 h than an equivalent dose of saline MeHg with the greatest accumulation being in red blood cells. Creatine, an important storage form of high energy phosphate in muscles is a primary indicator of erythropoietic dynamics under hypoxia, a sensitive indicator of hemolytic disease, red blood cell aging and impaired marrow efficiency. Since changes in creatine levels occur sooner than changes in other blood parameters, itself being neither synthesized nor metabolized by red blood cells, it can be used as a sensitive indicator of toxicity. The present work investigates the difference in a longer term, multiple-dose regime of saline or bean-incorporated MeHg ingestion with special attention being given to various blood parameters.

  12. Insulin effect on (/sup 14/C)-valine incorporation and its relation to hexokinase activity in developing brain

    SciTech Connect

    Pal, N.; Bessman, S.P.

    1988-07-15

    Using minced brain cortex from fetal and postnatal rats, we studied the incorporation of (/sup 14/C)-valine into protein in the presence of insulin. We also assayed the particle bound and soluble hexokinase in these tissues. Insulin significantly stimulated the incorporation of (/sup 14/C)-valine into brain proteins from fetal stage upto 2 days of life. After this period the insulin effect was minimal, with no effect by day 5. The particle bound (40,000g pellet) brain hexokinase, on the other hand, remained low till about 2 days of life and then increased to almost adult level by 5 days. Our results show that there is an inverse relation between this anabolic effect of insulin and the particle bound hexokinase activity in the cortex of developing rat brain.

  13. Effect of incorporating carbon nanocoils on the efficiency of electromagnetic-wave shielding of carbon-nanomaterial composites

    NASA Astrophysics Data System (ADS)

    Kang, Gi-Hwan; Kim, Sung-Hoon

    2016-09-01

    Carbon nanocoils (CNCs) were deposited on Al2O3 substrates using C2H2 and H2 as source gases in a thermal chemical vapor deposition system. Composites of CNCs in polyurethane (CNC@PU) and CNCs plus other carbon-based materials, such as carbon microcoils (CMCs) and carbon nanotubes (CNTs), in polyurethane (CNC + CMC@PU, CNC + CNT@PU) was fabricated. The electromagnetic-wave-shielding effectiveness of the CNCs-incorporated composites were examined and compared with those of other carbon-based materials in the measurement-frequency range of 0.25-4.0 GHz. The incorporation of CNCs in CMC@PU composites reduced the shielding effectiveness; on the other hand, it slightly enhanced the shielding effectiveness of CNT@PU composites within the measurement frequency range of 0.5-3.0 GHz. Based on the resulting shielding effectiveness, we conclude that the incorporation of CNCs was useful for the materials that exhibited reflection-based shielding effectiveness although the CNCs themselves had poor electrical conductivity.

  14. Incorporating the effects of habitat edges into landscape models: Effective area models for cross-boundary management.

    SciTech Connect

    T.D. Sisk; N.M. Haddad

    2002-01-01

    Sisk, T.D., and N.M. Haddad. 2002. Incorporating the effects of habitat edges into landscape models: Effective area models for cross-boundary management. Chapter 8, Pp. 208-240 in J. Liu and W.W. Taylor, Integrating landscape ecology into natural resource management, Cambridge University Press, Cambridge, UK. Abstract: Natural resource managers are increasingly charged with meeting multiple, often conflicting goals in landscapes undergoing significant change due to shifts in land use. Conservation from native to anthropogenic habitats typically fragments the landscape, reducing the size and increasing the isolation of the resulting patches, with profound ecological impacts. These impacts occur both within and adjacent to areas under active management, creating extensive edges between habitat types. Boundaries established between management areas, for example, between timber harvest units or between reserves and adjacent agricultural fields, inevitably lead to differences in the quality of habitats on either side of the boundary, and a habitat edge results. Although edges are common components of undisturbed landscapes, the amount of edge proliferates rapidly as landscapes are fragmented. Insightful analysis of the complex issues associated with cross-boundary management necessitates an explicit focus on habitat quality in the boundary regions.

  15. Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage.

    PubMed

    Mehyar, Ghadeer F; Al-Qadiri, Hamzah M; Abu-Blan, Hifzi A; Swanson, Barry G

    2011-04-01

    Predominant spoilage molds of fresh apples, cucumbers, and tomatoes stored at 4 °C were isolated and examined for resistance to potassium sorbate (PS) incorporated in polysaccharide edible coatings. The isolated molds were Penicillium expansum, Cladosporium herbarum, and Aspergillus niger from apples. P. oxalicum and C. cucumerinum were isolated from cucumbers and P. expansium and C. fulvum from tomatoes. Guar gum edible coating incorporated with PS was the most effective mold inhibitor, significantly (P<0.05) reducing the isolated spoilage molds for 20, 15, and 20 d of storage at 4 °C on apples, cucumbers, and tomatoes, respectively. PS incorporated into pea starch edible coating was less effective and selectively inhibited the isolated mold species, causing significant (P<0.05) reduction in mold on apples, cucumbers, and tomatoes counts for 20, 10 to 15, and 15 to 20 d of storage at 4 °C, respectively. The isolated mold species exhibited different resistances to PS incorporated in the edible coatings. The greatest inhibition (2.9 log CFU/g) was obtained with C. herbarum on apples and the smallest (1.1 log CFU/g) was with P. oxalicum on cucumbers and the other isolated mold species exhibited intermediate resistance. The coatings tested, in general, inhibited molds more effectively on apples than on tomatoes and cucumbers. Addition of PS to pea starch and guar gum, edible coatings improved the antifungal activity of PS against isolated spoilage molds on apples, cucumbers, and tomatoes. PS inhibition was most effective against C. herbarum on apples and least effective against P. oxalicum on cucumbers.

  16. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  17. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes.

  18. Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius) fed biologically incorporated lead

    USGS Publications Warehouse

    Custer, T.W.; Franson, J.C.; Pattee, O.H.

    1984-01-01

    American kestrels were fed a diet containing 0.5, 120, 212, and 448 ppm (dry wt) biologically incorporated lead (Pb) for 60 days. The diet consisted of homogenized 4-wk-old cockerels raised on feed mixed with and without lead. No kestrels died and weights did not differ among treatment groups. The control group (0.5 ppm Pb) had the lowest mean concentration of lead and the high dietary group had the highest for the following tissues: Kidney, liver, femur, brain, and blood. Concentrations of lead were significantly correlated among tissues. There were no differences among treatment groups for packed cell volume, hemoglobin concentration, or erythrocyte count.

  19. Minimally invasive intracellular delivery based on electrokinetic forces combined with vibration-assisted cell membrane perforation

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Ozawa, Tatsuya; Ito, Yasuharu; Yamamoto, Keita; Nagai, Moeto

    2017-01-01

    To provide an effective platform for the fundamental analysis of cellular mechanisms and the regulation of cellular functions, we developed a unique method of minimally invasive intracellular delivery. Using this method, we successfully demonstrated the delivery of DNA molecules into living HeLa cells via a glass micropipette based on DC-biased AC-driven electrokinetic forces with much better controllability than that of the pressure-driven flow method. We also proposed a vibration-assisted insertion method for penetrating the cell membrane to reduce cell damage. Preliminary insertion tests revealed that application of mechanical oscillation can reduce the deformation of cells due to increases in their viscous resistance, resulting in a high probability of cell membrane perforation and cell viability. Moreover, to overcome the intrinsic low throughput of intracellular delivery with a single glass micropipette, we developed a fabrication process involving an array of stepped hollow silicon dioxide (SiO2) nanoneedles with well-defined tips.

  20. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Duvail, Magali; Jardat, Marie; Coelho, Daniel; Békri, Samir; Rotenberg, Benjamin

    2013-07-01

    We report the calculation of all the transfer coefficients which couple the solvent and ionic fluxes through a charged pore under the effect of pressure, electrostatic potential, and concentration gradients. We use a combination of analytical calculations at the Poisson-Nernst-Planck and Navier-Stokes levels of description and mesoscopic lattice simulations based on kinetic theory. In the absence of added salt, i.e., when the only ions present in the fluid are the counterions compensating the charge of the surface, exact analytical expressions for the fluxes in cylindrical pores allow us to validate a new lattice-Boltzmann electrokinetics (LBE) scheme which accounts for the osmotic contribution to the transport of all species. The influence of simulation parameters on the numerical accuracy is thoroughly investigated. In the presence of an added salt, we assess the range of validity of approximate expressions of the fluxes computed from the linearized Poisson-Boltzmann equation by a systematic comparison with LBE simulations.

  1. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction.

    PubMed

    Amrate, S; Akretche, D E; Innocent, C; Seta, P

    2005-10-15

    Electrokinetic extraction has been tested to remove lead from an Algerian contaminated soil ([Pb] = 4.432 +/- 0.275 mg g(-1)) sited near a battery plant. The effect of EDTA at various concentrations (0.05-0.20 M) on the enhancement of lead transport has been studied by applying a constant voltage corresponding to a nominal electric field strength of 1 V cm(-1) (duration: 240 h). Results of contaminant distribution across the experimental cell have shown efficient transport of lead toward the anode despite the presence of calcite (25%) and the high acid/base buffer capacity of the soil. To avoid ligand loss, which would be anodically oxidized, the cell was modified by adding extra compartments and inserting cation exchange membranes (Neosepta CMX). Thus, simultaneous recovery of EDTA and lead from their chelated solutions has been made possible using the same set-up and by controlling fluids chemistry.

  2. Electrokinetic and surface chemical characterizations of an irradiated microfiltration polysulfone membrane: comparison of two irradiation doses.

    PubMed

    de Lara, R; Benavente, J

    2007-06-15

    The effect of ionizing radiation on the surface and electrokinetic characteristic parameters for a porous membrane of pore size 0.2 mum is determined and correlated with the irradiation dose (10 and 80 J/kg). Changes in NaCl permeability and membrane system electrical resistance determined from diffusion and impedance spectroscopy measurements are consistent with the increase of membrane pore radii/porosity, in agreement with SEM micrographs and reported results. Low irradiation dose seems to clean the membrane surface of impurities, according to XPS results, but the increase of irradiation doses could affect surface roughness. Due to the relatively high pore radius, ion transport numbers are practically independent of radiation and dose, but irradiation slightly modifies the membrane solution interface by increasing its weakly electronegative character, which could be of interest in the ultrafiltration of proteins or macromolecules.

  3. Graphene nanoparticles as pseudostationary phase for the electrokinetic separation of nonsteroidal anti-inflammatory drugs.

    PubMed

    Benítez-Martínez, Sandra; Simonet, Bartolomé M; Valcárcel, Miguel

    2013-09-01

    The exceptional properties of graphene (G) were exploited here to facilitate capillary electrokinetic separations. Two types of commercially available G consisting of nanoparticles containing-one to three and-four to six G sheets, respectively, were compared for this purpose. Both proved effective in separating the arylpropyl derivatives of nonsteroidal anti-inflammatory drugs. The highest resolution and shortest migration times were obtained with G containing high amount of single and double G nanosheets. G affords higher resolution than other types of nanoparticles; stable suspensions can be easily prepared and used as BGE without the need of adding an additional surfactant. This results in a high reproducibility in migration times and stability in background noise. The LOD and LOQ obtained by using G nanoparticles as pseudostationary phases spanned the range 0.29-1.18 mg/L and 0.95-3.95 mg/L, respectively, and the RSD was less than 4.7% in all instances.

  4. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  5. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  6. Chiral separation of raltitrexed by cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Liu, Yi; Fu, Xiaofang; Ma, Chao; Zhong, Jiasheng; Liao, Yiping; Liu, Huwei

    2009-01-01

    A rapid and effective method was developed for the chiral separation of raltitrexed (RD) enantiomers by carboxymethyl-beta-cyclodextrin (CM-beta-CD)-modified micellar electrokinetic chromatography (MEKC). Optimization of conditions including the type and concentration of the chiral selector, concentration of sodium dodecyl sulfate (SDS), pH and concentration of the background electrolyte (BGE), capillary temperature, and applied voltage was investigated. The enantiomers of raltitrexed could be separated with satisfactory resolution and linear response by using 75 mM Tris-phosphate at pH 8.0 containing 30 mM SDS and 8 mM CM-beta-CD as buffer system. Furthermore, the usefulness of this method was demonstrated in a purity test of a real synthetic drug sample.

  7. Electrokinetic characteristic and coagulation behavior flocculant polyaluminum silicate chloride (PASiC).

    PubMed

    Yue, Qin-Yan; Gao, Bao-Yu; Wang, Bing-Jian

    2003-01-01

    The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride (PASiC) and polyaluminum chloride (PAC) were studied and compared by streaming current (SC) measurement and jar test method. The experimental results showed that the interaction between polysilicic acid characterized negative charge and hydrolyzed aluminum species result in a decrease of the charge-neutralizing ability of PASiC, compared to PAC. The decrease has a close relationship with the basicity (B) and Al/Si molar ratio in PASiC. The less the B value and the Al/Si molar ratio, the lower the charge-neutralizing ability of PASiC is. In contrast, the preparation technique for PASiC affects the charge - neutralization of PASiC to a smaller extent. In addition, compared with PAC, PASiC may enhance aggregating efficiency and give better coagulating effects.

  8. Interactions of structurally modified surfactants with reservoir minerals: Calorimetric, spectroscopic and electrokinetic study

    SciTech Connect

    Somasundaran, P.; Sivakumar, A.; Xu, Q.

    1991-03-01

    The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methyl groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.

  9. On-line micellar electrokinetic chromatography-electrospray ionization mass spectrometry using anodically migrating micelles

    SciTech Connect

    Yang, L.; Harrata, A.K.; Lee, C.S. |

    1997-05-15

    On-line micellar electrokinetic chromatography (MEKC)-electrospray ionization mass spectrometry (ESIMS) is demonstrated for the analysis of chlorotriazine herbicides and barbiturates. In this study, the micellar velocity is directly manipulated by the adjustment of electroosmosis rather than the electrophoretic velocity of the micelle. The electroosmotic flow is adjusted against the electrophoretic velocity of the micelle by changing the solution pH in MEKC. The elimination of MEKC surfactant introduction into ESIMS is achieved with an anodically migrating micelle, moving away from the electrospray interface. The effects of moving surfactant boundary in the MEKC capillary on separation efficiency and resolution of triazine herbicides and barbiturates are investigated. The mass detection of herbicides and barbiturates sequentially eluted from the MEKC capillary is acquired using the positive and negative electrospray modes, respectively. 30 refs., 8 figs., 3 tabs.

  10. Self-consistent description of electrokinetic phenomena in particle-based simulations.

    PubMed

    Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-07

    A new computational method is presented for study suspensions of charged particles undergoing fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent Langevin description of the particles is adopted in which hydrodynamic and electrostatic interactions are included through a Green's function formalism. An Ewald-like split is adopted in order to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby providing a formalism that is applicable to any geometry and that can be extended to deformable objects. The convection-diffusion equation for the continuum ions is solved simultaneously considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion, where it is shown that the ionic clouds associated with individual particles can be severely altered by the flow and concentration, leading to intriguing cooperative effects.

  11. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response.

    PubMed

    Oliveira, Natássia Cristina Martins; Moura, Camilla Christian Gomes; Zanetta-Barbosa, Darceny; Mendonça, Daniela Baccelli Silveira; Cooper, Lyndon; Mendonça, Gustavo; Dechichi, Paula

    2013-05-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors' secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p<0.05), but with greater fold induction for Porous and Vulcano. The secretion of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) was not significantly affected by surface treatment in any experimental time (p>0.05). Although no significant correlation was found for growth factors' secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response.

  12. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films.

    PubMed

    Moreno, Olga; Atarés, Lorena; Chiralt, Amparo

    2015-11-20

    Glycerol plasticized potato starch films containing bioactive proteins (lactoferrin (LF) and/or lysozyme (LZ), at 0.1 and 0.2 ratio with respect to starch) were obtained by casting method and characterized as to their microstructural, thermal and physical (water content, mechanical, water and oxygen barrier, optical) properties. The bioactive properties, named antioxidant and antimicrobial, of the proteins and the films were also characterized. The incorporation of proteins affected the structural and physical properties of potato starch films, while modifying their thermal behavior and increasing the glass transition temperature. Both proteins showed a certain degree of compatibility with starch chains through the bond formations (increase in Tg), while a part is separated and migrates to the film surface. Their incorporation, especially that of lactoferrin, greatly increased the film's brittleness, regardless of the films water content, although they enhance the water vapor and oxygen barrier properties, whatever the age of the film. Protein also reduced the film's transparency and gloss, while lactoferrin induced color changes. The thermal degradation of blend films and isolated proteins occurred at temperatures of over 250°C, which means that blend starch films can be thermoprocessed, according to their thermoplastic properties and following the usual practices of the plastics industries. A synergistic antimicrobial action against Escherichia coli and coliforms was observed when both LZ and LF were simultaneously applied. Both of these exhibited antioxidant capacity.

  13. Incorporation of carrot pomace powder in wheat flour: effect on flour, dough and cookie characteristics.

    PubMed

    Ahmad, Mukhtar; Wani, Touseef Ahmed; Wani, S M; Masoodi, F A; Gani, Adil

    2016-10-01

    Carrot pomace powder (CPP) of 72 and 120 mesh sizes was incorporated in wheat flour at 10, 15 and 20 % level and its impact on flour, dough and cookie characteristics was evaluated. Protein content of the flour blends (8.84-7.88 %) decreased and fibre content (4.63-6.68 %) increased upon blending of CPP in wheat flour. Wheat flour containing 120 mesh CPP showed better functional properties [water absorption (1.16-1.47 %), oil absorption (1.11-1.39 %), solubility index (41-50 %) and swelling power (1.34-1.39)] than those containing 72 mesh. Water solvent retention capacity and sucrose solvent retention capacity increased while lactic acid solvent retention capacity and sodium carbonate solvent retention capacity decreased with blending of CPP. Water absorption, dough development time and degree of softening increased whereas, dough stability and mixing tolerance decreased with increasing CPP. The highest decrease in pasting was observed flour containing 72 mesh CPP. Rheology of dough containing 120 mesh CPP closely resembled the control. Color of flour and cookies increased with blending of CPP irrespective of mesh size. Antioxidant activity of cookies was higher than the flour blends. The cookies containing CPP of 72 mesh showed the lowest hardness. However, cookies containing CPP of 120 mesh showed the best sensory properties. Incorporation of 120 mesh CPP produced low gluten cookies with manageable flour and dough characteristics and better antioxidant and sensory properties.

  14. Effects of incorporating germinated brown rice on the antioxidant properties of wheat flour chapatti.

    PubMed

    Gujral, H Singh; Sharma, P; Bajaj, R; Solah, V

    2012-02-01

    Brown rice after germinating for 24 and 48 h was milled into flour and incorporated in whole wheat flour at a level of 10% to prepare chapattis. The objective was to use chapatti as a delivery vehicle for germinated brown rice. The flour blends and chapattis made from the flour blends were evaluated for their antioxidant properties. Incorporating germinated brown rice flour increased the total phenolic content of the flour blend from 1897 to 2144 µg FAE/g. The total flavonoids content increased significantly from 632.3 to1770.9 µg CAE/g and metal chelating activity significantly increased by 71.62%. Antioxidant activity increased significantly by the addition of brown rice flour and addition of 24- and 48-h germinated brown rice flour further increased the antioxidant activity significantly. The total phenolic content and total flavonoids content decrease significantly in all the blends after baking the flour into chapatti. A decrease of 3% to 29% was observed in the total phenolic content and a decrease of 25% to 42% was observed in the total flavonoids content. However, baking of the flour blends into chapatti increased the reducing power, metal chelating activity by three folds and antioxidant activity from 64% to 104%.

  15. Spectral induced polarization for monitoring electrokinetic remediation processes

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  16. Quantitative determination of lattice fluoride effects on the solubility and crystallinity of carbonated apatites with incorporated fluoride.

    PubMed

    Yan, G; Moribe, K; Otsuka, M; Papangkorn, K; Higuchi, W I

    2013-01-01

    The purpose of this study was to evaluate quantitatively the effects of fluoride on the solubility and crystallinity of carbonated apatites (CAPs) after its incorporation into the crystal lattice using the metastable equilibrium solubility (MES) distribution method. Fluoride-incorporated CAPs (F-CAPs) of two different carbonate levels (3 and 5%) and fluoride contents from 0 to 20,000 µg/g were synthesized. X-ray diffraction experiments and Rietveld analysis were conducted to obtain crystallite microstrain and unit cell parameters. Acetate buffer MES solution media were prepared at two solution fluoride concentrations (0.2 and 2.0 mg/l) and at two pHs (5.0 and 5.7). The unit cell a-axis values of the F-CAPs were found to decrease as the fluoride content increased, consistent with the fluoride being incorporated into the crystal lattice. The fluoride concentrations in the MES solution media were high enough to provide a 'swamping' effect such that the fluoride released from the F-CAPs during dissolution was minimal in changing the solution fluoride concentration. Employing the MES distribution superposition method, it was shown that the surface complex possessing the fluorapatite (FAP) stoichiometry [Ca10(PO4)6F2] accounted for the MES distribution behavior of all experiments. In addition, the mean pIFAP [the value of -log(aCa(10)aPO4(6)aF(2)) calculated from the ionic activity product based on FAP stoichiometry of the MES dissolution media in which 50% of the F-CAPs had dissolved] correlated well with the crystallite microstrain parameters of the F-CAPs. The incorporated fluoride in the F-CAPs showed only modest effects on F-CAP crystallinity and solubility.

  17. Functional properties and in vitro antioxidant and antibacterial effectiveness of pigskin gelatin films incorporated with hydrolysable chestnut tannin.

    PubMed

    Peña-Rodriguez, Cristina; Martucci, Josefa F; Neira, Laura M; Arbelaiz, Aitor; Eceiza, Arantxa; Ruseckaite, Roxana A

    2015-04-01

    The impact of the incorporation of 10% w/w of hydrolyzable chestnut tannin into pigskin gelatin (G) films plasticized with glycerol (Gly) on the physicochemical properties as well as the in vitro antioxidant and antibacterial effectiveness against food-borne pathogens such as Escherichia coli and Streptococcus aureus was investigated. A higher tendency to both redness (a*) and yellowness (b*) coloration characterized gelatin films incorporated with chestnut tannin. The reduced lightness (L) and transparency of gelatin-chestnut tannin films plasticized with 30% w/w Gly might be associated with certain degree of phase separation which provoked the migration of the plasticizer to the film surface. The incorporation of chestnut tannin and glycerol affected the chemical structure of the resultant films due to the establishment of hydrogen interactions between components as revealed by Fourier transform infrared spectroscopy. These interactions reduced gelatin crystallinity and seemed to be involved in the substantial decrease of the water uptake of films with tannin, irrespective of the glycerol level. Such interactions had minor effect on tensile properties being similar to those of the control films (without chestnut tannin) at the same glycerol level. Films modified with 10% w/w chestnut tannin showed significant (P < 0.05) 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ca. from 0 ± 0.033 to 87.1 ± 0.002% for chestnut tannin-free and chestnut tannin-containing gelatin films. The limited inhibitory activity of films incorporated with 10% w/w chestnut tannin against the selected bacteria evidenced by disk diffusion method probably resulted from the interactions within the film restricting the diffusion of the active agent into the agar medium. The more modest protective effect observed against a Gram-positive bacterium (S. aureus) was also discussed.

  18. Electrokinetic instability near charge-selective hydrophobic surfaces.

    PubMed

    Shelistov, V S; Demekhin, E A; Ganchenko, G S

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  19. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  20. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  1. Electrokinetic instability near charge-selective hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Shelistov, V. S.; Demekhin, E. A.; Ganchenko, G. S.

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  2. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    DOE PAGES

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...

    2017-01-03

    In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  3. Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Chow, W. T. L.; Wang, Z. H.; Brazel, A.; Trapido-Lurie, B.; Roth, M.; Benson-Lira, V.

    2015-06-01

    Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.

  4. Effect of incorporating prebiotics in coating materials for the microencapsulation of Saccharomyces boulardii.

    PubMed

    Zamora-Vega, Rafael; Montañez-Soto, José Luis; Martínez-Flores, Héctor Eduardo; Flores-Magallón, Rebeca; Muñoz-Ruiz, Carlos Víctor; Venegas-González, José; Ariza Ortega, Teresita De Jesús

    2012-12-01

    The objective of this study was to microencapsulate Saccharomyces boulardii using the emulsion technique. To microencapsulate the yeast, alginate sodium blended with inulin and mucilage from Opuntiaficus-indica was used as a coating material. The textural properties of the gels formed by the encapsulating materials and the in vitro viability of the yeast strain in the simulated conditions were studied. Textural profile analyses of the gels revealed differences (p < 0.05) in hardness because alginate produced stronger gels, whereas the incorporation of other hydrocolloids with alginate decreased gel strength and resulted in a more uniform, cohesive gel matrix. When alginate was blended with mucilage and inulin, encapsulated yeast presented higher counts and more viable cells, as compared to free yeast following 30 days of storage at 4 °C. Encapsulated and free yeast had 76.1% and 63.3%, respectively, of cell viability after 35 days of storage.

  5. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    PubMed Central

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  6. Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease

    PubMed Central

    Matthews, Qiana L.; Farrow, Anitra L.; Rachakonda, Girish; Gu, Linlin; Nde, Pius; Krendelchtchikov, Alexandre; Pratap, Siddharth; Sakhare, Shruti S.; Sabbaj, Steffanie; Lima, Maria F.; Villalta, Fernando

    2016-01-01

    Background Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone. PMID:27709126

  7. Effect of incorporation of pumpkin (Cucurbita moshchata) powder and guar gum on the rheological properties of wheat flour.

    PubMed

    Kundu, Himani; Grewal, Raj Bala; Goyal, Ankit; Upadhyay, Neelam; Prakash, Saurabh

    2014-10-01

    The present study was carried out to study the effect of incorporation of fibre rich pumpkin powder and guar gum on the farinographic characteristics of wheat flour. The flour and pumpkin powder were assessed for proximate composition, total dietary fibre, minerals and β-carotene. Pumpkin powder contained appreciable amount of fibre, minerals and β-carotene. The effects of incorporation of different levels of pumpkin powder and guar gum along with pumpkin powder on farinographic characteristics were studied. Dough development time, dough stability, time to break down and farinograph quality number increased whereas mixing tolerance index decreased with incorporation of pumpkin powder (> 5 %) and guar gum (1.0 and 1.5 %) along with pumpkin powder in the flour. Resistance to extension as well as extensibility of dough prepared increased significantly by adding pumpkin powder (5-15 %) whereas increase in resistance to extension only was noticed with inclusion of guar gum (0.5-1.5 %) to flour containing 5 % pumpkin powder. Results indicated that pumpkin can be processed to powder that can be utilized with guar gum for value addition.

  8. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties.

    PubMed

    Yao, Fang; LeGeros, John P; LeGeros, Racquel Z

    2009-07-01

    The mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications. The objective of this study was to determine the effects of simultaneously incorporated CO(3) and F on the crystallographic physico-chemical properties of apatite. The results showed that increasing CO(3) and Na content in apatites with relatively constant F concentration caused a decrease in crystallite size and an increase in the extent of calcium release; increasing F content in apatites with relatively constant CO(3) concentration caused an increase in crystallite size and a decrease in the extent of Ca release. These findings suggest that CFAs as bone graft materials of desired solubility can be prepared by manipulating the relative concentrations of CO(3) and F incorporated in the apatite.

  9. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  10. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites.

    PubMed

    Sandu, Ciprian; Popescu, Marius; Rosales, Emilio; Bocos, Elvira; Pazos, Marta; Lazar, Gabriel; Sanromán, M Angeles

    2016-08-01

    The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils.

  11. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.

    PubMed

    Reddy, Krishna R; Saichek, Richard E

    2004-01-01

    Electrokinetically enhanced in-situ flushing using surfactants has the potential to remove polycyclic aromatic hydrocarbons (PAHs) from low permeability clay soils; however, previous research has shown that the applied electric potential produces complex physical, chemical, and electrochemical changes within clay soils that affect mass transfer and overall efficiency. This article presents the results of a laboratory investigation conducted to determine the contaminant mass removal by using a periodic voltage application. The periodic voltage effects were evaluated by performing four different bench-scale electrokinetic tests with the voltage gradient applied continuously or periodically, under relatively low voltage (1.0 VDC/cm) and high anode buffering (0.1 M NaOH) as well as high voltage (2.0 VDC/cm) and low anode buffering (0.01 M NaOH) conditions. For all the tests, kaolin soil was used as a representative clay soil and it was spiked with phenanthrene, a representative PAH, with a target concentration of 500 mg/kg. A nonionic polyoxyethylene surfactant, Igepal CA 720, was used as the flushing solution in all the tests. The voltage was applied according to a cycle of five days of continuous application followed by two days of "down time," when the voltage was not applied. The results of these experiments show that considerable contaminant removal can be achieved by employing a high, 2.0 VDC/cm, voltage gradient along with a periodic mode of voltage application. The increased removal was attributed to increased phenanthrene solubilization and mass transfer due to the reduced flow of the bulk solution during the down time as well as to the pulsed electroosmotic flow that improved flushing action.

  12. The Effects of Substrate Surface Treatments on the Defect Incorporation in Hydride VPE Grown InGaAs Films.

    DTIC Science & Technology

    1984-01-05

    AD-RI37 488 THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE i/i DEFECT INCORPORATION I..(U) COLORADO STATEUUIIV FORT COLLINS DEPT OF ELECTRICAL...WA n 11111125 liii411.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STNA-19- THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE qDEFECT...b.) in HCI (37.5x) ---------- 12 4. InP films grown on a substrate bathed in PH3 (left) and b.) a substrate etched in HCl (right

  13. Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    PubMed Central

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F. L.

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  14. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil

    PubMed Central

    Mao, Xinyu; Han, Fengxiang X.; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2017-01-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electrokinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants. PMID:26650421

  15. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    PubMed

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F L

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  16. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    PubMed

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants.

  17. Determination of lysergic acid diethylamide (LSD) by application of online 77 K fluorescence spectroscopy and a sweeping technique in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-10-16

    The principal advantage of the use of Shopl'skii effect (low temperature spectrum) is that spectral sharpening occurs both in absorption and emission. However, thus far using the technique of capillary electrophoresis/low temperature fluorescence spectroscopy (CE/LTFS) either at 77 or 4.2 K remains difficult to obtain an on-line spectrum, if the analyte is present at low concentration. This paper examines the feasibility of combining the techniques of online concentration and CE/LTFS to identify LSD and related compounds in urine at 77 K. To improve sensitivity, sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for on-line concentration which resulted in detection limits of approximately 20 approximately 60 ppt, respectively.

  18. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate.

    PubMed

    Chen, Zetao; Yuen, Jones; Crawford, Ross; Chang, Jiang; Wu, Chengtie; Xiao, Yin

    2015-08-01

    Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials-from one of an inert to an osteoimmunomodulatory material-highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional "one cell type" approach with a "multiple cell types" approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.

  19. Comparative study of the effect of incorporated individual wheat storage proteins on mixing properties of rice and wheat doughs.

    PubMed

    Oszvald, Mária; Balázs, Gábor; Tömösközi, Sándor; Békés, Ferenc; Tamás, László

    2011-09-14

    The aim of this work was to compare the effects of incorporated wheat storage proteins on the functional properties of rice and wheat flours. The advantage of rice as a base flour compared to wheat is that it does not contain any wheat flour components and, therefore, has no interactive effect between wheat glutenin proteins. The incorporation of individual HMW glutenin subunit proteins (Bx6, Bx7, and By8) in different ratios had significant positive effects on the mixing requirements of both rice and wheat doughs. Reconstitution experiments using two x+y type HMW-GS pairs together with a bacterially expressed LMW-GS have been also carried out in this study. The largest effects of polymer formation and mixing properties of rice flour dough were observed when Bx and By subunits were used in a 1:1 ratio and HMW and LMW glutenin subunits in a 1:3 ratio. However, using the same subunit ratios in wheat as the base flour, these synergistic effects were not observed.

  20. Electrokinetic remediation of soils contaminated with electroplating wastes

    SciTech Connect

    Reddy, K.R.; Parupudi, U.S.; Devulapalli, S.

    1996-10-01

    Electrokinetic remediation of soils simulated with electroplating waste contamination was investigated in two soils, kaolin and glacial till. Soil samples were contaminated with nickel, cadmium and hexavalent chromium and subjected to an external electric field for four days. Results of these experiments revealed that the soil composition plays an important role in electrokinetic remediation. Due to induced electric potential, a distinct pH gradient was developed in kaolin; however, in glacial till alkaline conditions existed throughout the soil because of its high carbonate buffering capacity. The movement of cationic metallic contaminants, Ni(II) and Cd(II), from the anode to the cathode was significant in kaolin as compared to glacial till. Because of high pH conditions near the cathode, Ni(II) and Cd(II) were precipitated in kaolin. In glacial till, however, because of alkaline conditions throughout the soil, most of Ni(II) and Cd(II) precipitated without migration. Overall, this study demonstrates that anion exchange, cation exchange and precipitation were the significant fixation mechanisms of nickel, cadmium and chromium in soils.

  1. Electrokinetic turbulence in a microchannel at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2015-11-01

    Turbulence is commonly viewed as a type of macroflow phenomenon under a sufficiently high Reynolds number (Re). On the other hand, it has been widely perceived in science, engineering and medicine that there is never any turbulence in low Re flow for Newtonian fluids. There is even difficulty to characterize turbulence in microchannels with current available velocimeters, due to the requirement of simultaneously high spatial and temporal resolution. Recently, we generated micro-electrokinetic (EK) turbulence in a microchannel when a pressure driven flow at low Re on the order of unity is electrokinetically forced. We also developed a novel velocimeter, i.e. laser induced fluorescence photobleaching anemometer (LIFPA) that enables us to measure the velocity fluctuations with simultaneously high spatial and temporal resolution. Here we surprisingly observed with LIFPA that the corresponding micro EK turbulence can also have some features of high Re flows, such as Kolmogorov -5/3 spectrum and the exponential tail of probability density function of velocity fluctuation, and the scaling behavior of velocity structure function. This work could provide a new perspective on turbulence. The work was supported by NSF under grant no. CAREER CBET-0954977, MRI CBET-1040227.

  2. Microemulsion electrokinetic chromatography for analysis of phthalates in soft drinks.

    PubMed

    Hsieh, Sung-Yu; Wang, Chun-Chi; Wu, Shou-Mei

    2013-12-15

    Microemulsion electrokinetic chromatography (MEEKC) is proposed for analysis of di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in soft drinks. However, the instability of microemulsion is a critical issue. In this research, a novel material, Pluronic® F-127, which has the properties of polymer and surfactant, was added for stabilizing the microemulsion in the MEEKC system. Our data demonstrate that the presence of Pluronic® F-127 (0.05-0.30%) also helps enhance resolution of highly hydrophobic compounds, DBP and DEHP. The electrokinetic injection of sodium dodecyl sulphate (SDS) including sample (-10 kV, 20 s) was introduced in this MEEKC system and this yielded about 25-fold sensitivity enhancement compared with hydrodynamic injection (1 psi, 10 s). During method validation, calibration curves were linear (r≥0.99), within a range of 75-500 ng/mL for DBP and 150-1000 ng/mL for DEHP. As the precision and accuracy assays, absolute values of relative standard deviation (RSD) and relative error (RE) in intraday (n=3) and interday (n=5) observations were less than 4.93%. This method was further applied for analyzing six commercial soft drinks and one was found containing 453.67 ng/mL of DEHP. This method is considered feasible for serving as a tool for analysis of highly hydrophobic molecules.

  3. Electrokinetic removal of uranium from contaminated, unsaturated soils

    SciTech Connect

    Booher, W.F.; Lindgren, E.R.; Brady, P.V.

    1997-01-01

    Electrokinetic remediation of uranium-contaminated soil was studied in a series of laboratory-scale experiments in test cells with identical geometry using quartz sand at approximately 10 percent moisture content. Uranium, when present in the soil system as an anionic complex, could be migrated through unsaturated soil using electrokinetics. The distance that the uranium migrated in the test cell was dependent upon the initial molar ratio of citrate to uranium used. Over 50 percent of the uranium was recovered from the test cells using the citrate and carbonate complexing agents over of period of 15 days. Soil analyses showed that the uranium remaining in the test cells had been mobilized and ultimately would have been extracted. Uranium extraction exceeded 90 percent in an experiment that was operated for 37 days. Over 70 percent of the uranium was removed from a Hanford waste sample over a 55 day operating period. Citrate and carbonate ligand utilization ratios required for removing 50 percent of the uranium from the uranium-contaminated sand systems were approximately 230 moles ligand per mole uranium and 1320 moles ligand per mole uranium for the waste. Modifying the operating conditions to increasing the residence time of the complexants is expected to improved the utilization efficiency of the complexing agent.

  4. Electrokinetic remediation using surfactant-coated ceramic casings

    SciTech Connect

    Mattson, E.D.; Bowman, R.S.; Lindgren, E.R.

    2000-06-01

    Electrokinetic remediation is an emerging technique that can be used to remove metals from saturated or unsaturated soils. In unsaturated soils, control of the medium's water content is essential. Previously used electrode designs have caused detrimental soil wetting due to excess electroosmotic flow out of ceramic-encased anodes. The authors tested a method to reverse the electroosmotic flow at the anode by treating the ceramic casing with the cationic surfactant hexadecyltrimethylammonium (HDTMA). Laboratory tests showed the untreated ceramic had an electroosmotic permeability of 2.4 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Ceramic treated with HDTMA had an electroosmotic permeability of {minus}1.3 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Under an applied electric potential, electroosmotic flow was reversed in the HDTMA-treated ceramic, indicating a reversed zeta potential due to formation of an HDTMA bilayer on the ceramic surface. Field tests conducted over a 6-month period showed negligible water loss from HDTMA-treated ceramic compared to untreated ceramics. The results indicated that a surfactant treatment to the anode ceramic casing can greatly improve the application of electrokinetics in unsaturated environments.

  5. Effect on days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides

    SciTech Connect

    Pullen, D.L.; Emergy, R.S. ); Palmquist, D.L. )

    1989-01-01

    Methionine hydroxy analog has been proposed to stimulate hepatic lipoprotein synthesis and incorporation of plasma fatty acids into plasma triglyceride. Seven cows were fed diets containing 0 to 30 g analog/d starting 14 d prepartum. At approximately 30 and 60 d postpartum, cows were continuously infused intravenously with 1-({sup 14}C)palmitic acid for 160 min to achieve steady-state labeling of plasma fatty acid and triglyceride. Turnover of fatty acid and transfer quotients for triglyceride and CO{sub 2} were 3.3 an 2.7 mmol min{sup {minus}1}; 13.0 and 10.0%; and 8.0 and 5.0%, for control and analog, respectively. Proportion of fatty acid turnover incorporated into triglyceride and CO{sub 2} were 14.0 and 15.0%; and 21.0 and 18.0, respectively, for control and analog. Analog increased {sup 14}C recovered in milk fat (52 vs. 36%). Plasma concentration of fatty acids, percent oxidized to CO{sub 2}, and percent of CO{sub 2} from fatty acids decreased with increasing lactation days. Milk fat percent and yield fatty acid turnover, and oxidation were positively correlated with concentration of plasma fatty acids, whereas fatty acid incorporated into plasma triglyceride was negatively correlated with fatty acid concentration. The data suggest that hepatic triglyceride secretion is not increased in early lactation; further, no effects of analog on lipid metabolism were detected.

  6. [Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil].

    PubMed

    Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong

    2007-11-01

    Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).

  7. Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion

    SciTech Connect

    Apte, Swapna; Sanders, David Avram

    2010-09-15

    Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.

  8. Effect of nanoscale particles incorporation on microhardness of polymers for oral prosthesis

    PubMed Central

    Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amalia; Vechiato Filho, Aljomar José; Paulini, Marcela Borghi; Santos, Daniela Micheline Dos

    2016-01-01

    Objectives: This study aimed to evaluate the influence of the incorporation of pigments on surface hardness of four acrylic resins subjected to thermocycling and analyze their elemental composition using energy dispersive X-ray spectroscopy (EDS). Materials and Methods: Twenty-one discs of each resin were fabricated, whereas seven had no additive, seven had 3% of nanoscale pigments and last seven had 10% of them. The percentage was obtained by measuring the total weight of each resin disc. Besides, seven discs composed by only nanoscale pigments were also fabricated, totalizing 91 discs. The pigment was weighed by using an analytical balance (BEL Analytical Equipment, SP, Brazil). The surface hardness was measured through a hardness tester machine before and after thermocycling (5–55°C, for 2000 cycles). Data were analyzed by ANOVA and Tukey's test (P < 0.05). The chemical composition of the discs composed only by nanoscale pigments was analyzed with EDS test. Results: Hardness of all resins decreased after thermocycling. The lowest values were observed on the discs with 3% of nanoscale pigments and discs fabricated only with them. EDS showed the presence of titanium dioxide. Conclusion: Discs with 7% of pigments (after thermocycling) showed higher hardness values. PMID:27630492

  9. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.

    PubMed

    Wu, Chengtie; Ramaswamy, Yogambha; Kwik, Danielle; Zreiqat, Hala

    2007-07-01

    CaSiO3 ceramics have been regarded as a potential bioactive material for bone regeneration. Strontium (Sr) as a trace element in human body has been found to have beneficial effects on bone formation. The aim of this study was to incorporate Sr into CaSiO3 bioactive ceramics and to investigate their effect(s) on phase transition, sintering property, apatite-formation ability, ionic dissolution, and human bone-derived cells (HBDC) proliferation. Sr containing CaSiO3 (Sr-CaSiO3) ceramics at various concentrations (0-10% Sr) were prepared. The incorporation of Sr into CaSiO3 promoted the phase transition from beta to alpha-CaSiO3 and enhanced ceramic densification but did not alter the mechanism and ability of apatite formation in SBF. The ionic dissolution rate of the Sr-CaSiO3 decreased compared to the CaSiO3. The addition of Sr decreased pH value in SBF. The effect of Sr-CaSiO3 extracts, carried out according to the International Standard Organization, on HBDC proliferation was evaluated. At high extract concentration (100 and 200 mg/mL), CaSiO3 was found to stimulate HBDC proliferation, however, the incorporation of Sr into CaSiO3 stimulated HBDC proliferation even at low extract concentration (ranging from 12.5, 25 to 50 mg/mL). Our results indicate that Sr-CaSiO3 ceramics improved the physical and biological properties of the pure CaSiO3 ceramics.

  10. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  11. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot

    PubMed Central

    Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil. PMID:27176597

  12. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot.

    PubMed

    Ghini, Raquel; Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.

  13. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    SciTech Connect

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.; Gago, R.; Caretti, I.; Jimenez, I.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) was rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.

  14. Electrokinetic Flow Control and Propulsion for MAVs

    DTIC Science & Technology

    2007-11-02

    Vehicle (pdf) Electroaerodynamic Coanda Effect – Cylinder Wake Flow Control Experiments to Active Cylinder Wake Flow Control Using Electric Field Actuators...flow separation at the leading edge - Compact geometry (low aspect-ratio below 2) gives rise to strong 3D effects Nonlinear lift characteristics and...Additional Electrode Pair at Trailing Edge has Effect of Jet Flap. - Lift Enhancement at alpha = 19° is 127% - Drag Coefficient decreases by 18% Increase of

  15. ENANTIOSEPARATION OF MALATHION, CRUFORMATE, AND FENSULFOTHION ORGANOSPHOSPHORUS PESTICIDES BY MIXED-MODE ELECTROKINETIC CAPILLARY CHROMATOGRAPHY

    EPA Science Inventory

    Mixed-mode electrokinetic capillary chromatography (mixed-ECC) has been used for the enantioseparation of organophosphorus pesticides. In mixed-ECC, a combination of three pseudostationary phases including surfactants, neutral, and charged cyclodextrins, are used to resolve very ...

  16. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.

    PubMed

    Ryan, Alan J; Gleeson, John P; Matsiko, Amos; Thompson, Emmet M; O'Brien, Fergal J

    2015-12-01

    Scaffolds which aim to provide an optimised environment to regenerate bone tissue require a balance between mechanical properties and architecture known to be conducive to enable tissue regeneration, such as a high porosity and a suitable pore size. Using freeze-dried collagen-based scaffolds as an analogue of native ECM, we sought to improve the mechanical properties by incorporating hydroxyapatite (HA) in different ways while maintaining a pore architecture sufficient to allow cell infiltration, vascularisation and effective bone regeneration. Specifically we sought to elucidate the effect of different hydroxyapatite incorporation methods on the mechanical, morphological, and cellular response of the resultant collagen-HA scaffolds. The results demonstrated that incorporating either micron-sized (CHA scaffolds) or nano-sized HA particles (CnHA scaffolds) prior to freeze-drying resulted in moderate increases in stiffness (2.2-fold and 6.2-fold, respectively, vs. collagen-glycosaminoglycan scaffolds, P < 0.05, a scaffold known to support osteogenesis), while enabling good cell attachment, and moderate mesenchymal stem cell (MSC)-mediated calcium production after 28 days' culture (2.1-fold, P < 0.05, and 1.3-fold, respectively, vs. CG scaffolds). However, coating of collagen scaffolds with a hydroxyapatite precipitate after freeze-drying (CpHA scaffolds) has been shown to be a highly effective method to increase the compressive modulus (26-fold vs. CG controls, P < 0.001) of scaffolds while maintaining a high porosity (~ 98%). The coating of the ligand-dense collagen structure results in a lower cell attachment level (P < 0.05), although it supported greater cell-mediated calcium production (P < 0.0001) compared with other scaffold variants after 28 days' culture. The comparatively good mechanical properties of these high porosity scaffolds is obtained partially through highly crosslinking the scaffolds with both a physical (DHT) and chemical (EDAC) crosslinking

  17. THE LOCAL EFFECT TIME (LET) AND HOW IT INCORPORATES ECOLOGY INTO RESIDENCE TIME

    EPA Science Inventory

    A clear and direct connection between constituent/water residence times and ecological effects is necessary to quantitatively relate these time scales to ecology. The concept of "local effect time" (LET) is proposed here as a time scale with adequate spatial resolution to relate ...

  18. Effects of Incorporating Nanosized Calcium Phosphate Particles on Properties of Whisker-Reinforced Dental Composites

    PubMed Central

    Xu, Hockin H. K.; Sun, Limin; Weir, Mike D.; Takagi, Shozo; Chow, Laurence C.; Hockey, Bernard

    2009-01-01

    Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1–56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean ± SD; n = 5) decreased from 174 ± 26 MPa to 138 ± 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 ± 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 ± 0.04 mmol/L to 1.74 ± 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 ± 0.21 mmol/L to 9.95 ± 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction vMCPM in the resin: [Ca]= 42.9 vMCPM2.7, and [PO4] = 48.7 vMCPM1.4. In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca–PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials. PMID:16924611

  19. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge.

  20. Separation and analysis of cis-diol-containing compounds by boronate affinity-assisted micellar electrokinetic chromatography.

    PubMed

    Wang, Heye; Lü, Chenchen; Li, Hengye; Chen, Yang; Zhou, Min; Ouyang, Jian; Liu, Zhen

    2013-10-01

    Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.

  1. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields.

    PubMed

    Liu, Gang; Yu, Haiyang; Ma, Jing; Xu, Hua; Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone.

  2. Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo.

    PubMed

    Nordly, Pernille; Korsholm, Karen Smith; Pedersen, Esra Alici; Khilji, Tayba Sajid; Franzyk, Henrik; Jorgensen, Lene; Nielsen, Hanne Mørck; Agger, Else Marie; Foged, Camilla

    2011-01-01

    The combination of delivery systems such as cationic liposomes and immunopotentiating molecules is a promising approach for the rational design of vaccine adjuvants. In this study, a synthetic analogue of the mycobacterial lipid monomycoloyl glycerol (MMG), referred to as MMG-1, was synthesized and combined with the cationic surfactant dimethyldioctadecylammonium (DDA). The purpose of the study was to provide a thorough pharmaceutical characterization of the resulting DDA/MMG-1 binary system and to evaluate how incorporation of MMG-1 affected the adjuvant activity of DDA liposomes. Thermal analyses demonstrated that MMG-1 was incorporated into the DDA lipid bilayers, and cryo-transmission electron microscopy (TEM) confirmed that liposomes were formed. The particles had a polydisperse size distribution and an average diameter of approximately 400 nm. Evaluation of the colloidal stability indicated that at least 18 mol% MMG-1 was required to stabilize the DDA liposomes as the average particle size remained constant during storage for 6 months. The improved colloidal stability is most likely caused by increased hydration of the lipid bilayer. This was demonstrated by studying Langmuir-Blodgett monolayers of DDA and MMG-1 which revealed an increased surface pressure in the presence of high concentrations of MMG-1 when the DDA/MMG-1 monolayers were fully compressed, indicating an increased interaction with water due to enhanced hydration of the lipid head groups. Finally, immunization of mice with the tuberculosis fusion antigen Ag85B-ESAT-6 and DDA/MMG-1 liposomes induced a strong cell-mediated immune response characterized by a mixed Th1/Th17 profile and secretion of IgG1 and IgG2c antibodies. The Th1/Th17-biased immunostimulatory effect was increased in an MMG-1 concentration-dependent manner with maximal observed effect at 31 mol% MMG-1. Thus, incorporation of 31 mol% MMG-1 into DDA liposomes results in an adjuvant system with favorable physical as well as

  3. A METHOD TO INCORPORATE ECOLOGY INTO RESIDENCE TIME OF CHEMICALS IN EMBAYMENTS: LOCAL EFFECT TIME

    EPA Science Inventory

    Residence times are classically defined by the physical and chemical aspects of water bodies rather than by their ecological implications. Therefore, a more clear and direct connection between the residence times and ecological effects is necessary to quantitatively relate these ...

  4. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    PubMed

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.

  5. Enhanced electrokinetic manipulation and impedance sensing using FPGA digital signal processing

    NASA Astrophysics Data System (ADS)

    Higginbotham, Steven N.; Sweatman, Denis R.

    2006-01-01

    Electrokinetic manipulation of microscopic biological particles, such as bacteria and other cells, is useful in the technology of lab-on-a-chip devices and micro-total-analysis systems (μTAS). In electrokinetic manipulation, non-uniform electric fields are used to exploit the dielectric properties of suspended biological microparticles, to induce forces and torques on the particles. The electric fields are produced by planar electrode arrays patterned on electrically-insulating substrates. Biological microparticles are dielectrically-heterogeneous structures. Each different type of biological cell has a distinct dielectric frequency response signature. This dielectric distinction allows specificity when manipulating biological microparticles using electrokinetics. Electrokinetic microbiological particle manipulation has numerous potential applications in biotechnology, such as the separation and study of cancerous cells, determining the viability of cells, as well as enabling more automation and parallelization in microbiological research and pathology. This paper presents microfabricated devices for the manipulation of biological microparticles using electrokinetics. Methods of impedance sensing for determining microparticle concentration and type are also discussed. This paper also presents methods of using digital signal processing systems to enhance the manipulation and sensing of the microbiological particles. A Field-Programmable Gate Array (FPGA) based system is demonstrated which is used to digitally synthesize signals for electrokinetic actuation, and to process signals for impedance sensing.

  6. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  7. Incorporating Volumetric Displacement Effects In Euler-Lagrange Simulations of Particle-Laden Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Apte, Sourabh; Finn, Justin; Cihonski, Andrew

    2013-11-01

    Recent Euler-Lagrange discrete element modeling of a few microbubbles entrained in a traveling vortex ring (Cihonski et al., JFM, 2013) has shown that extension of the point-particle method to include local volume displacement effects is critical for capturing vortex distortion effects due to microbubbles, even in a very dilute suspension. We extend this approach to investigate particle-laden oscillatory boundary layers representative of coastal sediment environments. A wall bounded, doubly periodic domain is considered laden with a layer of sediment particles in laminar as well as turbulent oscillatory boundary layers corresponding to the experiments of Keiller and Sleath (1987) and Jensen et al. (1987). Inter-particle and particle-wall collisions are modeled using a soft-sphere model which uses a nested collision grid to minimize computational effort. The effects of fluid mass displaced by the particles on the flow statistics are quantified by comparing a standard two-way coupling approach (without volume displacement effects) with volume displacement effects to show that the latter models are important for low cases with low particle-fluid density ratios. NSF project #1133363, Sediment-Bed-Turbulence Coupling in Oscillatory Flows. EPSRC Project # EP/J00507X/1, EP/J005541/1 Sand Transport under Irregular and Breaking Waves Conditions (SINBAD).

  8. Development of an integrated, in-situ remediation technology: Task 2--4, electrokinetic modeling. Topical report, September 26--May 25, 1996

    SciTech Connect

    1997-05-01

    This report summarizes the work conducted in Tasks 2-4, which together make up the Electrokinetic Modeling carried out in this project. The modeling was divided into three main sections: thermal analysis, chemical species transport, and electrode geometry and soil heterogeneity issues. The thermal modeling consisted of development of the governing equations to incorporate Joule heating associated with electro-osmosis, heat conduction and convection, and temperature dependencies of electrical conductivity and electro-osmotic permeability. To model the transport of chemical species in the Lasagna{sup TM} process, a one-dimensional model was developed. This model is based on previous models, but includes additional mechanism to account for charge transfer in the double layer, pH buffering of the soil, and zeta potential dependency on pH and ionic strength. The results of this model and the corroboration by experimental measurement support some key assumptions made in the thermal model. An analysis was also conducted to compare the use of cylindrical electrodes to the plate geometry used in Phase I. In summary, cylindrical electrodes may be appropriate for anodes, because the do not intercept the flow. If used as cathodes, a planar treatment zone in their vicinity would probably be required. The cylindrical electrodes can operate at reasonable current densities without boiling water. Because the hottest region is at the electrode, cooling schemes could be used to operate at higher current densities. If iron anodes are used, they will have to be quite massive, and may not be economical compared to planar models. An example of soil heterogeneity was investigated when it was discovered that a steel pt was buried in the vicinity of the pilot test. There is some distortion of the field near the pit, but its effects on the test zone between the electrodes are minimal.

  9. Considerations for Incorporating Bioavailability in Effect-Directed Analysis and Toxicity Identification Evaluation.

    EPA Science Inventory

    In order to avoid a bias toward highly toxic but poorly bioavailable compounds in the effect-directed analysis (EDA) of soils and sediments, approaches are discussed to consider bioavailability in EDA procedures. In parallel, complimentary approaches for making toxicity identific...

  10. Extinction-effective population index: incorporating life-history variations in population viability analysis.

    PubMed

    Fujiwara, Masami

    2007-09-01

    Viability status of populations is a commonly used measure for decision-making in the management of populations. One of the challenges faced by managers is the need to consistently allocate management effort among populations. This allocation should in part be based on comparison of extinction risks among populations. Unfortunately, common criteria that use minimum viable population size or count-based population viability analysis (PVA) often do not provide results that are comparable among populations, primarily because they lack consistency in determining population size measures and threshold levels of population size (e.g., minimum viable population size and quasi-extinction threshold). Here I introduce a new index called the "extinction-effective population index," which accounts for differential effects of demographic stochasticity among organisms with different life-history strategies and among individuals in different life stages. This index is expected to become a new way of determining minimum viable population size criteria and also complement the count-based PVA. The index accounts for the difference in life-history strategies of organisms, which are modeled using matrix population models. The extinction-effective population index, sensitivity, and elasticity are demonstrated in three species of Pacific salmonids. The interpretation of the index is also provided by comparing them with existing demographic indices. Finally, a measure of life-history-specific effect of demographic stochasticity is derived.

  11. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  12. Estimation of a Semiparametric Natural Direct Effect Model Incorporating Baseline Covariates.

    PubMed

    Tchetgen Tchetgen, E J; Shpitser, I

    2014-12-01

    Establishing cause-effect relationships is a standard goal of empirical science. Once the presence of a causal relationship is established, the precise causal mechanism involved becomes a topic of interest. A particularly popular type of mechanism analysis concerns questions of mediation, that is to what extent an effect is direct, and to what extent it is mediated by a third variable. A semiparametric theory has recently been proposed which allows multiply robust estimation of direct and mediated marginal effect functionals in observational studies (Tchetgen Tchetgen & Shpitser, 2012). In this paper we extend the new theory to handle parametric models of natural direct and indirect effects within levels of pre-exposure variables with an identity or log link function, where the model for the observed data likelihood is otherwise unrestricted. We show that estimation is generally not feasible in this model because of the curse of dimensionality associated with the required estimation of auxiliary conditional densities or expectations, given high-dimensional covariates. Thus, we consider multiply robust estimation and propose a more general model which assumes that a subset but not all of several working models holds.

  13. Electrokinetic Flow and Dispersion in Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2006-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis (which has evolved from its predecessor, slab-gel electrophoresis), the sample migrates through a single microcapillary instead of through the network of pores in a gel. A fundamental design problem is to minimize dispersion in the separation direction. Molecular diffusion is inevitable and sets a theoretical limit on the best separation that can be achieved. But in practice, there are a number of effects arising out of the interplay between fluid flow, chemistry, thermal effects, and electric fields that result in enhanced dispersion. This paper reviews the subject of fluid flow in such capillary microchannels and examines the various causes of enhanced dispersion that limit the efficiency of separation.

  14. Two-phase lattice Boltzmann modelling of streaming potentials : influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2016-11-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen (1993). The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi (2008). The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5 to 30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  15. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long

    2004-07-01

    The effect of enhancement reagents on the efficiency of electrokinetic remediation of Cu contaminated red soil is evaluated. The enhancement agents were a mix of organic acids, including lactic acid+NaOH, HAc-NaAc and HAc-NaAc+EDTA. The soil was prepared to an initial Cu concentration of 438 mgkg(-1) by incubating the soil with CuSO4 solution in a flooded condition for 1 month. Sequential extraction showed that Cu was partitioned in the soil as follows: 195 mgkg(-1) as water soluble and exchangeable, 71 mgkg(-1) as carbonate bound and 105 mgkg(-1) as Fe and Mn oxides. The results indicate that neutralizing the catholyte pH maintains a lower soil pH compared to that without electrokinetic treatment. The electric currents varied depending upon the conditioning solutions and increased with an increasing applied voltage potential. The electroosmotic flow rate changed significantly when different conditioning enhancing reagents were used. It was observed that lactic acid+NaOH treatments resulted in higher soil electric conductivities than HAc-NaAc and HAc-NaAc+EDTA treatments. Ultimately, enhancement by lactic acid+NaOH resulted in highest removal efficiency (81% Cu removal) from the red soil. The presence of EDTA did not enhance Cu removal efficiencies from the red soil, because EDTA complexed with Cu to form negatively charge complexes, which slowly migrated toward the anode chamber retarding Cu2+ transport towards the cathode.

  16. Two-phase Lattice Boltzmann modelling of streaming potentials: influence of the air-water interface on the electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Fiorentino, Eve-Agnès; Toussaint, Renaud; Jouniaux, Laurence

    2017-02-01

    The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson-Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a ζ potential of -20 mV at the air-water interface, an enhancement of a factor 5-30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.

  17. Effect of sodium incorporation into CuInSe2 from first principles

    NASA Astrophysics Data System (ADS)

    Oikkonen, L. E.; Ganchenkova, M. G.; Seitsonen, A. P.; Nieminen, R. M.

    2013-08-01

    The presence of small amounts of sodium has been shown to improve the electronic performance of Cu(In,Ga)Se2 (CIGS) solar cells, but the origins of this effect have not yet been fully resolved. In this work, we have addressed the questions involving the role of sodium in CuInSe2 (CIS) using density-functional-theory-based calculations. We find no direct way how the creation of Na-related point defects in bulk CIS would enhance p-type conductivity. Instead, we demonstrate that Na reduces copper mass transport due to the capture of copper vacancies by NaCu defects. This finding provides an explanation for experimental measurements where the presence of Na has been observed to decrease copper diffusion. The suggested mechanism can also impede VCu-related cluster formation and lead to measurable effects on defect distribution within the material.

  18. Development of a set of equations for incorporating disk flexibility effects in rotordynamical analyses

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Ryan, Stephen G.

    1991-01-01

    Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.

  19. Transport of nanoparticles and reacting biomolecules in micro- and nanofluidic electrokinetic systems

    NASA Astrophysics Data System (ADS)

    Wynne, Thomas Mikio

    Micro and nanofluidic systems are ideal platforms for breakthrough bioanalytical tools. In particular, transport in nanoscale channels has been shown to be different than microscale systems because of unique coupled physics associated with wall interactions, electrokinetic surface phenomena and hydrodynamic confinement. Furthermore, understanding the effects of reaction kinetics during capillary electrophoresis is necessary for reliable bioanalytical tools with reacting species. We present experimental data and numerical simulation to elucidate the dominant physics at these lengths scales toward enabling nanofluidic bioanalytical devices. First, we present an experimental study to measure the effect channel height and ionic strength on the electrophoretic mobility of spherical nanoparticles and short single strand (ss) and double strand (ds) DNA with channel depths ranging from 20 microns to 100 nm. We find increased hydrodynamic drag in confinement, nanoparticle rotation effects for spherical analytes in sheer flows, non-uniform electro-osmotic velocity profiles, and electrostatic repulsion of thick electric double layers to be important effects on transport. Second, we present an experimental study of electrokinetic separations of short, complementary ss and dsDNA in microchannels. We find different phenomena are significant for the three different DNA lengths in the study (10nt, 20nt, and 50nt). Reaction kinetic effects are significant for the shortest length DNA, where the melting temperature is comparable to room temperature. For longer 20 and 50nt DNA, the melting temperatures are sufficiently high and reaction kinetic effects are constant. In addition, the 50 nt ssDNA contour length is greater than the persistence length and we find changes in electrophoretic mobility with ionic strength resulting from changes in conformation. Finally, we present numerical simulations of the previous study on separations of reacting DNA. Reaction kinetics can affect the

  20. Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process.

    PubMed

    Yang, G C; Long, Y

    1999-11-15

    In this laboratory study, a sandy loam soil saturated with phenol solution was treated by in-situ electrokinetics-Fenton process incorporated with a permeable reactive wall of scrap iron powder (SIP). The soil was contaminated and saturated with aqueous phenol solution of 90-115 mg/kg in concentration. It was then placed in a soil cell. The soil cell was assembled with an anode reservoir and a cathode reservoir at its ends. A bed of SIP (1.05-32.69 g) was inserted in the soil cell at a distance of 5 cm from the anode reservoir compartment. For the test runs, 0.3% H(2)O(2) was used as the anode reservoir fluid, whereas de-ionized water was used as the cathode reservoir fluid. An electric gradient of 1 V/cm was applied to enhance the saturated flow in the soil cell for a period of 10 days. Experimental results have shown that the electroosmotic (EO) flow quantity decreased as the amount of SIP increased. This phenomenon was in good agreement with the results showing the value of EO permeability increased with a decreasing amount of SIP. Results also showed that throughout the test period the cumulative, consumed mass of H(2)O(2) in the anode reservoir increased as the amount of SIP decreased. On the other hand, the cumulative, increased mass of phenol in the cathode reservoir was found to increase with a decreasing amount of SIP. Meanwhile, the residual phenol concentration in the soil cell was found to decrease with a decreasing amount of SIP. When 1.05 g scrap iron powder was used, an overall removal and destruction efficiency of phenol of 99.7% was obtained. Therefore, it is evident that an in-situ combined technology of electrokinetic remediation and Fenton-like process is capable of simultaneously removing and degrading the phenol in a saturated flow.

  1. Effect of chlorine on incorporation of Helicobacter pylori into drinking water biofilms.

    PubMed

    Gião, M S; Azevedo, N F; Wilks, S A; Vieira, M J; Keevil, C W

    2010-03-01

    The use of a specific peptide nucleic acid (PNA) probe demonstrated that Helicobacter pylori persisted inside biofilms exposed to low concentrations of chlorine (0.2 and 1.2 mg liter(-1)) for at least 26 days, although no culturable cells were recovered. Coupled with data obtained using viability stains in pure culture, this result suggests that H. pylori can survive chlorination but remain undetectable by culture methods, which can be effectively replaced by PNA hybridization.

  2. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    PubMed Central

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  3. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng

    2016-01-01

    To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.

  4. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-07

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface.

  5. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations.

    PubMed

    Wang, Xia; Tang, Sanyi; Cheke, Robert A

    2016-12-21

    An outbreak of dengue fever in Guangdong province in 2014 was the most serious outbreak ever recorded in China. Given the known positive correlation between the abundance of mosquitoes and the number of dengue fever cases, a stage structured mosquito model was developed to investigate the cause of the large abundance of mosquitoes in 2014 and its implications for outbreaks of the disease. Data on the Breteau index (number of containers positive for larvae per 100 premises investigated), temperature and precipitation were used for model fitting. The egg laying rate, the development rate and the mortality rates of immatures and adults were obtained from the estimated parameters. Moreover, effects of daily fluctuations of temperature on these parameters were obtained and the effects of temperature and precipitation were analyzed by simulations. Our results indicated that the abundance of mosquitoes depended not only on the total annual precipitation but also on the distribution of the precipitation. The daily mean temperature had a nonlinear relationship with the abundance of mosquitoes, and large diurnal temperature differences can reduce the abundance of mosquitoes. In addition, effects of increasing precipitation and temperature were interdependent. Our findings suggest that the large abundance of mosquitoes in 2014 was mainly caused by the distribution of the precipitation. In the perspective of mosquito control, our results reveal that it is better to clear water early and spray insecticide between April and August in case of limited resources.

  6. Effect of combined treatment with the epirubicin-incorporating micelles (NC-6300) and 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016) on a human gastric cancer model.

    PubMed

    Yamamoto, Yoshiyuki; Hyodo, Ichinosuke; Takigahira, Misato; Koga, Yoshikatsu; Yasunaga, Masahiro; Harada, Mitsunori; Hayashi, Tatsuyuki; Kato, Yasuki; Matsumura, Yasuhiro

    2014-07-01

    Anticancer agent-incorporating polymeric micelles accumulate effectively in tumors via the enhanced permeability and retention effect to exert potent antitumor effects. However, combined use of such micelles has not been elucidated. We compared the effect of combining the epirubicin-incorporating micelle NC-6300 and 1,2-diaminocyclohexane platinum (II) (oxaliplatin parent complex)-incorporating micelle NC-4016 (NCs) with that of epirubicin and oxaliplatin (E/O) in 44As3Luc cells using the combination index method. The in vivo antitumor activities of NCs and E/O were evaluated in mice bearing 44As3Luc xenografts. Pharmacokinetic analysis was performed by high-performance liquid chromatography and mass spectrometry. Cardiotoxicity of NC-6300 and epirubicin was assessed by echocardiography. Neurotoxicity of NC-4016 and oxaliplatin was evaluated by examining the paw withdrawal response to noxious mechanical stimuli. NCs showed a highly synergistic activity equivalent to E/O. In vivo, NCs exhibited higher antitumor activity in the subcutaneous tumor model and longer overall survival in the orthotopic tumor model than E/O (p < 0.001, p = 0.015, respectively). The intratumor concentrations of epirubicin and platinum were significantly higher following NCs than following E/O administration. Moreover, the micelles showed lower cardiotoxicity and neurotoxicity than the corresponding conventional drugs. The combined use of the micelles was associated with remarkable efficacy and favorable toxicities in the human gastric cancer model, and warrants the conduct of clinical trials.

  7. An AC electrokinetic method for enhanced detection of DNA nanoparticles.

    PubMed

    Krishnan, Rajaram; Heller, Michael J

    2009-04-01

    In biomedical research and diagnostics it is a challenge to isolate and detect low levels of nanoparticles and nanoscale biomarkers in blood and other biological samples. While highly sensitive epifluorescent microscope systems are available for ultra low level detection, the isolation of the specific entities from large sample volumes is often the bigger limitation. AC electrokinetic techniques like dielectrophoresis (DEP) offer an attractive mechanism for specifically concentrating nanoparticles into microscopic locations. Unfortunately, DEP requires significant sample dilution thus making the technology unsuitable for biological applications. Using a microelectrode array device, special conditions have been found for the separation of hmw-DNA and nanoparticles under high conductance (ionic strength) conditions. At AC frequencies in the 3000-10 000 Hz range, 10 mum microspheres and human T lymphocytes can be isolated into the DEP low field regions, while hmw-DNA and nanoparticles can be concentrated into microscopic high field regions for subsequent detection using an epifluorescent system.

  8. Micellar electrokinetic chromatography (MEKC) separation of furanonaphthoquinones from Tabebuia impetiginosa.

    PubMed

    Koyama, J; Morita, I; Kino, A; Tagahara, K

    2000-06-01

    The separation of nine furanonaphthoquinones by micellar electrokinetic chromatography (MEKC) is described. The running electrolytes used in this method were 0.03 M sodium dodecyl sulphate (SDS) in 0.09 M borate buffer (pH 9) containing 10% methanol, with an applied voltage of 20 kV. Application of this technique in the determination of the main furanonaphthoquinones, 5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, and 2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, of Tabebuia impetiginosa is demonstrated in this paper.

  9. Mechanistic studies of partial-filing micellar electrokinetic chromatography

    SciTech Connect

    Nelson, W.M.; Lee, C.S. |

    1996-09-15

    The need for coupling micellar electrokinetic chromatography (MEKC) with electrospray mass spectrometry initiates the development of partial-filling MEKC. In comparison with conventional MEKC, only a small portion of the capillary is filled with a micellar solution for performing the separation in partial-filling MEKC. Analytes first migrate into the micellar plug, where the separation occurs, and then into the leading electrophoresis buffer, which is free of surfactants. A theoretical model is proposed for predicting the separation behavior of triazine herbicides in partial-filling MEKC. The comparisons between conventional and partial-filling MEKC in terms of separation efficiency and resolution of triazine herbicides are presented and discussed. The optimization techniques, possible applications, and advantages of partial-filling MEKC are similarly addressed. 11 refs., 6 figs., 5 tabs.

  10. Electrokinetic ion transport in confined micro-nanochannel.

    PubMed

    Wang, Junyao; Liu, Chong; Xu, Zheng

    2016-03-01

    In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density.

  11. Entropic Electrokinetics: Recirculation, Particle Separation, and Negative Mobility

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J. Miguel

    2014-09-01

    We show that when particles are suspended in an electrolyte confined between corrugated charged surfaces, electrokinetic flows lead to a new set of phenomena such as particle separation, mixing for low-Reynolds micro- and nanometric devices, and negative mobility. Our analysis shows that such phenomena arise, for incompressible fluids, due to the interplay between the electrostatic double layer and the corrugated geometrical confinement and that they are magnified when the width of the channel is comparable to the Debye length. Our characterization allows us to understand the physical origin of such phenomena, therefore, shedding light on their possible relevance in a wide variety of situations ranging from nano- and microfluidic devices to biological systems.

  12. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices

    PubMed Central

    2017-01-01

    We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS) microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI) technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE) separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method. PMID:28326222

  13. Promotion and computation of inhibitory effect on tyrosinase activity of herbal cream by incorporating indigenous medicinal plants.

    PubMed

    Sahu, Ram Kumar; Roy, Amit; Dwivedi, Jaya; Jha, Arvind Kumar

    2014-01-01

    Herbal cream imparts a chief role in regulating melanin production of skin. The phytoconstituents present in herbal cream impact biological functions of skin and contribute nutrients required for the healthy skin. In the present study, it was envisaged to prepare three batches of herbal cream (HC1, HC2 and HC3) containing ethanol extracts of Emblica officinalis (fruits), Daucus carota (root), Mangifera indica (leaves), Mentha arvensis (leaves), Terminalia arjuna (bark) and Cucumis sativus (fruits) and investigated the prepared cream for inhibitory effect on tyrosinase activity. The herbal cream was formulated by incorporating different ratio of extracts, by using cream base. Each formulation HC1, HC2 and HC3 were segregated into three different formulations (HC1.1, HC1.2, HC1.3, HC2.1, HC2.2, HC2.3, HC3.1, HC3.2 and HC3.3) by incorporating increasing ratio of extract in formulation. The HC3.2 cream produces highest tyrosinase inhibitory effect 65.23 +/- 0.07%, while the HC2.1 exhibited minimum tyrosinase inhibitory effect 26.19 +/- 0.08% compared to other prepared cream. Comparison of the inhibitory activity of the formulations demonstrated that the rank order was HC3.2 > HC3.3 > HC1.2 > HC1.3 > HC3.1 > HC1.1 > HC2.3 > HC2.2 > HC2.1. It has been observed from the result that the formulations of antityrosinase activity were not concentrate dependent. This finding suggests that decrease in antityrosinase activity of HC1 and HC3 might be considering that the incompatibility of the higher extract content with the base of cream. The HC3 produce the maximum inhibitory effects on tyrosinase activity might be due to higher level of polyphenol and flavonoids present in extracts.

  14. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.

    PubMed

    Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed

    2013-07-07

    Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.

  15. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.

    PubMed

    Cameselle, Claudio; Chirakkara, Reshma A; Reddy, Krishna R

    2013-10-01

    Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation-electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.

  16. Plasmonic effect-enhanced Ag nanodisk incorporated ZnO/Si metal-semiconductor-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Kumar, Manjeet; Kojori, Hossein Shokri; Kim, Sung Jin; Park, Hyeong-Ho; Kim, Joondong; Yun, Ju-Hyung

    2016-10-01

    In this work, we present the enhancement of ultraviolet (UV) photodetection of Ag-ZnO thin film deposited by radio frequency magnetron sputtering. The surface morphological, optical, structural, and electrical properties of the deposited thin films were investigated by various characterization techniques. With this Ag-ZnO thin film structure and proper geometry of metal-semiconductor-metal (MSM) interdigitated structure design, photocurrent enhancement has been accomplished. MSM-photodetectors (PDs) using structures of Ag-ZnO gave a 30 times higher magnitude photocurrent at 340 nm of the wavelength. Plasmon-induced hot electrons contributed to improved spectral response to the UV region, while absorption and scattering effect enhanced broadband improvement to a response in the VIS-IR spectrum range. The improvement of Ag-ZnO PD in comparison with ZnO is attributed to the surface plasmon effect using Ag nanodisks. These results indicate that Ag-ZnO thin films can serve as excellent ultraviolet-PD and a very promising candidate for practical applications.

  17. Ultrasonically assisted drilling: A finite-element model incorporating acoustic softening effects

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Ultrasonically assisted drilling (UAD) is a novel machining technique suitable for drilling in hard-to-machine quasi-brittle materials such as carbon fibre reinforced polymer composites (CFRP). UAD has been shown to possess several advantages compared to conventional drilling (CD), including reduced thrust forces, diminished burr formation at drill exit and an overall improvement in roundness and surface finish of the drilled hole. Recently, our in-house experiments of UAD in CFRP composites demonstrated remarkable reductions in thrust-force and torque measurements (average force reductions in excess of 80%) when compared to CD with the same machining parameters. In this study, a 3D finite-element model of drilling in CFRP is developed. In order to model acoustic (ultrasonic) softening effects, a phenomenological model, which accounts for ultrasonically induced plastic strain, was implemented in ABAQUS/Explicit. The model also accounts for dynamic frictional effects, which also contribute to the overall improved machining characteristics in UAD. The model is validated with experimental findings, where an excellent correlation between the reduced thrust force and torque magnitude was achieved.

  18. Incorporation in lipid microparticles of the UVA filter, butyl methoxydibenzoylmethane combined with the UVB filter, octocrylene: effect on photostability.

    PubMed

    Scalia, Santo; Mezzena, Matteo

    2009-01-01

    The aim of this study was to reduce the photoinstability of butyl methoxydibenzoylmethane (BMDBM), the most widely used UVA filter, by incorporating it in lipid microparticles (LMs) alone or together with the UVB filter octocrylene (OCR), acting also as photostabilizer. Microparticles loaded with BMDBM or with combined BMDBM and OCR were produced by the hot emulsion technique, using glyceryl behenate as lipid material and poloxamer 188 as surfactant. The LMs were characterized by release studies, scanning electron microscopy, and powder X-ray diffractometry. The BMDBM and OCR loading was 15.2% and 10.6%, respectively. In order to reproduce the conditions prevalent in commercial sunscreen products, the photoprotective efficacy of the LMs was evaluated after their introduction in a model cream (oil-in-water emulsion) containing a mixture of UVA and UVB filters. A small but statistically significant decrease in BMDBM photodegradation was obtained when the UVA filter was encapsulated alone into the LMs (the extent of degradation was 28.6% +/-2.4 for non-encapsulated BMDBM and 26.0% +/-2.5 for BMDBM-loaded microparticles). On the other hand, the co-loading of OCR in the LMs produced a more marked reduction in the light-induced decomposition of microencapsulated BMDBM (the UVA filter loss was 21.5% +/-2.2). Therefore, incorporation in lipid microparticles of BMDBM together with the sunscreen OCR is more effective in enhancing the UVA filter photostability than LMs loaded with BMDBM alone.

  19. Incorporating Transmission Into Causal Models of Infectious Diseases for Improved Understanding of the Effect and Impact of Risk Factors.

    PubMed

    Paynter, Stuart

    2016-03-15

    Conventional measures of causality (which compare risks between exposed and unexposed individuals) do not factor in the population-scale dynamics of infectious disease transmission. We used mathematical models of 2 childhood infections (respiratory syncytial virus and rotavirus) to illustrate this problem. These models incorporated 3 causal pathways whereby malnutrition could act to increase the incidence of severe infection: increasing the proportion of infected children who develop severe infection, increasing the children's susceptibility to infection, and increasing infectiousness. For risk factors that increased the proportion of infected children who developed severe infection, the population attributable fraction (PAF) calculated conventionally was the same as the PAF calculated directly from the models. However, for risk factors that increased transmission (by either increasing susceptibility to infection or increasing infectiousness), the PAF calculated directly from the models was much larger than that predicted by the conventional PAF calculation. The models also showed that even when conventional studies find no association between a risk factor and an outcome, risk factors that increase transmission can still have a large impact on disease burden. For a complete picture of infectious disease causality, transmission effects must be incorporated into causal models.

  20. Incorporating Resource Protection Constraints in an Analysis of Landscape Fuel-Treatment Effectiveness in the Northern Sierra Nevada, CA, USA.

    PubMed

    Dow, Christopher B; Collins, Brandon M; Stephens, Scott L

    2016-03-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two different treatment scenarios generated from an optimization algorithm that reduces modeled fire spread across the landscape, one with resource-protection constrains and one without the same. We also included a treatment scenario that was the actual fuel-treatment network implemented, as well as a no-treatment scenario. For all the four scenarios, we modeled hazardous fire potential based on conditional burn probabilities, and projected fire emissions. Results demonstrate that in all the three active treatment scenarios, hazardous fire potential, fire area, and emissions were reduced by approximately 50 % relative to the untreated condition. Results depict that incorporation of constraints is more effective at reducing modeled fire outputs, possibly due to the greater aggregation of treatments, creating greater continuity of fuel-treatment blocks across the landscape. The implementation of fuel-treatment networks using different planning techniques that incorporate real-world constraints can reduce the risk of large problematic fires, allow for landscape-level heterogeneity that can provide necessary ecosystem services, create mixed forest stand structures on a landscape, and promote resilience in the uncertain future of climate change.

  1. Incorporating Resource Protection Constraints in an Analysis of Landscape Fuel-Treatment Effectiveness in the Northern Sierra Nevada, CA, USA

    NASA Astrophysics Data System (ADS)

    Dow, Christopher B.; Collins, Brandon M.; Stephens, Scott L.

    2016-03-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two different treatment scenarios generated from an optimization algorithm that reduces modeled fire spread across the landscape, one with resource-protection constrains and one without the same. We also included a treatment scenario that was the actual fuel-treatment network implemented, as well as a no-treatment scenario. For all the four scenarios, we modeled hazardous fire potential based on conditional burn probabilities, and projected fire emissions. Results demonstrate that in all the three active treatment scenarios, hazardous fire potential, fire area, and emissions were reduced by approximately 50 % relative to the untreated condition. Results depict that incorporation of constraints is more effective at reducing modeled fire outputs, possibly due to the greater aggregation of treatments, creating greater continuity of fuel-treatment blocks across the landscape. The implementation of fuel-treatment networks using different planning techniques that incorporate real-world constraints can reduce the risk of large problematic fires, allow for landscape-level heterogeneity that can provide necessary ecosystem services, create mixed forest stand structures on a landscape, and promote resilience in the uncertain future of climate change.

  2. The Effect of Intra-Abdominal Hypertension Incorporating Severe Acute Pancreatitis in a Porcine Model

    PubMed Central

    Ke, Lu; Tong, Zhi-hui; Ni, Hai-bin; Ding, Wei-wei; Sun, Jia-kui; Li, Wei-qin; Li, Ning; Li, Jie-shou

    2012-01-01

    Introduction Abdominal compartment syndrome (ACS) and intra abdominal hypertension(IAH) are common clinical findings in patients with severe acute pancreatitis(SAP). It is thought that an increased intra abdominal pressure(IAP) is associated with poor prognosis in SAP patients. But the detailed effect of IAH/ACS on different organ system is not clear. The aim of this study was to assess the effect of SAP combined with IAH on hemodynamics, systemic oxygenation, and organ damage in a 12 h lasting porcine model. Measurements and Methods Following baseline registrations, a total of 30 animals were divided into 5 groups (6 animals in each group): SAP+IAP30 group, SAP+IAP20 group, SAP group, IAP30 group(sham-operated but without SAP) and sham-operated group. We used a N2 pneumoperitoneum to induce different levels of IAH and retrograde intra-ductal infusion of sodium taurocholate to induce SAP. The investigation period was 12 h. Hemodynamic parameters (CO, HR, MAP, CVP), urine output, oxygenation parameters(e.g., SvO2, PO2, PaCO2), peak inspiratory pressure, as well as serum parameters (e.g., ALT, amylase, lactate, creatinine) were recorded. Histological examination of liver, intestine, pancreas, and lung was performed. Main Results Cardiac output significantly decreased in the SAP+IAH animals compared with other groups. Furthermore, AST, creatinine, SUN and lactate showed similar increasing tendency paralleled with profoundly decrease in SvO2. The histopathological analyses also revealed higher grade injury of liver, intestine, pancreas and lung in the SAP+IAH groups. However, few differences were found between the two SAP+IAH groups with different levels of IAP. Conclusions Our newly developed porcine SAP+IAH model demonstrated that there were remarkable effects on global hemodynamics, oxygenation and organ function in response to sustained IAH of 12 h combined with SAP. Moreover, our model should be helpful to study the mechanisms of IAH/ACS-induced exacerbation and

  3. On incorporating damping and gravity effects in models of structural dynamics of the SCOLE configuration

    NASA Technical Reports Server (NTRS)

    Taylor, Larry; Leary, Terry; Stewart, Eric

    1987-01-01

    The damping for structural dynamic models of flexible spacecraft is usually ignored and then added after modal frequencies and mode shapes are calculated. It is common practice to assume the same damping ratio for all modes, although it is known that damping due to bending and that due to torsion are sometimes ignored. Two methods of including damping in the modeling process from its onset are examined. First, the partial derivative equations of motion are analyzed for a pinned-pinned beam with damping. The end conditions are altered to handle bodies with mass and inertia for the Spacecraft Control Laboratory Experiment (SCOLE) configuration. Second, a massless beam approximation is used for the modes with low frequencies, and a clamped-clamped system is used to approximate the modes for arbitrarily high frequency. The model is then modified to include gravity effects and is compared with experimental results.

  4. Effect of coffee drinking on platelets: inhibition of aggregation and phenols incorporation.

    PubMed

    Natella, F; Nardini, M; Belelli, F; Pignatelli, P; Di Santo, S; Ghiselli, A; Violi, F; Scaccini, C

    2008-12-01

    Epidemiological studies indicate a J-shaped relationship linking coffee consumption and cardiovascular risk, suggesting that moderate coffee consumption can be beneficial. Platelet aggregation is of critical importance in thrombotic events, and platelets play a major role in the aetiology of several CVD. The aim of this study was to evaluate the effect of coffee drinking on platelet aggregation ex vivo, using caffeine as control. A crossover study was performed on ten healthy subjects. In two different sessions, subjects drank 200 ml coffee, containing 180 mg caffeine, or a capsule of caffeine (180 mg) with 200 ml water. Platelets were separated from plasma at baseline and 30 and 60 min after coffee drinking. Platelet aggregation was induced with three different agonists: collagen, arachidonic acid and ADP. Coffee drinking inhibited collagen (P < 0.05 from baseline at time 30 min) and arachidonic acid (P < 0.05 from baseline at time 60 min) induced platelet aggregation. Caffeine intake did not affect platelet aggregation induced by the three agonists. Coffee consumption induced a significant increase of platelet phenolic acids (likely present as glucuronate and sulphate derivatives), caffeic acid, the principal phenolic acid in coffee, raising from 0.3 (SEM 0.1) to 2.4 (SEM 0.6) ng/mg (P < 0.01). Caffeine was not detectable in platelets. Coffee drinking decreases platelet aggregation, and induces a significant increase in phenolic acid platelet concentration. The antiplatelet effect of coffee is independent from caffeine and could be a result of the interaction of coffee phenolic acids with the intracellular signalling network leading to platelet aggregation.

  5. Incorporating Cache Management Behavior into Seed Dispersal: The Effect of Pericarp Removal on Acorn Germination

    PubMed Central

    Yi, Xianfeng; Zhang, Mingming; Bartlow, Andrew W.; Dong, Zhong

    2014-01-01

    Selecting seeds for long-term storage is a key factor for food hoarding animals. Siberian chipmunks (Tamias sibiricus) remove the pericarp and scatter hoard sound acorns of Quercus mongolica over those that are insect-infested to maximize returns from caches. We have no knowledge of whether these chipmunks remove the pericarp from acorns of other species of oaks and if this behavior benefits seedling establishment. In this study, we tested whether Siberian chipmunks engage in this behavior with acorns of three other Chinese oak species, Q. variabilis, Q. aliena and Q. serrata var. brevipetiolata, and how the dispersal and germination of these acorns are affected. Our results show that when chipmunks were provided with sound and infested acorns of Quercus variabilis, Q. aliena and Q. serrata var. brevipetiolata, the two types were equally harvested and dispersed. This preference suggests that Siberian chipmunks are incapable of distinguishing between sound and insect-infested acorns. However, Siberian chipmunks removed the pericarp from acorns of these three oak species prior to dispersing and caching them. Consequently, significantly more sound acorns were scatter hoarded and more infested acorns were immediately consumed. Additionally, indoor germination experiments showed that pericarp removal by chipmunks promoted acorn germination while artificial removal showed no significant effect. Our results show that pericarp removal allows Siberian chipmunks to effectively discriminate against insect-infested acorns and may represent an adaptive behavior for cache management. Because of the germination patterns of pericarp-removed acorns, we argue that the foraging behavior of Siberian chipmunks could have potential impacts on the dispersal and germination of acorns from various oak species. PMID:24647670

  6. The effects of iron oxide incorporation on the chondrogenic potential of three human cell types.

    PubMed

    Saha, Sushmita; Yang, Xuebin B; Tanner, Steven; Curran, Stephen; Wood, David; Kirkham, Jennifer

    2013-06-01

    Non-invasive monitoring of living cells in vivo provides an important tool in the development of cell-based therapies in cartilage tissue engineering. High-resolution magnetic resonance imaging (MRI) has been used to monitor target cell populations in vivo. However, the side-effects on cell function of the labelling reagents, such as superparamagnetic iron oxide (SPIO), are still unclear. This study investigated the effect of SPIO particles on the chondrogenic differentiation of human bone marrow stromal cells (HBMSCs), neonatal and adult chondrocytes in vitro. Cells were labelled with SPIO for 24 h and chondrogenesis induced in serum-free medium including TGFβ3. For labelled/unlabelled cells, viability, morphology and proliferation were determined using CellTracker™ Green and PicoGreen dsDNA assays. The expression of SOX9, COL2A1 and ACAN was investigated using qRT-PCR after 2, 7 and 14 days. The results showed that viability was unaffected in all of the cells but cell morphology changed towards a 'stretched' phenotype following SPIO uptake. Cell proliferation was reduced only for labelled neonatal chondrocytes. SOX9 and COL2A1 expression decreased at day 2 but not at days 7 and 14 for labelled HBMSCs and adult chondrocytes; ACAN expression was unaffected. In contrast, SOX9 and COL2A1 expression were unaffected in labelled neonatal chondrocytes but a decrease in ACAN expression was seen at day 14. The results suggest that downregulation of chondrogenic genes associated with SPIO labelling is temporary and target cell-dependent. Resovist® can be used to label HBMSCs or mature chondrocytes for MR imaging of cells for cartilage tissue engineering.

  7. The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops.

    PubMed

    Miller, J A

    2009-07-01

    Observations of multiple years of geographic variation in [Ba:Ca](otolith) and [Mn:Ca](otolith) in black rockfish Sebastes melanops prompted this study to examine the effects of temperature and water concentration on the otolith incorporation of Ba and Mn in this wholly marine species. The replicated experiment design consisted of two water temperatures (7.4 and 13.0 degrees C) and four water concentrations of Ba:Ca and Mn:Ca. A positive, linear relationship between [Ba:Ca](water) and [Ba:Ca](otolith) was observed at both temperatures. A positive temperature effect was also observed with mean partition coefficients for Ba (D(Ba)) greater in the 13 degrees C than in the 7.4 degrees C treatments (mean = 0.061 and 0.048, respectively). There was no relationship between [Mn:Ca](water) and [Mn:Ca](otolith) although a negative temperature effect was observed. Mean partition coefficients for Mn (D(Mn)) were lower in the 13 degrees C than in the 7.4 degrees C treatments (mean = 0.027 and 0.036, respectively). The data presented support the assumption of a positive, linear relationship between water and otolith Metal:Ca concentrations for Ba:Ca but not for Mn:Ca. Thus, although indicative of residence in distinct water masses, observed variation in [Metal:Ca](otolith) may not reflect variation in water concentration and can be affected by temperature. Caution should be applied in the interpretation of geographic variation of [Mn:Ca](otolith) until the mechanisms regulating its incorporation are more fully understood.

  8. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case.

  9. Measuring some flounder (Platichthys flesus L.) innate immune responses to be incorporated in effect biomonitoring concepts

    NASA Astrophysics Data System (ADS)

    Skouras, Andreas; Steinhagen, Dieter

    2003-10-01

    For an implementation of innate immune responses of flounder (Platichthys flesus) in an integrated biological effect monitoring concept, leucocytes were isolated from peripheral blood, head kidney and spleen, and analysed for their capacity to mount a respiratory burst response upon phorbol ester stimulation. Responding cells were identified by reduced nitro-blue-tetrazolium salt deposits and by dihydro-rhodamine fluorescence in light microscope and flow cytometric analysis. Responding cells were found in head kidney derived cell suspensions rather than in peripheral blood or spleen. Parallel cytometric and microscopic analysis indicated that responding cells had a granulocyte or monocyte morphology, were alpha-naphtyl-esterase or myeloperoxidase positive and in flow cytometry exhibited a characteristic forward and side scatter (FSC/SSC) pattern. These cells represented 30-40% of head kidney derived cell suspensions and only 4-5 % of peripheral blood and spleen. In order to reduce sampling effort in field studies, leucocyte cell suspensions derived from flounder head kidney could be used in respiratory burst assays without further enrichment protocols. This paper combines, for the first time, conventional and cytometric analysis of phagocytes derived from flounder peripheral blood and head kidney.

  10. Effect of testosterone incorporation on cell proliferation and differentiation for polymer-bioceramic composites.

    PubMed

    da Costa, Kelen Jorge Rodrigues; Passos, Joel J; Gomes, Alinne D M; Sinisterra, Rubén D; Lanza, Célia R M; Cortés, Maria Esperanza

    2012-11-01

    In the current study, we characterized the polycaprolactone (PCL), poly(lactic acid-co-glycolic acid) (PLGA), and biphasic calcium phosphate (BCP) composites coated with testosterone propionate (T) using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (XRD). Osteoblastic cells were seeded with PCL/BCP, PCL/BCP/T, PLGA/PCL/BCP and PLGA/PCL/BCP/T scaffolds, and cell viability, proliferation, differentiation and adhesion were analyzed. The results of physic-chemical experiments showed no displacements or suppression of bands in the FTIR spectra of scaffolds. The XRD patterns of the scaffolds showed an amorphous profile. The osteoblastic cells viability and proliferation increased in the presence of composites with testosterone over 72 h, and were significantly greater when PLGA/PCL/BCP/T scaffold was tested against PCL/BCP/T. Furthermore alkaline phosphatase production was significantly greater in the same group. In conclusion, the PLGA/PCL/BCP scaffold with testosterone could be a promising option for bone tissue applications due to its biocompatibility and its stimulatory effect on cell proliferation.

  11. Incorporating cumulative effects into environmental assessments of mariculture: Limitations and failures of current siting methods

    SciTech Connect

    King, Sarah C. Pushchak, Ronald

    2008-11-15

    Assessing and evaluating the cumulative impacts of multiple marine aquaculture facilities has proved difficult in environmental assessment. A retrospective review of 23 existing mariculture farms in southwestern New Brunswick was conducted to determine whether cumulative interactions would have justified site approvals. Based on current scientific evidence of cumulative effects, six new criteria were added to a set of far-field impacts and other existing criteria were expanded to include regional and cumulative environmental impacts in Hargrave's [Hargrave BT. A traffic light decision system for marine finfish aquaculture siting. Ocean Coast Manag 2002; 45:215-35.] Traffic Light Decision Support System (DSS) presently used in Canadian aquaculture environmental assessments. Before mitigation, 19 of the 23 sites failed the amended set of criteria and after considering mitigation, 8 sites failed. Site and ecosystem indices yielded varying site acceptability scores; however, many sites would not have been approved if siting decisions had been made within a regional management framework and cumulative impact criteria were considered in the site evaluation process.

  12. Incorporating the effect of fractionation in the evaluation of proton plan robustness to setup errors

    NASA Astrophysics Data System (ADS)

    Lowe, Matthew; Albertini, Francesca; Aitkenhead, Adam; Lomax, Antony J.; MacKay, Ranald I.

    2016-01-01

    To ensure the safe delivery of proton therapy treatments it is important to evaluate the effect of potential uncertainties, such as patient mispositioning, on the intended dose distribution. However, it can be expected that the uncertainty resulting from patient positioning is reduced in a fractionated treatment due to the convergence of random variables with the delivery of repeated treatments. This is neglected by current approaches to robustness analysis resulting in an overly conservative assessment of the robustness which can lead to sub-optimal plans. Here, a fast method of accounting for this reduced uncertainty is presented. An estimated bound to the error in the dose distribution resulting from setup uncertainty over a specified number of fractions is calculated by considering the distribution of values for each voxel across 14 initial error scenarios. The bound on the error in a given voxel is estimated using a 99.9% confidence limit assuming a convergence towards a normal distribution in line with the central limit theorem, and a correction of 1/\\sqrt{n} accounting for the reduction in the standard deviation over n fractions. The proposed method was validated in 5 patients by comparison to Monte Carlo simulations of 300 treatment courses. A voxelwise and volumetric analysis of the estimated and simulated bounds to the uncertainty in the dose distribution demonstrate that the proposed technique can be used to assess proton plan robustness more accurately allowing for less conservative treatment plans.

  13. Urban Poverty and Neighborhood Effects on Crime: Incorporating Spatial and Network Perspectives

    PubMed Central

    Graif, Corina; Gladfelter, Andrew S.; Matthews, Stephen A.

    2015-01-01

    Research on neighborhoods and crime is on a remarkable growth trajectory. In this article, we survey important recent developments in the scholarship on neighborhood effects and the spatial stratification of poverty and urban crime. We advance the case that, in understanding the impact of neighborhoods and poverty on crime, sociological and criminological research would benefit from expanding the analytical focus from residential neighborhoods to the network of neighborhoods individuals are exposed to during their daily routine activities. This perspective is supported by reemerging scholarship on activity spaces and macro-level research on inter-neighborhood connections. We highlight work indicating that non-residential contexts add variation in criminogenic exposure, which in turn influence offending behavior and victimization risk. Also, we draw on recent insights from research on gang violence, social and institutional connections, and spatial mismatch, and call for advancements in the scholarship on urban poverty that investigates the salience of inter-neighborhood connections in evaluating the spatial stratification of criminogenic risk for individuals and communities. PMID:27375773

  14. Incorporating what promotoras learn: becoming role models to effect positive change.

    PubMed

    Lucio, Rose L; Zuniga, Genny Carrillo; Seol, Yoon-Ho; Garza, Norma; Mier, Nelda; Trevino, Laura

    2012-10-01

    Promotoras (community health workers) play an important health promotion role and must be continuously trained, but little is known about how much of their learning they actually put into practice. This non-randomized, longitudinal study examined knowledge and home environmental outcomes of an asthma and healthy homes training offered to promotoras using a train-the-trainer model. Eighty-five promotoras received the training and pre- and post-test surveys were used to measure training outcomes. Results showed a statistically significant increase in asthma and healthy home-related knowledge (P < .001). At 12-months post-intervention, a majority of the promotoras (69%) reported they made household changes to improve their indoor environment as a result of the training. This study suggests that effective trainings can improve promotoras knowledge and behaviors for the promotion of healthy homes in the community. Further evaluation is needed to investigate whether these trainings allow promotoras to serve as role models within their communities "by educating through example" and thereby enhance their credibility as health educators.

  15. Effect of transglutaminase on properties of tilapia scale gelatin films incorporated with soy protein isolate.

    PubMed

    Weng, Wuyin; Zheng, Huibin

    2015-02-15

    The effect of transglutaminase (TGase) on the properties of tilapia scale gelatin films in the presence of soy protein isolate (SPI) was investigated. When 3% TGase was added into gelatin films, the total soluble matter and protein solubility of films were decreased from 89.36% and 92.78% to 35.83% and 40.05%, respectively, and the decline was promoted by adding 5% SPI. The strength of the films was increased by adding 1% TGase irrespective of SPI addition, but decreased when the TGase concentration was further raised. No obvious colour change was observed in the films with or without TGase and SPI. Based on the results of SDS-PAGE, DSC and SEM, it was revealed that the movement of low molecular weight hydrophilic protein was depressed by the cross-linking network structure induced by TGase and SPI during film drying, indicating that adding SPI is essential to improve the thermal stability and water resistance properties of TGase-induced gelatin films.

  16. An explicit surface-potential-based MOSFET model incorporating the quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Basu, Dipanjan; Dutta, Aloke K.

    2006-07-01

    An explicit surface-potential-based MOSFET model has been proposed in this work here, which takes into account the quantum mechanical effects that arise in deep-submicron MOSFETs. The coupled Schrödinger's and Poisson's equations have been solved by using a variational wave function approach, as proposed by Fang and Howard. The resulting surface potential model is analytical, technology mapped, and completely continuous over the entire range of operation. The surface potential and the inversion charge density calculated using the proposed model show good match with the results of the numerical simulations obtained from a self-consistent Schrödinger-Poisson solver for a wide range of substrate doping and oxide thickness. The simulated values of the drain current match closely with the experimental results published elsewhere. The device small-signal parameters, e.g., transconductance, output conductance, etc., pass the standard benchmark tests suggested by Suyama and Tsividis qualitatively, thereby validating the approach of the model presented.

  17. Urban Poverty and Neighborhood Effects on Crime: Incorporating Spatial and Network Perspectives.

    PubMed

    Graif, Corina; Gladfelter, Andrew S; Matthews, Stephen A

    2014-09-01

    Research on neighborhoods and crime is on a remarkable growth trajectory. In this article, we survey important recent developments in the scholarship on neighborhood effects and the spatial stratification of poverty and urban crime. We advance the case that, in understanding the impact of neighborhoods and poverty on crime, sociological and criminological research would benefit from expanding the analytical focus from residential neighborhoods to the network of neighborhoods individuals are exposed to during their daily routine activities. This perspective is supported by reemerging scholarship on activity spaces and macro-level research on inter-neighborhood connections. We highlight work indicating that non-residential contexts add variation in criminogenic exposure, which in turn influence offending behavior and victimization risk. Also, we draw on recent insights from research on gang violence, social and institutional connections, and spatial mismatch, and call for advancements in the scholarship on urban poverty that investigates the salience of inter-neighborhood connections in evaluating the spatial stratification of criminogenic risk for individuals and communities.

  18. Effect of Glass Fiber Incorporation on Flexural Properties of Experimental Composites

    PubMed Central

    Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago

    2014-01-01

    This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)C, 10% (772.8 ± 446.3)ABC, 15% (854.7 ± 297.3)AB, 20% (863.4 ± 418.0)A, 30% (459.5 ± 140.5)BC; UR-groups: 0% (187.7 ± 120.3)B, 10% (795.4 ± 688.1)B, 15% (1999.9 ± 1258.6)A, 20% (1911.5 ± 596.8)A, and 30% (2090.6 ± 656.7)A, and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)B, 10% (4479.06 ± 3019.82)AB, 15% (5694.89 ± 2790.3)A, 20% (6042.11 ± 3392.13)A, and 30% (2495.67 ± 1345.86)B; UR-groups: 0% (1090.08 ± 708.81)C, 10% (7032.13 ± 7864.53)BC, 15% (19331.57 ± 16759.12)AB, 20% (15726.03 ± 8035.09)AB, and 30% (29364.37 ± 13928.96)A. Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties. PMID:25136595

  19. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time.

  20. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    NASA Astrophysics Data System (ADS)

    Rebelo, Rita; Manninen, N. K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-05-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Agsbnd O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

  1. Effect of glass fiber incorporation on flexural properties of experimental composites.

    PubMed

    Fonseca, Rodrigo Borges; Marques, Aline Silva; Bernades, Karina de Oliveira; Carlo, Hugo Lemes; Naves, Lucas Zago

    2014-01-01

    This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)(C), 10% (772.8 ± 446.3)(ABC), 15% (854.7 ± 297.3)(AB), 20% (863.4 ± 418.0)(A), 30% (459.5 ± 140.5)(BC); UR-groups: 0% (187.7 ± 120.3)(B), 10% (795.4 ± 688.1)(B), 15% (1999.9 ± 1258.6)(A), 20% (1911.5 ± 596.8)(A), and 30% (2090.6 ± 656.7)(A), and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)(B), 10% (4479.06 ± 3019.82)(AB), 15% (5694.89 ± 2790.3)(A), 20% (6042.11 ± 3392.13)(A), and 30% (2495.67 ± 1345.86)(B); UR-groups: 0% (1090.08 ± 708.81)(C), 10% (7032.13 ± 7864.53)(BC), 15% (19331.57 ± 16759.12)(AB), 20% (15726.03 ± 8035.09)(AB), and 30% (29364.37 ± 13928.96)(A). Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties.

  2. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Saksena, Siddharth; Merwade, Venkatesh

    2015-11-01

    Topography plays a major role in determining the accuracy of flood inundation areas. However, many areas in the United States and around the world do not have access to high quality topographic data in the form of Digital Elevation Models (DEM). For such areas, an improved understanding of the effects of DEM properties such as horizontal resolution and vertical accuracy on flood inundation maps may eventually lead to improved flood inundation modeling and mapping. This study attempts to relate the errors arising from DEM properties such as spatial resolution and vertical accuracy to flood inundation maps, and then use this relationship to create improved flood inundation maps from coarser resolution DEMs with low accuracy. The results from the five stream reaches used in this study show that water surface elevations (WSE) along the stream and the flood inundation area have a linear relationship with both DEM resolution and accuracy. This linear relationship is then used to extrapolate the water surface elevations from coarser resolution DEMs to get water surface elevations corresponding to a finer resolution DEM. Application of this approach show that improved results can be obtained from flood modeling by using coarser and less accurate DEMs, including public domain datasets such as the National Elevation Dataset and Shuttle Radar Topography Mission (SRTM) DEMs. The improvement in the WSE and its application to obtain better flood inundation maps is dependent on the study reach characteristics such as land use, valley shape, reach length and width. Application of the approach presented in this study on more reaches may lead to development of guidelines for flood inundation mapping using coarser resolution and less accurate topographic datasets.

  3. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols

    PubMed Central

    Silvestrini, Matthew T.; Ingham, Elizabeth S.; Mahakian, Lisa M.; Kheirolomoom, Azadeh; Liu, Yu; Fite, Brett Z.; Tam, Sarah M.; Tucci, Samantha T.; Watson, Katherine D.; Wong, Andrew W.; Monjazeb, Arta M.; Hubbard, Neil E.; Murphy, William J.; Borowsky, Alexander D.; Ferrara, Katherine W.

    2017-01-01

    Focal therapies play an important role in the treatment of cancers where palliation is desired, local control is needed, or surgical resection is not feasible. Pairing immunotherapy with such focal treatments is particularly attractive; however, there is emerging evidence that focal therapy can have a positive or negative impact on the efficacy of immunotherapy. Thermal ablation is an appealing modality to pair with such protocols, as tumors can be rapidly debulked (cell death occurring within minutes to hours), tumor antigens can be released locally, and treatment can be conducted and repeated without the concerns of radiation-based therapies. In a syngeneic model of epithelial cancer, we found that 7 days of immunotherapy (TLR9 agonist and checkpoint blockade), prior to thermal ablation, reduced macrophages and myeloid-derived suppressor cells and enhanced IFN-γ–producing CD8+ T cells, the M1 macrophage fraction, and PD-L1 expression on CD45+ cells. Continued treatment with immunotherapy alone or with immunotherapy combined with ablation (primed ablation) then resulted in a complete response in 80% of treated mice at day 90, and primed ablation expanded CD8+ T cells as compared with all control groups. When the tumor burden was increased by implantation of 3 orthotopic tumors, successive primed ablation of 2 discrete lesions resulted in survival of 60% of treated mice as compared with 25% of mice treated with immunotherapy alone. Alternatively, when immunotherapy was begun immediately after thermal ablation, the abscopal effect was diminished and none of the mice within the cohort exhibited a complete response. In summary, we found that immunotherapy begun before ablation can be curative and can enhance efficacy in the presence of a high tumor burden. Two mechanisms have potential to impact the efficacy of immunotherapy when begun immediately after thermal ablation: mechanical changes in the tumor microenvironment and inflammatory-mediated changes in immune

  4. Solute-solvent interactions in micellar electrokinetic chromatography. III. Characterization of the selectivity of micellar electrokinetic chromatography systems.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Abraham, Michael H; Rosés, Martí

    2002-01-04

    Several micellar electrokinetic chromatography (MEKC) systems (sodium dodecyl sulfate, lithium dodecyl sulfate, lithium perfluorooctanesulfonate, sodium cholate, sodium deoxycholate, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium bromide) have been characterized by means of the solvation parameter model. It has been observed that the coefficients of the correlation equations depend strongly on the particular set of compounds analyzed. Principal component analysis has been used to characterize the 2975 compounds with available solute descriptors and to select an appropriate subset of compounds to be analyzed by MEKC. With this set of compounds, the MEKC systems have been characterized. Principal component analysis has also been used to show the similarities and differences between the properties of the surfactants characterized by MEKC.

  5. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    NASA Astrophysics Data System (ADS)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  6. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties.

    PubMed

    Qin, Yu-Yue; Yang, Ji-Yi; Lu, Hong-Bo; Wang, Sha-Sha; Yang, Jing; Yang, Xing-Chao; Chai, Man; Li, Lin; Cao, Jian-Xin

    2013-10-01

    The objective of this study was to investigate the effect of chitosan (CH) film incorporated with tea polyphenol (TP) on quality and shelf life of pork meat patties stored at 4±1 °C for 12 days. The microbiological, physicochemical (pH, thiobarbituric acid-reactive substances (TBARS) values, and metmyoglobin (MetMb)), and sensory qualities were measured on all the samples. A microbiological shelf-life extension of 6 days was achieved for CH and CH-TP treatment groups when compared to the control group. Wrapping with CH-TP composite film tended to retard the increases in TBARS values and MetMb content. CH-TP composite film maintained acceptable sensory quality of pork meat patties throughout the storage. The results indicated that CH-TP composite film could be a promising material as a packaging film for extending the shelf life of pork meat patties.

  7. A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.

    PubMed

    Peace, Angela; Zhao, Yuqin; Loladze, Irakli; Elser, James J; Kuang, Yang

    2013-08-01

    There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. For example, modeling under this framework allows food quality to affect consumer dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon is known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, and needs to be incorporated into mathematical models. Here we present a Lotka-Volterra type model to investigate the growth response of Daphnia to algae of varying P:C ratios capturing the mechanism of the stoichiometric knife edge.

  8. Incorporation of CdS nanoparticles from colloidal solution into optically clear ureasilicate matrix with preservation of quantum size effect

    NASA Astrophysics Data System (ADS)

    Boev, Victor I.; Soloviev, Alexei; Silva, Carlos J. R.; Gomes, Maria J. M.

    2006-01-01

    Nanocomposite materials based on an organic-inorganic ureasilicate matrix with embedded CdS nanoparticles were produced and characterized by optical (UV/Vis), FTIR, secondary ion mass spectroscopy, inductively-coupled plasma optical emission and steady-state photoluminescence measurements. The ureasilicate precursor was obtained by the reaction between silicon alkoxyde modified by isocyanate groups and polyethylene glycol oligomers with amine terminal groups. The final nanocomposites were prepared by introducing a colloidal solution of CdS nanoparticles with various sizes into the ureasilicate precursor followed by gelation of the mixture in the presence of ammonia/water vapours. The reliable preservation of the quantum-size effect of nanoparticles after their incorporation into the ureasilicate matrix was observed in all samples. The obtained materials were optically transparent at visible range, exhibiting high flexibility and long-term stability.

  9. Inhibitory effect of somatostatin on the basal and TSH-stimulated /sup 3/H-thymidine incorporation into rat thyroid lobes incubated in vitro

    SciTech Connect

    Zerek-Melen, G.; Lewinski, A.

    1988-07-15

    The effects of somatostatin on the spontaneous and TSH--stimulated incorporation of tritiated thymidine into the rat thyroid lobes incubated in vitro were investigated. The rate of /sup 3/H-thymidine incorporation was used as an index of thyroid follicular cells (TFC) proliferation. It was shown that: 1) somatostatin, at a concentration of 10(-7)M, decreased /sup 3/H-thymidine incorporation into DNA of TFC, 2) the highest somatostatin concentration, as tested in this study (10(-6)M), produced a similar decreasing effect; the decrease, in this case, did not attain significance vs. controls, 3) somatostatin, when employed together with TSH, suppressed the stimulatory effect of the latter hormone on /sup 3/H-thymidine incorporation into DNA of thyroid lobes.

  10. Effectiveness of phototherapy incorporated into an exercise program for osteoarthritis of the knee: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Osteoarthritis is a chronic disease with a multifactor etiology involving changes in bone alignment, cartilage, and other structures necessary to joint stability. There is a need to investigate therapeutic resources that combine different wavelengths as well as different light sources (low-level laser therapy and light-emitting diode therapy) in the same apparatus for the treatment of osteoarthritis. The aim of the proposed study is to analyze the effect of the incorporation of phototherapy into a therapeutic exercise program for individuals with osteoarthritis of the knee. Methods/Design A double-blind, controlled, randomized clinical trial will be conducted involving patients with osteoarthritis of the knee. Evaluations will be performed using functional questionnaires before and after the treatment protocols, in a reserved room with only the evaluator and participant present, and no time constraints placed on the answers or evaluations. The following functional tests will also be performed: stabilometry (balance assessment), dynamometry (muscle strength of gluteus medius and quadriceps), algometry (pain threshold), fleximeter (range of motion), timed up-and-go test (functional mobility), and the functional reach test. The participants will then be allocated to three groups through a randomization process using opaque envelopes: exercise program, exercise program + phototherapy, or exercise program + placebo phototherapy, all of which will last for eight weeks. Discussion The purpose of this randomized clinical trial is to analyze the effect of the incorporation of phototherapy into a therapeutic exercise program for osteoarthritis of the knee. The study will support the practice based on evidence to the use of phototherapy in individuals with a diagnosis of osteoarthritis of the knee. Data will be published after the study is completed. Trial registration The protocol for this study has been submitted to Clinical Trials, registration number

  11. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Chakraborty, Suman

    2012-05-01

    We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.

  12. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements.

    PubMed

    Bandopadhyay, Aditya; Chakraborty, Suman

    2012-05-01

    We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media. In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy's law in the presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential. We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.

  13. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  14. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    SciTech Connect

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  15. DURIP: Electrokinetic Injection and Separation System for Analysis of Protein and Peptide Transport, Adsorption and Kinetics Instrumentation Proposal

    DTIC Science & Technology

    2015-03-18

    SECURITY CLASSIFICATION OF: We requested equipment necessary to build an electrokinetic injection and separation system for the analysis of protein...Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: DURIP: Electrokinetic Injection and Separation System for Analysis of...Injection and Separation System for Analysis of Protein and Peptide Transport, Adsorption and Kinetics Instrumentation Proposal Report Title We requested

  16. Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A.

    2014-07-01

    One of the greatest sources of uncertainty in the science of anthropogenic climate change is from aerosol-cloud interactions. The activation of aerosols into cloud droplets is a direct microphysical linkage between aerosols and clouds; parameterizations of this process link aerosol with cloud condensation nuclei (CCN) and the resulting indirect effects. Small differences between parameterizations can have a large impact on the spatiotemporal distributions of activated aerosols and the resulting cloud properties. In this work, we incorporate a series of aerosol activation schemes into the Community Atmosphere Model version 5.1.1 within the Community Earth System Model version 1.0.5 (CESM/CAM5) which include factors such as insoluble aerosol adsorption and giant cloud condensation nuclei (CCN) activation kinetics to understand their individual impacts on global-scale cloud droplet number concentration (CDNC). Compared to the existing activation scheme in CESM/CAM5, this series of activation schemes increase the computation time by ~10% but leads to predicted CDNC in better agreement with satellite-derived/in situ values in many regions with high CDNC but in worse agreement for some regions with low CDNC. Large percentage changes in predicted CDNC occur over desert and oceanic regions, owing to the enhanced activation of dust from insoluble aerosol adsorption and reduced activation of sea spray aerosol after accounting for giant CCN activation kinetics. Comparison of CESM/CAM5 predictions against satellite-derived cloud optical thickness and liquid water path shows that the updated activation schemes generally improve the low biases. Globally, the incorporation of all updated schemes leads to an average increase in column CDNC of 150% and an increase (more negative) in shortwave cloud forcing of 12%. With the improvement of model-predicted CDNCs and better agreement with most satellite-derived cloud properties in many regions, the inclusion of these aerosol activation

  17. Effect of methane concentration in hydrogen plasma on hydrogen impurity incorporation in thick large-grained polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Tang, C. J.; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2015-09-01

    We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 μm to 430 μm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 μm/h up to 8.5 μm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm-1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

  18. Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes

    NASA Astrophysics Data System (ADS)

    Shirdast, Abbas; Sharif, Alireza; Abdollahi, Mahdi

    2016-02-01

    Chitosan biopolymer (CS) has been attracting considerable interest as polymer electrolyte in fuel cells. However, proton conductivity of chitosan is low and it is necessary to enhance its conductivity. In this work, 10 wt% sulfonated chitosan (SCS) and different amounts of sulfonated graphene oxide (SGO) nanosheets are incorporated into a chitosan membrane to investigate their effects on the electrochemical properties of the membrane. The proton conductivity and methanol permeability tests conducted on the CS/SCS/SGO membranes show that the conductivity is increased by 454%, the permeability is reduced by 23% and hence the selectivity is increased by 650%, relative to the neat chitosan, at SGO content of 5 wt%. Furthermore, combined addition of SCS and SGO to chitosan causes much more proton conductivity enhancement than the individual additives due to the synergistic effect of SCS and SGO. The observed synergistic effect reveals the importance of the chemical functionality of chitosan and nanofillers in the formation of ionic cluster domains with enhanced size within the membranes for proton transport. Finally, a Nernst-Planck based model is applied to the experimental proton conductivity data in order to shed more light on the role of GOs in the proton conductivity mechanism of chitosan.

  19. Inhibitory effect of some triterpenes from cacti on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoylphorbol-13-acetate.

    PubMed

    Kinoshita, K; Yang, Y; Koyama, K; Takahashi, K; Nishino, H

    1999-05-01

    Seventeen triterpenes isolated from cacti and the 10 derivatives were examined for the inhibition of tumor promoter-induced effects in vitro, such as stimulation of 32Pi-incorporation into phospholipids of cultured cells. Betulinic acid (1), cochalic acid (15), erythrodiol (16), oleanolic acid (21) and queretaroic acid (24) inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated 32Pi-incorporation into phospholipids of the cultured cells.

  20. Micro and nanoscale electrochemical systems for reagent generation, coupled electrokinetic transport and enhanced detection

    NASA Astrophysics Data System (ADS)

    Contento, Nicholas M.

    Chemical analysis is being performed in devices operated at ever decreasing length scales in order to harness the fundamental benefits of micro and nanoscale phenomena while minimizing operating footprint and sample size. The advantages of moving traditional sample or chemical processing steps (e.g. separation, detection, and reaction) into micro- and nanofluidic devices have been demonstrated, and they arise from the relatively rapid rates of heat and mass transport at small length scales. The use of electrochemical methods in micro/nanoscale systems to control and improve these processes holds great promise. Unfortunately, much is still not understood about the coupling of multiple electrode driven processes in a confined environment nor about the fundamental changes in device performance that occur as geometries approach the nanoscale regime. At the nanoscale a significant fraction of the sample volume is in close contact with the device surface, i.e. most of the sample is contained within electronic or diffusion layers associated with surface charge or surface reactions, respectively. The work presented in this thesis aims to understand some fundamental different behaviors observed in micro/nanofluidic structures, particularly those containing one or more embedded, metallic electrode structures. First, a quantitative method is devised to describe the impact of electric fields on electrochemistry in multi-electrode micro/nanofluidic systems. Next the chemical manipulation of small volumes (≤ 10-13 L) in micro/nanofluidic structures is explored by creating regions of high pH and high dissolved gas (H 2) concentration through the electrolysis of H2O. Massively parallel arrays of nanochannel electrodes, or embedded annular nanoband electrodes (EANEs), are then studied with a focus on achieving enhanced signals due to coupled electrokinetic and electrochemical effects. In EANE devices, electroosmotic flow results from the electric field generated between the

  1. Effect of 5-Fluoro-2′-Deoxyuridine on [3H]Thymidine Incorporation by Bacterioplankton in the Waters of Southwest Florida

    PubMed Central

    Jeffrey, Wade H.; Paul, John H.

    1988-01-01

    The effect of 5-fluoro-2′-deoxyuridine (FdUrd) on [methyl-3H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-3H]thymidine or [6-3H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [3H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [3H]thymidine labeling of protein and RNA, but caused some inhibition of [3H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [3H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [3H]thymidine incorporation. PMID:16347546

  2. The effects of a multifunctional oligomer and its incorporation strategies on the gene delivery efficiency of poly(L-lysine).

    PubMed

    Zhou, Dezhong; Li, Congxin; Hu, Yuling; Zhou, Hao; Chen, Jiatong; Zhang, Zhengpu; Guo, Tianying

    2012-05-14

    A novel multifunctional oligomer is synthesized and incorporated to enhance the gene delivery efficiency of PLL via non-electrostatic assembly and covalent grafting strategies. The improvement of the gene delivery efficiency is dependent on the gene carrying complex properties, and the properties are dependent on the oligomer incorporation strategy.

  3. Alumina interaction with AMPS-MPEG random copolymers I. Adsorption and electrokinetic behavior.

    PubMed

    Bouhamed, H; Boufi, S; Magnin, A

    2003-05-15

    Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.

  4. Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics.

    PubMed

    Gent, David B; Bricka, R Mark; Alshawabkeh, Akram N; Larson, Steven L; Fabian, Gene; Granade, Steve

    2004-07-05

    The results of bench-scale laboratory tests and in situ, pilot-scale demonstration of electrokinetic extraction of chromium and cadmium from contaminated soil are presented. The laboratory tests were conducted using 10 cm long samples under current density of 5A/m(2) for 1200 h. Tests were conducted with and without citric acid amendment at the cathode. The results showed that citric acid improved extraction, especially in the sections near the cathode. However, processing was not enough to result in complete cleanup. The field demo was conducted at the Naval Air Weapon Station (NAWS), Point Mugu, California. Three cathodes were centered between six anodes. The anode-cathode spacing was 4.45 m (15 ft). Constant voltage of 60 V ( approximately 13 V/m) was applied for 20 days and then was reduced to 45 V (10 V/m) for 6 months. Citric acid was used to maintain the cathode pH at 4. After 6 months of treatment, 78% of the soil volume has been cleared of chromium or treated to below natural background levels. The results also indicated that 70% of the soil between the electrodes had been cleared of cadmium contamination. A comparison between the bench-scale and field demo showed that the field process was more effective than the lab tests. This indicated that small sample size will induce a negative effect on the efficiency of the process due to an increased impact of the boundaries on the overall process.

  5. Transient electrokinetic transport in micro/nanofluidic systems with sudden expansion and contraction cross sections

    NASA Astrophysics Data System (ADS)

    Chein, Reiyu; Liao, Yuchung

    2013-03-01

    This study numerically investigates electrokinetic transport in a micro/nanofluidic system by solving the transient Poisson, Nernst-Planck, and Navier-Stokes equations simultaneously. The considered system is a nanochannel connected to two micro channels at its ends. Under various applied electric potential biases, the concentration polarization effect on the fluid flow, induced pressure, and electric current is examined. By comparing with the Donnan equilibrium condition and electroosmotic flow in the microscale dimension, electric body force due to non-zero charge density is the mechanism for producing vortex flow and inducing a positive pressure gradient on the anodic side of the system. The diffusive boundary layer thickness is reduced due to stirring by the generated vortex flow, resulting in over-limiting current when the applied electric potential bias is high. The steady-state current voltage curve indicates that in the Ohmic regime, higher current can be obtained when the surface charge density is large due to higher fluid velocity. In the limiting and over-limiting current regimes, higher electric current can be obtained when the nanochannel is larger with smaller surface density because more ions are available for carrying the current. The nanochannel size effect on the limiting and over-limiting current magnitudes is insignificant when the surface charge density is large.

  6. Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment.

    PubMed

    Yoo, Jong-Chan; Yang, Jung-Seok; Jeon, Eun-Ki; Baek, Kitae

    2015-07-01

    In this study, the feasibility of an ex situ electrokinetic (EK) process combined with pre-oxidation using hydrogen peroxide (H2O2) and pre-washing using ethylenediaminetetraacetic acid (EDTA) was investigated in enhancing the extraction of Cu, Pb, and Zn from actual dredged harbor sediment. H2O2 pre-oxidation led to a change in the fractionation of Cu bound to organic matter and the sulfide fraction in the Fe-Mn oxides to the exchangeable fraction, but was not effective at removing metals. In contrast, EDTA pre-washing changed the Fe-Mn oxide-bound fractions of Cu and Pb into easily extractable fractions; 20.1, 27.5, and 32.8% of Cu, Pb, and Zn were removed, respectively. During EK treatment, metals were transported toward the anode by electromigration of negatively charged complexes such as metal-EDTA and metal-citrate. However, EK treatment did not significantly enhance the removal of metals because metals accumulated near the anodic region with an increase in the exchangeable fraction due to the short EK operating duration and low voltage gradient. Therefore, it is necessary to extend the EK operating duration and/or increase the voltage gradient for effective transportation and removal of metals from sediment.

  7. Improvement of microemulsion electrokinetic chromatography for measuring octanol-water partition coefficients.

    PubMed

    Xia, Zhining; Jiang, Xuemei; Mu, Xiaojing; Chen, Hua

    2008-02-01

    Microemulsion electrokinetic chromatography (MEEKC) has been used to indirectly measure octanol-water partition coefficients (log P(ow)) of compounds. In order to obtain an accurate log P(ow) value, the electrophoretic mobilities of the microemulsion phase (mu(me)) and the analyte (mu(eff)) in MEEKC must be accurately required. However, in conventional MEEKC, the shortage of obtaining mu(me) with a tracing method was discovered, and the influences of concentration, injection volume of analyte, and high electric field on measuring mu(eff) were also found. In this paper, a novel method called improved MEEKC (I-MEEKC) was developed to avoid the problems mentioned above. In I-MEEKC, a nonlinearity fitting program was used to obtain mu(me) to avoid the error from tracing mu(me); the extrapolating method was used to eliminate the effects of concentrations and injection volumes of analytes on mu(eff) measurement, and an enough stable microemulsion was selected to eliminate the effect of high electric field on mu(eff )measurement. Then the novel method was applied to estimate log P(ow) of uncharged compounds and charged pharmaceuticals compared to the conventional MEEKC. The log P(ow) of all analytes obtained by I-MEEKC agreed with those obtained by classical shake flask or literature values, the errors between them were within 0.1 logarithm units, better than the ones by conventional MEEKC.

  8. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    PubMed

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector.

  9. Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues.

    PubMed

    Kubalczyk, Paweł; Borowczyk, Kamila; Chwatko, Grażyna; Głowacki, Rafał

    2015-04-01

    A new method for the determination of hydrogen sulfide in hen tissues has been developed and validated. For estimation of hydrogen sulfide content, a sample (0.1 g) of hen tissue was treated according to the procedure consisted of some essential steps: simultaneous homogenization of a tissue and derivatization of hydrogen sulfide to its S-quinolinium derivative with 2-chloro-1-methylquinolinium tetrafluoroborate, separation of so-formed derivative by micellar electrokinetic chromatography with sweeping, and detection and quantitation with the use of UV detector set to measure analytical signals at 375 nm. Effective electrophoretic separation was achieved using fused silica capillary (effective length 41.5 cm, 75 μm id) and 0.05 mol/L, pH 8 phosphate buffer with the addition of 0.04 mol/L SDS and 26% ACN. The lower limit of quantification was 0.12 μmol hydrogen sulfide in 1 g of tissue. The calibration curve prepared in tissue homogenate for hydrogen sulfide showed linearity in the range from 0.15 to 2.0 μmol/g, with the coefficient of correlation 0.9978. The relative standard deviation of the points of the calibration curve varied from 8.3 to 3.2% RSD.

  10. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.

    PubMed

    Chen, Qile; Kong, Xian; Li, Jipeng; Lu, Diannan; Liu, Zheng

    2014-09-21

    A new concept of electrokinetic desalination using a CNT honeycomb is presented through molecular dynamics simulation. The preferential translocation of ions towards the outlets near two electrodes was realized by applying an electric field perpendicular to bulk fluid flow in a CNT network, which, in the meantime, generated deionized water flux discharged from the central outlets. The effects of the major factors such as electric field strength, numbers of separation units, diameter of CNT, and ion concentration on the desalination were examined. It was shown that over 95% salt rejection and around 50% fresh water recovery were achieved by the presented module by applying an electric field of 0.8 V nm(-1). CNT diameter, which is critical to ion rejection without the electric field, had a marginal effect on the desalination of this new module when a strong electric field was applied. The desalination was also not sensitive to ion concentration, indicating its excellent workability for a wide range of water salinity, e.g. from brackish water to seawater. A potential of mean force profile revealed a free energy barrier as large as 2.0-6.0 kcal mol(-1) for ions to move opposite to the implemented electrical force. The simulation confirmed the high potential of the CNT honeycomb in water desalination.

  11. Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

    NASA Astrophysics Data System (ADS)

    Syah Putra, Rudy

    2016-02-01

    Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.

  12. Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules.

    PubMed

    Wu, Zhi-Yong; Li, Cui-Ye; Guo, Xiao-Li; Li, Bo; Zhang, Da-Wei; Xu, Ye; Fang, Fang

    2012-09-21

    Due to Donnan exclusion, charged molecules are prohibited from passing through a channel of electrical double layer scale (nanometers), even though the molecules are smaller than the lowest dimension of the channel. To employ this effect for on-chip pre-concentration, an ion channel of nanometer scale has to be introduced. Here we introduced a simple method of generating a fracture (11-250 nm) directly on the commercially available open tubular fused silica capillary, and a chip comprised of the capillary with the nanofracture was prepared. A ring-disk model of the fracture was derived with which the fracture width can be easily characterized online without any damage to the chip, and the result was validated by a scanning electron microscope (SEM). The fractures can be used directly as a nanofluidic interface exhibiting an obvious ion concentration polarization effect with high current flux. On-chip electrokinetic stacking of SYBR Green I labeled λDNA inside the capillary was successfully demonstrated, and a concentration factor close to the amplification rate of the polymerase chain reaction (PCR) was achieved within 7 min. The chip is inexpensive and easy to prepare in common chemistry and biochemistry laboratories without limitations in expensive microfabrication facilities and sophisticated expertise. More applications of this interface could be found for enhancing the detectability of capillary based microfluidic analytical systems for the analysis of low concentrated charged species.

  13. Phosphonium-based ionic liquids in electrokinetic capillary chromatography for the separation of neutral analytes.

    PubMed

    Wiedmer, Susanne K; King, Alistair W T; Riekkola, Marja-Liisa

    2012-08-31

    In this work we elucidated the applicability of phosphonium-based ionic liquids (ILs) as pseudostationary phase in electrokinetic capillary chromatography (EKC) with UV-detection. The phosphonium ILs studied contain bromide, chlorine, or tosylate ions, as counter ions, and alkyl side chains of variable length on the phosphorous atom. The effects of the type and concentration of the IL, pH, ionic strength, and type of background electrolyte solution on the electroosmotic flow (EOF) and on the effective electrophoretic mobilities of some neutral model analytes were investigated and large variations in the migration times were observed. Especially the IL employed remarkably affected the strength and direction of the EOF Successful separations were obtained for neutral aromatic singly substituted analytes, namely benzene, toluene, phenol, and nitrobenzene. The results demonstrated the potential of capillary electromigration methods for rapid interaction studies between ILs and analytes, which is useful for the development of novel materials for sample preparation and separation purposes or for novel catalyst and chemical processing studies.

  14. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer.

    PubMed

    Wan, Xu; Zheng, Xiaoyao; Pang, Xiaoying; Zhang, Zheming; Zhang, Qizhi

    2015-12-01

    Lapatinib, a selective small-molecule dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in HER2-positive patients with advanced metastatic breast cancer. However, its low and variable oral absorption, large required daily dose and serious gastrointestinal side effects all limit its clinical use. Intravenous administration offers a good option to overcome these disadvantages. However, the poor solubility of lapatinib in water and organic solvents causes lapatinib to fail in a common injectable preparation. Considering lapatinib's high albumin binding ability (>99%), in this study, we developed human serum albumin nanoparticles loaded with lapatinib (LHNPs) by Nab technology for intravenous administration and investigated its efficacy against HER2-positive breast cancer. Raman shift, X-ray diffraction and X-ray photoelectron spectroscopy studies demonstrated that lapatinib was successfully incorporated into nanoparticles, and LHNPs exhibited good stability and sustained-release effect in vitro. LHNPs could be effectively taken up by SKBr3 cells in a concentration- and time-dependent manner, and the uptake was mediated by energy-dependent endocytosis, which involved clathrin-dependent pinocytosis. Furthermore, in vitro and in vivo data indicated that LHNPs presented the strong ability to induce apoptosis and superior anti-tumor efficacy in tumor-bearing mice to the commercial tablet Tykerb through the inhibition of HER2 phosphorylation. Subchronic toxicity assays indicated that LHNPs had no hepatic or kidney toxicity. With mature technology for industrial production and enhanced therapeutic effects, LHNPs are likely to have great potential as a safe therapeutic candidate against HER2-positive breast cancer in the clinic.

  15. Studies on effect of oat and cheese incorporation on sensory and textural quality of short-dough type biscuit.

    PubMed

    Swapna, K S; Rao, K Jayaraj

    2016-03-01

    In view of their growing importance in human nutrition, incorporation of oats and cheese during the manufacture of short-dough type biscuits was studied. Rolled oats were incorporated at 25, 35 and 45 % of refined wheat flour in short-dough type biscuit formulation. Cheddar and processed cheese were used for flavouring purpose at three levels each, viz. 30, 40 and 50 % on flour basis. The dough exhibited less firmness on oats incorporation as indicated by lower firmness value (21.73 N) as against 25.05 N for control dough measured by Texture Analyser. Addition of cheese to the 25 % oat incorporated dough further reduced its firmness and altered its viscoelastic characteristics. Baking conditions for the oats and cheese incorporated biscuits were optimized as 165 °C for 25-27 min. Sensory evaluation results revealed that the biscuit made from 25 % oat incorporated dough scored highest in most of the sensory attributes including overall acceptability. Cheddar cheese and processed cheese levels were optimized at 30 and 40 % in oats-incorporated dough based on the sensory analysis of biscuits prepared from the dough samples. The moisture and β- glucan contents were 3.93 % and 0.62 %; 4.32 % and 0.60 % for cheddar cheese and processed cheese added biscuits, respectively. The spread ratios were higher in cheese incorporated biscuits than in oat incorporated biscuits. It was concluded that good quality cheese flavoured biscuits can be prepared by incorporating rolled oats in biscuit formulation along with cheddar or processed cheese.

  16. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  17. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  18. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  19. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects

    PubMed Central

    Jervis, Sarah; Song, Honglin; Lee, Andrew; Dicks, Ed; Harrington, Patricia; Baynes, Caroline; Manchanda, Ranjit; Easton, Douglas F; Jacobs, Ian; Pharoah, Paul P D; Antoniou, Antonis C

    2015-01-01

    Background Although BRCA1 and BRCA2 mutations account for only ∼27% of the familial aggregation of ovarian cancer (OvC), no OvC risk prediction model currently exists that considers the effects of BRCA1, BRCA2 and other familial factors. Therefore, a currently unresolved problem in clinical genetics is how to counsel women with family history of OvC but no identifiable BRCA1/2 mutations. Methods We used data from 1548 patients with OvC and their relatives from a population-based study, with known BRCA1/2 mutation status, to investigate OvC genetic susceptibility models, using segregation analysis methods. Results The most parsimonious model included the effects of BRCA1/2 mutations, and the residual familial aggregation was accounted for by a polygenic component (SD 1.43, 95% CI 1.10 to 1.86), reflecting the multiplicative effects of a large number of genes with small contributions to the familial risk. We estimated that 1 in 630 individuals carries a BRCA1 mutation and 1 in 195 carries a BRCA2 mutation. We extended this model to incorporate the explicit effects of 17 common alleles that are associated with OvC risk. Based on our models, assuming all of the susceptibility genes could be identified we estimate that the half of the female population at highest genetic risk will account for 92% of all OvCs. Conclusions The resulting model can be used to obtain the risk of developing OvC on the basis of BRCA1/2, explicit family history and common alleles. This is the first model that accounts for all OvC familial aggregation and would be useful in the OvC genetic counselling process. PMID:26025000

  20. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOEpatents

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.