Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng
2015-09-30
Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.
The effect of reactive ion etch (RIE) process conditions on ReRAM device performance
NASA Astrophysics Data System (ADS)
Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.
2017-09-01
The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.
Industrial perspectives on earth abundant, multinary thin film photovoltaics
NASA Astrophysics Data System (ADS)
Haight, Richard; Gershon, Talia; Gunawan, Oki; Antunez, Priscilla; Bishop, Douglas; Seog Lee, Yun; Gokmen, Tayfun; Sardashti, Kasra; Chagarov, Evgueni; Kummel, Andrew
2017-03-01
The most efficient earth abundant, non-toxic thin film multelemental PV devices are fabricated from Cu, Zn, Sn, S and Se, with the chemical formula of Cu2ZnSn(S x Se1-x )4 (CZTS,Se). This material has enjoyed relatively rapid increases in efficiency from its inception to its present-day power conversion efficiency of 12.6%. But further increases in efficiency have been hampered by the inability to substantially increase Voc, the open circuit voltage. In this review article we will discuss the fundamentals of this important kesterite material including methods of film growth, post growth processing and device fabrication. Detailed studies of the properties of CZTS,Se including chemical, structural and electronic as well as full device electrical characterization have been performed in an effort to coax out the critical issues that limit performance. These experimental studies, enhanced by density functional theory calculations have pointed to fundamental bulk point defects, such as Cu-Zn antisites, and clusters of defects, as the primary culprits in limiting Voc increases. Improvements in device performance through grain boundary passivation and interface modifications are described. Exfoliation of functioning solar cells to expose the back surface along with engineering of new back contacts designed to impose electrostatic fields that drive electron-hole separation and increase Voc are discussed. A parallel route to increasing device performance by alloying Ag with CZTS,Se in order to inhibit Cu-Zn antisite defect formation has shown significant improvement in material properties. Finally, applications of high S (and hence higher Voc) CZTS,Se based devices to energy harvesting for ‘Internet-of-Things’ devices is discussed.
Coordinated garbage collection for raid array of solid state disks
Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi
2014-04-29
An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.
NASA Astrophysics Data System (ADS)
Seo, Youngsoo; Kim, Shinkeun; Ko, Kyul; Woo, Changbeom; Kim, Minsoo; Lee, Jangkyu; Kang, Myounggon; Shin, Hyungcheol
2018-02-01
In this paper, electrical characteristics of gate-all-around (GAA) nanoplate (NP) vertical FET (VFET) were analyzed for single transistor and 6T-SRAM cell through 3D technology computer-aided design (TCAD) simulation. In VFET, gate and extension lengths are not limited by the area of device because theses lengths are vertically located. The height of NP is assumed in 40 nm considering device fabrication method (top-down approach). According to the sizes of devices, we analyzed the performances of device such as total resistance, capacitance, intrinsic gate delay, sub-threshold swing (S.S), drain-induced barrier lowering (DIBL) and static noise margin (SNM). As the gate length becomes larger, the resistance should be smaller because the total height of NP is fixed in 40 nm. Also, when the channel thickness becomes thicker, the total resistance becomes smaller since the sheet resistances of channel and extension become smaller and the contact resistance becomes smaller due to the increasing contact area. In addition, as the length of channel pitch increases, the parasitic capacitance comes to be larger due to the increasing area of gate-drain and gate-source. The performance of RC delay is best in the shortest gate length (12 nm), the thickest channel (6 nm) and the shortest channel pitch (17 nm) owing to the reduced resistance and parasitic capacitance. However, the other performances such as DIBL, S.S, on/off ratio and SNM are worst because the short channel effect is highest in this situation. Also, we investigated the performance of the multi-channel device. As the number of channels increases, the performance of device and the reliability of SRAM improve because of reduced contact resistance, increased gate dimension and multi-channel compensation effect.
Kanevce, A.; Reese, Matthew O.; Barnes, T. M.; ...
2017-06-06
CdTe devices have reached efficiencies of 22% due to continuing improvements in bulk material properties, including minority carrier lifetime. Device modeling has helped to guide these device improvements by quantifying the impacts of material properties and different device designs on device performance. One of the barriers to truly predictive device modeling is the interdependence of these material properties. For example, interfaces become more critical as bulk properties, particularly, hole density and carrier lifetime, increase. We present device-modeling analyses that describe the effects of recombination at the interfaces and grain boundaries as lifetime and doping of the CdTe layer change. Themore » doping and lifetime should be priorities for maximizing open-circuit voltage (V oc) and efficiency improvements. However, interface and grain boundary recombination become bottlenecks for device performance at increased lifetime and doping levels. In conclusion, this work quantifies and discusses these emerging challenges for next-generation CdTe device efficiency.« less
An UV photochromic memory effect in proton-based WO3 electrochromic devices
NASA Astrophysics Data System (ADS)
Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.
2008-11-01
We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.
Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes
King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...
2015-10-29
Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 10 13 cm -2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaNmore » P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less
NASA Astrophysics Data System (ADS)
Zakaria, N. F.; Kasjoo, S. R.; Zailan, Z.; Isa, M. M.; Taking, S.; Arshad, M. K. M.
2017-12-01
Characterization on an InGaAs-based self-switching diode (SSD) using technology computer aided design (TCAD) aimed for optimizing the electrical rectification performance of the device is reported. The rectifying performance is mainly contributed by a parameter known as the curvature coefficient which is derived from the current-voltage (I-V) behavior of the device. As such, the curvature coefficient of SSD was analyzed in this work, not only by varying the device's geometrical structure, but also by implementing different dielectric relative permittivity of the device's trenches, ranging from 1.0 to 10. Furthermore, the simulations were performed under temperature range of 300-600 K. The results showed that increased temperature degraded the SSD's rectifying performance due to increased reverse current which can deteriorate the nonlinearity of the device's I-V characteristic. Moreover, an improved curvature coefficient can be achieved using silicon dioxide (∼3.9) as the SSD trenches. The cut-off frequency of SSD with zero-bias curvature coefficient of ∼30 V-1 attained in this work was approximately 80 GHz, operating at unbiased condition. The results obtained can assist the design of SSD to efficiently operate as rectifiers at microwave and terahertz frequencies.
ERIC Educational Resources Information Center
Bolona Lopez, Maria del Carmen; Ortiz, Margarita Elizabeth; Allen, Christopher
2015-01-01
This paper describes a project to use mobile devices and video conferencing technology in the assessment of student English as a Foreign Language (EFL) teacher performance on teaching practice in Ecuador. With the increasing availability of mobile devices with video recording facilities, it has become easier for trainers to capture teacher…
Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin
2015-11-18
Controlling the nature and transfer of excited states in organic photovoltaic (OPV) devices is of critical concern due to the fact that exciton transport and separation can dictate the final performance of the system. One effective method to accomplish improved charge separation in organic electronic materials is to control the spin state of the photogenerated charge-carrying species. To this end, nanoparticles with unique iron oxide (Fe3O4) cores and zinc oxide (ZnO) shells were synthesized in a controlled manner. Then, the structural and magnetic properties of these core-shell nanoparticles (Fe3O4@ZnO) were tuned to ensure superior performance when they were incorporated into the active layers of OPV devices. Specifically, small loadings of the core-shell nanoparticles were blended with the previously well-characterized OPV active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Upon addition of the core-shell nanoparticles, the performance of the OPV devices was increased up to 25% relative to P3HT-PCBM active layer devices that contained no nanoparticles; this increase was a direct result of an increase in the short-circuit current densities of the devices. Furthermore, it was demonstrated that the increase in photocurrent was not due to enhanced absorption of the active layer due to the presence of the Fe3O4@ZnO core-shell nanoparticles. In fact, this increase in device performance occurred because of the presence of the superparamagnetic Fe3O4 in the core of the nanoparticles as incorporation of ZnO only nanoparticles did not alter the device performance. Importantly, however, the ZnO shell of the nanoparticles mitigated the negative optical effect of Fe3O4, which have been observed previously. This allowed the core-shell nanoparticles to outperform bare Fe3O4 nanoparticles when the single-layer nanoparticles were incorporated into the active layer of OPV devices. As such, the new materials described here present a tangible pathway toward the development of enhanced design schemes for inorganic nanoparticles such that magnetic and energy control pathways can be tailored for flexible electronic applications.
Designing Security-Hardened Microkernels For Field Devices
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James
Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.
High-performance wireless powering for peripheral nerve neuromodulation systems.
Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.
High-performance wireless powering for peripheral nerve neuromodulation systems
Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141
Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L
2017-12-01
Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance analysis of GeSn-alloy-based multiple quantum well transistor laser
NASA Astrophysics Data System (ADS)
Ranjan, Ravi; Pareek, Prakash; Anwer Askari, Syed Sadique; Das, Mukul K.
2018-02-01
The Group IV Photonics (GFP) which include an alloy of Si, Ge & Sn that gives a direct bandgap material (GeSn, SiGeSn) in near and mid-IR region used as an active material in photonics devices. The multiple quantum well SiGeSn/GeSn transistor laser structure is considered in this paper and performance parameters are evaluated for the same. The result shows that the threshold base current density (2.6 kA/cm2) for the proposed device initially decreases with increasing number of quantum well (QW) and later on it saturates. The current gain and output photon density of the device decreases and increases respectively, with increasing number of QW.
High performance quantum cascade lasers: Loss, beam stability, and gain engineering
NASA Astrophysics Data System (ADS)
Bouzi, Pierre Michel
Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers recently emerged with high optical power and high efficiency at cryogenic temperatures. However their performances decay rather rapidly with temperature in both pulsed and continuous wave modes. Through detailed measurements and analysis, we investigate several possible causes of this shortcoming and propose design modifications for temperature performance improvement. While the strong coupling devices are efficient and powerful, their performance often suffers from unintentional and potentially harmful beam steering at high power. Here, we identify the root of this pointing instability to be from non-linear interactions between multiple transverse modes. And, to resolve this issue, we employ focused ion beam (FIB) milling to etch small lateral constrictions on top of the devices and fill them with metal. This has the effect of greatly reducing the intensity of higher order transverse modes as they propagate through the cavity. A good grasp of the microscopic details involved in QC device operations will result in better lasers, with high beam quality. This, in turn, will enable new applications, such as the detection of SO2 isotopologues near 7.4 micron, which is of particular importance for the study of ultraviolet photolysis and the sulfur cycle on Venus.
Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.
Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P
2017-06-01
Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Mucur, Selin Pıravadılı; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2018-04-01
Inverted bottom-emission organic light emitting diodes (IBOLEDs) have attracted increasing attention due to their exceptional air stability and applications in active-matrix displays. For gaining high IBOLED device efficiencies, it is crucial to develop an effective strategy to make the bottom electrode easy for charge injection and transport. Charge selectivity, blocking the carrier flow towards the unfavourable side, plays an important role in determining charge carrier balance and accordingly radiative recombination efficiency. It is therefore highly desirable to functionalize an interfacial layer which will perform many different tasks simultaneously. Here, we contribute to the hole-blocking ability of the zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite (NC) interlayer with the intention of increasing the OLED device efficiency. With this purpose in mind, a small amount of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) was added as a hole-blocking molecule into the binary blend of ZnO and PEI solution. The device with a ternary ZnO:PEI:TPBi NC interlayer achieved a maximum current efficiency of 38.20 cd A-1 and a power efficiency of 34.29 lm W-1 with a luminance of 123 200 cd m-2, which are high performance parameters for inverted device architecture. The direct comparisons of device performances incorporating ZnO only, ZnO/PEI bilayers, and ZnO:PEI binary NC counterparts were also performed, which shed light on the origin of device performance enhancement.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan
2017-04-01
La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.
Inverse design engineering of all-silicon polarization beam splitters
NASA Astrophysics Data System (ADS)
Frandsen, Lars H.; Sigmund, Ole
2016-03-01
Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.
Optical and electronic processes in organic photovoltaic devices
NASA Astrophysics Data System (ADS)
Myers, Jason David
Organic photovoltaic devices (OPVs) have become a promising research field. OPVs have intrinsic advantages over conventional inorganic technologies: they can be produced from inexpensive source materials using high-throughput techniques on a variety of substrates, including glass and flexible plastics. However, organic semiconductors have radically different operation characteristics which present challenges to achieving high performance OPVs. To increase the efficiency of OPVs, knowledge of fundamental operation principles is crucial. Here, the photocurrent behavior of OPVs with different heterojunction architectures was studied using synchronous photocurrent detection. It was revealed that photocurrent is always negative in planar and planar-mixed heterojunction devices as it is dominated by photocarrier diffusion. In mixed layer devices, however, the drift current dominates except at biases where the internal electric field is negligible. At these biases, the diffusion current dominates, exhibiting behavior that is correlated to the optical interference patterns within the device active layer. Further, in an effort to increase OPV performance without redesigning the active layer, soft-lithographically stamped microlens arrays (MLAs) were developed and applied to a variety of devices. MLAs refract and reflect incident light, giving light a longer path length through the active layer compared to a device without a MLA; this increases absorption and photocurrent. The experimentally measured efficiency enhancements range from 10 to 60%, with the bulk of this value coming from increased photocurrent. Additionally, because the enhancement is dependent on the substrate/air interface and not the active layer, MLAs are applicable to all organic material systems. Finally, novel architectures for bifunctional organic optoelectronic devices (BFDs), which can function as either an OPV or an organic light emitting device (OLED), were investigated. Because OPVs and OLEDs have inherently opposing operation principles, BFDs suffer from poor performance. A new architecture was developed to incorporate the phosphorescent emitter platinum octaethylporphine (PtOEP) into a rubrene/C60 bilayer BFD to make more efficient use of injected carriers. While the emission was localized to a PtOEP emitter layer by an electron permeable exciton blocking layer of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB), total performance was not improved. From these experiments, a new understanding of the material requirements for BFDs was obtained.
Scaling of Performance in Liquid Propellant Rocket Engine Combustors
NASA Technical Reports Server (NTRS)
Hulka, James
2008-01-01
The objectives are: a) Re-introduce to you the concept of scaling; b) Describe the scaling research conducted in the 1950s and early 1960s, and present some of their conclusions; c) Narrow the focus to scaling for performance of combustion devices for liquid propellant rocket engines; and d) Present some results of subscale to full-scale performance from historical programs. Scaling is "The ability to develop new combustion devices with predictable performance on the basis of test experience with old devices." Scaling can be used to develop combustion devices of any thrust size from any thrust size. Scaling is applied mostly to increase thrust. Objective is to use scaling as a development tool. - Move injector design from an "art" to a "science"
NASA Astrophysics Data System (ADS)
Kale, Sumit; Kondekar, Pravin N.
2018-01-01
This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.
Murray, Christopher S.; Wilt, David M.
2000-01-01
An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2011-11-01
This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.
Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.
Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng
2015-09-15
Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.
Theoretical considerations of soil retention. [dirtying of solar energy devices
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1980-01-01
The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip M., E-mail: philip.campbell@gatech.edu; Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332; Tarasov, Alexey
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs),more » separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.« less
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; ...
2017-09-21
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less
Enhanced photovoltaic performance in nanoimprinted pentacene-PbS nanocrystal hybrid device
NASA Astrophysics Data System (ADS)
Dissanayake, D. M. N. M.; Adikaari, A. A. D. T.; Silva, S. R. P.
2008-03-01
Pentacene and PbS nanocrystal bilayer photovoltaic devices are fabricated after the pentacene layer is subjected to nanoimprinting using a laser textured silicon stamp. Increased short circuit current densities are observed for the imprinted devices, which are attributed to increased charge mobility in the pentacene film caused by the decrease in the intermolecular distances during nanoimprinting. This work is consistent with previous reports where hydrostatic pressure induced mobility increases have been observed in polyacenes under gigapascal pressure regimes. It is believed that the pentacene film undergoes localized high pressures during nanoimprinting, giving rise to the increased hole mobilities.
Spechler, Joshua A; Nagamatsu, Ken A; Sturm, James C; Arnold, Craig B
2015-05-20
In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-free, solution processed, and laser processed transparent electrodes. Furthermore, devices which have high resistive losses show up to a 35% increase in power conversion efficiency after laser processing. We perform this study over a range of laser fluences, and a range of nanowire area coverage to investigate the sintering mechanism of nanowires inside of a device stack. The increase in device performance is modeled using a simple photovoltaic diode approach and compares favorably to the experimental data.
Performance of a Thermoelectric Device with Integrated Heat Exchangers
NASA Astrophysics Data System (ADS)
Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.
2015-06-01
Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.
Herrera-Tapia, Jorge; Hernández-Orallo, Enrique; Tomás, Andrés; Manzoni, Pietro; Tavares Calafate, Carlos; Cano, Juan-Carlos
2016-09-18
Regular citizens equipped with smart devices are being increasingly used as "sensors" by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile devices, and on storing the messages in these devices for subsequent delivery to cloud-based services. An effective way to increase the number of messages that can be shared is to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where, during a contact, the users are aware of the time needed to interchange the messages stored in their buffers, and they can thus decide to wait more time in order to increase the message sharing probability. The performance of this approach is anyway closely related to the size of the buffer in the device. We therefore compare various policies either for the message selection at forwarding times and for message dropping when the buffer is full. We evaluate our proposal with a modified version of the Opportunistic Networking Environment (ONE) simulator and using real human mobility traces.
NASA Astrophysics Data System (ADS)
Lee, Won-Ho; Yoon, Sung-Min
2017-05-01
The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Digital Devices, Distraction, and Student Performance: Does In-Class Cell Phone Use Reduce Learning?
ERIC Educational Resources Information Center
Duncan, Douglas K.; Hoekstra, Angel R.; Wilcox, Bethany R.
2012-01-01
The recent increase in use of digital devices such as laptop computers, iPads, and web-enabled cell phones has generated concern about how technologies affect student performance. Combining observation, survey, and interview data, this research assesses the effects of technology use on student attitudes and learning. Data were gathered in eight…
High-performance computing for airborne applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom
2010-06-28
Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even thoughmore » the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.« less
Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.
Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael
2018-01-24
Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.
Evaluation of Adaptive Subdivision Method on Mobile Device
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila
2013-06-01
Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team
2014-03-01
The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana
Band-edge effects - including grading, electrostatic fluctuations, bandgap fluctuations, and band tails - affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In, Ga)Se2 devices, recent increases in diffusion length imply changes to the optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties, is examined.
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.
1993-01-01
This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.
Armbrüster, C; Sutter, C; Ziefle, M
2007-03-01
In two experiments, the usability of input devices integrated into computer notebooks was under study. The most common input devices, touchpad (experiment 1) and trackpoint (experiment 2) were examined. So far, the evaluation of mobile input devices has been restricted to younger users. However, due to ongoing demographic change, the main target group of mobile devices will be older users. Therefore, the present study focused on ageing effects. A total of 14 middle-aged (40-65 years) and 20 younger (20-32 years) users were compared regarding speed and accuracy of cursor control in a point-click and a point-drag-drop task. Moreover, the effects of training were addressed by examining the performance increase over time. In total, 640 trials per task and input device were executed. The results show that ageing is a central factor to be considered in input device design. Middle-aged users were significantly slower than younger users when executing the different tasks. Over time, a significant training effect was observed for both devices and both age groups, although the benefit of training was greater for the middle-aged group. Generally, the touchpad performance was higher than the trackpoint performance in both age groups, but the age-related performance decrements were less distinct when using the touchpad.
Metalorganic chemical vapor deposition of AlGaAs and InGaP heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Pan, N.; Welser, R. E.; Lutz, C. R.; DeLuca, P. M.; Han, B.; Hong, K.
2001-05-01
Heterojunction bipolar transistors (HBT) are now beginning to be widely incorporated as power amplifiers, laser drivers, multiplexers, clock data recovery circuits, as well as transimpedance and broadband amplifiers in high performance millimeter wave circuits (MMICs). The increasing acceptance of this device is principally due to advancements in metalorganic chemical vapor deposition (MOCVD), device processing, and circuit design technologies. Many of the DC electrical characteristics of large area devices can be directly correlated to the DC performance of small area RF devices. A precise understanding of the growth parameters and their relationship to device characteristics is critical for ensuring the high degree of reproducibility required for low cost high-yield volume manufacturing. Significant improvements in the understanding of the MOCVD growth process have been realized through the implementation of statistical process control on the key HBT device parameters. This tool has been successfully used to maintain the high quality of the device characteristics in high-volume production of 4″ GaAs-based HBTs. There is a growing demand to migrate towards 6″ diameter wafer size due to the potential cost reductions and increased volume production that can be realized. Preliminary results, indicating good heterostructure layer characteristics, demonstrate the feasibility of 6″ InGaP-based HBT devices.
Performance study of thermo-electric generator
NASA Astrophysics Data System (ADS)
Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.
2017-07-01
Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.
Modeling Self-Heating Effects in Nanoscale Devices
NASA Astrophysics Data System (ADS)
Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.
2017-08-01
Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, C.C.; Yahaya, M.; Salleh, M.M.
2011-01-15
The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF{sub 6}) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF{sub 6} exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm{sup 2}. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 {mu}A/cm{supmore » 2} to 6.41 {mu}A/cm{sup 2} and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less
Many-junction photovoltaic device performance under non-uniform high-concentration illumination
NASA Astrophysics Data System (ADS)
Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin
2017-09-01
A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.
NASA Astrophysics Data System (ADS)
Ding, Yi; Gresback, Ryan; Yamada, Riku; Okazaki, Ken; Nozaki, Tomohiro
2013-11-01
Freestanding silicon nanocrystals (Si NCs) synthesized by a nonthermal plasma from silicon tetrachloride (SiCl4) were successfully employed in hybrid Si NC/poly(3-hexylthiophene-2,5-diyl) (P3HT) bulk-hetrojunction (BHJ) solar cells. The weight fraction of Si NCs in P3HT greatly influences device performance. As the weight fraction increases up to 50 wt %, short-circuit current dramatically increases, while open-circuit voltage (Voc) and fill factor (FF) do not change significantly. The improvement in device performance is attributed to both increased probability of exciton dissociation in P3HT and an enhancement in the light conversion of wavelengths where P3HT is a poor absorber. These results demonstrate an alternative approach to synthesizing Si NCs from SiCl4 instead of silane (SiH4) for optoelectronic devices.
Soluble copper phthalocyanine applied for organic solar cells.
Zhang, Tianhui; Piao, Lingyu; Zha, Suling; Jiang, Chao; Xu, Zheng; Gao, Liyan; Wu, Qian; Kong, Chao
2011-11-01
A soluble derivative of copper phthalocyanine, that is 2,9,16,23-tetra carboxyl copper phthalocyanine (CuTCPc), is synthesized in this paper. The applications of CuTCPc as donor and interlayer materials in solar cell devices are investigated. The results demonstrate that when CuTCPc is used as a donor material, the performance of the device ITO/CuTCPc/PCBM/Al shows an open circuit voltage (V(OC)) of 0.54 V, a short circuit current (J(SC)) of 0.825 mA/cm2, a fill factor (FF) of 32.3% and the power conversion efficiency (nu) of 0.14%. When CuTCPc acts as an interlayer, the performance of the device ITO/CuTCPc/P3HT:PCBM/Al is improved: J(SC) increases to 3.12 mA/cm2, V(OC) increases to 0.59 V, FF increases to 33.8%, and the corresponding nu is 0.62%.
Cybersecurity and medical devices: A practical guide for cardiac electrophysiologists
Kramer, Daniel B.; Foo Kune, Denis; Auto de Medeiros, Julio; Yan, Chen; Xu, Wenyuan; Crawford, Thomas; Fu, Kevin
2017-01-01
Abstract Medical devices increasingly depend on software. While this expands the ability of devices to perform key therapeutic and diagnostic functions, reliance on software inevitably causes exposure to hazards of security vulnerabilities. This article uses a recent high‐profile case example to outline a proactive approach to security awareness that incorporates a scientific, risk‐based analysis of security concerns that supports ongoing discussions with patients about their medical devices. PMID:28512774
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
Use of exhaust gas as sweep flow to enhance air separation membrane performance
Dutart, Charles H.; Choi, Cathy Y.
2003-01-01
An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.
Herrera-Tapia, Jorge; Hernández-Orallo, Enrique; Tomás, Andrés; Manzoni, Pietro; Tavares Calafate, Carlos; Cano, Juan-Carlos
2016-01-01
Regular citizens equipped with smart devices are being increasingly used as “sensors” by Smart Cities applications. Using contacts among users, data in the form of messages is obtained and shared. Contact-based messaging applications are based on establishing a short-range communication directly between mobile devices, and on storing the messages in these devices for subsequent delivery to cloud-based services. An effective way to increase the number of messages that can be shared is to increase the contact duration. We thus introduce the Friendly-Sharing diffusion approach, where, during a contact, the users are aware of the time needed to interchange the messages stored in their buffers, and they can thus decide to wait more time in order to increase the message sharing probability. The performance of this approach is anyway closely related to the size of the buffer in the device. We therefore compare various policies either for the message selection at forwarding times and for message dropping when the buffer is full. We evaluate our proposal with a modified version of the Opportunistic Networking Environment (ONE) simulator and using real human mobility traces. PMID:27649209
Li, Yaru; Liu, Xiaohui; Li, Xiaodong; Zhang, Wenjun; Xing, Feifei; Fang, Junfeng
2017-03-08
The performance of organic solar cells (OSCs) with edetate electrolytes depends on external bias, and ions are speculated to be responsible for this phenomenon. To clarify the detailed relationship between the ions of electrolytes and the bias-dependent behaviors of devices, this work introduces four edetate cathode interlayers (EDTA-X, X = nH(4-n)Na, n = 0, 1, 2, and 4) containing different kinds and number of cations into inverted OSCs. The results show that the devices initial and saturated (after external bias treatment) power conversion efficiencies (PCEs) both decrease with the increase in the number of H + . Moreover, the bias-dependent degrees increase with the increase in H + number; with that, the PCE increment of EDTA-4H device is 53.4%, while that of the EDTA-4Na device is almost unchanged. The electrical impedance spectroscopy and capacitance-voltage tests reveal that the interfacial recombination is greatly suppressed by external bias treatment, which is not a result of the decreased density of defect states. The results indicate that the ion's motion, specifically the H + motion, under external electrical field is responsible for the bias-dependent behavior, which is conducive to the design of new efficient electrolytic interlayers without bias-dependent performance.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana
Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.
NASA Astrophysics Data System (ADS)
Knotts, Grant; Bhaumik, Anagh; Ghosh, Kartik; Guha, Suchismita
2014-03-01
We examine the role of solvents in the performance of pentacene devices using the ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFe) as a gate insulating layer. High dipole moment solvents such as dimethyl sulfoxide used to dissolve the copolymer for spin casting increase the charge carrier mobility in field-effect transistors by nearly an order of magnitude as compared to lower dipole moment solvents. The polarization in Al/PVDF-TrFe/Au metal-ferroelectric-metal devices is also investigated. An increase in remnant polarization of ~ 20% is observed in the sample using dimethyl sulfoxide as the ferroelectric solvent. Interestingly, at low applied electric fields of ~ 100 MV/m a remnant polarization is seen in the high dipole moment device that is nearly 3.5 times larger than the value observed in the lower dipole moment samples, suggesting that the degree of dipolar order is higher at low operating voltages for the high dipole moment device. Detailed analysis of the capacitance characteristics of metal-insulator-semiconductor structure is performed. The density of interface trap states is nearly an order of magnitude lower for the high dipole moment device. This work was supported by National Science Foundation under Grant No. ECCS-1305642.
Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.
Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija
2011-02-09
We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.
Application of cyclic fluorocarbon/argon discharges to device patterning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.
2016-01-15
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
Performance regeneration of InGaZnO transistors with ultra-thin channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Binglei; Li, He; Zhang, Xijian, E-mail: zhangxijian@sdu.edu.cn, E-mail: songam@sdu.edu.cn
2015-03-02
Thin-film transistors (TFTs) based on ultra-thin amorphous indium gallium zinc oxide (a-IGZO) semiconductors down to 4 nm were studied motivated by the increasing cost of indium. At and below 5 nm, it was found that the field-effect mobility was severely degraded, the threshold voltage increased, and the output characteristics became abnormal showing no saturated current. By encapsulating a layer of polymethyl methacrylate on the IGZO TFTs, the performance of the 5-nm-thick device was effectively recovered. The devices also showed much higher on/off ratios, improved hysteresis, and normal output characteristic curves as compared with devices not encapsulated. The stability of the encapsulated devicesmore » was also studied over a four month period.« less
Application of cyclic fluorocarbon/argon discharges to device patterning
Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...
2015-11-13
With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less
FY12 End of Year Report for NEPP DDR2 Reliability
NASA Technical Reports Server (NTRS)
Guertin, Steven M.
2013-01-01
This document reports the status of the NASA Electronic Parts and Packaging (NEPP) Double Data Rate 2 (DDR2) Reliability effort for FY2012. The task expanded the focus of evaluating reliability effects targeted for device examination. FY11 work highlighted the need to test many more parts and to examine more operating conditions, in order to provide useful recommendations for NASA users of these devices. This year's efforts focused on development of test capabilities, particularly focusing on those that can be used to determine overall lot quality and identify outlier devices, and test methods that can be employed on components for flight use. Flight acceptance of components potentially includes considerable time for up-screening (though this time may not currently be used for much reliability testing). Manufacturers are much more knowledgeable about the relevant reliability mechanisms for each of their devices. We are not in a position to know what the appropriate reliability tests are for any given device, so although reliability testing could be focused for a given device, we are forced to perform a large campaign of reliability tests to identify devices with degraded reliability. With the available up-screening time for NASA parts, it is possible to run many device performance studies. This includes verification of basic datasheet characteristics. Furthermore, it is possible to perform significant pattern sensitivity studies. By doing these studies we can establish higher reliability of flight components. In order to develop these approaches, it is necessary to develop test capability that can identify reliability outliers. To do this we must test many devices to ensure outliers are in the sample, and we must develop characterization capability to measure many different parameters. For FY12 we increased capability for reliability characterization and sample size. We increased sample size this year by moving from loose devices to dual inline memory modules (DIMMs) with an approximate reduction of 20 to 50 times in terms of per device under test (DUT) cost. By increasing sample size we have improved our ability to characterize devices that may be considered reliability outliers. This report provides an update on the effort to improve DDR2 testing capability. Although focused on DDR2, the methods being used can be extended to DDR and DDR3 with relative ease.
ECG R-R peak detection on mobile phones.
Sufi, F; Fang, Q; Cosic, I
2007-01-01
Mobile phones have become an integral part of modern life. Due to the ever increasing processing power, mobile phones are rapidly expanding its arena from a sole device of telecommunication to organizer, calculator, gaming device, web browser, music player, audio/video recording device, navigator etc. The processing power of modern mobile phones has been utilized by many innovative purposes. In this paper, we are proposing the utilization of mobile phones for monitoring and analysis of biosignal. The computation performed inside the mobile phone's processor will now be exploited for healthcare delivery. We performed literature review on RR interval detection from ECG and selected few PC based algorithms. Then, three of those existing RR interval detection algorithms were programmed on Java platform. Performance monitoring and comparison studies were carried out on three different mobile devices to determine their application on a realtime telemonitoring scenario.
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong
2017-08-23
Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm - 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.
NOVEL NANOPARTICULATE CATALYSTS FOR IMPROVED VOC TREATMENT DEVICES - PHASE I
Catalytic oxidation of VOCs is increasingly used for treatment of large-volume emissions at relatively dilute VOC levels. The best performing catalytic oxidation devices for attainment of very high VOC destruction levels employ precious metal catalysts, the costs of which a...
NASA Astrophysics Data System (ADS)
Huang, Jinsong
This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C60 based device accidentally. The high PM factor makes it good candidate for photo detector. The high gain was assigned to the trapped-charge induced enhanced-injection at C60/PEDOT:PSS interface.
76 FR 52734 - Underwater Locating Devices (Acoustic) (Self-Powered)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
...This notice announces the planned revocation of all Technical Standard Order authorizations (TSOA) issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), with a minimum performance standard (MPS) that will increase the minimum operating life of Underwater Locating Devices from 30 days to 90 days.
77 FR 13174 - Underwater Locating Devices (Acoustic) (Self-Powered)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
...This is a confirmation notice for the planned revocation of all Technical Standard Order authorizations issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), minimum performance standard (MPS) will increase the minimum operating life of Underwater Locating Devices from 30 days to 90 days.
NASA Astrophysics Data System (ADS)
Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık
2016-05-01
A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.
The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Alterovitz, Samuel A.; Katehi, Linda P. B.; Bhattacharya, Pallab K.
1997-01-01
Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred. To achieve these goals, industry, academia and the government agencies supporting them chose to develop technologies with the greatest possibility of surpassing the state of the art performance. Thus, Si, which was already widely used for digital circuits but had material characteristics that were perceived to limit its high frequency performance, was bypassed for a progression of devices starting with GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and ending with InP Pseudomorphic High Electron Mobility Transistors (PHEMTs). For each new material or device structure, the electron mobility increased, and therefore, the high frequency characteristics of the device were improved. In addition, ultra small geometry lithographic processes were developed to reduce the gate length to 0.1 pm which further increases the cutoff frequency. The resulting devices had excellent performance through the millimeter-wave spectrum.
Behara, Srinivas R.B.; Farkas, Dale R.; Hindle, Michael; Longest, P. Worth
2013-01-01
Purpose The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. Methods DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. Results The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. Conclusions High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD < 1.5 µm, FPF<5µm/ED > 90%, and ED > 80%. PMID:23949304
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-01
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-13
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.
NASA Astrophysics Data System (ADS)
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-01
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Byung Du; Park, Jin-Seong; Chung, K. B., E-mail: kbchung@dongguk.edu
Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of devicemore » performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.« less
Design and evaluation of cellular power converter architectures
NASA Astrophysics Data System (ADS)
Perreault, David John
Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed. This cellular system implements entirely distributed control, and achieves performance levels unattainable with an equivalent single converter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Organic light-emitting devices using spin-dependent processes
Vardeny, Z. Valy; Wohlgenannt, Markus
2010-03-23
The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.
Scientific charge-coupled devices
NASA Technical Reports Server (NTRS)
Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack
1987-01-01
The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.
Distributed processing for features improvement in real-time portable medical devices.
Mercado, Erwin John Saavedra
2008-01-01
Portable biomedical devices are being developed and incorporated in daily life. Nevertheless, their standalone capacity is diminished due to the lack of processing power required to face such duties as for example, signal artifacts robustness in EKG monitor devices. The following paper presents a multiprocessor architecture made from simple microcontrollers to provide an increase in processing performance, power consumption efficiency and lower cost.
Lithography process for patterning HgI2 photonic devices
Mescher, Mark J.; James, Ralph B.; Hermon, Haim
2004-11-23
A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.
Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.
Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro
2016-01-01
: The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.
Theoretical and material studies of thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.
1989-01-01
Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.
Reducing graphene device variability with yttrium sacrificial layers
NASA Astrophysics Data System (ADS)
Wang, Ning C.; Carrion, Enrique A.; Tung, Maryann C.; Pop, Eric
2017-05-01
Graphene technology has made great strides since the material was isolated more than a decade ago. However, despite improvements in growth quality and numerous "hero" devices, challenges of uniformity remain, restricting the large-scale development of graphene-based technologies. Here, we investigate and reduce the variability of graphene transistors by studying the effects of contact metals (with and without a Ti layer), resist, and yttrium (Y) sacrificial layers during the fabrication of hundreds of devices. We find that with optical photolithography, residual resist and process contamination are unavoidable, ultimately limiting the device performance and yield. However, using Y sacrificial layers to isolate the graphene from processing conditions improves the yield (from 73% to 97%), the average device performance (three-fold increase of mobility and 58% lower contact resistance), and the device-to-device variability (standard deviation of Dirac voltage reduced by 20%). In contrast to other sacrificial layer techniques, the removal of the Y sacrificial layer with dilute HCl does not harm surrounding materials, simplifying large-scale graphene fabrication.
Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su
2014-01-01
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide
NASA Astrophysics Data System (ADS)
Fathololoumi, Saeed; Dupont, Emmanuel; Ghasem Razavipour, S.; Laframboise, Sylvain R.; Parent, Guy; Wasilewski, Zbigniew; Liu, H. C.; Ban, Dayan
2011-10-01
This paper reports an experimental study of the effects of different metal claddings on the performance of terahertz quantum cascade lasers. The experimental results show that by using a metal cladding made of Ta/Cu/Au to replace that of Pd/Ge/Ti/Pt/Au, the maximum lasing temperature of the devices is increased from 132 to 172 K, and the threshold current density of the devices at 10 K can be reduced from 0.74 to 0.68 kA cm-2. The improvement of the device performance is attributed to lower optical losses associated with the metal cladding layers. The different effects of the metal contacts on device optical properties and electrical properties are also discussed.
Enhanced thermoelectric performance of graphene nanoribbon-based devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md Sharafat, E-mail: hossain@student.unimelb.edu.au; Huynh, Duc Hau; Nguyen, Phuong Duc
There have been numerous theoretical studies on exciting thermoelectric properties of graphene nano-ribbons (GNRs); however, most of these studies are mainly based on simulations. In this work, we measure and characterize the thermoelectric properties of GNRs and compare the results with theoretical predictions. Our experimental results verify that nano-structuring and patterning graphene into nano-ribbons significantly enhance its thermoelectric power, confirming previous predictions. Although patterning results in lower conductance (G), the overall power factor (S{sup 2}G) increases for nanoribbons. We demonstrate that edge roughness plays an important role in achieving such an enhanced performance and support it through first principles simulations.more » We show that uncontrolled edge roughness, which is considered detrimental in GNR-based electronic devices, leads to enhanced thermoelectric performance of GNR-based thermoelectric devices. The result validates previously reported theoretical studies of GNRs and demonstrates the potential of GNRs for the realization of highly efficient thermoelectric devices.« less
The risk of a safety-critical event associated with mobile device use in specific driving contexts.
Fitch, Gregory M; Hanowski, Richard J; Guo, Feng
2015-01-01
We explored drivers' mobile device use and its associated risk of a safety-critical event (SCE) in specific driving contexts. Our premise was that the SCE risk associated with mobile device use increases when the driving task becomes demanding. Data from naturalistic driving studies involving commercial motor vehicle drivers and light vehicle drivers were partitioned into subsets representative of specific driving contexts. The subsets were generated using data set attributes that included level of service and relation to junction. These attributes were selected based on exogenous factors known to alter driving task demands. The subsets were analyzed using a case-cohort approach, which was selected to complement previous investigations of mobile device SCE risk using naturalistic driving data. Both commercial motor vehicle and light vehicle drivers varied as to how much they conversed on a mobile device but did not vary their engagement in visual-manual subtasks. Furthermore, commercial motor vehicle drivers conversed less frequently as the driving task demands increased, whereas light vehicle drivers did not. The risk of an SCE associated with mobile device use was dependent on the subtask performed and the driving context. Only visual-manual subtasks were associated with an increased SCE risk, whereas conversing was associated with a decreased risk in some driving contexts. Drivers' engagement in mobile device subtasks varies by driving context. The SCE risk associated with mobile device use is dependent on the types of subtasks performed and the driving context. The findings of this exploratory study can be applied to the design of driver-vehicle interfaces that mitigate distraction by preventing visual-manual subtasks while driving.
Weber, Sabrina; Das, Gürbüz; Waldmann, Karl-Heinz; Gauly, Matthias
2014-01-01
Isoflurane-anaesthesia combined with an analgesic represents a welfare-friendly method of pain mitigation for castration of piglets. However, it requires an inhaler device, which is uneconomic for small farms. Sharing a device among farms may be an economical option if the shared use does not increase labour time and the resulting costs. This study aimed to investigate the amount and components of labour time required for piglet castration with isoflurane anaesthesia performed with stationary and shared devices. Piglets (N = 1579) were anaesthetised with isoflurane (using either stationary or shared devices) and castrated.The stationary devices were used in a group (n = 5) of larger farms (84 sows/farm on an average), whereas smaller farms (n = 7; 32 sows/farm on an average) shared one device. Each farm was visited four times and labour time for each process-step was recorded. The complete process included machine set-up, anaesthesia and castration by a practitioner, and preparation, collection and transport of piglets by a farmer. Labour time of the complete process was increased (P = 0.012) on farms sharing a device (266 s/piglet) compared to farms using stationary devices (177 s/ piglet), due to increased time for preparation (P = 0.055), castration (P = 0.026) and packing (P = 0.010) when sharing a device. However, components of the time budget of farms using stationary or shared devices did not differ significantly (P > 0.05). Cost arising from time spent by farmers did not differ considerably between the use of stationary (0.28 Euro per piglet) and shared (0.26 Euro) devices. It is concluded that costs arising from the increased labour time due to sharing a device can be considered marginal, since the high expenses originating from purchasing an inhaler device are shared among several farms.
Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |
, WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving
Accessory Devices Frequently Used for Endoscopic Submucosal Dissection
Choi, Hyuk Soon; Chun, Hoon Jai
2017-01-01
Endoscopic submucosal dissection (ESD) is increasingly being considered an essential component of treatment for early gastrointestinal cancers and subepithelial tumors. The ESD technique owes its popularity to the development of sophisticated instruments used for ESD. With an increase in the number of ESD procedures performed, there is rapid development in the number and types of endoscopic accessory devices used for such procedures. Despite the large numbers of new devices developed and marketed, the use of ESD instruments and accessory devices is largely determined by individual preferences and experiences. Accessory devices frequently used during ESD are important tools for ESD techniques. Each instrument possesses characteristic advantages and disadvantages associated with its use, and no one instrument is superior in all respects to others. In this article, we review the characteristics of endoscopic electrical knives, cap and hood, and hemostatic devices commonly used in ESD. PMID:28609818
An experimental study of an airfoil with a bio-inspired leading edge device at high angles of attack
NASA Astrophysics Data System (ADS)
Mandadzhiev, Boris A.; Lynch, Michael K.; Chamorro, Leonardo P.; Wissa, Aimy A.
2017-09-01
Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. Deployable aerodynamic surfaces from the wing leading or trailing edges are often used to extend the aerodynamic envelope (e.g. slats and flaps). Birds have also evolved feathers at the leading edge (LE) of their wings, known as the alula, which enables them to perform high angles of attack maneuvers. In this study, a series of wind tunnel experiments are performed to quantify the effect of various deployment parameters of an alula-like LE device on the aerodynamic performance of a cambered airfoil (S1223) at stall and post stall conditions. The alula relative angle of attack, measured from the mean chord of the airfoil, is varied to modulate tip-vortex strength, while the alula deflection angle is varied to modulate the distance between the tip vortex and the wing surface. Integrated lift force measurements were collected at various alula-inspired device configurations. The effect of the alula-inspired device on the boundary layer velocity profile and turbulence intensity were investigated through hot-wire anemometer measurements. Results show that as alula deflection angle increases, the lift coefficient also increase especially at lower alula relative angles of attack. Moreover, at post stall wing angles of attack, the wake velocity deficit is reduced in the presence of alula device, confirming the mitigation of the wing adverse pressure gradient. The results are in strong agreement with measurements taken on bird wings showing delayed flow reversal and extended range of operational angles of attack. An engineered alula-inspired device has the potential to improve mission adaptability in small unmanned air vehicles during low Reynolds number flight.
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
Electrothermal feedback in kinetic inductance detectors
NASA Astrophysics Data System (ADS)
Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.
2017-06-01
In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Rajasekar
2014-01-01
In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack withmore » Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.« less
Demonstration of a Nano-Enabled Space Power System
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher
2017-01-01
The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.
Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan
2018-06-18
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.
Technology in Paralympic sport: performance enhancement or essential for performance?
Burkett, Brendan
2010-02-01
People with disabilities often depend on assistive devices to enable activities of daily living as well as to compete in sport. Technological developments in sport can be controversial. To review, identify and describe current technological developments in assistive devices used in the summer Paralympic Games; and to prepare for the London 2012 Games, the future challenges and the role of technology are debated. A systematic review of the peer-reviewed literature and personal observations of technological developments at the Athens (2004) and Beijing (2008) Paralympic Games was conducted. Standard assistive devices can inhibit the Paralympians' abilities to perform the strenuous activities of their sports. Although many Paralympic sports only require technology similar to their Olympic counterparts, several unique technological modifications have been made in prosthetic and wheelchair devices. Technology is essential for the Paralympic athlete, and the potential technological advantage for a Paralympian, when competing against an Olympian, is unclear. Technology must match the individual requirements of the athlete with the sport in order for Paralympians to safely maximise their performance. Within the 'performance enhancement or essential for performance?' debate, any potential increase in mechanical performance from an assistive device must be considered holistically with the compensatory consequences the disability creates. To avoid potential technology controversies at the 2012 London Olympic and Paralympic Games, the role of technology in sport must be clarified.
Chu, E; Haller, D; Cartwright, T; Twelves, C; Cassidy, J; Sun, W; Saif, M W; McKenna, E; Lee, S; Schmoll, H-J
2014-03-18
Central venous access devices in fluoropyrimidine therapy are associated with complications; however, reliable data are lacking regarding their natural history, associated complications and infusion pump performance in patients with metastatic colorectal cancer. We assessed device placement, use during treatment, associated clinical outcomes and infusion pump performance in the NO16966 trial. Device replacement was more common with FOLFOX-4 (5-fluorouracil (5-FU)+oxaliplatin) than XELOX (capecitabine+oxaliplatin) (14.1% vs 5.1%). Baseline device-associated events and post-baseline removal-/placement-related events occurred more frequently with FOLFOX-4 than XELOX (11.5% vs 2.4% and 8.5% vs 2.1%). Pump malfunctions, primarily infusion accelerations in 16% of patients, occurred within 1.6-4.3% of cycles. Fluoropyrimidine-associated grade 3/4 toxicity was increased in FOLFOX-4-treated patients experiencing a malfunction compared with those who did not (97 out of 155 vs 452 out of 825 patients), predominantly with increased grade 3/4 neutropenia (53.5% vs 39.8%). Febrile neutropenia rates were comparable between patient cohorts±malfunction. Efficacy outcomes were similar in patient cohorts±malfunction. Central venous access device removal or replacement was common and more frequent in patients receiving FOLFOX-4. Pump malfunctions were also common and were associated with increased rates of grade 3/4 haematological adverse events. Oral fluoropyrimidine-based regimens may be preferable to infusional 5-FU based on these findings.
Gate length scaling optimization of FinFETs
NASA Astrophysics Data System (ADS)
Chen, Shoumian; Shang, Enming; Hu, Shaojian
2018-06-01
This paper introduces a device performance optimization approach for the FinFET through optimization of the gate length. As a result of reducing the gate length, the leakage current (Ioff) increases, and consequently, the stress along the channel enhances which leads to an increase in the drive current (Isat) of the PMOS. In order to sustain Ioff, work function is adjusted to offset the effect of the increased stress. Changing the gate length of the transistor yields different drive currents when the leakage current is fixed by adjusting the work function. For a given device, an optimal gate length is found to provide the highest drive current. As an example, for a standard performance device with Ioff = 1 nA/um, the best performance Isat = 856 uA/um is at L = 34 nm for 14 nm FinFET and Isat = 1130 uA/um at L = 21 nm for 7 nm FinFET. A 7 nm FinFET will exhibit performance boost of 32% comparing with 14 nm FinFET. However, applying the same method to a 5 nm FinFET, the performance boosting is out of expectance comparing to the 7 nm FinFET, which is due to the severe short-channel-effect and the exhausted channel stress in the FinFET.
Suppressing molecular vibrations in organic semiconductors by inducing strain
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-01-01
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501
Suppressing molecular vibrations in organic semiconductors by inducing strain.
Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun
2016-04-04
Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.
Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng
2015-07-15
In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.
Liu, Yang; Sanchez, Pablo G; Wei, Xufeng; Li, Tieluo; Watkins, Amelia C; Li, Shu-ying; Griffith, Bartley P; Wu, Zhongjun J
2014-01-01
Background Device availability of mechanical circulatory or respiratory support to the right heart has been limited. The purpose of this study was to investigate the effect of right heart unloading and respiratory support with a wearable integrated artificial pump-lung (APL). Methods The APL device was placed surgically between the right atrium and pulmonary artery in seven sheep. Anticoagulation was performed with heparin infusion. Its ability to unload the right ventricle (RV) was investigated by echocardiograms and right heart catheterization at different bypass flow rates. Hemodynamics and Echo data were evaluated. The device flow and gas transfer rates were also measured at different device speeds. Results Hemodynamics remained stable during APL support. There was no significant change in systemic blood pressure and cardiac index. Central venous pressure, RV pressure, RV end-diastolic dimension and RV ejection fraction were significant decreased when APL device flow rate approached 2 L/min. The linear regression showed significant correlative trends between the hemodynamic and cardiac indices and the device speed. The oxygen transfer rate increased with the device speed. The oxygen saturation from APL outlet was fully saturated (>95%) during the support. The impact of the APL support on blood elements (plasma free hemoglobin and platelet activation) was minimal. Conclusion The APL device support significantly unloaded the right ventricle with increasing device speed. The APL device provided stable hemodynamic and respiratory support in terms of blood flow and oxygen transfer. The right heart unloading performance of this wearable device need to be evaluated in the animal model with right heart failure for a long term support. PMID:24746636
Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.
Portable Diagnostics and Rapid Germination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Zachary Spencer
In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versionsmore » of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.« less
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
Methods and systems for in-situ electroplating of electrodes
Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray
2015-06-02
The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.
Hetero-Material Gate Doping-Less Tunnel FET and Its Misalignment Effects on Analog/RF Parameters
NASA Astrophysics Data System (ADS)
Anand, Sunny; Sarin, R. K.
2018-03-01
In this paper, with the use of a hetero-material gate technique, a tunnel field-effect transistor (TFET) subject to charge plasma technique is proposed, named as hetero-material gate doping-less tunnel FET (HMG-DLTFET) and a brief study has been done on the effects due to misalignment of the bottom gate towards drain (GMAD) and towards source (GMAS). The proposed devices provide better performance as the drive current increased by three times as compared to conventional doping-less TFET (DLTFET). The results are then analyzed and compared with conventional doped hetero-material gate double-gate tunnel FET (HMG-DGTFET). The analog/radiofrequency (RF) performance has been studied for both devices and comparative analysis has been done for different parameters such as drain current (I D), transconductance (g m), output conductance (g d), total gate capacitance (C gg) and cutoff frequency (f T). Both devices performed similarly in different misalignment configurations. When the bottom gate is perfectly aligned, the best performance is observed for both devices, but the doping-less device gives slightly more freedom for fabrication engineers as the amount of tolerance for HMG-DLTFET is better than that of HMG-DGTFET.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin
The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.
NASA Astrophysics Data System (ADS)
Das, D.; Gopikrishna, P.; Singh, A.; Dey, A.; Iyer, P. K.
2016-04-01
Polymer light emitting diodes (PLEDs) with a device configuration of ITO/PEDOT:PSS/PFONPN01 [Poly [2,7-(9,9’-dioctylfluorene)-co-N-phenyl-1,8-naphthalimide (99:01)]/LiF/Al have been fabricated by varying the emissive layer (EML) thickness (40/65/80/130 nm) and the influence of EML thickness on the electrical characteristics of PLED has been studied. PLED can be modelled as a simple combination of resistors and capacitors. The impedance spectroscopy analysis showed that the devices with different EML thickness had different values of parallel resistance (RP) and the parallel capacitance (CP). The impedance of the devices is found to increase with increasing EML thickness resulting in an increase in the driving voltage. The device with an emissive layer thickness of 80nm, spin coated from a solution of concentration 15 mg/mL is found to give the best device performance with a maximum brightness value of 5226 cd/m2.
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey
2017-09-21
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and high I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.
Analyzing the cost of screening selectee and non-selectee baggage.
Virta, Julie L; Jacobson, Sheldon H; Kobza, John E
2003-10-01
Determining how to effectively operate security devices is as important to overall system performance as developing more sensitive security devices. In light of recent federal mandates for 100% screening of all checked baggage, this research studies the trade-offs between screening only selectee checked baggage and screening both selectee and non-selectee checked baggage for a single baggage screening security device deployed at an airport. This trade-off is represented using a cost model that incorporates the cost of the baggage screening security device, the volume of checked baggage processed through the device, and the outcomes that occur when the device is used. The cost model captures the cost of deploying, maintaining, and operating a single baggage screening security device over a one-year period. The study concludes that as excess baggage screening capacity is used to screen non-selectee checked bags, the expected annual cost increases, the expected annual cost per checked bag screened decreases, and the expected annual cost per expected number of threats detected in the checked bags screened increases. These results indicate that the marginal increase in security per dollar spent is significantly lower when non-selectee checked bags are screened than when only selectee checked bags are screened.
Subramanian, Alagesan; Pan, Zhenghui; Zhang, Zhenbo; Ahmad, Imtiaz; Chen, Jing; Liu, Meinan; Cheng, Shuang; Xu, Yijun; Wu, Jun; Lei, Wei; Khan, Qasim; Zhang, Yuegang
2018-04-18
All-inorganic perovskite light-emitting diode (PeLED) has a high stability in ambient atmosphere, but it is a big challenge to achieve high performance of the device. Basically, device design, control of energy-level alignment, and reducing the energy barrier between adjacent layers in the architecture of PeLED are important factors to achieve high efficiency. In this study, we report a CsPbBr 3 -based PeLED with an inverted architecture using lithium-doped TiO 2 nanoparticles as the electron transport layer (ETL). The optimal lithium doping balances the charge carrier injection between the hole transport layer and ETL, leading to superior device performance. The device exhibits a current efficiency of 3 cd A -1 , a luminance efficiency of 2210 cd m -2 , and a low turn-on voltage of 2.3 V. The turn-on voltage is one of the lowest values among reported CsPbBr 3 -based PeLEDs. A 7-fold increase in device efficiencies has been obtained for lithium-doped TiO 2 compared to that for undoped TiO 2 -based devices.
Naumann, Tim; Kindermann, Stefan; Joch, Michael; Munzert, Jörn; Reiser, Mathias
2015-03-01
Despite the increasing use of video games involving whole body movements to enhance postural control in health prevention and rehabilitation, there is no consistent proof that training effects actually transfer to other balance tasks. The present study aimed to determine whether training effects on two different video-game-based training devices were task-specific or could be transferred to either postural control in quiet stance or to performance on the other device. 37 young healthy adults were split into three groups: two intervention groups that trained for 30min on either the Nintendo(®) Wii Fit Balance Board or the MFT Challenge Disc(®) three times per week for 4 weeks and a control group that received no training. All games require participants to control virtual avatars by shifting the center of mass in different directions. Both devices differ in their physical properties. The Balance Board provides a stable surface, whereas the Challenge Disc can be tilted in all directions. Dependent variables were the game scores on both devices and the center of pressure (COP) displacements measured via force plate. At posttest, both intervention groups showed significant increases in performance on the trained games compared to controls. However, there were no relevant transfer effects to performance on the untrained device and no changes in COP path length in quiet stance. These results suggest that training effects on both devices are highly specific and do not transfer to tasks with different postural demands. Copyright © 2015 Elsevier B.V. All rights reserved.
Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data.
Lellouche, François; Taillé, Solenne; Lefrançois, Frédéric; Deye, Nicolas; Maggiore, Salvatore Maurizio; Jouvet, Philippe; Ricard, Jean-Damien; Fumagalli, Bruno; Brochard, Laurent
2009-02-01
Heat and moisture exchangers (HMEs) are increasingly used in the ICU for gas conditioning during mechanical ventilation. Independent assessments of the humidification performance of HMEs are scarce. The aim of the present study was thus to assess the humidification performance of a large number of adult HMEs. We assessed 48 devices using a bench test apparatus that simulated real-life physiologic ventilation conditions. Thirty-two devices were described by the manufacturers as HMEs, and 16 were described as antibacterial filters. The test apparatus provided expiratory gases with an absolute humidity (AH) of 35 mg H(2)O/L. The AH of inspired gases was measured after steady state using the psychrometric method. We performed three hygrometric measurements for each device, measured their resistance, and compared our results with the manufacturer data. Of the 32 HMEs tested, only 37.5% performed well (>or= 30 mg H(2)O/L), while 25% performed poorly (< 25 mg H(2)O/L). The mean difference (+/- SD) between our measurements and the manufacturer data was 3.0 +/- 2.7 mg H(2)O/L for devices described as HMEs (maximum, 8.9 mg H(2)O/L) [p = 0.0001], while the mean difference for 36% of the HMEs was > 4 mg H(2)O/L. The mean difference for the antibacterial filters was 0.2 +/- 1.4 mg H(2)O/L. The mean resistance of all the tested devices was 2.17 +/- 0.70 cm H(2)O/L/s. Several HMEs performed poorly and should not be used as HMEs. The values determined by independent assessments may be lower than the manufacturer data. Describing a device as an HME does not guarantee that it provides adequate humidification. The performance of HMEs must be verified by independent assessment.
2011-01-01
doped source and drain form ohmic contact to metal silicide [2]-[6] due to their immunity to short channel effect [7]-[10]. In this project, we...investigated the hole mobility of SB Si NW. II. Device Fabrication Technology We prepared SiNWs by Au-catalyzed vapor-transport as described in Ref. [11...overlapping Ti/Au (70/50 nm) top gate is defined. Devices are characterized at this stage and also after annealing. III. Silicide Formation Our devices
NASA Astrophysics Data System (ADS)
Yalcin, Eyyup; Kara, Duygu Akin; Karakaya, Caner; Yigit, Mesude Zeliha; Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Demic, Serafettin; Kus, Mahmut; Aboulouard, Abdelkhalk
2017-07-01
Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3‧,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3‧,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices.
Game-based, portable, upper extremity rehabilitation in chronic stroke.
Schuck, Sarah O; Whetstone, Amy; Hill, Valerie; Levine, Peter; Page, Stephen J
2011-01-01
This case series pilot study evaluates the efficacy of the Core:Tx gaming device on 2 chronic stroke survivors. Intervention was provided 3 times a week for 3 weeks. Outcome measures, administered 1 week before and 1 week after intervention, included the Stroke Impact Scale (SIS), the Canadian Occupational Performance Measure (COPM), the Fugl-Meyer Assessment of Motor Recovery (Fugl-Meyer [FM]), and the Box and Block Test (BB). Participant A exhibited an 11-point increase on the SIS, a 1.2-point change on each of the performance and satisfaction scores of the COPM, a 1-point increase on the FM, and no change on the BB. Participant B exhibited a 3-point increase on the SIS and no change on the COPM, FM, or BB. The participants experienced increased quality of life, a greater propensity to use their affected arm, and enhanced task performance without exhibiting motor changes. Additionally, the Core:Tx gaming device was reported by the participants to be a motivating modality in the therapy setting.
Gonser, Phillipp; Fuchsberger, Thomas; Matern, Ulrich
2017-08-01
The use of active medical devices in clinical routine should be as safe and efficient as possible. Usability tests (UTs) help improve these aspects of medical devices during their development, but UTs can be of use for hospitals even after a product has been launched. The present pilot study examines the costs and possible benefits of UT for hospitals before buying new medical devices for theatre. Two active medical devices with different complexity were tested in a standardized UT and a cost-benefit analysis was carried out assuming a different device bought at the same price with a higher usability could increase the efficiency of task solving and due to that save valuable theatre time. The cost of the UT amounted up to €19.400. Hospitals could benefit from UTs before buying new devices for theatre by reducing time-consuming operator errors and thereby increase productivity and patient safety. The possible benefits amounted from €23.300 to €1.570.000 (median = €797.000). Not only hospitals could benefit economically from investing in a UT before deciding to buy a medical device, but especially patients would profit from a higher usability by reducing possible operator errors and increase safety and performance of use.
Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.
Oakley, John P
2007-03-01
Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.
Comparing the performance plateau in adult cochlear implant patients using HINT and AzBio.
Massa, Sean T; Ruckenstein, Michael J
2014-04-01
This study aims to characterize the performance plateau in adult cochlear implant recipients after the initial postimplantation increase by using word recognition testing and an explicit definition of performance plateau. Retrospective review. Urban, tertiary referral center. One hundred twenty-five patients with 138 devices tested with AzBio were matched to 130 patients with 138 devices tested with HINT based on performed on CNC monosyllable tests. Patient's performance was measured overtime using AzBio and HINT tests to determine when and at what score their performance reached a plateau. Time from implantation to reach a performance plateau and plateau score with each test. Thirty-four devices reached a HINT plateau and 30 devices reached an AzBio plateau. Patients reached plateaus at similar times postoperatively using HINT and AzBio, 18.8 and 16.5 weeks, respectively (p = 0.476). Five patients tested with HINT plateaued at scores of 99% to 100%, whereas no patients plateaued above 92% with AzBio. Patients reached a plateau in performance at similar median times using AzBio and HINT, despite the ceiling effect of HINT in some patients. Most patients who reach a plateau did so within 4 months, but exactly when and if a patient's performance plateaus varies significantly among individuals. Further study is required to determine which test best reflects when a patient reaches his or her maximal performance in natural listening conditions.
Design of wearable health monitoring device
NASA Astrophysics Data System (ADS)
Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy
2018-02-01
Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.
Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders
2013-01-01
This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.
Performance limitations of translationally symmetric nonimaging devices
NASA Astrophysics Data System (ADS)
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Variable temperature performance of a fully screen printed transistor switch
NASA Astrophysics Data System (ADS)
Zambou, Serges; Magunje, Batsirai; Rhyme, Setshedi; Walton, Stanley D.; Idowu, M. Florence; Unuigbe, David; Britton, David T.; Härting, Margit
2016-12-01
This article reports on the variable temperature performance of a flexible printed transistor which works as a current driven switch. In this work, electronic ink is formulated from nanostructured silicon produced by milling polycrystalline silicon. The study of the silicon active layer shows that its conductivity is based on thermal activation of carriers, and could be used as active layers in active devices. We further report on the transistors switching operation and their electrical performance under variable temperature. The reliability of the transistors at constant current bias was also investigated. Analysis of the electrical transfer characteristics from 340 to 10 K showed that the printed devices' current ON/OFF ratio increases as temperature decreases making it a better switch at lower temperatures. A constant current bias on a terminal for up to six hours shows extraordinary stability in electrical performance of the device.
Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers
NASA Astrophysics Data System (ADS)
Pierścińska, D.; Gutowski, P.; Hałdaś, G.; Kolek, A.; Sankowska, I.; Grzonka, J.; Mizera, J.; Pierściński, K.; Bugajski, M.
2018-03-01
In this work we report on the performance of mid-infrared quantum cascade lasers (QCLs) based on strained InGaAs/AlGaAs grown by molecular beam epitaxy on GaAs substrate. Structures were grown with indium content from 1% to 6% in GaAs quantum wells (QW) and 45% of Al in AlGaAs barrier layers. The design results in strained heterostructure, however, no strain relaxation was observed as documented by x-ray diffraction measurements up to ∼3% of In content in QWs. The investigation of heterostructures and devices was performed, including structural measurements and electrooptical characterization of devices. Devices fabricated from epi wafers with 2.64% of In exhibited performance largely improved over GaAs/AlGaAs QCLs. Roughly two times reduction of the threshold current density was observed at lasing wavelength ∼9.45 μm. The lasers operated in pulsed mode up to T = 50 °C with characteristic temperature T 0 = 115 K. The decrease of the threshold current density has been mainly attributed to the reduction of interface roughness scattering and the increase of activation energy for the escape of carriers from the upper laser level to the 3D continuum. Further increase of In content in QWs resulted in the deterioration of device parameters.
Baseline experimental investigation of an electrohydrodynamically assisted heat pipe
NASA Technical Reports Server (NTRS)
Duncan, A. B.
1995-01-01
The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.
Hou, Xiang; Cheng, Xue-Feng; Xiao, Xin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-09-05
Organic multilevel random resistive access memory (RRAM) devices with an electrode/organic layer/electrode sandwich-like structure suffer from poor reproducibility, such as low effective ternary device yields and a wide threshold voltage distribution, and improvements through organic material renovation are rather limited. In contrast, engineering of the electrode surfaces rather than molecule design has been demonstrated to boost the performance of organic electronics effectively. Herein, we introduce surface engineering into organic multilevel RRAMs to enhance their ternary memory performance. A new asymmetric conjugated molecule composed of phenothiazine and malononitrile with a side chain (PTZ-PTZO-CN) was fabricated in an indium tin oxide (ITO)/PTZ-PTZO-CN/Al sandwich-like memory device. Modification of the ITO substrate with a phosphonic acid (PA) prior to device fabrication increased the ternary device yield (the ratio of effective ternary device) and narrowed the threshold voltage distribution. The crystallinity analysis revealed that PTZ-PTZO-CN grown on untreated ITO crystallized into two phases. After the surface engineering of ITO, this crystalline ambiguity was eliminated and a sole crystal phase was obtained that was the same as in the powder state. The unified crystal structure and improved grain mosaicity resulted in a lower threshold voltage and, therefore, a higher ternary device yield. Our result demonstrated that PA modification also improved the memory performance of an asymmetric conjugated molecule with a side chain. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian
2016-01-01
With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225
NASA Astrophysics Data System (ADS)
Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian
2016-06-01
With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.
Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won
2017-09-01
In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Elasticity improves handgrip performance and user experience during visuomotor control
Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-01-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human–machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9–14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices. PMID:28386448
Elasticity improves handgrip performance and user experience during visuomotor control.
Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-02-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices.
Uriel, Nir; Jorde, Ulrich P; Woo Pak, Sang; Jiang, Jeff; Clerkin, Kevin; Takayama, Hiroo; Naka, Yoshifumi; Schulze, P Christian; Mancini, Donna M
2013-02-01
Left Ventricular Assist Devices (LVAD) are increasingly used as a bridge to transplant (BTT) for patients with advanced congestive heart failure (CHF) and are assigned United Network for Organ Sharing (UNOS) high priority status (1B or 1A). The purpose of our study was asses the effect of organ allocation in the era of continuous flow pumps. A retrospective chart review was performed of all patients transplanted between 1/2001-1/2011 at Columbia University Medical Center. Seven hundred twenty six adult heart transplantations were performed. Two hundred seventy four BTT patients were implanted with LVAD; of which 227 patients were transplanted. Sixty three patients were transplanted as UNOS-1B, while 164 were transplanted as UNOS-1A (72%). Of these 164 patients, 65 were transplanted during their 30-day 1A period (43%) and 96 after upgrading to UNOS-1A for device complication (56%). For 452 non-device patients 139 (31%) were transplanted as UNOS-1A, 233 as UNOS-1B (52%), and 80 as UNOS-2 (17%). The percentage of patients bridged with LVAD increased from 19% in 2001 to 64% in 2010 while the number transplanted during their 30 day 1A grace period declined from 57% in 2005 to 16% in 2011; i.e. 84% of BTT patients in 2011 needed more than 30 days 1A time to be transplanted. Most LVAD patients are now transplanted while suffering device complication. There was no difference in post transplant survival between LVAD patients transplanted as UNOS 1B, 1A grace period or for a device complication As wait time for cardiac transplantation increased the percentage of patients being bridged to transplant with an LVAD has increased with the majority of them transplanted in the setting of device complication. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2009-09-01
Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
NASA Astrophysics Data System (ADS)
Hungerford, Chanse D.
Photovoltaics (PV) is a rapidly growing electricity source and new PV technologies are continually being developed. Increasing the efficiency of PV will continue to drive down the costs of solar installations. One area of research that is necessary for increasing PV performance is light management. This is especially true for thin-film devices that are unable to maximize absorption of the solar spectrum in a single pass. Methods for light trapping include texturing, high index nanostructures, nanophotonic structures, and plasmonics. This research focus on the use of plasmonic structures, in this case metallic nanoparticles, to increase the power conversion efficiency of solar cells. Three different designs are investigated. First was an a-Si:H solar cell, approximately 300nm thick, with a rear reflector consisting of metallic nanoparticles and a mirror. This structure is referred to as a plasmonic back reflector. Simulations indicate that a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range is possible versus a flat reference. Experiments did not show enhancement, likely due to absorption in the transparent conducting oxide and the parasitic absorption in the small metallic nanoparticles. The second design was an a-Si:H solar cell with embedded metal nanoparticles. Experimental devices were successfully fabricated by breaking the i-layer deposition into two steps and introducing colloidal nanoparticles between the two depositions. These devices performed worse than the controls, but the results provide proof that fabrication of such a device is possible and may be improved in the future. Suggestions for improvements are discussed. The final device investigated was an ultra-thin, undoped solar cell. The device used an absorber layer < 100nm thick, with the thinnest device using an i-layer of only approximately 15nm. Loses due to the doped layers in the standard p-i-n structure can be reduced by replacing the doped layers with MoO 3 and LiF. While the efficiency and open circuit voltage of the test devices was lower than the controls, the short circuit current was increased by 27.3%. Incorporation of nanoparticles into the device caused shorting between the layers, resulting in non-functional solar cells. This is likely due to fabrication issues that can be solved and suggestions are discussed.
Coded excitation ultrasonic needle tracking: An in vivo study.
Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E
2016-07-01
Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.
Wellmann, Peter J
2017-11-17
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
2017-01-01
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530
Lear, Scott A.; Teo, Koon; Gasevic, Danijela; Zhang, Xiaohe; Poirier, Paul P.; Rangarajan, Sumathy; Seron, Pamela; Kelishadi, Roya; Tamil, Azmi Mohd; Kruger, Annamarie; Iqbal, Romaina; Swidan, Hani; Gómez-Arbeláez, Diego; Yusuf, Rita; Chifamba, Jephat; Kutty, V. Raman; Karsidag, Kubilay; Kumar, Rajesh; Li, Wei; Szuba, Andrzej; Avezum, Alvaro; Diaz, Rafael; Anand, Sonia S.; Rosengren, Annika; Yusuf, Salim
2014-01-01
Background: Household devices (e.g., television, car, computer) are common in high income countries, and their use has been linked to obesity and type 2 diabetes mellitus. We hypothesized that device ownership is associated with obesity and diabetes and that these effects are explained through reduced physical activity, increased sitting time and increased energy intake. Methods: We performed a cross-sectional analysis using data from the Prospective Urban Rural Epidemiology study involving 153 996 adults from high, upper-middle, lower-middle and low income countries. We used multilevel regression models to account for clustering at the community and country levels. Results: Ownership of a household device increased from low to high income countries (4% to 83% for all 3 devices) and was associated with decreased physical activity and increased sitting, dietary energy intake, body mass index and waist circumference. There was an increased odds of obesity and diabetes with the ownership of any 1 household device compared to no device ownership (obesity: odds ratio [OR] 1.43, 95% confidence interval [CI] 1.32–1.55; diabetes: OR 1.38, 95% CI 1.28–1.50). Ownership of a second device increased the odds further but ownership of a third device did not. Subsequent adjustment for lifestyle factors modestly attenuated these associations. Of the 3 devices, ownership of a television had the strongest association with obesity (OR 1.39, 95% CI 1.29–1.49) and diabetes (OR 1.33, 95% CI 1.23–1.44). When stratified by country income level, the odds of obesity and diabetes when owning all 3 devices was greatest in low income countries (obesity: OR 3.15, 95% CI 2.33–4.25; diabetes: OR 1.97, 95% CI 1.53–2.53) and decreased through country income levels such that we did not detect an association in high income countries. Interpretation: The ownership of household devices increased the likelihood of obesity and diabetes, and this was mediated in part by effects on physical activity, sitting time and dietary energy intake. With increasing ownership of household devices in developing countries, societal interventions are needed to mitigate their effects on poor health. PMID:24516093
Menezes Júnior, Antônio da Silva; Magalhães, Thaís Rodrigues; Morais, Alana de Oliveira Alarcão
2018-01-01
Introduction In the last two decades, the increased number of implants of cardiac implantable electronic devices has been accompanied by an increase in complications, especially infection. Current recommendations for the appropriate treatment of cardiac implantable electronic devices-related infections consist of prolonged antibiotic therapy associated with complete device extraction. The purpose of this study was to analyze the importance of percutaneous extraction in the treatment of these devices infections. Methods A systematic review search was performed in the PubMed, BVS, Cochrane CENTRAL, CAPES, SciELO and ScienceDirect databases. A total of 1,717 studies were identified and subsequently selected according to the eligibility criteria defined by relevance tests by two authors working independently. Results Sixteen studies, describing a total of 3,354 patients, were selected. Percutaneous extraction was performed in 3,081 patients. The average success rate for the complete percutaneous removal of infected devices was 92.4%. Regarding the procedure, the incidence of major complications was 2.9%, and the incidence of minor complications was 8.4%. The average in-hospital mortality of the patients was 5.4%, and the mortality related to the procedure ranged from 0.4 to 3.6%. The mean mortality was 20% after 6 months and 14% after a one-year follow-up. Conclusion Percutaneous extraction is the main technique for the removal of infected cardiac implantable electronic devices, and it presents low rates of complications and mortality related to the procedure.
Development and testing of tip devices for horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Gyatt, G. W.; Lissaman, P. B. S.
1985-01-01
A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R
2015-12-15
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A , 1985, 2 .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Full long-term design response analysis of a wave energy converter
Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey; ...
2017-09-21
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging
NASA Astrophysics Data System (ADS)
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.
2015-12-01
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Full long-term design response analysis of a wave energy converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan G.; Michelen, Carlos; Eckert-Gallup, Aubrey
Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for thismore » analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. Furthermore, uncertainty in the response levels was reduced as more sea states were utilized.« less
Castagnola, Elisa; Maggiolini, Emma; Ceseracciu, Luca; Ciarpella, Francesca; Zucchini, Elena; De Faveri, Sara; Fadiga, Luciano; Ricci, Davide
2016-01-01
The long-term reliability of neural interfaces and stability of high-quality recordings are still unsolved issues in neuroscience research. High surface area PEDOT-PSS-CNT composites are able to greatly improve the performance of recording and stimulation for traditional intracortical metal microelectrodes by decreasing their impedance and increasing their charge transfer capability. This enhancement significantly reduces the size of the implantable device though preserving excellent electrical performances. On the other hand, the presence of nanomaterials often rises concerns regarding possible health hazards, especially when considering a clinical application of the devices. For this reason, we decided to explore the problem from a new perspective by designing and testing an innovative device based on nanostructured microspheres grown on a thin tether, integrating PEDOT-PSS-CNT nanocomposites with a soft synthetic permanent biocompatible hydrogel. The pHEMA hydrogel preserves the electrochemical performance and high quality recording ability of PEDOT-PSS-CNT coated devices, reduces the mechanical mismatch between soft brain tissue and stiff devices and also avoids direct contact between the neural tissue and the nanocomposite, by acting as a biocompatible protective barrier against potential nanomaterial detachment. Moreover, the spherical shape of the electrode together with the surface area increase provided by the nanocomposite deposited on it, maximize the electrical contact and may improve recording stability over time. These results have a good potential to contribute to fulfill the grand challenge of obtaining stable neural interfaces for long-term applications. PMID:27147944
Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A
2007-09-01
The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.
Electrical and optical performance of midwave infrared InAsSb heterostructure detectors
NASA Astrophysics Data System (ADS)
Gomółka, Emilia; Kopytko, Małgorzata; Markowska, Olga; Michalczewski, Krystian; Kubiszyn, Łukasz; Kębłowski, Artur; Jureńczyk, Jarosław; Gawron, Waldemar; Martyniuk, Piotr Marcin; Piotrowski, Józef; Rutkowski, Jarosław; Rogalski, Antoni
2018-02-01
We investigate the high-operating temperature performance of InAsSb/AlSb heterostructure detectors with cutoff wavelengths near 5 μm at 230 K. The devices have been fabricated with different types of absorbing layers: nominally undoped absorber (with n-type conductivity), and both n- and p-type doped. The results show that the device performance strongly depends on absorber layer type. Generally, the p-type absorber provides higher values of current responsivity than the n-type absorber, but at the same time also higher values of dark current. The device with the nominally undoped absorbing layer shows moderate values of both current responsivity and dark current. Resulting detectivities D * of nonimmersed devices vary from 2 × 109 to 5 × 109 cm Hz1/2 W ? 1 at 230 K, which is easily achievable with a two-stage thermoelectric cooler. Optical immersion increases the detectivity up to 5 × 1010 cm Hz1/2 W ? 1.
Implementing bright light treatment for MSFC payload operations shiftworkers
NASA Technical Reports Server (NTRS)
Hayes, Benita C.; Stewart, Karen T.; Eastman, Charmane I.
1994-01-01
Intense light can phase-shift circadian rhythms and improve performance, sleep, and wellbeing during shiftwork simulations, but to date there have been very few attempts to administer light treatment to real shiftworkers. We have developed procedures for implementing light treatment and have conducted controlled trials of light treatment for MSFC Payload Operations staff during the USML-1 mission. We found that treatment had beneficial effects on fatigue, alertness, self-rated job performance, sleep, mood, and work attendance. Although there are portable bright light boxes commercially available, there is no testing protocol and little performance information available. We measure the illuminance of two candidate boxes for use in this study and found that levels were consistently lower than those advertised by manufacturers. A device was developed to enhance the illuminance output of such units. This device increased the illuminance by at least 60 % and provided additional improvements in visual comfort and overall exposure. Both the design of this device and some suggested procedures for evaluating light devices are presented.
Self-Heating Effects In Polysilicon Source Gated Transistors
Sporea, R. A.; Burridge, T.; Silva, S. R. P.
2015-01-01
Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment
De Cooman, Thomas; Gu, Ying; Cleeren, Evy; Claes, Kasper; Van Paesschen, Wim; Van Huffel, Sabine; Hunyadi, Borbála
2017-01-01
Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG. PMID:29027928
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment.
Vandecasteele, Kaat; De Cooman, Thomas; Gu, Ying; Cleeren, Evy; Claes, Kasper; Paesschen, Wim Van; Huffel, Sabine Van; Hunyadi, Borbála
2017-10-13
Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG.
High-Volume Production of Lightweight Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Youtsey, Christopher
2015-01-01
MicroLink Devices, Inc., has transitioned its 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable of sustaining large-volume production. This Phase II project improves the ELO process by reducing cycle time and increasing the yield of large-area devices. In addition, all critical device fabrication processes have transitioned to 6-inch production tool sets designed for volume production. An emphasis on automated cassette-to-cassette and batch processes minimizes operator dependence and cell performance variability. MicroLink Devices established a pilot production line capable of at least 1,500 6-inch wafers per month at greater than 80 percent yield. The company also increased the yield and manufacturability of the 6-inch reclaim process, which is crucial to reducing the cost of the cells.
NASA Astrophysics Data System (ADS)
Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong
2016-05-01
Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Huang, Kama; He, Jianbo; Wu, Ying
2017-09-01
The waveguide-based microwave plasma device is widely used to generate atmospheric plasma for some industrial applications. Nevertheless, the traditional tapered waveguide device has limited power efficiency and produces unstable plasma. A novel ridged waveguide with an oblique hole is proposed to produce microwave atmospheric plasma for fluid processing. By using the ridged waveguide, the microwave field can be well focused, which can sustain plasma at relatively low power. Besides, an oblique hole is used to decrease the power reflection and generate a stable plasma torch especially in the case of high flowing rates. Experiments have been performed with the air flowing rates ranging from 500 l h-1 to 1000 l h-1 and the microwave working frequency of 2.45 GHz. The results show that in comparison with the conventional tapered waveguide, this novel device can both sustain plasma at relative low power and increase the power transfer efficiency by 11% from microwave to plasma. Moreover, both devices are used to process the waste gas-CO and CH4. Significantly, the removal efficiency for CO and CH4 can be increased by 19.7% and 32% respectively in the ridged waveguide compared with the tapered waveguide. It demonstrates that the proposed device possesses a great potential in industrial applications because of its high efficiency and stable performance.
NASA Astrophysics Data System (ADS)
Kim, Jung-Hun; Choi, Jung-Eun; Choi, Bong-Jun; Chung, Seok-Ho; Seo, Heung-Won
2015-06-01
Energy-saving devices for 317K VLCC have been developed from a propulsion standpoint. Two ESD candidates were designed via computational tools. The first device WAFon composes of flow-control fins adapted for the ship wake to reduce the loss of rotational energy. The other is WAFon-D, which is a WAFon with a duct to obtain additional thrust and to distribute the inflow velocity on the propeller plane uniform. After selecting the candidates from the computed results, the speed performances were validated with model-tests. The hydrodynamic characteristics of the ESDs may be found in improved hull and propulsive efficiencies through increased wake fraction.
NASA Astrophysics Data System (ADS)
Kumar, S.; Panigrahi, D.; Dhar, A.
2018-03-01
Interfacial issues can significantly restrict the performance of photovoltaic devices by exacerbating the charge recombination channels, macroscopic phase separation, and providing a non-ideal contact for selective extraction of charges particularly in photovoltaic devices using organic and inorganic materials together. Organic interfacial modifiers (IMs) are often used to mitigate these issues by modifying the organic-inorganic interface. In order to extricate the role of these IMs on the photovoltaic performance we have made a comprehensive study on the application of perylene-based and fullerene small molecules having different molecular origin as organic IMs on ZnO electron extracting layers in inverted BHJs photovoltaic devices. We report an elaborate study on the electronic and surface altering properties of these IMs and correlated their effect on the different PV performance parameters of the inverted BHJ solar cells employing P3HT: PCBM photoactive layer. Our investigations demonstrate the role of these organic IMs in reducing the ZnO cathode work function and increasing its electron transportation property along with the passivation of superficial traps states present on ZnO which helps in selective extraction of charge carriers from the devices and minimize the recombination losses. These different aspects of IMs compete and their balanced effect decides the final outcome. As a result, we obtain a substantial improvement in the device performance with power conversion efficiency (PCE) of 3.0% for the C70/ZnO cathode device which shows over 60% improvement in contrast to the devices without any ZnO surface modification. The present investigation intents to exhibit the feasibility of vacuum sublimated organic small molecules in performance improvement in BHJ solar cells utilizing the ZnO ETLs and contrast their efficacy for the purpose rather than setting any benchmark device performance although the efficiencies obtained are typical for the active layer used in the study.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
[Effect of gas-lift device on the morphology and performance of ANAMMOX sludge].
Li, Xiang; Huang, Yong; Yuan, Yi; Zhou, Cheng; Chen, Zong-Heng; Zhang, Da-Lin
2014-12-01
The upflow reactor with gas-lift device was started up by inoculating ANAMMOX sludge granules of less than 0.9 mm. The effects of gas lift device system on the morphology and performance of ANAMMOX sludge were studied by using the nitrogen gas produced in ANAMMOX to drive the effluent circulation in the reactor. The results showed that, the airlift circulation function was not clear in the startup stage of the reactor, because the nitrogen gas production was very low. At the same time, the ANAMMOX granular sludge was easy to condensate. When the load rate of nitrogen removal reached 3.4 kg x (m3 x d)(-1), the function of gas lift was significant, resulting in gradually increased effluent self-circulation, and the granules were dispersed and grew gradually. After 183d of operation, the granular sludge was dominated by the granules with sizes of 1.6-2.5 mm, which accounted for 53.2% of the total sludge volume. The MLVSS content increased with the increase of sludge particle size. The gas lift device had the same function as the external reflux pump, and was helpful for sludge granulation in the ANAMMOX reactor, while reducing power consumption and the cost of the equipment.
Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot
2010-01-01
Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR). This device has been designed to provide full range of motion (ROM) for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05) between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05). Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P < 0.001) and 24 ± 6% (P = 0.041) for the fingers and thumb, respectively. Conclusions Our pilot study shows that this device is capable of moving the hand's digits through nearly the entire ROM with physiologically accurate trajectories. Stroke subjects received the device intervention well and device impedance was minimized so that subjects could freely extend and flex their digits inside of HEXORR. Our active force-assisted condition was successful in increasing the subjects' ROM while promoting active participation. PMID:20667083
Lee, John D; Roberts, Shannon C; Hoffman, Joshua D; Angell, Linda S
2012-04-01
The aim of this study was to assess how scrolling through playlists on an MP3 player or its aftermarket controller affects driving performance and to examine how drivers adapt device use to driving demands. Drivers use increasingly complex infotainment devices that can undermine driving performance. The goal activation hypothesis suggests that drivers might fail to compensate for these demands, particularly with long tasks and large search set sizes. A total of 50 participants searched for songs in playlists of varying lengths using either an MP3 player or an aftermarket controller while negotiating road segments with traffic and construction in a medium-fidelity driving simulator. Searching through long playlists (580 songs) resulted in poor driving performance and required more long glances (longer than 2 s) to the device compared with other playlist lengths. The aftermarket controller also led to more long glances compared with the MP3 player. Drivers did not adequately adapt their behavior to roadway demand, as evident in their degraded driving performance. No significant performance differences were found between short playlists, the radio-tuning task, and the no-task condition. Selecting songs from long playlists undermined driving performance, and drivers did not sufficiently adapt their use of the device to the roadway demands, consistent with the goal activation hypothesis. The aftermarket controller degraded rather than enhanced performance. Infotainment systems should support drivers in managing distraction. Aftermarket controllers can have the unintended effect of making devices carried into the car less compatible with driving.These results can motivate development of new interfaces as alternatives to scrolling lists.
Architectures for Improved Organic Semiconductor Devices
NASA Astrophysics Data System (ADS)
Beck, Jonathan H.
Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes, semiconductors and substrates compatible with low-temperature, flexible, and oxygenated and aromatic solvent-free fabrication. Materials and processes must be capable of future high volume production in order to enable low costs. In this thesis we explore several techniques to improve organic semiconductor device performance and enable new fabrication processes. In Chapter 2, I describe the integration of sub-optical-wavelength nanostructured electrodes that improve fill factor and power conversion efficiency in organic photovoltaic devices. Photovoltaic fill factor performance is one of the primary challenges facing organic photovoltaics because most organic semiconductors have poor charge mobility. Our electrical and optical measurements and simulations indicate that nanostructured electrodes improve charge extraction in organic photovoltaics. In Chapter 3, I describe a general method for maximizing the efficiency of organic photovoltaic devices by simultaneously optimizing light absorption and charge carrier collection. We analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of organic photovoltaic devices. This technique may be used to improve organic photovoltaic materials with low absorption, or short exciton diffusion and carrier-recombination lengths, opening up the device design space. In Chapter 4, I describe a process for high-quality graphene transfer onto chemically sensitive, weakly interacting organic semiconductor thin-films. Graphene is a promising flexible and highly transparent electrode for organic electronics; however, transferring graphene films onto organic semiconductor devices was previously impossible. We demonstrate a new transfer technique based on an elastomeric stamp coated with an fluorinated polymer release layer. We fabricate three classes of organic semiconductor devices: field effect transistors without high temperature annealing, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices.
Latzel, M; Büttner, P; Sarau, G; Höflich, K; Heilmann, M; Chen, W; Wen, X; Conibeer, G; Christiansen, S H
2017-02-03
Nanotextured surfaces provide an ideal platform for efficiently capturing and emitting light. However, the increased surface area in combination with surface defects induced by nanostructuring e.g. using reactive ion etching (RIE) negatively affects the device's active region and, thus, drastically decreases device performance. In this work, the influence of structural defects and surface states on the optical and electrical performance of InGaN/GaN nanorod (NR) light emitting diodes (LEDs) fabricated by top-down RIE of c-plane GaN with InGaN quantum wells was investigated. After proper surface treatment a significantly improved device performance could be shown. Therefore, wet chemical removal of damaged material in KOH solution followed by atomic layer deposition of only 10 [Formula: see text] alumina as wide bandgap oxide for passivation were successfully applied. Raman spectroscopy revealed that the initially compressively strained InGaN/GaN LED layer stack turned into a virtually completely relaxed GaN and partially relaxed InGaN combination after RIE etching of NRs. Time-correlated single photon counting provides evidence that both treatments-chemical etching and alumina deposition-reduce the number of pathways for non-radiative recombination. Steady-state photoluminescence revealed that the luminescent performance of the NR LEDs is increased by about 50% after KOH and 80% after additional alumina passivation. Finally, complete NR LED devices with a suspended graphene contact were fabricated, for which the effectiveness of the alumina passivation was successfully demonstrated by electroluminescence measurements.
Dolor, Rowena J; Ruybalid, R Lynne; Uyeda, Lauren; Edson, Robert G; Phibbs, Ciaran; Vertrees, Julia E; Shih, Mei-Chiung; Jacobson, Alan K; Matchar, David B
2010-10-01
Prior studies suggest patient self-testing (PST) of prothrombin time (PT) can improve the quality of anticoagulation (AC) and reduce complications (e.g., bleeding and thromboembolic events). "The Home INR Study" (THINRS) compared AC management with frequent PST using a home monitoring device to high-quality AC management (HQACM) with clinic-based monitoring on major health outcomes. A key clinical and policy question is whether and which patients can successfully use such devices. We report the results of Part 1 of THINRS in which patients and caregivers were evaluated for their ability to perform PST. Study-eligible patients (n = 3643) were trained to use the home monitoring device and evaluated after 2-4 weeks for PST competency. Information about demographics, medical history, warfarin use, medications, plus measures of numeracy, literacy, cognition, dexterity, and satisfaction with AC were collected. Approximately 80% (2931 of 3643) of patients trained on PST demonstrated competency; of these, 8% (238) required caregiver assistance. Testers who were not competent to perform PST had higher numbers of practice attempts, higher cuvette wastage, and were less able to perform a fingerstick or obtain blood for the cuvette in a timely fashion. Factors associated with failure to pass PST training included increased age, previous stroke history, poor cognition, and poor manual dexterity. A majority of patients were able to perform PST. Successful home monitoring of PT with a PST device required adequate levels of cognition and manual dexterity. Training a caregiver modestly increased the proportion of patients who can perform PST.
Sezdi, Mana
2016-01-01
A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices.
Sezdi, Mana
2016-01-01
A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices. PMID:27195666
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
NASA Astrophysics Data System (ADS)
Wegrzyński, Wojciech; Krajewski, Grzegorz; Kimbar, Grzegorz
2018-01-01
This paper is a proposal of a new device that may be used as a component of natural smoke ventilation systems - an external aerodynamic baffle used to limit the wind effect at the most adverse angle. Natural ventilation is not only affected by the external wind, but also dependent on the angle of wind attack. It has been proven, that at angles between 45° to 60° the performance of such device is the lowest. This is the reason why additional device is proposed - external baffle that could hypothetically increase the performance at chosen angles. The purpose of this paper is to explore this idea by numerical modelling of such external elements on a validated natural ventilator model, with use of ANSYS® Fluent® CFD model.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Gallium nitride vertical power devices on foreign substrates: a review and outlook
NASA Astrophysics Data System (ADS)
Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás
2018-07-01
Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.
An E-Book Hub Service Based on a Cloud Platform
ERIC Educational Resources Information Center
Cheng, Jinn-Shing; Huang, Echo; Lin, Chuan-Lang
2012-01-01
Due to the constant performance upgrades and regular price reductions of mobile devices in recent years, users are able to take advantage of the various devices to obtain digital content regardless of the limitations of time and place. The increasing use of e-books has stimulated new e-learning approaches. This research project developed an e-book…
NASA Technical Reports Server (NTRS)
Binkley, D. M.; Hopper, C. E.; Cressler, J. D.; Mojarradi, M. M.; Blalock, B. J.
2004-01-01
This paper presents measured noise for 0.35(mu)m, silicon-on-insulator devices and a micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation. Flicker noise voltage, important for gyros having low frequency output, increases less than 32% after irradiation.
USDA-ARS?s Scientific Manuscript database
Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test for avian influenza. Because of the low analytic sensitivity of LFD tests at low virus concentrations, targeted sampling of sick and dead birds has been proposed in order to increase detection pr...
Objective and perceptual comparisons of two bluetooth hearing aid assistive devices.
Clark, Jackie L; Pustejovsky, Carmen; Vanneste, Sven
2017-08-01
With the advent of Bluetooth technology, many of the assistive listening devices for hearing have become manufacturer specific, with little objective information about the performance provided. Thirty native English-speaking adults (mean age 29.8) with normal hearing were tested pseudo-randomly with two major hearing aid manufacturers' proprietary Bluetooth connectivity devices paired to the accompanying manufacturer's specific hearing aids. Sentence recognition performance was objectively measured for each system with signals transmitted via a land-line to the same iPhone in two conditions. There was a significant effect of participant's performance according to listening condition. There was no significant effect between device manufacturers according to listening condition, but there was a significant effect in participant's perception of "quality of sound". Despite differences in signal transmission for each devise, when worn by participants both the systems performed equally. In fact, participants expressed personal preferences for specific technology that was largely due to their perceived quality of sound while listening to recorded signals. While further research is necessary to investigate other measures of benefit for Bluetooth connectivity devices, preliminary data suggest that in order to ensure comfort and compatibility, not only should objective measures of the patient benefit be completed, but also assessing the patient's perception of benefit is equally important. Implications for Rehabilitation All professionals who work with individuals with hearing loss, become aware of the differences in the multiple choices for assistive technology readily available for hearing loss. With the ever growing dispensing of Bluetooth connectivity devices coupled to hearing aids, there is an increased burden to determine whether performance differences could exist between manufacturers. There is a growing need to investigate other measures of benefit for Bluetooth hearing aid connectivity devices that not only include objective measures, but also patient perception of benefit.
Delgado-Ruiz, R A; Sacks, D; Palermo, A; Calvo-Guirado, J L; Perez-Albacete, C; Romanos, G E
2016-09-01
The aim of this experimental in vitro study was to evaluate the effects of the piezoelectric device in temperature and time variations in standardized osteotomies performed with similar tip inserts in bovine bone blocks. Two different piezosurgical devices were used the OE-F15(®) (Osada Inc., Los Angeles, California, USA) and the Surgybone(®) (Silfradent Inc., Sofia, Forli Cesena, Italy). Serrated inserts with similar geometry were coupled with each device (ST94 insert/test A and P0700 insert/test B). Osteotomies 10 mm long and 3 mm deep were performed in bone blocks resembling type II (dense) and type IV (soft) bone densities with and without irrigation. Thermal changes and time variations were recorded. The effects of bone density, irrigation, and device on temperature changes and time necessary to accomplish the osteotomies were analyzed. Thermal analysis showed significant higher temperatures during piezosurgery osteotomies in hard bone without irrigation (P < 0.05). The type of piezosurgical device did not influence thermal variations (P > 0.05). Time analysis showed that the mean time values necessary to perform osteotomies were shorter in soft bone than in dense bone (P < 0.05). Within the limitations of this in vitro study, it may be concluded that the temperature increases more in piezosurgery osteotomies in dense bone without irrigation; the time to perform the osteotomy with piezosurgery is shorter in soft bone compared to hard bone; and the piezosurgical device have a minimal influence in the temperature and time variations when a similar tip design is used during piezosurgery osteotomies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Golf hand prosthesis performance of transradial amputees.
Carey, Stephanie L; Wernke, Matthew M; Lura, Derek J; Kahle, Jason T; Dubey, Rajiv V; Highsmith, M Jason
2015-06-01
Typical upper limb prostheses may limit sports participation; therefore, specialized terminal devices are often needed. The purpose of this study was to evaluate the ability of transradial amputees to play golf using a specialized terminal device. Club head speed, X-factor, and elbow motion of two individuals with transradial amputations using an Eagle Golf terminal device were compared to a non-amputee during a golf swing. Measurements were collected pre/post training with various stances and grips. Both prosthesis users preferred a right-handed stance initially; however, after training, one preferred a left-handed stance. The amputees had slower club head speeds and a lower X-factor compared to the non-amputee golfer, but increased their individual elbow motion on the prosthetic side after training. Amputees enjoyed using the device, and it may provide kinematic benefits indicated by the increase in elbow flexion on the prosthetic side. The transradial amputees were able to swing a golf club with sufficient repetition, form, and velocity to play golf recreationally. Increased elbow flexion on the prosthetic side suggests a potential benefit from using the Eagle Golf terminal device. Participating in recreational sports can increase amputees' health and quality of life. © The International Society for Prosthetics and Orthotics 2014.
Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device
Muschenborn, Andrea D.; Hearon, Keith; Volk, Brent L.; Conway, Jordan W.; Maitland, Duncan J.
2014-01-01
Purpose To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery. Methods Four thermoset acrylic copolymers containing benzylmethacrylate (BzMA) and bisphenol A ethoxylate diacrylate (Mn~512, BPA) were designed with differing thermomechanical properties. Finite element analysis (FEA) was performed to ensure that the materials were able to undergo the strains imposed by crimping, and fabricated devices were subjected to force-monitored crimping, constrained recovery, and bench-top thrombectomy. Results Devices with 25 and 35 mole% BPA exhibited the highest recovery stress and the highest brittle response as they broke upon constrained recovery. On the contrary, the 15 mole % BPA devices endured all testing and their recovery stress (5 kPa) enabled successful bench-top thrombectomy in 2/3 times, compared to 0/3 for the devices with the lowest BPA content. Conclusion While the 15 mole% BPA devices provided the best trade-off between device integrity and performance, other SMP systems that offer recovery stresses above 5 kPa without increasing brittleness to the point of causing device failure would be more suitable for this application. PMID:25414549
Compact, Controlled Resistance Exercise Device
NASA Technical Reports Server (NTRS)
Paulus, David C.; DeWitt, John K.; Reich, Alton J.; Shaw, James E.; Deaconu, Stelu S.
2011-01-01
Spaceflight leads to muscle and bone atrophy. Isoinertial (free-weight) exercises provide a sufficient stimulus to elicit increases in both muscle strength and bone mineral density in Earth-based studies. While exercise equipment is in use on the International Space Station for crewmember health maintenance, current devices are too large to place in a transport vehicle or small spacecraft. Therefore, a portable computer controlled resistance exercise device is being developed that is able to simulate the inertial loading experienced when lifting a mass on Earth. This portable device weighs less than 50 lb and can simulate the resistance of lifting and lowering up to 600 lb of free-weights. The objective is to allow crewmembers to perform resistance exercise with loads capable of maintaining muscle and bone health. The device is reconfigurable and allows for the performance of typical Earth-based free-weight exercises. Forces exerted, volume of work, range of motion, time-under-tension, and speed/ acceleration of movement are recorded and can be remotely monitored to track progress and modify individual protocols based on exercise session data. A performance evaluation will be completed and data will be presented that include ground-reaction force comparisons between the device and free-weight dead-lifts over a spectrum of resistance levels. Movement biomechanics will also be presented.
The use of hearing protection devices by older adults during recreational noise exposure.
Nondahl, D M; Cruickshanks, K J; Dalton, D S; Klein, B E K; Klein, R; Tweed, T S; Wiley, T L
2006-01-01
A population-based study to assess the use of hearing protection devices by older adults during noisy recreational activities was performed. The population-based Epidemiology of Hearing Loss Study was designed to measure the prevalence of hearing loss in adults residing in Beaver Dam, Wisconsin. The use of hearing protection devices during noisy recreational activities was assessed by performing three examinations over a period of 10 years (1993-1995, no. of participants (n)=3753, aged 48-92 years; 1998-2000, n=2800, aged 53-97 years; 2003-2005, n=2395, aged 58-100 years). The recreational activities included hunting, target shooting, woodworking/carpentry, metalworking, driving loud recreational vehicles, and performing yard work using either power tools or a chain saw. The prevalence of using hearing protection devices during any of these activities increased with time (9.5%, 15.0%, and 19.9% at baseline, 5 years, and 10 years, respectively). However, the use of hearing protection devices remained low for most activities. Those under the age of 65 were twice as likely to use hearing protection devices during noisy activities than were older adults. Men, those with a hearing handicap, and those with significant tinnitus were more likely to use hearing protection devices. Smokers and the less educated were less likely to use hearing protection devices. The results demonstrated that many adults expose themselves to potentially damaging recreational noise, leaving them at risk for hearing loss.
Improvement of the accuracy of noise measurements by the two-amplifier correlation method.
Pellegrini, B; Basso, G; Fiori, G; Macucci, M; Maione, I A; Marconcini, P
2013-10-01
We present a novel method for device noise measurement, based on a two-channel cross-correlation technique and a direct "in situ" measurement of the transimpedance of the device under test (DUT), which allows improved accuracy with respect to what is available in the literature, in particular when the DUT is a nonlinear device. Detailed analytical expressions for the total residual noise are derived, and an experimental investigation of the increased accuracy provided by the method is performed.
Development of an evaporation-based microfluidic sample concentrator
NASA Astrophysics Data System (ADS)
Sharma, Nigel R.; Lukyanov, Anatoly; Bardell, Ron L.; Seifried, Lynn; Shen, Mingchao
2008-02-01
MicroPlumbers Microsciences LLC, has developed a relatively simple concentrator device based on isothermal evaporation. The device allows for rapid concentration of dissolved or dispersed substances or microorganisms (e.g. bacteria, viruses, proteins, toxins, enzymes, antibodies, etc.) under conditions gentle enough to preserve their specific activity or viability. It is capable of removing of 0.8 ml of water per minute at 37°C, and has dimensions compatible with typical microfluidic devices. The concentrator can be used as a stand-alone device or integrated into various processes and analytical instruments, substantially increasing their sensitivity while decreasing processing time. The evaporative concentrator can find applications in many areas such as biothreat detection, environmental monitoring, forensic medicine, pathogen analysis, and agricultural industrial monitoring. In our presentation, we describe the design, fabrication, and testing of the concentrator. We discuss multiphysics simulations of the heat and mass transport in the device that we used to select the design of the concentrator and the protocol of performance testing. We present the results of experiments evaluating water removal performance.
Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos
2017-06-05
Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.
Colloidal Engineering for Infrared-Bandgap Solution-Processed Quantum Dot Solar Cells
NASA Astrophysics Data System (ADS)
Kiani, Amirreza
Ever-increasing global energy demand and a diminishing fossil fuel supply have prompted the development of technologies for sustainable energy production. Solar photovoltaic (PV) devices have huge potential for energy harvesting and production since the sun delivers more energy to the earth in one hour than the global population consumes in one year. The solar cell industry is now dominated by silicon PV devices. The cost of silicon modules has decreased substantially over the past two decades and the number of installed silicon PV devices has increased dramatically. There remains a need for emerging solar technologies that can harvest the untapped portion of the solar spectrum and can be integrated on flexible and curved surfaces. This thesis focuses on colloidal quantum dot (CQD) PV devices. CQDs are nanoparticles fabricated using a low-temperature and cost-effective solution technique. These materials suffer from a high density of surface traps derived from the large surface-to-volume ratio of CQD nanoparticles, combined with limited carrier mobility. These result in a short carrier diffusion length, a main limiting factor in CQD solar cell performance. This thesis seeks to address the poor diffusion length in lead sulfide (PbS) CQD films and pave the way for new applications for CQD PV devices in infrared solar harvesting and waste heat recovery. A two-fold reduction in surface trap density is demonstrated using molecular halide treatment. Iodine molecules introduced prior to the film formation replace the otherwise unpassivated surface sulfur atoms. This results in a 35% increase in the diffusion length and enables charge extraction over thicker active layer leading to the world's most efficient CQD PV devices from June 2015 to July 2016 with the certified power conversion efficiency of 9.9%. This represents a 30% increase over the best-certified PCE (7.5%) prior to this thesis. The colloidal engineering highlighted herein enables infrared (IR) solar harvesting for the first time. Addition of short bromothiol ligands during the synthesis significantly reduces the agglomeration of 1 eV bandgap CQDs and maintains efficient charge extraction into the selective electrodes. The devices can augment the performance of the best silicon cells by 7 power points where 0.8 additive power points are demonstrated experimentally. A tailored solution exchanged process developed for 1 eV bandgap CQDs results in air-stable IR PV devices with improved manufacturability. The process utilizes a tailored combination of lead iodide (PbI2) and ammonium acetate for the solution exchange and hexylamine + MEK as the final solvent to yield solar thick films with the filtered (1100 nm and beyond) performance of 0.4%. This thesis pushes the limit of CQD device applications to waste heat recovery. I demonstrate successful harvesting of low energy photons emitted from a hot object by designing and developing the first solution-processed thermophotovoltaic devices. These devices are comprised of 0.7 eV bandgap CQDs that successfully harvest photons emitted from an 800°C heat source.
Control system for thermoelectric refrigerator
NASA Technical Reports Server (NTRS)
Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)
1996-01-01
Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).
Hasslacher, Christoph; Kulozik, Felix; Platten, Isabel
2014-05-01
We investigated the analytical accuracy of 27 glucose monitoring systems (GMS) in a clinical setting, using the new ISO accuracy limits. In addition to measuring accuracy at blood glucose (BG) levels < 100 mg/dl and > 100 mg/dl, we also analyzed devices performance with respect to these criteria at 5 specific BG level ranges, making it possible to further differentiate between devices with regard to overall performance. Carbohydrate meals and insulin injections were used to induce an increase or decrease in BG levels in 37 insulin-dependent patients. Capillary blood samples were collected at 10-minute intervals, and BG levels determined simultaneously using GMS and a laboratory-based method. Results obtained via both methods were analyzed according to the new ISO criteria. Only 12 of 27 devices tested met overall requirements of the new ISO accuracy limits. When accuracy was assessed at BG levels < 100 mg/dl and > 100 mg/dl, criteria were met by 14 and 13 devices, respectively. A more detailed analysis involving 5 different BG level ranges revealed that 13 (48.1%) devices met the required criteria at BG levels between 50 and 150 mg/dl, whereas 19 (70.3%) met these criteria at BG levels above 250 mg/dl. The overall frequency of outliers was low. The assessment of analytical accuracy of GMS at a number of BG level ranges made it possible to further differentiate between devices with regard to overall performance, a process that is of particular importance given the user-centered nature of the devices' intended use. © 2014 Diabetes Technology Society.
Time-elapsed screw insertion with microCT imaging.
Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J
2016-01-25
Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon nanotube and graphene device modeling and simulation
NASA Astrophysics Data System (ADS)
Yoon, Young Ki
The performance of the semiconductors has been improved and the price has gone down for decades. It has been continuously scaled down in size year by year, and now it encounters the fundamental scaling limit. We, therefore, should prepare a new era beyond the conventional semiconductor technologies. One of the most promising devices is possible by carbon nanotube (CNT) or graphene nanoribbon (GNR) in terms of its excellent charge transport properties. Their fundamental material properties and device physics are totally different to those of the conventional devices. In this nano-regime, more sophisticated device modeling and simulation are really needed to elucidate nano-device operation and to save our resources from errors. The numerical simulation works in this dissertation will provide novel view points on the emerging devices. In this dissertation, CNT and GNR devices are numerically studied. The first part of this work is on CNT devices, and a common structure of CNT device has CNT channel, metal source and drain contacts, and gate electrode. We investigate the strain, geometry, and scattering effects on the device performance of CNT field-effect transistors (FETs). It is shown that even a small amount of strain can result in a large effect on the performance of CNTFETs due to the variation of the bandgap and band-structure-limited velocity. A type of strain which produces a larger bandgap results in increased Schottky barrier (SB) height and decreased band-structure-limited velocity, and hence a smaller minimum leakage current, smaller on current, larger maximum achievable Ion/Ioff, and larger intrinsic delay. We also examine geometry effect of partial gate CNTFETs. In the growth process of vertical CNT, underlap between the gate and the bottom electrode is advantageous for transistor operation because it suppresses ambipolar conduction of SBFETs. Both n-type and p-type transistor operations with balanced performance metrics can be achieved on a single partial gate FET by using proper bias schemes. The effect of phonon scattering on the intrinsic delay and cut-off frequency of Schottky barrier CNTFETs is also examined. Carriers are mostly scattered by optical and zone boundary phonons beyond the beginning of the channel. The scattering has a small direct effect on the DC on current of the CNTFET, but it results in significant decrease of intrinsic cut-off frequency and increase of intrinsic delay. Semiconducting CNT is useful for the channel in CNTFETs, whereas metallic CNT can be used as an electrode. If a porous CNT film is used as a source electrode, vertical thin-film transistors (TFTs) can be constructed. Vertical organic FET (OFET) shows clear transistor switching behavior allowing orders of magnitude modulation of the source-drain current even in the presence of electrostatic screening by the source electrode. The channel length should be carefully engineered due to the trade-off between device characteristics in the subthreshold and above-threshold regions. The second subject is device simulations of GNRFETs. Even though GNR is also graphene-based quasi-1D nanostructure like CNT, the differences in shape, boundary condition, and existence of edges and dangling bonds make it operate in a different way. Atomistic 3D simulation study of the performance of GNR SBFETs is presented. The impacts of non-idealities on device performance have been investigated. The edges of GNR, which do not exist in CNT, can be advantages or disadvantages. If an appropriate control by different edge atoms is possible, it would be definitely positive. Totally new electronic band structure is obtained by different edge-termination atoms. In addition, only a fraction of impurity atom can also much affect on the material properties of GNR. In order to perform device simulations of non-uniform GNR devices, multiscale simulation scheme can be used in non-equilibrium Green's function (NEGF) formalism and density-functional method.
Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.
Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan
2015-07-29
The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.
Westerdahl, Elisabeth; Lindmark, Birgitta; Eriksson, Tomas; Hedenstierna, Göran; Tenling, Arne
2003-12-01
Objective--To investigate the effects of deep breathing performed on the second postoperative day after coronary artery bypass graft surgery. Design--The immediate effects of 30 deep breaths performed without a mechanical device (n = 21), with a blow bottle device (n = 20) and with an inspiratory resistance-positive expiratory pressure mask (n = 20) were studied. Spiral computed tomography and arterial blood gas analyses were performed immediately before and after the intervention. Results--Deep breathing caused a significant decrease in atelectatic area from 12.3 +/- 7.3% to 10.2 +/- 6.7% (p < 0.0001) of total lung area 1 cm above the diaphragm and from 3.9 +/- 3.5% to 3.3 +/- 3.1% (p < 0.05) 5 cm above the diaphragm. No difference between the breathing techniques was found. The aerated lung area increased by 5% (p < 0.001). The PaO (2) increased by 0.2 kPa (p < 0.05), while PaCO (2) was unchanged in the three groups. Conclusion--A significant decrease of atelectatic area, increase in aerated lung area and a small increase in PaO (2) were found after performance of 30 deep breaths. No difference between the three breathing techniques was found.
Arbitration in crossbar interconnect for low latency
Ohmacht, Martin; Sugavanam, Krishnan
2013-02-05
A system and method and computer program product for reducing the latency of signals communicated through a crossbar switch, the method including using at slave arbitration logic devices associated with Slave devices for which access is requested from one or more Master devices, two or more priority vector signals cycled among their use every clock cycle for selecting one of the requesting Master devices and updates the respective priority vector signal used every clock cycle. Similarly, each Master for which access is requested from one or more Slave devices, can have two or more priority vectors and can cycle among their use every clock cycle to further reduce latency and increase throughput performance via the crossbar.
Armstrong, David G.; Kleidermacher, David N.; Klonoff, David C.; Slepian, Marvin J.
2015-01-01
We are rapidly reaching a point where, as connected devices for monitoring and treating diabetes and other diseases become more pervasive and powerful, the likelihood of malicious medical device hacking (known as “medjacking”) is growing. While government could increase regulation, we have all been witness in recent times to the limitations and issues surrounding exclusive reliance on government. Herein we outline a preliminary framework for establishing security for wireless health devices based on international common criteria. Creation of an independent medical device cybersecurity body is suggested. The goal is to allow for continued growth and innovation while simultaneously fostering security, public trust, and confidence. PMID:26319227
Armstrong, David G; Kleidermacher, David N; Klonoff, David C; Slepian, Marvin J
2015-08-27
We are rapidly reaching a point where, as connected devices for monitoring and treating diabetes and other diseases become more pervasive and powerful, the likelihood of malicious medical device hacking (known as "medjacking") is growing. While government could increase regulation, we have all been witness in recent times to the limitations and issues surrounding exclusive reliance on government. Herein we outline a preliminary framework for establishing security for wireless health devices based on international common criteria. Creation of an independent medical device cybersecurity body is suggested. The goal is to allow for continued growth and innovation while simultaneously fostering security, public trust, and confidence. © 2015 Diabetes Technology Society.
Resonant cavity enhanced photonic devices
NASA Astrophysics Data System (ADS)
Ünlü, M. Selim; Strite, Samuel
1995-07-01
We review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. Such resonant cavity enhanced (RCE) devices benefit from the wavelength selectivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows RCE photodetector structures to be thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Off-resonance wavelengths are rejected by the cavity making RCE photodetectors promising for low crosstalk wavelength division multiplexing (WDM) applications. RCE optical modulators require fewer quantum wells so are capable of reduced voltage operation. The spontaneous emission spectrum of RCE light emitting diodes (LED) is drastically altered, improving the spectral purity and directivity. RCE devices are also highly suitable for integrated detectors and emitters with applications as in optical logic and in communication networks. This review attempts an encyclopedic overview of RCE photonic devices and systems. Considerable attention is devoted to the theoretical formulation and calculation of important RCE device parameters. Materials criteria are outlined and the suitability of common heteroepitaxial systems for RCE devices is examined. Arguments for the improved bandwidth in RCE detectors are presented intuitively, and results from advanced numerical simulations confirming the simple model are provided. An overview of experimental results on discrete RCE photodiodes, phototransistors, modulators, and LEDs is given. Work aimed at integrated RCE devices, optical logic and WDM systems is also covered. We conclude by speculating what remains to be accomplished to implement a practical RCE WDM system.
Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2
NASA Astrophysics Data System (ADS)
Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong
2018-04-01
The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.
Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure
NASA Astrophysics Data System (ADS)
Shen, Haoting
The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.
Development of a Self Aligned CMOS Process for Flash Lamp Annealed Polycrystalline Silicon TFTs
NASA Astrophysics Data System (ADS)
Bischoff, Paul
The emerging active matrix liquid crystal (AMLCD) display market requires a high performing semiconductor material to meet rising standards of operation. Currently amorphous silicon (a-Si) dominates the market but it does not have the required mobility for it to be used in AMLCD manufacturing. Other materials have been developed including crystallizing a-Si into poly-silicon. A new approach to crystallization through the use of flash lamp annealing (FLA) decreases manufacturing time and greatly improves carrier mobility. Previous work on FLA silicon for the use in CMOS transistors revealed significant lateral dopant diffusion into the channel greatly increasing the minimum channel length required for a working device. This was further confounded by the gate overlap due to misalignment during lithography patterning steps. Through the use of furnace dopant activation instead of FLA dopant activation and a self aligned gate the minimum size transistor can be greatly reduced. A new lithography mask and process flow were developed for the furnace annealing and self aligned gate. Fabrication of the self aligned devices resulted in oxidation of the Molybdenum self aligned gate. Further development is needed to successfully manufacture these devices. Non-self aligned transistors were made simultaneously with self aligned devices and used the furnace activation. These devices showed an increase in sheet resistance from 250 O to 800 O and lower mobility from 380 to 40.2 V/cm2s. The lower mobility can be contributed to an increase in implanted trap density indicating furnace annealing is an inferior activation method over FLA. The minimum transistor size however was reduced from 20 to 5 mum. With improvements in the self aligned process high performing small devices can be manufactured.
NASA Astrophysics Data System (ADS)
Mohammadi-Ghaleni, Mahdi
The Sun has long been the most important energy source for planet Earth. Sunlight offers the potential to function as a source of clean, renewable energy; photovoltaic (PV) cells have been designed to tap into this abundant solar energy to generate electricity. Organic photovoltaic (OPV) devices show promise as technologies capable of lightweight, low cost and flexible alternatives to traditional silicon PV but the nature of conjugated organic and polymeric semiconductors have limited performance and, therefore, application. However, recent advances have shown that the addition of pristine graphene (PG) to the active layer of OPV devices can yield three-fold performance improvements in blends of P3HT (poly(3-hexylthiophene-2,5-diyl) & PCBM (phenyl C 61 butyric acid methyl ester) and, later, in all-polymer blends of P3HT & F8BT (poly(9,9-dioctylfluorene-alt-benzothiadiazole). In both OPV systems, increased performance is believed to be due to high charge carrier mobility imparted by the PG additive to the composite active layer blend. In this work, the effect of addition of PG to the active layer blend of P3HT & PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]) systems was investigated. PV devices were designed, fabricated and tested using standard processing methods and testing procedures. Although PG increased OPV device performance relative to samples without PG, power conversion efficiency (eta) on an absolute scale was lower than expected despite the otherwise complementary properties of these materials. Based on the literature, the low performance of these devices was hypothesized to result from non-ideal active layer morphology, lacking charge carried percolation pathways to the electrodes. Small angle neutron scattering (SANS) was employed to probe the active layer morphology in polymer blend films similar to the active layers of the cells. Deuterated P3HT (d-P3HT) was used to exploit the large scattering length density (SLD) contrast between hydrogen and deuterium. Rigorous analysis of the SANS data allowed the nanostructure to be determined and a model of disk-like d-P3HT crystallites dispersed in a matrix of the amorphous polymers was constructed. This structure shows limited interfacial area for exciton dissociation and exhibits a lack of charge percolation pathways to the electrodes. Morphological insight offered by SANS analysis along with literature review allowed higher performance all-polymer photovoltaic cells to be designed and tested using the same semiconducting polymers. By introducing a co-solvent and modifying the thermal annealing procedure, significant performance gains were realized for subsequent devices. The increased performance observed following the change in procedure is believed to be due to enhanced active layer morphology and formation of a bulk heterojunction (BHJ) structure, to be studied in future work. Although there is room for further performance gains in P3HT-PCPDTBT devices as well as application to other OPV systems in future work, the methods, results and discussion presented here highlight the importance of structure-property relationships in all-polymer photovoltaic cells.
Kansal, Vinay; Nagpal, Sudhir; Jetty, Prasad
2017-12-01
Objective Endovascular aneurysm repair for ruptured abdominal aortic aneurysm is being increasingly applied as the intervention of choice. The purpose of this study was to determine whether survival and reintervention rates after ruptured abdominal aortic aneurysm vary between endograft devices. Methods This cohort study identified all ruptured abdominal aortic aneurysms performed at The Ottawa Hospital from January 1999 to May 2015. Data collected included patient demographics, stability index at presentation, adherence to device instructions for use, endoleaks, reinterventions, and mortality. Kruskal-Wallis test was used to compare outcomes between groups. Mortality outcomes were assessed using Kaplan-Meier survival analysis, and multivariate Cox regression modeling. Results One thousand sixty endovascular aneurysm repairs were performed using nine unique devices. Ninety-six ruptured abdominal aortic aneurysms were performed using three devices: Cook Zenith ( n = 46), Medtronic Endurant ( n = 33), and Medtronic Talent ( n = 17). The percent of patients presented in unstable or extremis condition was 30.2, which did not differ between devices. Overall 30-day mortality was 18.8%, and was not statistically different between devices ( p = 0.16), although Medtronic Talent had markedly higher mortality (35.3%) than Cook Zenith (15.2%) and Medtronic Endurant (15.2%). AUI configuration was associated with increased 30-day mortality (33.3% vs. 12.1%, p = 0.02). Long-term mortality and graft-related reintervention rates at 30 days and 5 years were similar between devices. Instructions for use adherence was similar across devices, but differed between the ruptured abdominal aortic aneurysm and elective endovascular aneurysm repair cohorts (47.7% vs. 79.0%, p < 0.01). Notably, two patients who received Medtronic Talent grafts underwent open conversion >30 days post-endovascular aneurysm repair ( p = 0.01). Type 1 endoleak rates differed significantly across devices (Cook Zenith 0.0%, Medtronic Endurant 18.2%, Medtronic Talent 17.6%, p = 0.01). Conclusion Although we identified device-related differences in endoleak rates, there were no significant differences in reintervention rates or mortality outcomes. Favorable outcomes of Cook Zenith and Medtronic Endurant over Medtronic Talent reflect advances in endograft technology and improvements in operator experience over time. Results support selection of endograft by operator preference for ruptured abdominal aortic aneurysm.
LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES
NASA Technical Reports Server (NTRS)
Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.
2004-01-01
Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.
Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L
2016-05-01
Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.
Implications of scaling on static RAM bit cell stability and reliability
NASA Astrophysics Data System (ADS)
Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael
1993-01-01
In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.
Coated Porous Si for High Performance On-Chip Supercapacitors
NASA Astrophysics Data System (ADS)
Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.
2014-11-01
High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Chang-Yong; Stein, Aaron
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
Nam, Chang-Yong; Stein, Aaron
2017-11-15
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
NASA Astrophysics Data System (ADS)
Emah, Joseph B.; George, Nyakno J.; Akpan, Usenobong B.
2017-08-01
The low-cost patterning of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT:PSS) interfacial layers inserted between indium tin oxide and poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid ester blends leads to an improvement in organic photovoltaics (OPV) device performance. Significantly, improvements in all device parameters, including the open-circuit voltage, are achieved. The nanoimprinted devices improved further as the pattern period and imprinting depth was reduced from 727 nm and 42 nm to 340 nm and 10 nm, respectively. A residue of poly(dimethylsiloxane) (PDMS) is found on the interfacial PEDOT:PSS film following patterning and can be used to explain the increase in OPV performance. Ultraviolet photoelectron spectroscopy measurements of the PEDOT:PSS interfacial layer demonstrated a reduction of the work function of 0.4 eV following nanoimprinting which may originate from chemical modification of the PDMS residue or interfacial dipole formation supported by x-ray photoelectron spectroscopy analysis. Ultimately, we have demonstrated a 39% improvement in OPV device performance via a simple low-cost modification of the anode interfacial layer. This improvement can be assigned to two effects resulting from a PDMS residue on the PEDOT:PSS surface: (1) the reduction of the anode work function which in turn decreases the hole extraction barrier, and (2) the reduction of electron transfer from the highest occupied molecular orbital of PCBM to the anode.
A Context-Aware Model to Provide Positioning in Disaster Relief Scenarios
Moreno, Daniel; Ochoa, Sergio F.; Meseguer, Roc
2015-01-01
The effectiveness of the work performed during disaster relief efforts is highly dependent on the coordination of activities conducted by the first responders deployed in the affected area. Such coordination, in turn, depends on an appropriate management of geo-referenced information. Therefore, enabling first responders to count on positioning capabilities during these activities is vital to increase the effectiveness of the response process. The positioning methods used in this scenario must assume a lack of infrastructure-based communication and electrical energy, which usually characterizes affected areas. Although positioning systems such as the Global Positioning System (GPS) have been shown to be useful, we cannot assume that all devices deployed in the area (or most of them) will have positioning capabilities by themselves. Typically, many first responders carry devices that are not capable of performing positioning on their own, but that require such a service. In order to help increase the positioning capability of first responders in disaster-affected areas, this paper presents a context-aware positioning model that allows mobile devices to estimate their position based on information gathered from their surroundings. The performance of the proposed model was evaluated using simulations, and the obtained results show that mobile devices without positioning capabilities were able to use the model to estimate their position. Moreover, the accuracy of the positioning model has been shown to be suitable for conducting most first response activities. PMID:26437406
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...
2015-08-12
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan
2015-01-01
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
760 nm high-performance VCSEL growth and characterization
NASA Astrophysics Data System (ADS)
Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer
2006-04-01
High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.
Opportunities for nonvolatile memory systems in extreme-scale high-performance computing
Vetter, Jeffrey S.; Mittal, Sparsh
2015-01-12
For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less
Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices
Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...
2015-10-09
Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less
NASA Astrophysics Data System (ADS)
Cheng, Chuan-Hui; Zhang, Bi-Long; Sun, Chao; Li, Ruo-Xuan; Wang, Yuan; Tian, Wen-Ming; Zhao, Chun-Yi; Jin, Sheng-Ye; Liu, Wei-Feng; Luo, Ying-Min; Du, Guo-Tong; Cong, Shu-Lin
2017-06-01
A highly efficient inverted organic light emitting diode using 1.0 nm-thick ZnIx as a hole-blocking layer is developed. We fabricate devices with the configuration ITO/ZnIx (1.0 nm)/Alq3 (50 nm)/NPB (50 nm)/MoO3 (6.0 nm)/Al (100 nm). The deposition of a ZnIx layer increases the maximum luminance by two orders of magnitude from 13.4 to 3566.1 cd/m2. In addition, the maximum current efficiency and power efficiency are increased by three orders of magnitude, and the turn-on voltage to reach 1 cd/m2 decreases from 13 to 8 V. The results suggest that the electron injection efficiency is not improved by introducing a ZnIx layer. Instead, the improved device performance originates from the strong hole-blocking ability of ZnIx. This work indicates that layered materials may lead to novel applications in optoelectronic devices.
Simon, Scott; Cooke, Jonathon
2016-01-01
Physicians performing thrombectomy for acute stroke have had increasing success as thrombectomy-specific devices have continued to evolve. As the devices evolve, so too must the techniques. The current generation of stent retriever thrombectomy devices requires five minutes of dwell time, regardless of the particularities of the case. We have noticed the presence of flow through the stent immediately prior to removal portends a lower chance of successful thrombus retrieval than when no flow is seen, regardless of dwell time. We hypothesize that interventionalists can use the presence or absence of flow to predict adequacy of seating time and decrease the number of deployments per case. This could significantly decrease time to recanalization by avoiding time-consuming, unsuccessful pulls. This is a technical report of a few cases of stent retriever thrombectomy. We propose using post-deployment digital subtraction angiography to confirm thrombus-device integration and increase the chance of thrombus removal. PMID:27182473
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Oliva, Doretta; Campodonico, Francesca; Buono, Serafino
2013-07-01
These three single-case studies assessed the use of walker devices and microswitch technology for promoting ambulation behavior among persons with multiple disabilities. The walker devices were equipped with support and weight lifting features. The microswitch technology ensured that brief stimulation followed the participants' ambulation responses. The participants were two children (i.e., Study I and Study II) and one man (i.e., Study III) with poor ambulation performance. The ambulation efforts of the child in Study I involved regular steps, while those of the child in Study II involved pushing responses (i.e., he pushed himself forward with both feet while sitting on the walker's saddle). The man involved in Study III combined his poor ambulation performance with problem behavior, such as shouting or slapping his face. The results were positive for all three participants. The first two participants had a large increase in the number of steps/pushes performed during the ambulation events provided and in the percentages of those events that they completed independently. The third participant improved his ambulation performance as well as his general behavior (i.e., had a decline in problem behavior and an increase in indices of happiness). The wide-ranging implications of the results are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli
2018-01-24
A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.
The effects of text messaging on young drivers.
Hosking, Simon G; Young, Kristie L; Regan, Michael A
2009-08-01
This study investigated the effects of using a cell phone to retrieve and send text messages on the driving performance of young novice drivers. Young drivers are particularly susceptible to driver distraction and have an increased risk of distraction-related crashes. Distractions from in-vehicle devices, particularly, those that require manual input, are known to cause decrements in driving performance. Twenty young novice drivers used a cell phone to retrieve and send text messages while driving a simulator. The amount of time that drivers spent not looking at the road when text messaging was up to approximately 400% greater than that recorded in baseline (notext-messaging) conditions. Furthermore, drivers' variability in lane position increased up to approximately 50%, and missed lane changes increased 140%. There was also an increase of up to approximately 150% in drivers' variability in following distances to lead vehicles. Previous research has shown that the risk of crashing while dialing a handheld device, such as when text messaging and driving, is more than double that of conversing on a cell phone. The present study has identified the detrimental effects of text messaging on driving performance that may underlie such increased crash risk. More effective road safety measures are needed to prevent and mitigate the adverse effects on driving performance of using cell phones to retrieve and send text messages.
Electrorheological Fluid Based Force Feedback Device
NASA Technical Reports Server (NTRS)
Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin
1999-01-01
Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.
The performance of residential micro-cogeneration coupled with thermal and electrical storage
NASA Astrophysics Data System (ADS)
Kopf, John
Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the economic performance for both the end user and local distribution company.
González-Otero, Digna M; de Gauna, Sofía Ruiz; Ruiz, Jesus; Rivero, Raquel; Gutierrez, J J; Saiz, Purificación; Russell, James K
2018-04-20
Out-of-hospital cardiac arrest is common in public locations, including public transportation sites. Feedback devices are increasingly being used to improve chest-compression quality. However, their performance during public transportation has not been studied yet. To test two CPR feedback devices representative of the current technologies (accelerometer and electromag- netic-field) in a long-distance train. Volunteers applied compressions on a manikin during the train route using both feedback devices. Depth and rate measurements computed by the devices were compared to the gold-standard values. Sixty-four 4-min records were acquired. The accelerometer-based device provided visual help in all experiments. Median absolute errors in depth and rate were 2.4 mm and 1.3 compressions per minute (cpm) during conventional speed, and 2.5 mm and 1.2 cpm during high speed. The electromagnetic-field-based device never provided CPR feedback; alert messages were shown instead. However, measurements were stored in its internal memory. Absolute errors for depth and rate were 2.6 mm and 0.7 cpm during conventional speed, and 2.6 mm and 0.7 cpm during high speed. Both devices were accurate despite the accelerations and the electromagnetic interferences induced by the train. However, the electromagnetic-field-based device would require modifications to avoid excessive alerts impeding feedback.
NASA Astrophysics Data System (ADS)
Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi
2016-12-01
All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.
Home oxygen therapy: re-thinking the role of devices.
Melani, Andrea S; Sestini, Piersante; Rottoli, Paola
2018-03-01
A range of devices are available for delivering and monitoring home oxygen therapy (HOT). Guidelines do not give indications for the choice of the delivery device but recommend the use of an ambulatory system in subjects on HOT whilst walking. Areas covered: We provide a clinical overview of HOT and review traditional and newer delivery and monitoring devices for HOT. Despite relevant technology advancements, clinicians, faced with many challenges when they prescribe oxygen therapy, often remain familiar to traditional devices and continuous flow delivery of oxygen. Some self-filling delivery-less devices could increase the users' level of independence with ecological advantage and, perhaps, reduced cost. Some newer portable oxygen concentrators are being available, but more work is needed to understand their performances in different diseases and clinical settings. Pulse oximetry has gained large diffusion worldwide and some models permit long-term monitoring. Some closed-loop portable monitoring devices are also able to adjust oxygen flow automatically in accordance with the different needs of everyday life. This might help to improve adherence and the practice of proper oxygen titration that has often been omitted because difficult to perform and time-consuming. Expert commentary: The prescribing physicians should know the characteristics of newer devices and use technological advancements to improve the practice of HOT.
Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; ...
2015-03-02
Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less
Direct current stimulation of titanium interbody fusion devices in primates.
Cook, Stephen D; Patron, Laura P; Christakis, Petros M; Bailey, Kirk J; Banta, Charles; Glazer, Paul A
2004-01-01
The fusion rate for anterior lumbar interbody fusion (ALIF) varies widely with the use of different interbody devices and bone graft options. Adjunctive techniques such as electrical stimulation may improve the rate of bony fusion. To determine if direct current (DC) electrical stimulation of a metallic interbody fusion device enhanced the incidence or extent of anterior bony fusion. ALIF was performed using titanium alloy interbody fusion devices with and without adjunctive DC electrical stimulation in nonhuman primates. ALIF was performed through an anterolateral approach in 35 macaques with autogenous bone graft and either a titanium alloy (Ti-6Al-4V) fusion device or femoral allograft ring. The fusion devices of 19 animals received high (current density 19.6 microA/cm2) or low (current density 5.4 microA/cm2) DC electrical stimulation using an implanted generator for a 12- or 26-week evaluation period. Fusion sites were studied using serial radiographs, computed tomography imaging, nondestructive mechanical testing and qualitative and semiquantitative histology. Fusion was achieved with the titanium fusion device and autogenous bone graft. At 12 weeks, the graft was consolidating and early to moderate bridging callus was observed in and around the device. By 26 weeks, the anterior callus formation was more advanced with increased evidence of bridging trabeculations and early bone remodeling. The callus formation was not as advanced or abundant for the allograft ring group. Histology revealed the spinal fusion device had an 86% incidence of bony fusion at 26 weeks compared with a 50% fusion rate for the allograft rings. DC electrical stimulation of the fusion device had a positive effect on anterior interbody fusion by increasing both the presence and extent of bony fusion in a current density-dependent manner. Adjunctive DC electrical stimulation of the fusion device improved the rate and extent of bony fusion compared with a nonstimulated device. The fusion device was equivalent to or better than the femoral allograft ring in all evaluations. The use of adjunctive direct current electrical stimulation may provide a means of improving anterior interbody fusion.
Experimental Investigation of a Morphing Nacelle Ducted Fan
NASA Technical Reports Server (NTRS)
Kondor, Shayne A.; Moore, Mark
2005-01-01
The application of Circulation Control to the nacelle of a shrouded fan is proposed as a means to enhance off-design performance of the shrouded fan. Typically, a fixed geometry shroud is efficient at a single operating condition. Modifying circulation about the fixed geometry is proposed as a means to virtually morph the shroud without moving surfaces. This approach will enhance off-design-point performance with minimal complexity, weight, and cost. Termed the Morphing Nacelle, this concept provides an attractive propulsion option for Vertical Take-off and Landing (VTOL) aircraft, such conceptual Personal Air Vehicle (PAV) configurations proposed by NASA. An experimental proof of concept investigation of the Morphing Nacelle is detailed in this paper. A powered model shrouded fan model was constructed with Circulation Control (CC) devices integrated in the inlet and exit of the nacelle. Both CC devices consisted of an annular jet slot directing a jet sheet tangent to a curved surface, generally described as a Coanda surface. The model shroud was tailored for axial flight, with a diffusing inlet, but was operated off-design condition as a static lifting fan. Thrust stand experiments were conducted to determine if the CC devices could effectively improve off-design performance of the shrouded fan. Additional tests were conducted to explore the effectiveness of the CC devices a means to reduce peak static pressure on the ground below a lifting fan. Experimental results showed that off-design static thrust performance of the model was improved when the CC devices were employed under certain conditions. The exhaust CC device alone, while effective in diffusing the fan exhaust and improving weight flow into shroud inlet, tended to diminish performance of the fan with increased CC jet momentum. The inlet CC device was effective at reattaching a normally stalled inlet flow condition, proving an effective means of enhancing performance. A more dramatic improvement in static thrust was obtained when the inlet and exit CC devices were operated in unison, but only over a limited range of CC jet momentum. Operating the nacelle inlet and exit CC devices together proved very effective in reducing peak ground plane static pressure, while maintaining static thrust. The Morphing Nacelle concept proved effective at enhancing off-design performance of the model; however, additional investigation is necessary to generalize the results.
NASA Astrophysics Data System (ADS)
Soman, Anjaly; M, Manuraj; Unni, K. N. Narayanan
2018-05-01
Organic light emitting diodes (OLEDs) often face the issue of decreasing power efficiency with increasing brightness. Loss of charge carrier balance is one of the factors contributing to the efficiency roll-off. We demonstrate that by using a combination of doped electron transport layer (ETL) and a specially chosen electron blocking layer (EBL) having high hole mobility, this efficiency roll-off can be effectively suppressed. A tris-(8-hydroxyquinoline) aluminium (Alq3) based OLED has been fabricated with 2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H, 5H,11H-10-(2-benzothiazolyl) quinolizino-[9,9a, 1n gh]coumarin (C545T) as the emissive dopant. Bulk doping of the ETL with lithium fluoride (LiF) was optimized to increase the luminous intensity as well as the current efficiency. An EBL with high hole mobility introduced between the EML and the hole transport layer (HTL) improved the performance drastically, and the device brightness at 9 V got improved by a factor of 2.5 compared to that of the control device. While increasing the brightness from 100 cd/m2 to 1000 cd/m2, the power efficiency drop was 47% for the control device whereas only a drop of 15% was observed for the modified device. The possible mechanisms for the enhanced performance are discussed.
Weksler, Marc E; Weksler, Babette B
2012-01-01
Multitasking is a rapidly growing phenomenon affecting all segments of the population but is rarely as successful as its proponents believe. The use of mobile electronic devices contributes importantly to multitasking and cognitive overload. Although personal electronic devices provide many benefits, their adverse effects are frequently overlooked. Personal observation and a review of the scientific literature supports the view that overuse or misuse of personal electronic devices promotes cognitive overload, impairs multitasking and lowers performance at all ages but particularly in the elderly. This phenomenon appears to be rapidly increasing and threatens to become a tsunami as spreading electronic waves cause an 'epidemic of distraction'. Mobile electronic devices often bring benefits to their users in terms of rapid access to information. However, there is a dark side to the increasing addiction to these devices that challenges the health and well-being of the entire population, targeting, in particular, the aged and infirm. New approaches to information gathering can foster creativity if cognitive overload is avoided. Copyright © 2012 S. Karger AG, Basel.
Common uses and cited complications of energy in surgery.
Sankaranarayanan, Ganesh; Resapu, Rajeswara R; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu
2013-09-01
Instruments that apply energy to cut, coagulate, and dissect tissue with minimal bleeding facilitate surgery. The improper use of energy devices may increase patient morbidity and mortality. The current article reviews various energy sources in terms of their common uses and safe practices. For the purpose of this review, a general search was conducted through NCBI, SpringerLink, and Google. Articles describing laparoscopic or minimally invasive surgeries using single or multiple energy sources are considered, as are articles comparing various commercial energy devices in laboratory settings. Keywords, such as laparoscopy, energy, laser, electrosurgery, monopolar, bipolar, harmonic, ultrasonic, cryosurgery, argon beam, laser, complications, and death were used in the search. A review of the literature shows that the performance of the energy devices depends upon the type of procedure. There is no consensus as to which device is optimal for a given procedure. The technical skill level of the surgeon and the knowledge about the devices are both important factors in deciding safe outcomes. As new energy devices enter the market increases, surgeons should be aware of their indicated use in laparoscopic, endoscopic, and open surgery.
Impact of direct drug delivery via gastric access devices.
Kurien, Matthew; Penny, Hugo; Sanders, David S
2015-03-01
Gastric access devices such as nasogastric tubes and gastrostomy tubes are increasingly being used in clinical practice to provide both short- and long-term nutrition support therapy. Increasingly these devices are being utilized to help deliver oral medications, where swallowing is impaired. This concomitant administration of medications and enteral formulas could derive potential benefits in regard to time and cost; however, uncertainty exists regarding potential drug and nutrient interactions and the influence this may have on both safety and efficacy. This article provides an overview of the differing gastric access devices used in clinical practice and evaluates the evidence base for using oral medications via these routes. Alternative methods of drug administration are discussed, alongside common drug nutrient interactions and potential complications. Delivering medications via gastric access devices can be performed safely; however, careful consideration needs to be made regarding tube and patient influences, alongside drug-nutrient interactions. Improving practice in this area in the future necessitates enhancement of an evidence base to substantiate the safety of drug delivery via gastric access devices and improvement in education among healthcare professionals about the potential problems.
Shin, Sang-Yeol; Choi, J M; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun
2014-11-18
The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge(0.6)Se(0.4) (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications.
Do, Thanh Nho; Visell, Yon
2017-05-11
Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.
Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture
NASA Astrophysics Data System (ADS)
Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.
Microwave and millimeter-wave power generation in silicon carbide (SiC) IMPATT devices
NASA Technical Reports Server (NTRS)
Mehdi, I.; Haddad, George I.; Mains, R. K.
1989-01-01
There are two points that should be noted. First, in the thermal resistance calculations it is assumed that the device is operating at 773 K while the results of the room temperature simulations are used. This was done because there is not enough information to correctly predict the material parameters at 773 K. Since, in general, device performance degrades with increasing temperature, the cw results are perhaps a bit optimistic. Second, the electric field in these structures gets extremely high and there might be some possibility of tunneling. This was not incorporated into the simulation. Again, this could result in different device operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CURRY, MATTHEW LEON; WARD, H. LEE; & SKJELLUM, ANTHONY
Gibraltar is a library and associated test suite which performs Reed-Solomon coding and decoding of data buffers using graphics processing units which support NVIDIA's CUDA technology. This library is used to generate redundant data allowing for recovery of lost information. For example, a user can generate m new blocks of data from n original blocks, distributing those pieces over n+m devices. If any m devices fail, the contents of those devices can be recovered from the contents of the other n devices, even if some of the original blocks are lost. This is a generalized description of RAID, a techniquemore » for increasing data storage speed and size.« less
Telemedicine and cardiac implants: what is the benefit?
Varma, Niraj; Ricci, Renato Pietro
2013-01-01
Cardiac implantable electronic devices are increasing in prevalence. The post-implant follow-up is important for monitoring both device function and patient condition. However, practice is inconsistent. For example, ICD follow-up schedules vary from 3 monthly to yearly according to facility and physician preference and availability of resources. Recommended follow-up schedules impose significant burden. Importantly, no surveillance occurs between follow-up visits. In contrast, implantable devices with automatic remote monitoring capability provide a means for performing constant surveillance, with the ability to identify salient problems rapidly. Remote home monitoring reduces the volume of device clinic visits and provides early detection of patient and/or system problems. PMID:23211231
A novel nanoscale SOI MOSFET by embedding undoped region for improving self-heating effect
NASA Astrophysics Data System (ADS)
Ghaffari, Majid; Orouji, Ali A.
2018-06-01
Because of the low thermal conductivity of the SiO2 (oxide), the Buried Oxide (BOX) layer in a Silicon-On-Insulator Metal-Oxide Semiconductor Field-Effect Transistor (SOI MOSFET) prevents heat dissipation in the silicon layer and causes increase in the device lattice temperature. In this paper, a new technique is proposed for reducing Self-Heating Effects (SHEs). The key idea in the proposed structure is using a Silicon undoped Region (SR) in the nanoscale SOI MOSFET under the drain and channel regions in order to decrease the SHE. The novel transistor is named Silicon undoped Region SOI-MOSFET (SR-SOI). Due to the embedded silicon undoped region in the suitable place, the proposed structure has decreased the device lattice temperature. The location and dimensions of the proposed region have been carefully optimized to achieve the best results. This work has explored enhancement such as decreased maximum lattice temperature, increased electron mobility, increased drain current, lower DC drain conductance and higher DC transconductance and also decreased bandgap energy variations. Also, for modeling of the structure in the SPICE tools, the main characterizations have been extracted such as thermal resistance (RTH), thermal capacitance (CTH), and SHE characteristic frequency (fTH). All parameters are extracted in relation with the AC operation indicate excellent performance of the SR-SOI device. The results show that proposed region is a suitable alternative to oxide as a part of the buried oxide layer in SOI structures and has better performance in high temperature. Using two-dimensional (2-D) and two-carrier device simulation is done comparison of the SR-SOI structure with a Conventional SOI (C-SOI). As a result, the SR-SOI device can be regarded as a useful substitution for the C-SOI device in nanoscale integrated circuits as a reliable device.
Wang, Tongyu; Torres, David; Fernández, Félix E.; Wang, Chuan; Sepúlveda, Nelson
2017-01-01
The search for higher-performance photothermal microactuators has typically involved unavoidable trade-offs that hinder the demonstration of ubiquitous devices with high energy density, speed, flexibility, efficiency, sensitivity, and multifunctionality. Improving some of these parameters often implies deterioration of others. Photothermal actuators are driven by the conversion of absorbed optical energy into thermal energy, which, by different mechanisms, can produce mechanical displacement of a structure. We present a device that has been strategically designed to show high performance in every metric and respond to optical radiation of selected wavelength bands. The device combines the large energy densities and sensitivity of vanadium dioxide (VO2)–based actuators with the wavelength-selective absorption properties of single-walled carbon nanotube (SWNT) films of different chiralities. SWNT coatings increased the speed of VO2 actuators by a factor of 2 while decreasing the power consumption by approximately 50%. Devices coated with metallic SWNT were found to be 1.57 times more responsive to red light than to near-infrared, whereas semiconducting SWNT coatings resulted in 1.42 times higher responsivities to near-infrared light than to red light. The added functionality establishes a link between optical and mechanical domains of high-performance photoactuators and enables the future development of mechanical logic gates and electronic devices that are triggered by optical radiation from different frequency bands. PMID:28439553
Söderström, Hanna S; Bergqvist, Per-Anders
2004-09-15
Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.
Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; McQuillen, John B.; Chato, David J.
2013-01-01
This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.
Effect of HeartMate left ventricular assist device on cardiac autonomic nervous activity.
Kim, S Y; Montoya, A; Zbilut, J P; Mawulawde, K; Sullivan, H J; Lonchyna, V A; Terrell, M R; Pifarré, R
1996-02-01
Clinical performance of a left ventricular assist device is assessed via hemodynamic parameters and end-organ function. This study examined effect of a left ventricular assist device on human neurophysiology. This study evaluated the time course change of cardiac autonomic activity of 3 patients during support with a left ventricular assist device before cardiac transplantation. Cardiac autonomic activity was determined by power spectral analysis of short-term heart rate variability. The heart rate variability before cardiac transplantation was compared with that on the day before left ventricular assist device implantation. The standard deviation of the mean of the R-R intervals of the electrocardiogram, an index of vagal activity, increased to 27 +/- 7 ms from 8 +/- 0.6 ms. The modulus of power spectral components increased. Low frequency (sympathetic activity) and high frequency power (vagal activity) increased by a mean of 9 and 22 times of each baseline value (low frequency power, 5.2 +/- 3.0 ms2; high frequency power, 2.1 +/- 0.7 ms2). The low over high frequency power ratio decreased substantially, indicating an improvement of cardiac sympatho-vagal balance. The study results suggest that left ventricular assist device support before cardiac transplantation may exert a favorable effect on cardiac autonomic control in patients with severe heart failure.
Impact of visual impairment on service and device use by individuals with diabetic retinopathy.
Schmier, Jordana K; Covert, David W; Matthews, G Philip; Zakov, Z Nicholas
2009-01-01
This study was performed to assess the use of devices and caregiving among individuals with diabetic retinopathy and to evaluate the impact of visual acuity on use. Data were collected using a questionnaire that included items on demographic and clinical characteristics and on the use of services, assistive devices, and caregiving. The study was approved by an institutional review board. Two ophthalmologists identified and invited patients with diabetic retinopathy and provided best corrected visual acuity (BCVA). Patients provided informed consent. De-identified data were analysed in SAS(R). Of the 806 respondents, 55% were women; mean age was 65 years. Respondents were classified into five categories based on BCVA. Few respondents used services such as transportation and counseling, but there was wide use of assistive devices. More than 20% of respondents used a cane, a hand-held magnifier, and/or special glasses. The mean number of devices used increased significantly as BCVA deteriorated, as did hours of caregiving. Annual costs for services, devices, and caregiving increased as BCVA deteriorated. There are substantial differences in the use and costs of assistive devices and caregiving among individuals with diabetic retinopathy with varying BCVA.
Evolution and update on current devices for prosthetic breast reconstruction
2015-01-01
Over the past decade, the leading breast reconstruction modality has shifted from autologous tissue to implants. This trend reversal is multi-factorial but includes increasing bilateral mastectomies and the more widespread acceptance of implants due to stringent quality and safety regulatory surveillance by the US Food and Drug Administration (FDA). Since 2012, the US FDA has approved several new implant styles, shapes and textures, increasing the choices for patients and surgeons. Predictable, superior aesthetic results after prosthetic breast reconstruction are attainable, but require thoughtful planning, precise surgical technique and appropriate device selection based on several different patient and surgeon parameters, such as patient desires, body mass index, breast shape, mastectomy flap quality and tissue based bio-dimensional assessment. This article briefly reviews historic devices used in prosthetic breast reconstruction beginning in the 1960s through the modern generation devices used today. We reflect on the rigorous hurdles endured over the last several decades leading to the approval of silicone gel devices, along with their well-established safety and efficacy. The various implant characteristics can affect feel and performance of the device. The many different styles and features of implants and expanders are described emphasizing surgical indications, advantages and disadvantages of each device. PMID:26005642
Evaluating the ergonomics of BCI devices for research and experimentation.
Ekandem, Joshua I; Davis, Timothy A; Alvarez, Ignacio; James, Melva T; Gilbert, Juan E
2012-01-01
The use of brain computer interface (BCI) devices in research and applications has exploded in recent years. Applications such as lie detectors that use functional magnetic resonance imaging (fMRI) to video games controlled using electroencephalography (EEG) are currently in use. These developments, coupled with the emergence of inexpensive commercial BCI headsets, such as the Emotiv EPOC ( http://emotiv.com/index.php ) and the Neurosky MindWave, have also highlighted the need of performing basic ergonomics research since such devices have usability issues, such as comfort during prolonged use, and reduced performance for individuals with common physical attributes, such as long or coarse hair. This paper examines the feasibility of using consumer BCIs in scientific research. In particular, we compare user comfort, experiment preparation time, signal reliability and ease of use in light of individual differences among subjects for two commercially available hardware devices, the Emotiv EPOC and the Neurosky MindWave. Based on these results, we suggest some basic considerations for selecting a commercial BCI for research and experimentation. STATEMENT OF RELEVANCE: Despite increased usage, few studies have examined the usability of commercial BCI hardware. This study assesses usability and experimentation factors of two commercial BCI models, for the purpose of creating basic guidelines for increased usability. Finding that more sensors can be less comfortable and accurate than devices with fewer sensors.
Menne, Matthias F; Schrickel, Jan W; Nickenig, Georg; Al-Kassou, Baravan; Nelles, Dominik; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Sedaghat, Alexander
2018-05-24
The aim of this study was to establish in vitro bench-tests of left atrial appendage occlusion (LAAo) devices regarding tug force, radial force and sealing capacity. Two LAAo devices, namely the WATCHMAN™ and the Occlutech ® , of three different sizes underwent testing in novel dedicated in vitro setups. Radial force was assessed in a commercial radial force tester. At baseline, tug force of the WATCHMAN™ was significantly higher when compared to Occlutech ® for all devices. Repeated resheathing resulted in a reduction of device-diameter in the WATCHMAN™ devices of max. 7.9%, whereas diameters of Occlutech ® occluders remained unchanged. Tug force was not significantly impacted by resheathing in both devices. At baseline, sealing capacity in a bench-test using silicone LAA-models did not differ between the devices. Resheathing lead to an in vitro loss of sealing capacity of the WATCHMAN™ devices, increasing with resheathing and resulting in a max. peridevice leak of 91.1 ± 7.9%. Radial force was higher for the Occlutech ® devices and decreased for WATCHMAN™ occluders after resheathing. The WATCHMAN™ occluder series showed progressive deformation, increased peridevice leakage and decreased radial force after resheathing, presumably as a result of diameter reduction. Tug force of the WATCHMAN™ was not impaired by resheathing and was significantly higher than that of the Occlutech ® device.
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Long; Xiong, Yuan; Zhang, Qianqian
The commercialization of nonfullerene organic solar cells (OSCs) relies critically on the response under typical operating conditions (for instance, temperature, humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the device efficiencies of printed nonfullerene OSC devices by blade-coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and stable nonfullerene combination was introduced by pairing a commercially available nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12%-efficiency can be achieved in spincoated FTAZ:IT-Mmore » devices using a single halogen-free solvent. More importantly, chlorinefree, in air blade-coating of FTAZ:IT-M is able to yield a PCE of nearly 11%, despite a humidity of ~50%. X-ray scattering results reveal that large π-π coherence lengths, high degree of faceon orientation with respect to the substrate, and small domain spacings of ~20 nm are closely correlated with such high device performance. Our material system and approach yields the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and holds great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
Polymer-based actuators for virtual reality devices
NASA Astrophysics Data System (ADS)
Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven
2004-07-01
Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.
NASA Astrophysics Data System (ADS)
Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang
2017-10-01
Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.
[National registry on cardiac electrophysiology (2010 and 2011)].
Madeira, Francisco; Oliveira, Mário; Ventura, Miguel; Primo, João; Bonhorst, Daniel; Morais, Carlos
2013-02-01
Based on a survey sent to Portuguese centers that perform diagnostic and interventional electrophysiology and/or implant cardioverter-defibrillators (ICDs), the authors analyze the number and type of procedures performed during 2010 and 2011 and compare these data with previous years. In 2011, a total of 2533 diagnostic electrophysiologic procedures were performed, which were followed by ablation in 2013 cases, a steady increase over previous years. The largest share of this increase compared to 2010 was in atrial fibrillation, which is now the second most frequent indication for ablation, after atrioventricular nodal reentrant tachycardia. The total number of ICDs implanted in 2011 was 1084, of which 339 were biventricular (BiV) cardiac resynchronization devices (BiV ICDs). This represents an increase in the total number relative to previous years, 2011 being the first year in which the rate of new ICD implantations in Portugal exceeded 100 per million population. However, compared to 2010, the number of BiV ICDs implanted decreased, despite the recent publication of updated European guidelines on device therapy in heart failure, which clarified and expanded the indications for implantation of these devices. Some comments are made on the current status of cardiac electrophysiology in Portugal and on factors that may influence its development in the coming years. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Zinc oxide integrated area efficient high output low power wavy channel thin film transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.
2013-11-25
We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.
NASA Astrophysics Data System (ADS)
Gordon, Luke
Our era is defined by its technology, and our future is dependent on its continued evolution. Over the past few decades, we have witnessed the expansion of advanced technology into all walks of life and all industries, driven by the exponential increase in the speed and power of semiconductor-based devices. However, as the length scale of devices reaches the atomic scale, a deep understanding of atomistic theory and its application is increasingly crucial. In order to illustrate the power of an atomistic approach to understanding devices, we will present results and conclusions from three interlinked projects: n-type doping of III-nitride semiconductors, defects for quantum computing, and macroscopic simulations of devices. First, we will study effective n-type doping of III-nitride semiconductors and their alloys, and analyze the barriers to effective n-type doping of III-nitrides and their alloys. In particular, we will study the formation of DX centers, and predict alloy composition onsets for various III-nitride alloys. In addition, we will perform a comprehensive study of alternative dopants, and provide potential alternative dopants to improve n-type conductivity in AlN and wide-band-gap nitride alloys. Next, we will discuss how atomic-scale defects can act as a curse for the development of quantum computers by contributing to decoherence at an atomic scale, specifically investigating the effect of two-level state defects (TLS) systems in alumina as a source of decoherence in superconducting qubits based on Josephson junctions; and also as a blessing, by allowing the identification of wholly new qubits in different materials, specifically showing calculations on defects in SiC for quantum computing applications. Finally, we will provide examples of recent calculations we have performed for devices using macrosopic device simulations, largely in conjunction with first-principles calculations. Specifically, we will discuss the power of using a multi-scale approach to accurately model oxide and nitride-based heterostructures, and thereby illustrate our ability to predict device performance on scales unreachable using a purely first-principles approach.
NASA Astrophysics Data System (ADS)
Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan
2016-07-01
The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.
Nordbeck, Peter; Fidler, Florian; Friedrich, Michael T; Weiss, Ingo; Warmuth, Marcus; Gensler, Daniel; Herold, Volker; Geistert, Wolfgang; Jakob, Peter M; Ertl, Georg; Ritter, Oliver; Ladd, Mark E; Bauer, Wolfgang R; Quick, Harald H
2012-12-01
There are serious concerns regarding safety when performing magnetic resonance imaging in patients with implanted conductive medical devices, such as cardiac pacemakers, and associated leads, as severe incidents have occurred in the past. In this study, several approaches for altering an implant's lead design were systematically developed and evaluated to enhance the safety of implanted medical devices in a magnetic resonance imaging environment. The individual impact of each design change on radiofrequency heating was then systematically investigated in functional lead prototypes at 1.5 T. Radiofrequency-induced heating could be successfully reduced by three basic changes in conventional pacemaker lead design: (1) increasing the lead tip area, (2) increasing the lead conductor resistance, and (3) increasing outer lead insulation conductivity. The findings show that radiofrequency energy pickup in magnetic resonance imaging can be reduced and, therefore, patient safety can be improved with dedicated construction changes according to a "safe by design" strategy. Incorporation of the described alterations into implantable medical devices such as pacemaker leads can be used to help achieve favorable risk-benefit-ratios when performing magnetic resonance imaging in the respective patient group. Copyright © 2012 Wiley Periodicals, Inc.
Further Development of a Robotic-Assisted Transfer Device
Burkman, Jessica; Grindle, Garrett; Wang, Hongwu; Kelleher, Annmarie
2017-01-01
Background: The task of performing transfers, such as from a wheelchair to a bed, has a high risk of injury to both the caregiver and the person being transferred. Although mechanical transfer devices can reduce these risks, these devices are not meant for use in the community and they still place strain on the caregiver when used. Purpose: The aim of this study is to describe feedback gathered from focus groups of potential users of the Robotic-Assisted Transfer Device (RATD) and describe design changes aimed at preparing the device for the next step in the development process. Method: The RATD was transferred to a newer electric-powered wheelchair (EPW), key components were redesigned, and the control program was updated to increase the safety of the device. Two focus groups, one consisting of people with disabilities and the other consisting of clinicians and caregivers, were conducted to gather feedback from potential users. Results: Error checking, safety zones, a motor brake, and a new track helped increase the safety of the device. Sixty-three percent of the people with disabilities and 83% of caregivers surveyed said they would use the device. Conclusions: The results from the focus groups were positive and the design changes were successful, but more development is needed before the RATD can be marketed. PMID:29339890
Transfer having a coupling coefficient higher than its active material
NASA Technical Reports Server (NTRS)
Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)
2001-01-01
A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.
Solving data-at-rest for the storage and retrieval of files in ad hoc networks
NASA Astrophysics Data System (ADS)
Knobler, Ron; Scheffel, Peter; Williams, Jonathan; Gaj, Kris; Kaps, Jens-Peter
2013-05-01
Based on current trends for both military and commercial applications, the use of mobile devices (e.g. smartphones and tablets) is greatly increasing. Several military applications consist of secure peer to peer file sharing without a centralized authority. For these military applications, if one or more of these mobile devices are lost or compromised, sensitive files can be compromised by adversaries, since COTS devices and operating systems are used. Complete system files cannot be stored on a device, since after compromising a device, an adversary can attack the data at rest, and eventually obtain the original file. Also after a device is compromised, the existing peer to peer system devices must still be able to access all system files. McQ has teamed with the Cryptographic Engineering Research Group at George Mason University to develop a custom distributed file sharing system to provide a complete solution to the data at rest problem for resource constrained embedded systems and mobile devices. This innovative approach scales very well to a large number of network devices, without a single point of failure. We have implemented the approach on representative mobile devices as well as developed an extensive system simulator to benchmark expected system performance based on detailed modeling of the network/radio characteristics, CONOPS, and secure distributed file system functionality. The simulator is highly customizable for the purpose of determining expected system performance for other network topologies and CONOPS.
Performance Evaluation of the IrisScan2200 Against Four Respirator Masks
DOE Office of Scientific and Technical Information (OSTI.GOV)
WRIGHT, LARRY J.; TERRY, PRESTON L.
2002-02-02
The use of biometrics for the identification of individuals is becoming more prevalent in society and in the general government community. As the demand for these devices increases, it becomes necessary for the user community to have the facts needed to determine which device is the most appropriate for any given application. One such application is the use of biometric devices in areas where an individual may not be able to present a biometric feature that requires contact with the identifier (e.g., when dressed in anti-contamination suits or when wearing a respirator). This paper discusses a performance evaluation conducted onmore » the IrisScan2200 from Iridian Technologies to determine if it could be used in such a role.« less
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel
2014-07-22
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less
Zabala-Travers, Silvina; Choi, Mina; Cheng, Wei-Chung
2015-01-01
Purpose: Even though the use of color in the interpretation of medical images has increased significantly in recent years, the ad hoc manner in which color is handled and the lack of standard approaches have been associated with suboptimal and inconsistent diagnostic decisions with a negative impact on patient treatment and prognosis. The purpose of this study is to determine if the choice of color scale and display device hardware affects the visual assessment of patterns that have the characteristics of functional medical images. Methods: Perfusion magnetic resonance imaging (MRI) was the basis for designing and performing experiments. Synthetic images resembling brain dynamic-contrast enhanced MRI consisting of scaled mixtures of white, lumpy, and clustered backgrounds were used to assess the performance of a rainbow (“jet”), a heated black-body (“hot”), and a gray (“gray”) color scale with display devices of different quality on the detection of small changes in color intensity. The authors used a two-alternative, forced-choice design where readers were presented with 600 pairs of images. Each pair consisted of two images of the same pattern flipped along the vertical axis with a small difference in intensity. Readers were asked to select the image with the highest intensity. Three differences in intensity were tested on four display devices: a medical-grade three-million-pixel display, a consumer-grade monitor, a tablet device, and a phone. Results: The estimates of percent correct show that jet outperformed hot and gray in the high and low range of the color scales for all devices with a maximum difference in performance of 18% (confidence intervals: 6%, 30%). Performance with hot was different for high and low intensity, comparable to jet for the high range, and worse than gray for lower intensity values. Similar performance was seen between devices using jet and hot, while gray performance was better for handheld devices. Time of performance was shorter with jet. Conclusions: Our findings demonstrate that the choice of color scale and display hardware affects the visual comparative analysis of pseudocolor images. Follow-up studies in clinical settings are being considered to confirm the results with patient images. PMID:26127048
Energy efficiency analysis and optimization for mobile platforms
NASA Astrophysics Data System (ADS)
Metri, Grace Camille
The introduction of mobile devices changed the landscape of computing. Gradually, these devices are replacing traditional personal computer (PCs) to become the devices of choice for entertainment, connectivity, and productivity. There are currently at least 45.5 million people in the United States who own a mobile device, and that number is expected to increase to 1.5 billion by 2015. Users of mobile devices expect and mandate that their mobile devices have maximized performance while consuming minimal possible power. However, due to the battery size constraints, the amount of energy stored in these devices is limited and is only growing by 5% annually. As a result, we focused in this dissertation on energy efficiency analysis and optimization for mobile platforms. We specifically developed SoftPowerMon, a tool that can power profile Android platforms in order to expose the power consumption behavior of the CPU. We also performed an extensive set of case studies in order to determine energy inefficiencies of mobile applications. Through our case studies, we were able to propose optimization techniques in order to increase the energy efficiency of mobile devices and proposed guidelines for energy-efficient application development. In addition, we developed BatteryExtender, an adaptive user-guided tool for power management of mobile devices. The tool enables users to extend battery life on demand for a specific duration until a particular task is completed. Moreover, we examined the power consumption of System-on-Chips (SoCs) and observed the impact on the energy efficiency in the event of offloading tasks from the CPU to the specialized custom engines. Based on our case studies, we were able to demonstrate that current software-based power profiling techniques for SoCs can have an error rate close to 12%, which needs to be addressed in order to be able to optimize the energy consumption of the SoC. Finally, we summarize our contributions and outline possible direction for future research in this field.
Ong, Carmichael F.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Goal Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human–robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. Methods A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Results Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135 Nm, 365 Nm, and 297 Nm to the ankle, knee, and hip, respectively. Conclusion Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Significance Simulation can aid in the design of performance-enhancing technologies. PMID:26258930
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun
The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.
Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei
2018-01-01
In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing for scale: development of the ReMotion Knee for global emerging markets.
Hamner, Samuel R; Narayan, Vinesh G; Donaldson, Krista M
2013-09-01
Amputees living in developing countries have a profound need for affordable and reliable lower limb prosthetic devices. The World Health Organization estimates there are approximately 30 million amputees living in low-income countries, with up to 95% lacking access to prosthetic devices. Effective prosthetics can significantly affect the lives of these amputees by increasing opportunity for employment and providing improvements to long-term health and well-being. However, current solutions are inadequate: state-of-the-art solutions from the US and Europe are cost-prohibitive, while low-cost devices have been challenged by poor quality and/or unreliable performance, and have yet to achieve large scale impact. The introduction of new devices is hampered by the lack of a cohesive prosthetics industry in low-income areas; the current network of low-cost prosthetic clinics is informal and loosely organized with significant disparities in geography, patient volume and demographics, device procurement, clinical and logistical infrastructure, and funding. At D-Rev (Design Revolution) we are creating the ReMotion Knee, which is an affordable polycentric prosthetic knee joint that performs on par with devices in more industrialized regions, like the US and Europe. As of September 2012, over 4200 amputees have been fitted with the initial version of the ReMotion Knee through a partnership with the JaipurFoot Organization, with an 79% compliance rate after 2 years. We are currently scaling production of the ReMotion Knee using centralized manufacturing and distribution to serve the existing clinics in low-income countries and increase the availability of devices for amputees without access to appropriate care. At D-Rev, we develop products that target these customers through economically-sustainable models and provide a measurable impact in the lives of the world's amputees.
Stergiou, George S; Karpettas, Nikos; Atkins, Neil; O'Brien, Eoin
2011-04-01
Since 2002 when the European Society of Hypertension International Protocol (ESH-IP) was published it has become the preferred protocol for validating blood pressure monitors worldwide. In 2010, a revised version of the ESH-IP with more stringent criteria was published. This study assesses the impact of applying the revised ESH-IP criteria. A systematic literature review of ESH-IP studies reported between 2002 and 2010 was conducted. The impact of applying the ESH-IP 2010 criteria retrospectively on the data reported in these studies was investigated. The performance of the oscillometric devices in the last decade was also investigated on the basis of the ESH-IP criteria. Among 119 published studies, 112 with sufficient data were analyzed. According to ESH-IP 2002, the test device failed in 19 studies, whereas by applying the ESH-IP 2010 criteria in 28 additional studies increased the failure rate from 17 to 42%. Of these 28 studies, in 20 (71%) the test device failed at part 1 (accuracy per measurement) and in 22 (79%) at part 2 (accuracy per subject). Most of the failures involved the '5 mmHg or less' criterion. In the last decade there has been a consistent trend toward improved performance of oscillometric devices assessed on the basis of the ESH-IP criteria. This retrospective analysis shows that the stricter revised ESH-IP 2010 criteria will noticeably increase the failure rate of devices being validated. Oscillometric devices are becoming more accurate, and the revised ESH-IP by acknowledging this trend will allow more accurate devices to enter the market.
Schober, P; Krage, R; Lagerburg, V; Van Groeningen, D; Loer, S A; Schwarte, L A
2014-04-01
Current cardiopulmonary resuscitation (CPR)-guidelines recommend an increased chest compression depth and rate compared to previous guidelines, and the use of automatic feedback devices is encouraged. However, it is unclear whether this compression depth can be maintained at an increased frequency. Moreover, the underlying surface may influence accuracy of feedback devices. We investigated compression depths over time and evaluated the accuracy of a feedback device on different surfaces. Twenty-four volunteers performed four two-minute blocks of CPR targeting at current guideline recommendations on different surfaces (floor, mattress, 2 backboards) on a patient simulator. Participants rested for 2 minutes between blocks. Influences of time and different surfaces on chest compression depth (ANOVA, mean [95% CI]) and accuracy of a feedback device to determine compression depth (Bland-Altman) were assessed. Mean compression depth did not reach recommended depth and decreased over time during all blocks (first block: from 42 mm [39-46 mm] to 39 mm [37-42 mm]). A two-minute resting period was insufficient to restore compression depth to baseline. No differences in compression depth were observed on different surfaces. The feedback device slightly underestimated compression depth on the floor (bias -3.9 mm), but markedly overestimated on the mattress (bias +12.6 mm). This overestimation was eliminated after correcting compression depth by a second sensor between manikin and mattress. Strategies are needed to improve chest compression depth, and more than two providers should alternate with chest compressions. The underlying surface does not necessarily adversely affect CPR performance but influences accuracy of feedback devices. Accuracy is improved by a second, posterior, sensor.
Use of diagnostic imaging procedures and fetal monitoring devices in the care of pregnant women.
Moore, R M; Jeng, L L; Kaczmarek, R G; Placek, P J
1990-01-01
Medical devices and diagnostic imaging procedures such as ultrasound, X-rays, and electronic fetal monitoring devices are used in the medical care of many pregnant women today. The responsibility for the safety and effectiveness of these diagnostic technologies is shared by a number of Public Health Service agencies, one of which is the Center for Devices and Radiological Health (CDRH), a unit within the Food and Drug Administration. The CDRH collaborated with the National Center for Health Statistics (NCHS) in conducting a study of recent trends in the uses of diagnostic ultrasound, medical X-rays, and electronic fetal monitoring devices in the medical care of pregnant women. This study used data from the 1980 National Natality and Fetal Mortality Surveys and the 1987 pretest to the National Maternal and Infant Health Survey. Hospitals and prenatal care providers of the pregnant women contributed information regarding the use of these medical devices. Between 1980 and 1987, ultrasound use more than doubled, increasing from 33.5 percent of pregnancies in 1980 to 78.8 percent in 1987 (P less than 0.001). More ultrasound examinations were performed earlier in gestation in 1987 than in 1980, with 10.1 percent being performed during the first trimester in 1987, compared with 6.9 percent in 1980 (P less than 0.001). Use of external electronic fetal monitoring devices during delivery also increased significantly between 1980 and 1987, from 33.5 percent to 74.6 percent (P less than 0.001). Use of medical X-rays among women with live births remained relatively unchanged, 15.0 percent in 1980 and 15.3 percent in 1987 (P = .282). The implications of these trends are discussed.
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.
V2O5 thin film deposition for application in organic solar cells
NASA Astrophysics Data System (ADS)
Arbab, Elhadi A. A.; Mola, Genene Tessema
2016-04-01
Vanadium pentoxide V2O5 films were fabricated by way of electrochemical deposition technique for application as hole transport buffer layer in organic solar cell. A thin and uniform V2O5 films were successfully deposited on indium tin oxide-coated glass substrate. The characterization of surface morphology and optical properties of the deposition suggest that the films are suitable for photovoltaic application. Organic solar cell fabricated using V2O5 as hole transport buffer layer showed better devices performance and environmental stability than those devices fabricated with PEDOT:PSS. In an ambient device preparation condition, the power conversion efficiency increases by nearly 80 % compared with PEDOT:PSS-based devices. The devices lifetime using V2O5 buffer layer has improved by a factor of 10 over those devices with PEDOT:PSS.
Thin film materials and devices for resistive temperature sensing applications
NASA Astrophysics Data System (ADS)
Basantani, Hitesh A.
Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.
Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices.
Neal, Adam T; Mou, Shin; Lopez, Roberto; Li, Jian V; Thomson, Darren B; Chabak, Kelson D; Jessen, Gregg H
2017-10-16
Understanding the origin of unintentional doping in Ga 2 O 3 is key to increasing breakdown voltages of Ga 2 O 3 based power devices. Therefore, transport and capacitance spectroscopy studies have been performed to better understand the origin of unintentional doping in Ga 2 O 3 . Previously unobserved unintentional donors in commercially available [Formula: see text] Ga 2 O 3 substrates have been electrically characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the unintentional donor is confirmed by temperature dependent admittance spectroscopy, with an activation energy of 131 meV determined via that technique, in agreement with Hall effect measurements. With the concentration of this donor determined to be in the mid to high 10 16 cm -3 range, elimination of this donor from the drift layer of Ga 2 O 3 power electronics devices will be key to pushing the limits of device performance. Indeed, analytical assessment of the specific on-resistance (R onsp ) and breakdown voltage of Schottky diodes containing the 110 meV donor indicates that incomplete ionization increases R onsp and decreases breakdown voltage as compared to Ga 2 O 3 Schottky diodes containing only the shallow donor. The reduced performance due to incomplete ionization occurs in addition to the usual tradeoff between R onsp and breakdown voltage.
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-01-01
BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-04-01
Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.
NASA Astrophysics Data System (ADS)
Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.
2018-01-01
Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.
Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems
NASA Astrophysics Data System (ADS)
Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.
2012-06-01
There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.
A comparison of wearable fitness devices.
Kaewkannate, Kanitthika; Kim, Soochan
2016-05-24
Wearable trackers can help motivate you during workouts and provide information about your daily routine or fitness in combination with your smartphone without requiring potentially disruptive manual calculations or records. This paper summarizes and compares wearable fitness devices, also called "fitness trackers" or "activity trackers." These devices are becoming increasingly popular in personal healthcare, motivating people to exercise more throughout the day without the need for lifestyle changes. The various choices in the market for wearable devices are also increasing, with customers searching for products that best suit their personal needs. Further, using a wearable device or fitness tracker can help people reach a fitness goal or finish line. Generally, companies display advertising for these kinds of products and depict them as beneficial, user friendly, and accurate. However, there are no objective research results to prove the veracity of their words. This research features subjective and objective experimental results, which reveal that some devices perform better than others. The four most popular wristband style wearable devices currently on the market (Withings Pulse, Misfit Shine, Jawbone Up24, and Fitbit Flex) are selected and compared. The accuracy of fitness tracking is one of the key components for fitness tracking, and some devices perform better than others. This research shows subjective and objective experimental results that are used to compare the accuracy of four wearable devices in conjunction with user friendliness and satisfaction of 7 real users. In addition, this research matches the opinions between reviewers on an Internet site and those of subjects when using the device. Withings Pulse is the most friendly and satisfactory from the users' viewpoint. It is the most accurate and repeatable for step and distance tracking, which is the most important measurement of fitness tracking, followed by Fitbit Flex, Jawbone Up24, and Misfit Shine. In contrast, Misfit Shine has the highest score for design and hardware, which is also appreciated by users. From the results of experiments on four wearable devices, it is determined that the most acceptable in terms of price and satisfaction levels is the Withings Pulse, followed by the Fitbit Flex, Jawbone Up24, and Misfit Shine.
NASA Astrophysics Data System (ADS)
Dutta, Arka; Koley, Kalyan; Sarkar, Chandan K.
2014-11-01
In this paper, a systematic RF performance analysis of double-gate strained silicon (DGSS) nMOSFETs is presented. The analysis is focused upon impact of Germanium mole-fraction variation on RF performance of underlap engineered DGSS nMOSFET. The RF performance of the device is analysed as a function of intrinsic RF figure of merits (FOMs) including non-quasi static effects (NQS). The RF FOMs are represented by the intrinsic gate to source/drain capacitance (Cgs and Cgd) and resistance (Rgs and Rgd), the transport delay (τm), the intrinsic inductance (Lsd), the cut-off frequency (fT), and the maximum oscillation frequency (fMAX). The results of the study suggested a significant improvement in the device performance, up to 40% increase in Germanium mole fraction (χ).
Testing methodologies and systems for semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Wieckowski, Michael
Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.
Lessard, Benoît H; Dang, Jeremy D; Grant, Trevor M; Gao, Dong; Seferos, Dwight S; Bender, Timothy P
2014-09-10
Previous studies have shown that the use of bis(tri-n-hexylsilyl oxide) silicon phthalocyanine ((3HS)2-SiPc) as an additive in a P3HT:PC61BM cascade ternary bulk heterojunction organic photovoltaic (BHJ OPV) device results in an increase in the short circuit current (J(SC)) and efficiency (η(eff)) of up to 25% and 20%, respectively. The previous studies have attributed the increase in performance to the presence of (3HS)2-SiPc at the BHJ interface. In this study, we explored the molecular characteristics of (3HS)2-SiPc which makes it so effective in increasing the OPV device J(SC) and η(eff. Initially, we synthesized phthalocyanine-based additives using different core elements such as germanium and boron instead of silicon, each having similar frontier orbital energies compared to (3HS)2-SiPc and tested their effect on BHJ OPV device performance. We observed that addition of bis(tri-n-hexylsilyl oxide) germanium phthalocyanine ((3HS)2-GePc) or tri-n-hexylsilyl oxide boron subphthalocyanine (3HS-BsubPc) resulted in a nonstatistically significant increase in JSC and η(eff). Secondly, we kept the silicon phthalocyanine core and substituted the tri-n-hexylsilyl solubilizing groups with pentadecyl phenoxy groups and tested the resulting dye in a BHJ OPV. While an increase in JSC and η(eff) was observed at low (PDP)2-SiPc loadings, the increase was not as significant as (3HS)2-SiPc; therefore, (3HS)2-SiPc is a unique additive. During our study, we observed that (3HS)2-SiPc had an extraordinary tendency to crystallize compared to the other compounds in this study and our general experience. On the basis of this observation, we have offered a hypothesis that when (3HS)2-SiPc migrates to the P3HT:PC61BM interface the reason for its unique performance is not solely due to its frontier orbital energies but also might be due to a high driving force for crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dong; Song, Jiakun; Yu, Hailong
2016-03-14
High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less
Altinbay, Deniz; Adibelli, Fatih Mehmet; Taskin, Ibrahim; Tekin, Adil
2016-01-01
To evaluate the reading performance using the Minnesota low vision reading (MNREAD) charts, of patients with age-related macular degeneration (AMD) who use low vision aid (LVA) devices. This prospective study enrolled 27 patients with AMD. Distance visual acuity (VA) was evaluated with a distance chart designed for patients with low vision. Near vision and reading performance were evaluated with the Turkish version of the MNREAD charts. Unaided vision and vision with LVA devices and high spherical add near glasses was measured. P <0.05 was considered statistically significant. The mean unaided near VA was 1.05 ± 0.27 log of the minimum angle of resolution (LogMAR). The mean VA with the LVA devices was 0.71 ± 0.41 LogMAR. Reading acuity ranged between 1.15 and 0.21 LogMAR, critical print size was between - 1.2 and 0.2 LogMAR. Maximum reading speeds were between 0 and 103 words/min. The cases are divided into groups in terms of reading speed according to age, gender, diagnosis, and education. Reading speed was negatively correlated to increasing age. MNREAD reading charts can be used to evaluate reading performance in patients with AMD with low vision. The outcomes of the present study indicate that optical correction is adequate for near VA requirements in this patient population. However, optical correction was inadequate for improving reading performance. Appropriate rehabilitation programs can be used to increase reading speed.
NASA Astrophysics Data System (ADS)
Wang, Qi; Peng, Zhijian; Wang, Yang; Fu, Xiuli
2018-06-01
SnOx-Nb2O5 thin film varistors were prepared by hot-dipping oxygen-deficient tin oxide films in Nb2O5 powder in air, and the influence of hot-dipping temperature (HDT) on the varistor performance of the samples was systematically explored. When the HDT increased from 300 to 700 °C, the nonlinear coefficient of the samples raised first and then dropped down, reaching the maximum of 14.73 at 500 °C, and the breakdown electric field exhibited a similar variation trend, gaining the peak value of 0.0201 V/nm at this temperature. Correspondingly, the leakage current decreased first and then increased with increasing HDT, reaching the minimum of 17.1 mA/cm2 at 500 °C. Besides, it was proposed that a grain-boundary defect barrier model was responsible for the nonlinear behavior of the obtained SnOx-Nb2O5 film varistors. This high-performance thin film varistor with nanoscaled thickness might be much promising in nano-devices or devices working in low voltage.
Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D
2018-01-31
We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.
The Girona Territori Cardioprotegit Project: Performance Evaluation of Public Defibrillators.
Loma-Osorio, Pablo; Nuñez, Maria; Aboal, Jaime; Bosch, Daniel; Batlle, Pau; Ruiz de Morales, Ester; Ramos, Rafael; Brugada, Josep; Onaga, Hisao; Morales, Alex; Olivet, Josep; Brugada, Ramon
2018-02-01
In recent years, public access defibrillation programs have exponentially increased the availability of automatic external defibrillators (AED) in public spaces but there are no data on their performance in our setting. We conducted a descriptive analysis of the performance of AED since the launch of a public defibrillation program in our region. A retrospective analysis was conducted of electrocardiographic tracings and the performance of AED in a public defibrillation program from June 2011 to June 2015 in the province of Girona, Spain. There were 231 AED activations. Full information was available on 188 activations, of which 82% corresponded to mobile devices and 18% to permanent devices. Asystole was the most prevalent rhythm (42%), while ventricular fibrillation accounted for 23%. The specificity of the device in identifying a shockable rhythm was 100%, but there were 8 false negatives (sensitivity 83%). There were 47 shockable rhythms, with a spontaneous circulation recovery rate of 49% (23 cases). There were no accidents related to the use of the device. Nearly half of the recorded rhythms were asystole. The AED analyzed showed excellent safety and specificity, with moderate sensitivity. Half the patients with a shockable rhythm were successfully treated by the AED. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Long term performance of wearable transducer for motion energy harvesting
NASA Astrophysics Data System (ADS)
McGarry, Scott A.; Behrens, Sam
2010-04-01
Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.
Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage
NASA Astrophysics Data System (ADS)
Thompson, Travis
Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage. First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work. The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.
ERIC Educational Resources Information Center
Mechling, Linda C.; Gast, David L.; Seid, Nicole H.
2010-01-01
The purpose of this study was to evaluate whether the use of a personal digital assistant (PDA), with picture, auditory, and video prompts, would serve as a portable self-prompting device to facilitate independent task performance by high school age students with moderate intellectual disabilities. A multiple probe design was used across three…
Zhang, Hong; Xu, Meifeng; Cui, Rongli; Guo, Xihong; Yang, Shangyuan; Liao, Liangsheng; Jia, Quanjie; Chen, Yu; Dong, Jinquan; Sun, Baoyun
2013-09-06
In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO₃/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.
Choi, Jaeyoo; Jung, Yeonsu; Yang, Seung Jae; Oh, Jun Young; Oh, Jinwoo; Jo, Kiyoung; Son, Jeong Gon; Moon, Seung Eon; Park, Chong Rae; Kim, Heesuk
2017-08-22
As practical interest in flexible/or wearable power-conversion devices increases, the demand for high-performance alternatives to thermoelectric (TE) generators based on brittle inorganic materials is growing. Herein, we propose a flexible and ultralight TE generator (TEG) based on carbon nanotube yarn (CNTY) with excellent TE performance. The as-prepared CNTY shows a superior electrical conductivity of 3147 S/cm due to increased longitudinal carrier mobility derived from a highly aligned structure. Our TEG is innovative in that the CNTY acts as multifunctions in the same device. The CNTY is alternatively doped into n- and p-types using polyethylenimine and FeCl 3 , respectively. The highly conductive CNTY between the doped regions is used as electrodes to minimize the circuit resistance, thereby forming an all-carbon TEG without additional metal deposition. A flexible TEG based on 60 pairs of n- and p-doped CNTY shows the maximum power density of 10.85 and 697 μW/g at temperature differences of 5 and 40 K, respectively, which are the highest values among reported TEGs based on flexible materials. We believe that the strategy proposed here to improve the power density of flexible TEG by introducing highly aligned CNTY and designing a device without metal electrodes shows great potential for the flexible/or wearable power-conversion devices.
Graphene-Composite Carbon Nanofiber-Based Electrodes for Energy Storage Devices
2014-04-18
electrochemical supercapacitors . 1. Development of highly conductive graphene composite CNF webs Graphene, a single-atom-thick sheet of sp 2 bonded...electrochemical supercapacitors and evaluated their performance. The capacitance increased with an increase in the amount of MnO2 NWs (duration of the deposition
Deb, Nabankur; Li, Bohao; Skoda, Maximilian; ...
2016-02-08
Nanoscale bulk heterojunction (BHJ) systems, consisting of fullerenes dispersed in conjugated polymers as the active component, have been actively studied over the last decades in order to produce high performance organic photovoltaics (OPVs). A significant role in device efficiency is played by the active layer morphology, but despite considerable study, a full understanding of the exact role that morphology plays and therefore a definitive method to produce and control an ideal morphology is lacking. In order to understand the BHJ phase behavior and associated morphology in these devices, we have used neutron reflection, together with grazing incidence X-ray and neutronmore » scattering and X-ray photoelectron spectroscopy (XPS) to determine the morphology of the BHJ active layer in functional devices. We have studied nine model BHJ systems based on mixtures of three poly(3-alkyl thiophenes, P3AT) (A=butyl, hexyl, octyl) blended with three different fullerene derivatives, which provides variations in crystallinity and miscibility within the BHJ composite. In studying properties of functional devices, we show a direct correlation between the observed morphology within the BHJ layer and the device performance metrics, i.e., the short-circuit current (J SC), fill factor (FF), open-circuit voltage (VOC) and overall power conversion efficiency (PCE). Using these model systems, the effect of typical thermal annealing processes on the BHJ morphology through the film thickness as a function of the polythiophene-fullerene mixtures and different electron transport layer interfaces has been determined. It is shown that fullerene enrichment occurs at both the electrode interfaces after annealing. The degree of fullerene enrichment is found to strongly correlate with J SC and to a lesser degree with FF. Finally, based on these findings we demonstrate that by deliberately adding a fullerene layer at the electron transport layer interface, J SC can be increased by up to 20%, resulting in an overall increase in PCE of 5%.« less
Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens
2017-01-01
In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung
2016-12-28
The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (J sc ), open-circuit voltage (V oc ), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C 60 -butyric acid methyl ester (PC 60 BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in V oc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung
2014-01-01
Background The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). Purpose To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Methods Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. Results The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. Conclusions The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain. PMID:25329643
Foo, Ning-Ping; Chang, Jer-Hao; Su, Shih-Bin; Chen, Kow-Tong; Cheng, Ching-Fa; Chen, Pei-Chung; Lin, Tsung-Yi; Guo, How-Ran
2014-01-01
The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable. We designed a stabilization device, and in a randomized crossover trial we found performing CPR in a moving ambulance with the device (MD) could achieve better efficiency than that without the device (MND), but the efficiency was lower than that in a non-moving ambulance (NM). To evaluate whether a modified version of the stabilization device, can promote further the quality of CPR during ambulance transportation. Participants of the previous study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The primary outcomes were effective chest compressions and no-flow fraction recorded by a skill-reporter manikin. The secondary outcomes included back pain, physiological parameters, and the participants' rating about the device after performing CPR. The overall effective compressions in 10 minutes were 86.4±17.5% for NM, 60.9±14.6% for MND, 69.7±22.4% for MD, and 86.6%±13.2% for MVSD (p<0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance. The use of the modified device can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.
Evaluation of Home Health Care Devices: Remote Usability Assessment.
Kortum, Philip; Peres, S Camille
2015-06-05
An increasing amount of health care is now performed in a home setting, away from the hospital. While there is growing anecdotal evidence about the difficulty patients and caregivers have using increasingly complex health care devices in the home, there has been little systematic scientific study to quantify the global nature of home health care device usability in the field. Research has tended to focus on a handful of devices, making it difficult to gain a broad view of the usability of home-care devices in general. The objective of this paper is to describe a remote usability assessment method using the System Usability Scale (SUS), and to report on the usability of a broad range of health care devices using this metric. A total of 271 participants selected and rated up to 10 home health care devices of their choice using the SUS, which scores usability from 0 (unusable) to 100 (highly usable). Participants rated a total of 455 devices in their own home without an experimenter present. Usability scores ranged from 98 (oxygen masks) to 59 (home hormone test kits). An analysis conducted on devices that had at least 10 ratings showed that the effect of device on SUS scores was significant (P<.001), and that the usability of these devices was on the low end when compared with other commonly used items in the home, such as microwave ovens and telephones. A large database of usability scores for home health care devices collected using this remote methodology would be beneficial for physicians, patients, and their caregivers.
Charge transport in strongly coupled quantum dot solids
NASA Astrophysics Data System (ADS)
Kagan, Cherie R.; Murray, Christopher B.
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Charge transport in strongly coupled quantum dot solids.
Kagan, Cherie R; Murray, Christopher B
2015-12-01
The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.
Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...
2016-03-21
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sibo; Ren, Zheng; Guo, Yanbing
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
Use of an augmented-vision device for visual search by patients with tunnel vision.
Luo, Gang; Peli, Eli
2006-09-01
To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.
Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo
2016-01-01
Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency −70 cd A−1 under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices. PMID:27187936
Use of a Mobile Device Simulation as a Preclass Active Learning Exercise.
Keegan, Robert D; Oliver, M Cecile; Stanfill, Teresa J; Stevens, Kevin V; Brown, Gary R; Ebinger, Michael; Gay, John M
2016-01-01
Research shows that preclass activities introducing new material can increase student performance. In an effort to engage students in an active learning, preclass activity, the authors developed a mobile application. Eighty-four nursing students were assigned a preclass reading exercise, whereas 32 students completed the preclass simulation scenario on their mobile device. All students completed the same electronic fetal monitoring (EFM) quiz 1 week following the lecture. The effects of reading or simulation on student quiz performance was evaluated with a student's paired t test, using an alpha of .05. Students completing the preclass simulation scored higher on the EFM quiz, compared with students assigned the preclass reading (85% versus 70% correct answers, p = .01). Student survey data indicated that the mobile device simulation was perceived as an engaging and desirable instructional tool. Nursing students completing the mobile device EFM preclass simulation outperformed the students who were given the traditional reading assignment. Copyright 2016, SLACK Incorporated.
[Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].
Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju
2010-10-01
The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.
Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
Tianyao Chen; Lum, Peter S
2016-08-01
Stroke patients often have inappropriate finger flexor activation and finger extensor weakness, which makes it difficult to open their affected hand for functional grasp. The goal was to develop a passive, lightweight, wearable device to enable improved hand function during performance of activities of daily living. The device, HandSOME II, assists with opening the patient's hand using 11 elastic actuators that apply extension torques to finger and thumb joints. Device design and initial testing are described. A novel mechanical design applies forces orthogonal to the finger segments despite the fact that all of the device DOFs are not aligned with human joint DOF. In initial testing with seven stroke subjects with impaired hand function, use of HandSOME II significantly increased maximum extension angles and range of motion in all of the index finger joints (P<;0.05). HandSOME II allows performance of all the grip patterns used in daily activities and can be used as part of home-based therapy programs.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei
2016-03-18
The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong
2014-10-13
Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.
Implant healing in experimental animal models of diabetes.
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-05-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices. © 2011 Diabetes Technology Society.
Implant Healing in Experimental Animal Models of Diabetes
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-01-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices. PMID:21722576
Image-Directed Fine-needle Aspiration Biopsy of the Thyroid with Safety-engineered Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbitt, Randy R., E-mail: THESIBB2@aol.com; Palmer, Dennis J., E-mail: lyonscreek@aol.com; Sibbitt, Wilmer L., E-mail: wsibbitt@salud.unm.edu
2011-10-15
Purpose: The purpose of the present study was to integrate safety-engineered devices into outpatient fine-needle aspiration (FNA) biopsy of the thyroid in an interventional radiology practice. Materials and Methods: The practice center is a tertiary referral center for image-directed FNA thyroid biopsies in difficult patients referred by the primary care physician, endocrinologist, or otolaryngologist. As a departmental quality of care and safety improvement program, we instituted integration of safety devices into our thyroid biopsy procedures and determined the effect on outcome (procedural pain, diagnostic biopsies, inadequate samples, complications, needlesticks to operator, and physician satisfaction) before institution of safety devices (54more » patients) and after institution of safety device implementation (56 patients). Safety devices included a patient safety technology-the mechanical aspirating syringe (reciprocating procedure device), and a health care worker safety technology (antineedlestick safety needle). Results: FNA of thyroid could be readily performed with the safety devices. Safety-engineered devices resulted in a 49% reduction in procedural pain scores (P < 0.0001), a 56% reduction in significant pain (P < 0.002), a 21% increase in operator satisfaction (P < 0.0001), and a 5% increase in diagnostic specimens (P = 0.5). No needlesticks to health care workers or patient injuries occurred during the study. Conclusions: Safety-engineered devices to improve both patient and health care worker safety can be successfully integrated into diagnostic FNA of the thyroid while maintaining outcomes and improving safety.« less
Utilization of penile prosthesis and male incontinence prosthetics in Saudi Arabia.
Alwaal, Amjad; Al-Sayyad, Ahmad J
2017-01-01
Erectile dysfunction is a prevalent disease affecting over 50% of men between the ages of 40 and 70 years. Penile prosthesis represents the end of the line treatment when other less invasive therapies fail or are contraindicated. Male stress urinary incontinence can significantly diminish quality of life and lead to embarrassment and social withdrawal. Surgical therapies, such as male urethral slings and artificial urinary sphincters (AUS), are considered effective and safe treatments for male stress incontinence. No data exist on the utilization of penile prosthesis or male incontinence surgical treatment in Saudi Arabia. Generally, urological prosthetic surgery is performed either in private hospitals or in government hospitals. Our aim was to assess the trend of penile prosthesis and male incontinence device utilization in Saudi Arabia. We utilized sales' data of penile prosthetics, male slings, and AUS from the only two companies selling these devices in Saudi Arabia (AMS ® and Coloplast ® ), from January 2013 to December 2016. There were 2599 penile prosthesis implantation procedures done in the study period, with 67% of them performed in private institutions. There was a progressively increased use of penile prosthetics which nearly doubled from 2013 to 2016. The main type of prosthesis utilized was the semirigid type 70% versus 11% of the 2-piece inflatable and 17% of the 3-piece inflatable device. Only 10 slings and 31 AUS were inserted during the same study period. There is an increased utilization of penile prosthetics in Saudi Arabia. The private sector performs the majority of penile prosthesis procedures, and most of them are of the semirigid type. The governmental sector is more likely to perform inflatable penile prosthesis and male incontinence device procedures. Male incontinence prosthetics' use is very limited in Saudi Arabia.
Proton irradiation effects on gallium nitride-based devices
NASA Astrophysics Data System (ADS)
Karmarkar, Aditya P.
Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.
Shin, Sang-Yeol; Choi, J. M.; Seo, Juhee; Ahn, Hyung-Woo; Choi, Yong Gyu; Cheong, Byung-ki; Lee, Suyoun
2014-01-01
The Ovonic Threshold Switch (OTS) based on an amorphous chalcogenide material has attracted much interest as a promising candidate for a high-performance thin-film switching device enabling 3D-stacking of memory devices. In this work, we studied on the electronic structure of amorphous Sb-doped Ge0.6Se0.4 (in atomic mole fraction) film and its characteristics as to OTS devices. From the optical absorption spectroscopy measurement, the band gap (Eg) was found to decrease with increasing Sb content. In addition, as Sb content increased, the activation energy (Ea) for electrical conduction was found to decrease down to about one third of Eg from a half. As to the device characteristics, we found that the threshold switching voltage (Vth) drastically decreased with the Sb content. These results, being accountable in terms of the changes in the bonding configuration of constituent atoms as well as in the electronic structure such as the energy gap and trap states, advance an effective method of compositional adjustment to modulate Vth of an OTS device for various applications. PMID:25403772
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Use of mobile devices in the emergency department: A scoping review.
Dexheimer, Judith W; Borycki, Elizabeth M
2015-12-01
Electronic health records are increasingly used in regional health authorities, healthcare systems, hospitals, and clinics throughout North America. The emergency department provides care for urgent and critically ill patients. Over the past several years, emergency departments have become more computerized. Tablet computers and Smartphones are increasingly common in daily use. As part of the computerization trend, we have seen the introduction of handheld computers, tablets, and Smartphones into practice as a way of providing health professionals (e.g. physicians, nurses) with access to patient information and decision support in the emergency department. In this article, we present a scoping review and outline the current state of the research using mobile devices in the emergency departments. Our findings suggest that there is very little research evidence that supports the use of these mobile devices, and more research is needed to better understand and optimize the use of mobile devices. Given the prevalence of handheld devices, it is inevitable that more decision support, charting, and other activities will be performed on these devices. These developments have the potential to improve the quality and timeliness of care but should be thoroughly evaluated. © The Author(s) 2014.
[Optical Care in Low Vision Patients].
von Livonius, Bettina
2018-05-17
The numbers of low vision patients will steadily increase because of increasing longevity. It is important to be aware of those patients so that visual rehabilitation can be started as soon as possible and needed. Before the adjustment of low vision devices a diagnosis should be confirmed in order to check any therapeutic option and to ensure the best individual rehabilitation. If there is no further therapeutic option left a detailed anamnesis of the problems due to low vision should be made to ensure that every patient gets the optical or electronic device he really needs in his everyday life. The first step of the adjustment is to get the best subjective refraction for the far distance and the magnification needed for reading. Thereafter, the testing of different devices can start. It is important to know the advantages and disadvantages of the different devices. Besides the optical devices a counceling of the best light and of edge filters should be made. For the prescription of the devices certain criteria must be performed. That way it is possible to reach the main target namely to improve the quality of life of our low vision patients. Georg Thieme Verlag KG Stuttgart · New York.
Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells.
Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun
2016-05-20
To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin
2014-02-21
The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas.
Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets
NASA Astrophysics Data System (ADS)
Tao, Kai; Wu, Jin; Tang, Lihua; Hu, Liangxing; Woh Lye, Sun; Miao, Jianmin
2017-04-01
This paper presents a sandwich-structured MEMS electret-based vibrational energy harvester (e-VEH) that has two opposite-charged electrets integrated into a single electrostatic device. Compared to the conventional two-plate configuration where the maximum charge can only be induced when the movable mass reaches its lowest position, the proposed harvester is capable of creating maximum charge induction at both the highest and the lowest extremes, leading to an enhanced output performance. As a proof of concept, an out-of-plane MEMS e-VEH device with an overall volume of about 0.24 cm3 is designed, modeled, fabricated and characterized. A holistic equivalent circuit model incorporating the mechanical dynamic model and two capacitive circuits has been established to study the charge circulations. With the fabricated prototype, the experimental analysis demonstrates the superior performance of the proposed sandwiched e-VEH: the output voltage increases by 80.9% and 18.6% at an acceleration of 5 m s-2 compared to the top electret alone and bottom electret alone configurations, respectively. The experimental results also confirm the waveform derivation with the increase of excitation, which is in good agreement with the circuit simulation results. The proposed sandwiched e-VEH topology provides an effective and convenient methodology for improving the performance of electrostatic energy harvesting devices.
Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S
2012-08-01
Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
Kulkarni, Ashish; Singh, Trilok; Jena, Ajay K; Pinpithak, Peerathat; Ikegami, Masashi; Miyasaka, Tsutomu
2018-03-21
Low stability of organic-inorganic lead halide perovskite and toxicity of lead (Pb) still remain a concern. Therefore, there is a constant quest for alternative nontoxic and stable light-absorbing materials with promising optoelectronic properties. Herein, we report about nontoxic bismuth triiodide (BiI 3 ) photovoltaic device prepared using TiO 2 mesoporous film and spiro-OMeTAD as electron- and hole-transporting materials, respectively. Effect of annealing methods (e.g., thermal annealing (TA), solvent vapor annealing (SVA), and Petri dish covered recycled vapor annealing (PR-VA)) and different annealing temperatures (90, 120, 150, and 180 °C for PR-VA) on BiI 3 film morphology have been investigated. As found in the study, grain size increased and film uniformity improved as temperature was raised from 90 to 150 °C. The photovoltaic devices based on BiI 3 films processed at 150 °C with PR-VA treatment showed power conversion efficiency (PCE) of 0.5% with high reproducibility, which is, so far, the best PCE reported for BiI 3 photovoltaic device employing organic hole-transporting material (HTM), owing to the increase in grain size and uniform morphology of BiI 3 film. These devices showed stable performance even after 30 days of exposure to 50% relative humidity, and after 100 °C heat stress and 20 min light soaking test. More importantly, the study reveals many challenges and room (discussed in the details) for further development of the BiI 3 photovoltaic devices.
A Multicell Trap for Positron Accumulation and Storage
2006-04-21
device to accumulate N >_ 1012 positrons (i.e., an increase of a factor of 1000 over current performance) and to store this collection of antimatter ...would be an important step toward the development of even more flexible, portable reservoirs of antimatter with few logistic requirements. The first...N > 1012 positrons (i.e., an increase of a factor of 1000 over current performance) and to store this collection of antimatter as a plasma for times
High to ultra-high power electrical energy storage.
Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok
2011-12-14
High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2015-09-23
The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High performance multi-finger MOSFET on SOI for RF amplifiers
NASA Astrophysics Data System (ADS)
Adhikari, M. Singh; Singh, Y.
2017-10-01
In this paper, we propose structural modifications in the conventional planar metal-oxide-semiconductor field-effect transistor (MOSFET) on silicon-on-insulator by utilizing trenches in the epitaxial layer. The proposed multi-finger MOSFET (MF-MOSFET) has dual vertical-gates placed in separate trenches to form multiple channels in the p-base which carry the drain current in parallel. The proposed device uses TaN as gate electrode and SiO2 as gate dielectric. Simultaneous conduction of multiple channels enhances the drain current (ID) and provides higher transconductance (gm) leading to significant improvement in cut-off frequency (ft). Two-dimensional simulations are performed to evaluate and compare the performance of the MF-MOSFET with the conventional MOSFET. At a gate length of 60 nm, the proposed device provides 4 times higher ID, 3 times improvement in gm and 1.25 times increase in ft with better control over the short channel effects as compared with the conventional device.
Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...
2015-07-03
In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang
In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less
Compressive sensing scalp EEG signals: implementations and practical performance.
Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther
2012-11-01
Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.
Xiao, Xiao; Li, Wei; Clawson, Corbin; Karvani, David; Sondag, Perceval; Hahn, James K
2018-01-01
The study aimed to develop a motion capture system that can track, visualize, and analyze the entire performance of self-injection with the auto-injector. Each of nine healthy subjects and 29 rheumatoid arthritic (RA) patients with different degrees of hand disability performed two simulated injections into an injection pad while six degrees of freedom (DOF) motions of the auto-injector and the injection pad were captured. We quantitatively measured the performance of the injection by calculating needle displacement from the motion trajectories. The max, mean, and SD of needle displacement were analyzed. Assessments of device acceptance and usability were evaluated by a survey questionnaire and independent observations of compliance with the device instruction for use (IFU). A total of 80 simulated injections were performed. Our results showed a similar level of performance among all the subjects with slightly larger, but not statistically significant, needle displacement in the RA group. In particular, no significant effects regarding previous experience in self-injection, grip method, pain in hand, and Cochin score in the RA group were found to have an impact on the mean needle displacement. Moreover, the analysis of needle displacement for different durations of injections indicated that most of the subjects reached their personal maximum displacement in 15 seconds and remained steady or exhibited a small amount of increase from 15 to 60 seconds. Device acceptance was high for most of the questions (ie, >4; >80%) based on a 0-5-point scale or percentage of acceptance. The overall compliance with the device IFU was high for the first injection (96.05%) and reached 98.02% for the second injection. We demonstrated the feasibility of tracking the motions of injection to measure the performance of simulated self-injection. The comparisons of needle displacement showed that even RA patients with severe hand disability could properly perform self-injection with this auto-injector at a similar level with the healthy subjects. Finally, the observed high device acceptance and compliance with device IFU suggest that the system is convenient and easy to use.
Electromedical devices test laboratories accreditation
NASA Astrophysics Data System (ADS)
Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.
2007-11-01
In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.
Safety of Magnetic Resonance Imaging in Patients with Cardiac Devices.
Nazarian, Saman; Hansford, Rozann; Rahsepar, Amir A; Weltin, Valeria; McVeigh, Diana; Gucuk Ipek, Esra; Kwan, Alan; Berger, Ronald D; Calkins, Hugh; Lardo, Albert C; Kraut, Michael A; Kamel, Ihab R; Zimmerman, Stefan L; Halperin, Henry R
2017-12-28
Patients who have pacemakers or defibrillators are often denied the opportunity to undergo magnetic resonance imaging (MRI) because of safety concerns, unless the devices meet certain criteria specified by the Food and Drug Administration (termed "MRI-conditional" devices). We performed a prospective, nonrandomized study to assess the safety of MRI at a magnetic field strength of 1.5 Tesla in 1509 patients who had a pacemaker (58%) or an implantable cardioverter-defibrillator (42%) that was not considered to be MRI-conditional (termed a "legacy" device). Overall, the patients underwent 2103 thoracic and nonthoracic MRI examinations that were deemed to be clinically necessary. The pacing mode was changed to asynchronous mode for pacing-dependent patients and to demand mode for other patients. Tachyarrhythmia functions were disabled. Outcome assessments included adverse events and changes in the variables that indicate lead and generator function and interaction with surrounding tissue (device parameters). No long-term clinically significant adverse events were reported. In nine MRI examinations (0.4%; 95% confidence interval, 0.2 to 0.7), the patient's device reset to a backup mode. The reset was transient in eight of the nine examinations. In one case, a pacemaker with less than 1 month left of battery life reset to ventricular inhibited pacing and could not be reprogrammed; the device was subsequently replaced. The most common notable change in device parameters (>50% change from baseline) immediately after MRI was a decrease in P-wave amplitude, which occurred in 1% of the patients. At long-term follow-up (results of which were available for 63% of the patients), the most common notable changes from baseline were decreases in P-wave amplitude (in 4% of the patients), increases in atrial capture threshold (4%), increases in right ventricular capture threshold (4%), and increases in left ventricular capture threshold (3%). The observed changes in lead parameters were not clinically significant and did not require device revision or reprogramming. We evaluated the safety of MRI, performed with the use of a prespecified safety protocol, in 1509 patients who had a legacy pacemaker or a legacy implantable cardioverter-defibrillator system. No long-term clinically significant adverse events were reported. (Funded by Johns Hopkins University and the National Institutes of Health; ClinicalTrials.gov number, NCT01130896 .).
Reduced contact resistance of a-IGZO thin film transistors with inkjet-printed silver electrodes
NASA Astrophysics Data System (ADS)
Chen, Jianqiu; Ning, Honglong; Fang, Zhiqiang; Tao, Ruiqiang; Yang, Caigui; Zhou, Yicong; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-04-01
In this study, high performance amorphous In–Ga–Zn–O (a-IGZO) TFTs were successfully fabricated with inkjet-printed silver source-drain electrodes. The results showed that increased channel thickness has an improving trend in the properties of TFTs due to the decreased contact resistance. Compared with sputtered silver TFTs, devices with printed silver electrodes were more sensitive to the thickness of active layer. Furthermore, the devices with optimized active layer showed high performances with a maximum saturation mobility of 8.73 cm2 · V‑1 · S‑1 and an average saturation mobility of 6.97 cm2 · V‑1 · S‑1, I on/I off ratio more than 107 and subthreshold swing of 0.28 V/decade, which were comparable with the analogous devices with sputtered electrodes.
NASA Astrophysics Data System (ADS)
Mandal, Saptarshi; Agarwal, Anchal; Ahmadi, Elaheh; Mahadeva Bhat, K.; Laurent, Matthew A.; Keller, Stacia; Chowdhury, Srabanti
2017-08-01
In this work, a study of two different types of current aperture vertical electron transistor (CAVET) with ion-implanted blocking layer are presented. The device fabrication and performance limitation of a CAVET with a dielectric gate is discussed, and the breakdown limiting structure is evaluated using on-wafer test structures. The gate dielectric limited the device breakdown to 50V, while the blocking layer was able to withstand over 400V. To improve the device performance, an alternative CAVET structure with a p-GaN gate instead of dielectric is designed and realized. The pGaN gated CAVET structure increased the breakdown voltage to over 400V. Measurement of test structures on the wafer showed the breakdown was limited by the blocking layer instead of the gate p-n junction.
Fundamentals of Intrinsic Stress during Silicide Formation
NASA Astrophysics Data System (ADS)
Özçelik, A.; van Bockstael, C.; Detavernier, C.; Vanmeirhaeghe, R.
2007-04-01
Silicides are a very useful group of materials which can be used to make electrical contacts to circuits in electronic devices with an extremely high performance. The stress in thin films is an increasingly important technological issue from the standpoint of reliability and performance in IC processing. Manufacturers of micro electronic devices have to control the stress levels in the contact films to avoid device failures. Phase transitions such as silicidation or even a simple rearrangement of atoms like relaxation in the metal film cause a difference in the volume of the film from its starting value. This volume change produces stress inside the film. In this work we analyzed the stress evolution during the silicidation reaction of some metals such as W and Mo by using a home built in situ stress system at the University of Ghent.
Long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) focal plane array
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Hill, C. J.; Ting, D. Z.; Liu, J. K.; Rafol, S. B.; Blazejewski, E. R.; Mumolo, J. M.; Keo, S. A.; Krishna, S.; Chang, Y. C.; Shott, C. A.
2006-05-01
We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDIPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of ~ 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45o and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1μm devices has reached ~ 1 x 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640x512 pixels QDIP focal plane array. This QDIP focal plane array has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60K operating temperature. In addition, we have managed to increase the quantum efficiency of these devices from 0.1% (according to the data published in literature) to 20% in discrete devices. This is a factor of 200 increase in quantum efficiency. With these excellent results, for the first time QDIP performance has surpassed the QWIP performance. Our goal is to operate these long-wavelength detectors at much higher operating temperature than 77K, which can be passively achieved in space. This will be a huge leap in high performance infrared detectors specifically applicable to space science instruments.
Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.
2006-01-01
We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10) Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640x512 pixels QDP focal plane array. This QDIP focal plane may has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60K operating temperature. In addition, we have managed to increase the quantum efficiency of these devices from 0.1% (according to the data published in literature) to 20% in discrete devices. This is a factor of 200 increase in quantum efficiency. With these excellent results, for the first time QDIP performance has surpassed the QWIP performance. Our goal is to operate these long-wavelength detectors at much higher operating temperature than 77K which can be passively achieved in space. This will be a huge leap in high performance infrared detectors specifically applicable to space science instruments.
Zhou, Qi Tony; Tong, Zhenbo; Tang, Patricia; Citterio, Mauro; Yang, Runyu; Chan, Hak-Kim
2013-04-01
The objective of this study is to investigate the effect of device design of the Aerolizer(®) on the aerosolization of a carrier-based dry powder inhaler formulation (Foradile(®)). The Aerolizer was modified by reducing the air inlet size and mouthpiece length to 1/3 of the original dimensions, or by increasing the grid voidage. Aerosolization of the powder formulation was assessed on a multi-stage liquid impinger at air flow rates of 30, 60, and 100 L/min. Coupled CFD-DEM simulations were performed to investigate the air flow pattern and particle impaction. There was no significant difference in the aerosolization behavior between the original and 1/3 mouthpiece length devices. Significant increases in FPF total and FPF emitted were demonstrated when the inlet size was reduced, and the results were explained by the increases in air velocity and turbulence from the CFD analysis. No significant differences were shown in FPF total and FPF emitted when the grid voidage was increased, but more drugs were found to deposit in induction port and to a lesser extent, the mouthpiece. This was supported by the CFD-DEM analysis which showed the particle-device collisions mainly occurred in the inhaler chamber, and the cross-grid design increased the particle-device collisions on both mouthpiece and induction port. The air inlet size and grid structure of the Aerolizer(®) were found to impact significantly on the aerosolization of the carrier-based powder.
Tejeria, L; Harper, R A; Artes, P H; Dickinson, C M
2002-09-01
(1) To explore the relation between performance on tasks of familiar face recognition (FFR) and face expression difference discrimination (FED) with both perceived disability in face recognition and clinical measures of visual function in subjects with age related macular degeneration (AMD). (2) To quantify the gain in performance for face recognition tasks when subjects use a bioptic telescopic low vision device. 30 subjects with AMD (age range 66-90 years; visual acuity 0.4-1.4 logMAR) were recruited for the study. Perceived (self rated) disability in face recognition was assessed by an eight item questionnaire covering a range of issues relating to face recognition. Visual functions measured were distance visual acuity (ETDRS logMAR charts), continuous text reading acuity (MNRead charts), contrast sensitivity (Pelli-Robson chart), and colour vision (large panel D-15). In the FFR task, images of famous people had to be identified. FED was assessed by a forced choice test where subjects had to decide which one of four images showed a different facial expression. These tasks were repeated with subjects using a bioptic device. Overall perceived disability in face recognition did not correlate with performance on either task, although a specific item on difficulty recognising familiar faces did correlate with FFR (r = 0.49, p<0.05). FFR performance was most closely related to distance acuity (r = -0.69, p<0.001), while FED performance was most closely related to continuous text reading acuity (r = -0.79, p<0.001). In multiple regression, neither contrast sensitivity nor colour vision significantly increased the explained variance. When using a bioptic telescope, FFR performance improved in 86% of subjects (median gain = 49%; p<0.001), while FED performance increased in 79% of subjects (median gain = 50%; p<0.01). Distance and reading visual acuity are closely associated with measured task performance in FFR and FED. A bioptic low vision device can offer a significant improvement in performance for face recognition tasks, and may be useful in reducing the handicap associated with this disability. There is, however, little evidence for a correlation between self rated difficulty in face recognition and measured performance for either task. Further work is needed to explore the complex relation between the perception of disability and measured performance.
Tejeria, L; Harper, R A; Artes, P H; Dickinson, C M
2002-01-01
Aims: (1) To explore the relation between performance on tasks of familiar face recognition (FFR) and face expression difference discrimination (FED) with both perceived disability in face recognition and clinical measures of visual function in subjects with age related macular degeneration (AMD). (2) To quantify the gain in performance for face recognition tasks when subjects use a bioptic telescopic low vision device. Methods: 30 subjects with AMD (age range 66–90 years; visual acuity 0.4–1.4 logMAR) were recruited for the study. Perceived (self rated) disability in face recognition was assessed by an eight item questionnaire covering a range of issues relating to face recognition. Visual functions measured were distance visual acuity (ETDRS logMAR charts), continuous text reading acuity (MNRead charts), contrast sensitivity (Pelli-Robson chart), and colour vision (large panel D-15). In the FFR task, images of famous people had to be identified. FED was assessed by a forced choice test where subjects had to decide which one of four images showed a different facial expression. These tasks were repeated with subjects using a bioptic device. Results: Overall perceived disability in face recognition did not correlate with performance on either task, although a specific item on difficulty recognising familiar faces did correlate with FFR (r = 0.49, p<0.05). FFR performance was most closely related to distance acuity (r = −0.69, p<0.001), while FED performance was most closely related to continuous text reading acuity (r = −0.79, p<0.001). In multiple regression, neither contrast sensitivity nor colour vision significantly increased the explained variance. When using a bioptic telescope, FFR performance improved in 86% of subjects (median gain = 49%; p<0.001), while FED performance increased in 79% of subjects (median gain = 50%; p<0.01). Conclusion: Distance and reading visual acuity are closely associated with measured task performance in FFR and FED. A bioptic low vision device can offer a significant improvement in performance for face recognition tasks, and may be useful in reducing the handicap associated with this disability. There is, however, little evidence for a correlation between self rated difficulty in face recognition and measured performance for either task. Further work is needed to explore the complex relation between the perception of disability and measured performance. PMID:12185131
Technological innovations for a sustainable business model in the semiconductor industry
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2014-09-01
Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.
Enhanced confinement in electron cyclotron resonance ion source plasma.
Schachter, L; Stiebing, K E; Dobrescu, S
2010-02-01
Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.
Polymer-based doping control for performance enhancement of wet-processed short-channel CNTFETs
NASA Astrophysics Data System (ADS)
Hartmann, Martin; Schubel, René; Claus, Martin; Jordan, Rainer; Schulz, Stefan E.; Hermann, Sascha
2018-01-01
The electrical transport properties of short-channel transistors based on single-walled carbon nanotubes (CNT) are significantly affected by bundling along with solution processing. We report that especially high off currents of CNT transistors are not only related to the incorporation of metallic CNTs but also to the incorporation of CNT bundles. By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude. Moreover, this passivation approach allows the hysteresis and threshold voltage of CNT transistors to be tuned.
Intracranial pressure monitoring (image)
Intracranial pressure monitoring is performed by inserting a catheter into the head with a sensing device to monitor the pressure around the brain. An increase in intracranial pressure can cause a decrease in blood flow to ...
Meeting design challenges of ultralow-power system-on-chip technology.
Morris, Steve
2004-11-01
New-generation battery-powered products are required to provide increasingly greater performance. This article examines technology solutions and design techniques that can be employed to achieve ultralow-power medical devices.
Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Song, Hui; Kim, Tae Heon; Choi, Boran; Jung, Gun Young
2016-06-01
We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 μm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V.
Hocking, David P.; Salverson, Marcia; Evans, Alistair R.
2015-01-01
During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways. PMID:25946412
Hardware Architecture for Measurements for 50-V Battery Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Bald; Evan Juras; Jon P. Christophersen
Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech ofmore » the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.« less
Lu, Huangling; Kalkman, Deborah N; Grundeken, Maik J; Tijssen, Jan G P; Wykrzykowska, Joanna J; de Winter, Robbert J; Koch, Karel T
2018-02-01
With optical coherence tomography (OCT), details of arterial injuries during percutaneous coronary intervention can be assessed accurately. There might be an increased risk of stent edge dissections with the novel delivery system for the STENTYS stent. We evaluated the prevalence of stent edge dissections using the novel Xposition delivery device as compared with the conventional delivery device. A total of 38 patients who were treated with the self-apposing STENTYS stent and with OCT assessment at our center were retrospectively analysed. Twenty patients were treated using the Xposition- and 18 using the conventional delivery device. OCT was performed according to study protocol. Frames with poor quality were excluded. A total of 12(18%) dissections were detected, 7(20%) in the Xposition delivery device group, and 5(15%) in the conventional group (p = 1). Using the Xposition delivery device 4(33%) dissections were found proximally, using the conventional delivery device 3(25%) (p = ns). Mean longitudinal dissection length was 2.07 ± 1.80mm, 8(67%) appeared as flaps, 4(33%) as cavities. Morphometric parameters were comparable in both groups. Detailed OCT assessment of stent edge dissections was possible, which revealed no large differences using the Xposition delivery device as compared with conventional delivery device, however large studies are warranted.
Pavlaković, G; Züchner, K; Zapf, A; Bachmann, C G; Graf, B M; Crozier, T A; Pavlaković, H
2009-08-01
Various factors can influence thermal perception threshold measurements and contribute significantly to unwanted variability of the tests. To minimize this variability, testing should be performed under strictly controlled conditions. Identifying the factors that increase the variability and eliminating their influence should increase reliability and reproducibility. Currently available thermotesting devices use a water-cooling system that generates a continuous noise of approximately 60 dB. In order to analyze whether this noise could influence the thermal threshold measurements we compared the thresholds obtained with a silent thermotesting device to those obtained with a commercially available device. The subjects were tested with one randomly chosen device on 1 day and with the other device 7 days later. At each session, heat, heat pain, cold, and cold pain thresholds were determined with three measurements. Bland-Altman analysis was used to assess agreement in measurements obtained with different devices and it was shown that the intersubject variability of the thresholds obtained with the two devices was comparable for all four thresholds tested. In contrast, the intrasubject variability of the thresholds for heat, heat pain, and cold pain detection was significantly lower with the silent device. Our results show that thermal sensory thresholds measured with the two devices are comparable. However, our data suggest that, for studies with repeated measurements on the same subjects, a silent thermotesting device may allow detection of smaller differences in the treatment effects and/or may permit the use of a smaller number of tested subjects. Muscle Nerve 40: 257-263, 2009.
ERIC Educational Resources Information Center
Balan, Oana; Moldoveanu, Alin; Moldoveanu, Florica; Nagy, Hunor; Wersenyi, Gyorgy; Unnporsson, Runar
2017-01-01
Introduction: As the number of people with visual impairments (that is, those who are blind or have low vision) is continuously increasing, rehabilitation and engineering researchers have identified the need to design sensory-substitution devices that would offer assistance and guidance to these people for performing navigational tasks. Auditory…
Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance
ERIC Educational Resources Information Center
Orndorff, Harold N., III.
2015-01-01
This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…
Case study on impact performance optimization of hydraulic breakers.
Noh, Dae-Kyung; Kang, Young-Ky; Cho, Jae-Sang; Jang, Joo-Sup
2016-01-01
In order to expand the range of activities of an excavator, attachments, such as hydraulic breakers have been developed to be applied to buckets. However, it is very difficult to predict the dynamic behavior of hydraulic impact devices such as breakers because of high non-linearity. Thus, the purpose of this study is to optimize the impact performance of hydraulic breakers. The ultimate goal of the optimization is to increase the impact energy and impact frequency and to reduce the pressure pulsation of the supply and return lines. The optimization results indicated that the four parameters used to optimize the impact performance of the breaker showed considerable improvement over the results reported in the literature. A test was also conducted and the results were compared with those obtained through optimization in order to verify the optimization results. The comparison showed an average relative error of 8.24 %, which seems to be in good agreement. The results of this study can be used to optimize the impact performance of hydraulic impact devices such as breakers, thus facilitating its application to excavators and increasing the range of activities of an excavator.
Microfabrication of microchannels for fuel cell plates.
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.
Microfabrication of Microchannels for Fuel Cell Plates
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533
Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures
Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; ...
2016-01-25
In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO 2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO 2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO 2 NSs and observed an increase in amplitude and decrease in lifetimemore » with increasing particle density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO 2.« less
NASA Astrophysics Data System (ADS)
Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan
2018-05-01
A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.
Hopkins, Heidi; Oyibo, Wellington; Luchavez, Jennifer; Mationg, Mary Lorraine; Asiimwe, Caroline; Albertini, Audrey; González, Iveth J; Gatton, Michelle L; Bell, David
2011-02-08
Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel
A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.
NASA Astrophysics Data System (ADS)
Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang
2018-02-01
Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.
Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng
2014-08-01
Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lyon, Martha E; Lyon, Andrew W
2011-01-01
The article entitled, Performance of the CONTOUR® TS Blood Glucose Monitoring System, by Frank and colleagues in this issue of Journal of Diabetes Science and Technology, demonstrates that the CONTOUR® TS glucose meter exceeds current regulatory expectations for glucose meter performance. However, the appropriateness of current regulatory expectations, such as International Organization for Standardization (ISO) 15197:2003, is being reevaluated because of increasing concern regarding the reliability of glucose meters in ambulatory and hospitalized environments. Between 2004 and 2008, 12,673 serious adverse events with glucose meters that met the ISO 15197 expectations were reported in the Food and Drug Administration-Manufacturer and User Facility Device Experience surveillance database. Should different glucose meter performance criteria be applied to ambulatory versus critical care patients? © 2010 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.
2015-05-01
Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.
Lorv, Bailey; Horodyski, Robin; Welton, Cynthia; Vail, John; Simonetto, Luca; Jokanovic, Danilo; Sharma, Richa; Mahoney, Angela Rea; Savoy-Bird, Shay; Bains, Shalu
2017-01-01
There is increasing awareness of the importance of medical device reprocessing (MDR) for the provision of safe patient care. Although industry service standards are available to guide MDR practices, there remains a lack of published key performance indicators (KPIs) and targets that are necessary to evaluate MDR quality for feedback and improvement. This article outlines the development of an initial framework that builds on established guidelines and includes service standards, KPIs and targets for evaluating MDR operations. This framework can support healthcare facilities in strengthening existing practices and enables a platform for collaboration towards better MDR performance management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul
2016-11-21
As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.
Comparison of Sequential Drug Release in Vitro and in Vivo
Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.
2015-01-01
Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338
Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2017-09-01
Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.
Guo, Xudong; Ge, Bin; Wang, Wenxing
2013-08-01
In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.
3D direct writing fabrication of electrodes for electrochemical storage devices
NASA Astrophysics Data System (ADS)
Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang
2017-06-01
Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.
A biomechanical and physiological study of office seat and tablet device interaction.
Weston, Eric; Le, Peter; Marras, William S
2017-07-01
Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.
Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M
2016-06-14
This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.
Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree; ...
2018-01-18
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
[Point-of-care Coagulation Testing in Neurosurgery].
Adam, Elisabeth Hannah; Füllenbach, Christoph; Lindau, Simone; Konczalla, Jürgen
2018-06-01
Disorders of the coagulation system can seriously impact the clinical course and outcome of neurosurgical patients. Due to the anatomical location of the central nervous system within the closed skull, bleeding complications can lead to devastating consequences such as an increase in intracranial pressure or enlargement of intracranial hematoma. Point-of-care (POC) devices for the testing of haemostatic parameters have been implemented in various fields of medicine. Major advantages of these devices are that results are available quickly and that analysis can be performed at the bedside, directly affecting patient management. POC devices allow identification of increased bleeding tendencies and therefore may enable an assessment of hemorrhagic risks in neurosurgical patients. Although data regarding the use of POC testing in neurosurgical patients are limited, they suggest that coagulation testing and hemostatic therapy using POC devices might have beneficial effects in this patient population. This article provides an overview of the application of point-of-care coagulation testing in clinical practice in neurosurgical patients. Georg Thieme Verlag KG Stuttgart · New York.
Ashraf, Raja Shahid; Schroeder, Bob C; Bronstein, Hugo A; Huang, Zhenggang; Thomas, Stuart; Kline, R Joseph; Brabec, Christoph J; Rannou, Patrice; Anthopoulos, Thomas D; Durrant, James R; McCulloch, Iain
2013-04-11
A series of low bandgap indacenodithiophene polymers is purified by recycling SEC in order to isolate narrow polydispersity fractions. This additional purification step is found to have a significant beneficial influence on the solar cell performance and the reasons for this performance increase are investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E
2017-01-01
Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts.
Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita
2015-05-01
The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk
AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less
Super-Alfvénic translation of a field-reversed configuration into a large-bore dielectric chamber
NASA Astrophysics Data System (ADS)
Sekiguchi, J.; Asai, T.; Takahashi, T.
2018-01-01
An experimental device to demonstrate additional heating and control methods for a field-reversed configuration (FRC) has been developed. The newly developed device, named FRC Amplification via Translation (FAT), has a field-reversed theta-pinch plasma source and a low-elongation dielectric (transparent quartz) confinement chamber with quasi-static confinement field. In the initial experiments on the FAT device, FRC translation and trapping were successfully demonstrated. Although the typical elongation of the trapped FRC in the confinement region was roughly three, no disruptive global instability, such as tilt, was observed. The FAT device increases the latitude to perform translation-related experiments, such as those concerning inductive current drive, equivalent neutral beam injection effects, and wave applications.
Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.
2011-01-01
Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics
Courtright, Brett A E; Jenekhe, Samson A
2015-12-02
We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.
NASA Astrophysics Data System (ADS)
Thiébaut, E.; Goupil, C.; Pesty, F.; D'Angelo, Y.; Guegan, G.; Lecoeur, P.
2017-12-01
Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase maximum cooling without improvement of the Z T (figure of merit); however, these systems are usually based on the assumption that the local optimization of the Z T is the suitable criterion to increase thermoelectric performance. We solve the heat equation in a graded material and perform both analytical and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect (up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described. The influence of the equation of state of the electronic gas of the material is discussed, and the difference in term of entropy production between the graded and the classical system is also described.
Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozacik, Stephen
Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.
Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J
2017-01-20
Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan
2017-01-01
Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.
Design of Mechanism for Assisting Standing Movement Using Planar Linkage and Gear Train
NASA Astrophysics Data System (ADS)
Nango, Jun; Yoshizawa, Hisato; Liu, Jiajun
The number of people who are in need of nursing care due to difficulties they experience with performing various activities of daily living is increasing. In particular, the action of standing up is performed frequently in daily life, and this action starts to induce pain in joints as people age. In this research, we develop a device whose seat plate follows the movement of the thigh in the action of standing up for the purpose of relieving the burden from the joints and reducing the effort associated with nursing care. The device is designed by using a planar five-link mechanism and a gear train, and only a single input is needed to drive the device. The respective lengths of the links are determined by comparing the movement of the seat plate of the device with the movement of the human thigh in the action of standing up. In addition, this device is expected to be useful for assisting users in standing up in a natural manner, including in the case when the body remains supported by the seat plate, as well as for guiding the individual movements of users in the action of standing up.
Laparoscopic liver resection: when to use the laparoscopic stapler device
Gumbs, Andrew A.; Gayet, Brice
2008-01-01
Minimally invasive hepatic resection was first described by Gagner et al. in the early 1990s and since then has become increasingly adopted by hepatobiliary and liver transplant surgeons. Several techniques exist to transect the hepatic parenchyma laparoscopically and include transection with stapler and/or energy devices, such as ultrasonic shears, radiofrequency ablation and bipolar devices. We believe that coagulative techniques allow for superior anatomic resections and ultimately permit for the performance of more complex hepatic resections. In the stapling technique, Glisson's capsule is usually incised with an energy device until the parenchyma is thinned out and multiple firings of the staplers are then used to transect the remaining parenchyma and larger bridging segmental vessels and ducts. Besides the economic constraints of using multiple stapler firings, the remaining staples have the disadvantage of hindering and even preventing additional hemostasis of the raw liver surface with monopolar and bipolar electrocautery. The laparoscopic stapler device is, however, useful for transection of the main portal branches and hepatic veins during minimally invasive major hepatic resections. Techniques to safely perform major hepatic resection with the above techniques will be described with an emphasis on when and how laparoscopic vascular staplers should be used. PMID:18773113
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2009-10-01
Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.
Lee, Yun-Ju; Wang, Jian; Cheng, Samuel R; Hsu, Julia W P
2013-09-25
We demonstrate improved organic photovoltaic device performance using solution processed electron transport layers of ZnO nanoparticle (NP) films containing organic additives, poly(vinylpyrrolidone) (PVP), or diethanolamine (DEA), that do not require post processing after film deposition. Inclusion of PVP or DEA decreased the ZnO work function by 0.4 eV through interfacial dipole formation. While PVP did not change the ZnO NP shape or size, DEA modified the ZnO shape from 5 nm × 15 nm nanorods to 5 nm nanoparticles. At an optimized PVP concentration of 0.7 wt %, ZnO NP:PVP electron transport layers (ETLs) improved the efficiency of inverted P3HT:PCBM devices by 37%, primarily through higher fill factor. ZnO NP:PVP and ZnO NP:DEA ETLs increased the open circuit voltage of inverted P3HT:ICBA devices by 0.07 V due to decreasing ETL work function, leading to enhanced built-in field. The relationship between ZnO nanocomposite ETL work function, donor-acceptor energy offset, and device performance is discussed. The effects of the two additives are compared.
NASA Astrophysics Data System (ADS)
Lu, Haiwei
Polymer based bulk heterojunction (BHJ) solar cells offer promising technological advantages for actualization of low-cost and large-area fabrication on flexible substrates. To reach the envisaged market entry figure of 10% power conversion efficiency (PCE), it is crucial that more solar energy is utilized in the active layer, requiring both higher energy conversion efficiency and expansion of the absorption spectrum of the active layer to near infrared (NIR) region. The research introduced in this dissertation is an effort to increase PCE of solar cells from the aforementioned two directions. In the first method, carbon nanotubes (CNTs) were incorporated into polymer-fullerene BHJ solar cells to increase the hole-collection efficiency. Devices with CNT monolayer networks placed at different positions were fabricated, and the impact of CNTs on device performance was studied. It was demonstrated that CNTs placed on the hole-collection side of the device resulted in optimized performance, with PCE increased from 4% to 4.9%. To realize the controlled deposition of a uniform layer of CNTs on different positions, a mild plasma treatment of the active-layer was employed, and the influence of plasma treatment on device performance was also studied. In the second strategy, I developed an approach to expand the absorption spectrum to NIR region. In this case, hybrid polymer based BHJ solar cells composed of pyridine-capped PbS (PbS-py) quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) were proposed. With pyridines as capping ligands, devices showed superior performance compared to with conventionally used oleate agents. PbS QDs with bandgaps of ˜1.13-1.38 eV offered the advantage of energetically favorable charge separation between P3HT and PbS QDs for photoexcitons in both visible and NIR regions. It was also found that thermal annealing leads to the removal of excess and interfacial pyridine ligands in polymer/QDs composites, and thus provides intimate electrical contact between polymers and QDs. Upon incorporation of optimized amount of PbS QDs, PCE was enhanced as high as 160% compared to that of pure polymer. The research undertaken under the umbrella of this dissertation may offer promising potential for realization of affordable, clean, and readily available source of energy in the near future.
Use of an augmented-vision device for visual search by patients with tunnel vision
Luo, Gang; Peli, Eli
2006-01-01
Purpose To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Methods Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VF) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF: 8º to 11º wide) carried out the search over a 90º×74º area, and nine subjects (VF: 7º to 16º wide) over a 66º×52º area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Results Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in both the larger and smaller area search. When using the device, a significant reduction in search time (28%~74%) was demonstrated by all 3 subjects in the larger area search and by subjects with VF wider than 10º in the smaller area search (average 22%). Directness and the gaze speed accounted for 90% of the variability of search time. Conclusions While performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. As improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks. PMID:16936136
Integrated MEMS-based variable optical attenuator and 10Gb/s receiver
NASA Astrophysics Data System (ADS)
Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James
2005-03-01
MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.
NASA Astrophysics Data System (ADS)
Latzel, M.; Büttner, P.; Sarau, G.; Höflich, K.; Heilmann, M.; Chen, W.; Wen, X.; Conibeer, G.; Christiansen, S. H.
2017-02-01
Nanotextured surfaces provide an ideal platform for efficiently capturing and emitting light. However, the increased surface area in combination with surface defects induced by nanostructuring e.g. using reactive ion etching (RIE) negatively affects the device’s active region and, thus, drastically decreases device performance. In this work, the influence of structural defects and surface states on the optical and electrical performance of InGaN/GaN nanorod (NR) light emitting diodes (LEDs) fabricated by top-down RIE of c-plane GaN with InGaN quantum wells was investigated. After proper surface treatment a significantly improved device performance could be shown. Therefore, wet chemical removal of damaged material in KOH solution followed by atomic layer deposition of only 10 {nm} alumina as wide bandgap oxide for passivation were successfully applied. Raman spectroscopy revealed that the initially compressively strained InGaN/GaN LED layer stack turned into a virtually completely relaxed GaN and partially relaxed InGaN combination after RIE etching of NRs. Time-correlated single photon counting provides evidence that both treatments—chemical etching and alumina deposition—reduce the number of pathways for non-radiative recombination. Steady-state photoluminescence revealed that the luminescent performance of the NR LEDs is increased by about 50% after KOH and 80% after additional alumina passivation. Finally, complete NR LED devices with a suspended graphene contact were fabricated, for which the effectiveness of the alumina passivation was successfully demonstrated by electroluminescence measurements.
Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2006-01-01
The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.
2004-01-01
The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.
Ramchandani, M; Bedeir, K
2011-01-01
The revival of off-pump cardiac surgery and the exploration of less invasive techniques for coronary artery bypass grafting, have lead to an increasing technical difficulty, as compared to conventional surgery using cardiopulmonary bypass. The moving target vessel in off-pump coronary artery bypass surgery, as well as the increasingly limited space in minimally invasive cardiac surgery were not convenient to many surgeons, a fact that lead many surgeons to deprive their patients the potential benefits of these techniques. Since the 1950's, surgeons have attempted to make the anastomotic procedure less cumbersome and less time consuming. Many creative ideas and devices were made, but for many different reasons, they eventually faded away. Since then, hand-sewn anastomoses have been the standard of care in coronary artery bypass grafting. Today, with the obvious need for a facilitated and fast coronary anastomosis, interest in these anastomotic devices has been re-awakened. The exact geometry, physiology and dynamics of the perfect anastomosis have thus been studied, in an attempt to provide an understanding of reasons behind anastomosis and graft failure after coronary artery bypass surgery, and eventually design the best performing device. These devices would allow for a faster, more accurate and a more reproducible coronary anastomosis using minimally invasive techniques. Also, due to a short learning curve, the standardization of percutaneous devices would allow much more surgeons to more widely adopt less invasive techniques. In summary, we see anastomotic devices as a solution to the technical challenges surgeons encounter with minimally invasive coronary artery bypass grafting.
Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.
Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua
2018-06-21
Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.
Aerodynamic characteristics of a propeller-powered high-lift semispan wing
NASA Technical Reports Server (NTRS)
Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.
1994-01-01
A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.
Impact of government regulation on health care technology
NASA Astrophysics Data System (ADS)
Berkowitz, Robert D.
1994-12-01
Increased government regulation of the medical device industry produces higher expenses, a longer time to return investment capital, and greater uncertainty. As a result there are fewer new ventures and reduced efforts to develop new technology in established companies. The current federal regulatory framework has shifted from monitoring the product to monitoring the process. The inability to reach perfect performance in such a regulated environment subject to continuous and fluid interpretation guarantees non-compliance and growing ethical tension. Without new medical technology, we may be unable to maintain quality medical coverage in the face of rising demand. The author proposes risk assessment to set regulatory priorities; the conversion of a national weapons lab to a national device testing lab; the establishment of device standards and the monitoring of in-use performance against these standards; and the education of patients and users as to the results of these examinations.
Characterization of Stress in Thallium Bromide Devices
NASA Astrophysics Data System (ADS)
Datta, Amlan; Motakef, Shariar
2015-04-01
Thallium bromide (TlBr) is a wide bandgap, compound semiconductor with high gamma-ray stopping power and promising physical properties. Several surface modification techniques have been demonstrated to increase the lifetime of TlBr devices at room temperature. However, absence of reproducibility in the performance of TlBr detectors (even with low ionic conduction at -20°C) suggests presence of unexplored bulk phenomena. Stress in the TlBr crystal due to various intrinsic (e.g. grain boundaries and dislocations networks) in conjunction with external factors such as thermal, mechanical, and electrical loadings explains detector-to-detector variations. Photoelasticity and opto-electrical techniques were applied to visualize and qualitatively correlate the device performance with stress. Changes in stress patterns with variations in ambient temperature were clearly demonstrated. Electric field fluctuations in TlBr detectors with time were for the first time observed using the Pockels effect.
Basic investigation into the electrical performance of solid electrolyte membranes
NASA Technical Reports Server (NTRS)
Richter, R.
1982-01-01
The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.
High pressure rotating reverse osmosis for long term space missions
NASA Astrophysics Data System (ADS)
Christensen Pederson, Cynthia Lynn
Rotating reverse osmosis, which uses reverse osmosis to purify water and rotating filtration to improve the efficacy of filtration, has great potential for wastewater recycling on a long term space mission. Previous investigations of a proof-of-concept device indicated that the most efficient method to improve rotating reverse osmosis performance is to increase the operational pressure. Thus, a second generation device and fluid circuit were designed, fabricated, and tested to permit high pressure operation for long time periods. The design overcame several obstacles including membrane attachment, rotating seal design, and fluid and pressure management. A theoretical model of rotating reverse osmosis was modified to properly account for the flow conditions in the new design. Tests lasting a week were conducted with a variety of model wastewaters. Significant fouling and a decrease in flux were observed after three days of testing regardless of the operational parameters. A semi-empirical model, the fouling potential, was added to the theoretical model to account for the fouling. This allowed the simulation of 48 hour cleaning cycles that significantly increased the flux of the device. Experimental investigation of the rotational speed and concentrate flow rate indicated that an increase in either parameter decreased the fouling slightly. A week long test of a wastewater ersatz with a biocide did not exhibit a decrease in flux around day three that otherwise occurred. Therefore, biofouling was identified as the primary mechanism of fouling. Rotating reverse osmosis was compared with conventional spiral wound reverse osmosis and displayed increased rejection under dead end filtration conditions. The rotating device exhibited similar rejection and increased flux compared to a tubular reverse osmosis device previously used in a NASA wastewater recovery system. The integration of the rotating device into a NASA water recovery management system was evaluated. Lastly, a theoretical model of rotating hemofiltration was developed that demonstrated that the device is not clinically feasible given the permeability of available hemofiltration membranes.
Solid state carbon nanotube device for controllable trion electroluminescence emission
NASA Astrophysics Data System (ADS)
Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao
2016-03-01
Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07468a
Using Public Participation to Improve MELs Energy Data Collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloss, Margarita; Cheung, Iris; Brown, Richard
Miscellaneous and electronic loads (MELs) comprise an increasing share of building energy consumption. Large-scale data collection is needed to inform meaningful energy reduction strategies because of the diversity of MELs and our lack of understanding about how people use them. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. We assessed the reliability and accuracy of crowd-sourced data by recruiting 18 volunteers and testing our crowdsourcing protocol. The protocol askedmore » volunteers to perform measurement tasks for three MELs devices of increasing complexity 1) record power meter and MELs product characteristics, 2) identify and measure all power modes available, and 3) report the measured power. Volunteers performed reasonably well for devices with functionalities with which they were familiar, but many could not correctly identify all available power modes in complex devices. Accuracy may improve when participants measure the power used by familiar devices in their home, or by providing more specific instructions, e.g. videos. Furthermore, crowdsourcing data collection from individual homeowners has the potential to generate valuable information about MELs energy use in homes when integrated with existing programs such as Home Energy Saver and Building America.« less
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2017-06-01
The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyegal, Jang, E-mail: jjyegal@inu.ac.kr
Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less
Essebag, Vidal; Verma, Atul; Healey, Jeff S; Krahn, Andrew D; Kalfon, Eli; Coutu, Benoit; Ayala-Paredes, Felix; Tang, Anthony S; Sapp, John; Sturmer, Marcio; Keren, Arieh; Wells, George A; Birnie, David H
2016-03-22
The BRUISE CONTROL trial (Bridge or Continue Coumadin for Device Surgery Randomized Controlled Trial) demonstrated that a strategy of continued warfarin during cardiac implantable electronic device surgery was safe and reduced the incidence of clinically significant pocket hematoma (CSH). CSH was defined as a post-procedure hematoma requiring further surgery and/or resulting in prolongation of hospitalization of at least 24 h, and/or requiring interruption of anticoagulation. Previous studies have inconsistently associated hematoma with the subsequent development of device infection; reasons include the retrospective nature of many studies, lack of endpoint adjudication, and differing subjective definitions of hematoma. The BRUISE CONTROL INFECTION (Bridge or Continue Coumadin for Device Surgery Randomized Controlled Trial Extended Follow-Up for Infection) prospectively examined the association between CSH and subsequent device infection. The study included 659 patients with a primary outcome of device-related infection requiring hospitalization, defined as 1 or more of the following: pocket infection; endocarditis; and bloodstream infection. Outcomes were verified by a blinded adjudication committee. Multivariable analysis was performed to identify predictors of infection. The overall 1-year device-related infection rate was 2.4% (16 of 659). Infection occurred in 11% of patients (7 of 66) with previous CSH and in 1.5% (9 of 593) without CSH. CSH was the only independent predictor and was associated with a >7-fold increased risk of infection (hazard ratio: 7.7; 95% confidence interval: 2.9 to 20.5; p < 0.0001). Empiric antibiotics upon development of hematoma did not reduce long-term infection risk. CSH is associated with a significantly increased risk of infection requiring hospitalization within 1 year following cardiac implantable electronic device surgery. Strategies aimed at reducing hematomas may decrease the long-term risk of infection. (Bridge or Continue Coumadin for Device Surgery Randomized Controlled Trial [BRUISE CONTROL]; NCT00800137). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
The role of surface ligands in quantum-dot devices: Villain or unsung hero?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietryga, Jeffrey Michael
For over three decades, the study of nanocrystal quantum dots (QDs), which are solution-synthesized nanometer-scale bits of semiconductor materials, has produced singular advances in both our understanding of quantum confinement effects, and in our ability to make use of them in tech-relevant materials. Accordingly, QDs have found their way into the marketplace, specifically as high-performance fluorophores for, e.g., displays and biolabeling. In such applications, optimization of the QD surface, including the passivating ligands, is key to keeping photo-excited carriers from leaving the QD interior before recombining, resulting in a high fluorescence efficiency. Increasingly, attention has turned to realize the promisemore » of QDs for optoelectronic applications (e.g., solar cells, LEDs, sensors) which require charge carriers to controllably enter, exit and/or travel through QDs, a much more challenging problem. In this scenario, the role of the QD surface must be completely reimagined, from being an impenetrable wall to being a gateway, or even a ramp. In this talk, I’ll explore the inherent contrast between QD fluorophore and device applications, and describe how ligands, originally thought only to be impediments to QD electronic devices, may actually give the savvy QD device designer control over function and performance in a manner unknown in bulk semiconductor devices. Finally, I’ll survey recent efforts at Los Alamos to develop a universal tool box for deposition of conductive QD films that may finally allow the manufacturing of economical, high-performance devices for a wide range of applications.« less
Less severe processing improves carbon nanotube photovoltaic performance
NASA Astrophysics Data System (ADS)
Shea, Matthew J.; Wang, Jialiang; Flach, Jessica T.; Zanni, Martin T.; Arnold, Michael S.
2018-05-01
Thin film semiconducting single walled carbon nanotube (s-SWCNT) photovoltaics suffer losses due to trapping and quenching of excitons by defects induced when dispersing s-SWCNTs into solution. We study these aspects by preparing photovoltaic devices from (6,5) carbon nanotubes isolated by different processes: extended ultrasonication, brief ultrasonication, and shear force mixing. Peak quantum efficiency increases from 28% to 38% to 49% as the processing harshness decreases and is attributed to both increasing s-SWCNT length and reducing sidewall defects. Fill-factor and open-circuit voltage also improve with shear force mixing, highlighting the importance of obtaining long, defect-free s-SWCNTs for efficient photoconversion devices.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
Passive thermal management using phase change materials
NASA Astrophysics Data System (ADS)
Ganatra, Yash Yogesh
The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
You, Hsin-Chiang; Wang, Yu-Chih
2016-06-01
In this paper, we describe the use of a simple and efficient sol-gel solution method for synthesizing indium zinc oxide (IZO) films for use as semiconductor channel layers in thin-film transistors (TFTs) on p-type silicon substrates. The performance of IZO-based TFTs was investigated, and the effect of oxygen plasma treatment on the surface of dielectric SiN x was observed. Oxygen plasma treatment effectively enhanced the electron mobility in IZO-based TFT devices from 0.005 to 1.56 cm2 V-1 s-1, an increase of more than 312 times, and effectively enhanced device performance. X-ray photoelectron spectroscopy analysis of the IZO film was performed to clarify element bonding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Bonin, Timothy
As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing considermore » uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict errors in lidar-measured wind speed. The results show how uncertainty varies over time and can be used to help select data with different levels of uncertainty for different applications, for example, low uncertainty data for power performance testing versus all data for plant performance monitoring.« less
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.
1998-01-01
This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.
Reading from electronic devices versus hardcopy text.
Hue, Jennifer E; Rosenfield, Mark; Saá, Gianinna
2014-01-01
The use of electronic reading devices has increased dramatically. However, some individuals report increased visual symptoms when reading from electronic screens. This investigation compared reading from two electronic devices (Amazon Kindle or Apple Ipod) versus hardcopy text in two groups of 20 subjects. Subjects performed a 20 min reading task for each condition. Both the accommodative response and reading rate were monitored during the trial. Immediately post-task, subjects completed a questionnaire concerning the ocular symptoms experienced during the task. In comparing the Kindle with hardcopy, no significant difference in the total symptom score was observed, although the mean score for the symptoms of tired eyes and eye discomfort was significantly higher with the Kindle. No significant differences in reading rate were found. When comparing the Ipod with hardcopy, no significant differences in symptom scores were found. The mean reading rate with the Ipod was significantly slower than for hardcopy while the mean lag of accommodation was significantly larger for the Ipod. Given the significant increase in symptoms with the Kindle, and larger lag of accommodation and reduced reading rate with the Ipod, one may conclude that reading from electronic devices is not equivalent to hardcopy.
Research Update: Emerging chalcostibite absorbers for thin-film solar cells
de Souza Lucas, Francisco Willian; Zakutayev, Andriy
2018-06-04
Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.
Research Update: Emerging chalcostibite absorbers for thin-film solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Souza Lucas, Francisco Willian; Zakutayev, Andriy
Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.
Hand VR Exergame for Occupational Health Care.
Ortiz, Saskia; Uribe-Quevedo, Alvaro; Kapralos, Bill
2016-01-01
The widespread use and ubiquity of mobile computing technologies such as smartphones, tablets, laptops and portable gaming consoles has led to an increase in musculoskeletal disorders due to overuse, bad posture, repetitive movements, fixed postures and physical de-conditioning caused by low muscular demands while using (and over-using) these devices. In this paper we present the development of a hand motion-based virtual reality-based exergame for occupational health purposes that allows the user to perform simple exercises using a cost-effective non-invasive motion capture device to help overcome and prevent some of the muskoloskeletal problems associated with the over-use of keyboards and mobile devices.
Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui
2016-10-06
Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian
2015-02-01
Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.
Digital micromirror device based ophthalmoscope with concentric circle scanning.
Damodaran, Mathi; Vienola, Kari V; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F
2017-05-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.
Digital micromirror device based ophthalmoscope with concentric circle scanning
Damodaran, Mathi; Vienola, Kari V.; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.
2017-01-01
Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast. PMID:28663905
7Li MRI of Li batteries reveals location of microstructural lithium.
Chandrashekar, S; Trease, Nicole M; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P; Jerschow, Alexej
2012-02-12
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
7Li MRI of Li batteries reveals location of microstructural lithium
NASA Astrophysics Data System (ADS)
Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P.; Jerschow, Alexej
2012-04-01
There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.
Surface modification of biomaterials and biomedical devices using additive manufacturing.
Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit
2018-01-15
The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lynch, Michael; Mandadzhiev, Boris; Wissa, Aimy
2018-03-20
Birds are highly capable and maneuverable fliers, traits not currently shared with current small unmanned aerial vehicles. They are able to achieve these flight capabilities by adapting the shape of their wings during flight in a variety of complex manners. One feature of bird wings, the primary feathers, separate to form wingtip gaps at the distal end of the wing. This paper presents bio-inspired wingtip devices with varying wingtip gap sizes, defined as the chordwise distance between wingtip devices, for operation in low Reynolds number conditions of Re = 100 000, where many bird species operate. Lift and drag data was measured for planar and nonplanar wingtip devices with the total wingtip gap size ranging from 0% to 40% of the wing's mean chord. For a planar wing with a gap size of 20%, the mean coefficient of lift in the pre-stall region is increased by 7.25%, and the maximum coefficient of lift is increased by 5.6% compared to a configuration with no gaps. The nonplanar wingtip device was shown to reduce the induced drag. The effect of wingtip gap sizes is shown to be independent of the planarity/nonplanarity of the wingtip device, thereby allowing designers to decouple the wingtip parameters to tune the desired lift and drag produced.
Common Uses and Cited Complications of Energy in Surgery
Sankaranarayanan, Ganesh; Resapu, Rajeswara R.; Jones, Daniel B.; Schwaitzberg, Steven; De, Suvranu
2013-01-01
Background Instruments that apply energy to cut, coagulate and dissect tissue with minimal bleeding facilitate surgery. The improper use of energy devices may increase patient morbidity and mortality. The current article reviews various energy sources in terms of their common uses and safe practices. Methods For the purpose of this review, a general search was conducted through NCBI, SpringerLink and Google. Articles describing laparoscopic or minimally invasive surgeries using a single or multiple energy sources are considered, as are the articles comparing various commercial energy devices in laboratory settings. Keywords such as ‘laparoscopy’, ‘energy’, ‘laser’, ‘electrosurgery’, ‘monopolar’, ‘bipolar’, ‘harmonic’, ‘ultrasonic’, ‘cryosurgery’, ‘argon beam’, ‘laser’, ‘complications’, and ‘death’ were used in the search. Results and Conclusion A review of the literature shows that the performance of the energy devices depends upon the type of procedure. There is no consensus as to which device is optimal for a given procedure. The technical skill level of the surgeon and the knowledge about the devices are both important factors in deciding safe outcomes. As new energy devices enter the market increases, surgeons should be aware of their indicated use in laparoscopic, endoscopic and open surgery. PMID:23609857
What the Psychiatrist Needs to Know About Ventricular Assist Devices: A Comprehensive Review.
Caro, Mario A; Rosenthal, Julie L; Kendall, Kay; Pozuelo, Leopoldo; Funk, Margo C
2016-01-01
The number of patients with end-stage heart failure using mechanical circulatory support has dramatically increased over the past decade. Left ventricular assist devices, the most common type of mechanical circulatory support, can be used as a bridge to transplant, destination therapy, and as a bridge to recovery. As this patient population continues to grow, consultation-liaison psychiatrists will become increasingly involved in their care. A thorough biopsychosocial assessment is required to ensure adequate recognition and management of medical, psychiatric, social, and ethical challenges posed by this population. We performed a literature review to identify key issues relevant to the practice of consultation-liaison psychiatrists. General functioning of left ventricular assist devices, device types, system components, life with a left ventricular assist device, preoperative evaluation, treatment of psychiatric comorbidities, and end-of-life decision-making are discussed. Consultation-liaison psychiatrists need to be familiar with the high prevalence of psychopathology in patients implanted with left ventricular assist devices. A detailed biopsychosocial formulation is required to adequately identify and, if possible, resolve a myriad of medical, psychiatric, social, and ethical challenges presented by this population. Future efforts should accurately identify and report specific psychiatric disorders and adverse events within this cohort. Copyright © 2016 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.
Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls
Chae, Jeongsook; Jin, Yong; Sung, Yunsick
2018-01-01
Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641
Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha
2017-01-01
This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines. PMID:28272336
Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo
2017-10-25
The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.
Buttermann, Glenn R; Mendenhall, H Vincent
2012-04-01
The optimal lumbar spinal disc prosthesis has yet to be developed. Failures of clinical device studies may be minimized by appropriate large animal preclinical studies. The lumbar spine of the mature "runt" cow, Corrientes breed, has been shown to have a number of desirable characteristics to the human. This study assessed the feasibility of the "runt" cow for in vivo testing of human-sized lumbar interbody implants and the ability to perform common analyses of explants. Eight cows (four experimental and four controls) were compared. The experimental animals had transosseous implantation of the disc prosthesis at L4-L5, and their spines were harvested at four or six months. They were evaluated for the ease of surgical access and healing, motion segment mobility, ability to remove the implant nondestructively, and microradiography and histomorphology. All animals had successful implantation. All explantations were performed without alteration to the devices. All animals had surgical healing and intended device motion, and histology found device stability by demonstrating bone ingrowth into the device's porous plates. There was a significant 46% increase in the amount of trabecular bone adjacent to the implants. The mature runt cow allows for implantation of human-sized interbody and intrabody spinal prostheses. This animal model allowed for macro- and histological analysis of the implant and surrounding tissues. In vivo stability was demonstrated for the disc prosthesis while also allowing for evaluation of intended mobility. Additionally, this is the first study to suggest increased bone density supporting an interbody prosthesis.
Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha
2017-03-07
This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles ( p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.
Improvement in conformability of the latest generation of thoracic stent grafts.
Canaud, Ludovic; Cathala, Philipe; Joyeux, Frédéric; Branchereau, Pascal; Marty-Ané, Charles; Alric, Pierre
2013-04-01
Poor aortic arch apposition increases the risk of technical failure after thoracic endovascular repair. The aim of this study was to assess the conformability of the latest generation of thoracic stent grafts in relation to the degree of device oversizing and aortic arch angulation. A benchtop pulsatile flow model was designed to test stent graft anchorage in a 2-cm-long proximal landing zone at varying landing zone angles (from 140° down to 70°) and stent graft oversizing (12%-28%). The experiments were performed using 10 human thoracic cadaveric aortas and four stent grafts: C-TAG, Zenith TX2 Pro-Form, Valiant Captivia, and Relay. Device-wall apposition was measured as a function of landing zone angulation and oversizing during static and dynamic (60 pulses/min, 300/150 mm Hg) tests. The Valiant stent graft remained apposed to the aortic wall at each increment of neck angulation and device oversizing. Lack of apposition of the proximal anchorage segment was observed with the C-TAG above 120° landing zone angulation (1-2 mm) and with the Relay above 110° landing zone angulation (1-4 mm). Lack of "body" apposition (1-4 mm) was first observed with the Zenith Pro-Form stent graft above 110° angulation (P = .001). When the device was not apposed to the aortic wall, an increase in stent graft oversizing significantly (P = .01) decreased device-wall apposition. The requirement for close conformability has influenced the design of next-generation devices. Manufacturers have modified devices and/or their deployment system to specifically address this problem. When compared with the results of our previous experimental test, this study demonstrates that these alterations have resulted in a marked improvement in the performance of commercially available stent graft systems. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kadem, Burak Yahya
Organic solar cells (OSCs) have attracted a significant attention during the last decade due to their simple processability on a flexible substrate as well as scope for large-scale production using role to role technique. Improving the performance of the organic solar cells and their lifetime stability are one of the main challenges faced by researchers in this field. In this thesis, work has been carried out using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl C[61] butyric acid methyl ester (PCBM) as an active layer in the ratio of (1:1) (P3HT:PCBM). The efficiency and stability of P3HT:PCBM-based solar cells have been examined using different methods and employing novel materials such as1-[N-(2-ethoxyethyl) pent-4-ynamide] -8 (11), 15 (18), 22 (25) -tris-{2-[2-(2-ethoxyethoxy) ethoxy]-1-[2-((2- ethoxyethoxy) - ethoxy) methyl] ethyloxy} phthalocyaninato zinc (II) (ZnPc) to construct a ternary hybrid as the active layer. Controlling the morphology and crystallinity of P3HT:PCBM active layer was carried out using different solvents including chloroform (CF), chlorobenzene (CB) and dichlorobenzene (DCB) and their co-solvents in the ratio of (1:1) to dissolve the P3HT:PCBM blend. Optimum morphology and crystallinity were achieved using a co-solvent made of CB:CF with the obtained solar cell exhibiting the highest performance with PCE reaching 2.73% among other devices prepared using different solvents. Further device performance improvement was observed through optimization of active layer thickness with studied thickness falling in range 65-266 nm. Measurements of the PV characteristics of the investigated OSC devices have revealed optimum performance when active layer thickness was 95 nm with PCE=3.846%. The stability of the P3HT:PCBM-based devices on optimisation of the active layer thickness has shown a decrease in PCE of about 71% over a period of 41 days. Furthermore, P3HT has been blended with different fullerene derivatives (PC[60]BM, PC[61]BM, PC[70]BM and PC[71]BM) and the active layers were processed using the optimum solvent as well as optimum film's thickness.These PCBM derivatives have different lower unoccupied molecular level (LUMO) and different higher occupied molecular level (HOMO) positions, which subsequently influence the PV parameters of the OSCs such as the device open circuit voltage (V[oc]) and its built-in potential (V[bi]). P3HT:PC61BM-based blend has exhibited the highest device performance with PCE reaching 4.2%. Using the above mentioned optimum parameters, the P3HT:PCBM-based devices have been subjected to post-deposition annealing at different temperatures in the range 100-180°C. Efficient device performance was ascribed to P3HT:PCBM layers being subjected to post-deposition heat treatment at 140°C with PCE=5.5%. Device stability as a result of post-deposition heat treatment has also been shown to improve with PCE degrading by about 38% after 55 days.The use of interfacial layer is found to play a key part in modifying the solar cell performance; using electron transport layer (ETL) such as aluminium tris(8-hydroxyquinoline) (Alq3) as a solution processable layer has contributed in increasing PCE to 4.25%, while, using PEDOT:PSS as a hole transport layer (HTL) doped with metal salts has significantly contributed in increasing PCE to reach 6.82% in device when PEDOT:PSS was doped with LiCl aqueous solution. Stability study for the device based on HTL has shown degradation in the PCE from 6.82% to around 1% over 96 days. Using ETL and HTL simultaneously in a complete device has shown a further enhanced PCE reaching 7%. In a further study, doping the P3HT:PCBM with the novel ZnPc hybrids (SWCNTs and reduced graphene oxide (rGO) are covalently and non-covalently functionalised to ZnPc) with the weight ratio of (1:0.01) has significantly altered the solar cell device properties. The best performance is based on P3HT:PCBM blended with ZnPc-SWCNTs-co bonded as a ternary active layer demonstrating device PCE of 5.3% compared to a reference device based on bare P3HT:PCBM blend with PCE of 3.46%.
Characterization and device performance of (AgCu)(InGa)Se2 absorber layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.
The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only controlmore » samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.« less
NASA Astrophysics Data System (ADS)
Chauhan, Sudakar Singh; Sharma, Neha
2017-12-01
This paper proposes hetero-junctionless double gate tunnel field effect transistor (HJLDG-TFETs) for suppression of subthreshold swing (SS) using an InAs compound semiconductor material. The proposed device with high dielectric material, gives an excellent performance when InAs uses at source side. Because of low band gap of 0.36 eV , it reduces the potential barrier height of source channel interface causing higher band to band tunneling. Whereas, Si at the drain side with higher band gap of 1.12 eV , increasing the barrier height of drain channel interface causing lower quantum tunneling. As a result, the proposed device with high-k (HfO2) at 30 nm channel section provides a tremendous characteristics with high ION /IOFF ratio of 2 ×1011 , a point SS of 43.30 mV / decade and moderate SS of 56.75 mV / decade . All the above results show that the proposed device is assured for a low power switching application. The variation in gate supply voltage also analyzed for transconductance property of the device.
Testing and performance of a new friction damper for seismic vibration control
NASA Astrophysics Data System (ADS)
Martínez, Carlos A.; Curadelli, Oscar
2017-07-01
In the last two decades, great efforts were carried out to reduce the seismic demand on structures through the concept of energy dissipation instead of increasing the stiffness and strength. Several devices based on different energy dissipation principles have been developed and implemented worldwide, however, most of the dissipation devices are usually installed using diagonal braces, which entail certain drawbacks on apertures for circulation, lighting or ventilation and architectural or functional requirements often preclude this type of installations. In this work, a conceptual development of a novel energy dissipation device, called Multiple Friction Damper (MFD), is proposed and examined. To verify its characteristics and performance, the MFD was implemented on a single storey steel frame experimental model and tested under different conditions of normal force and real time acceleration records. Experimental results demonstrated that the new MFD constitutes an effective and reliable alternative to control the structural response in terms of displacement and acceleration. A mathematical formulation based on the Wen's model reflecting the nonlinear behaviour of the device is also presented.
Duration of stimulus presentation and screening for perceptual disabilities.
Rohr, M E; Ayers, J B
1975-02-01
This study examined the effects of increasing the stimulus-presentation time of a motion picture test for identifying perceptual disabilities in the performance of Ss in regular first and fourth grade classrooms and on a sample of Ss in special education classes who had been identified as having varying degrees of perceptual deficiencies. The length of stimulus presentation increased the total performance of Ss on the motion picture test but did not add to the value of the instrument as a screening device.
NASA Astrophysics Data System (ADS)
Lee, Min-Jung; Lee, Tae Il; Park, Jee Ho; Kim, Jung Han; Chae, Gee Sung; Jun, Myung Chul; Hwang, Yong Kee; Baik, Hong Koo; Lee, Woong; Myoung, Jae-Min
2012-05-01
The structure of thin-film transistors (TFTs) based on amorphous In-Ga-Zn-O (a-IGZO) was modified by spin coating a suspension of In2O3 nanoparticles on a SiO2/p++ Si layered wafer surface prior to the deposition of IGZO layer by room-temperature sputtering. The number of particles per unit area (surface density) of the In2O3 nanoparticles could be controlled by applying multiple spin coatings of the nanoparticle suspension. During the deposition of IGZO, the In2O3 nanoparticles initially located on the substrate surface migrated to the top of the IGZO layer indicating that they were not embedded within the IGZO layer, but they supplied In to the IGZO layer to increase the In concentration in the channel layer. As a result, the channel characteristics of the a-IGZO TFT were modulated so that the device showed an enhanced performance as compared with the reference device prepared without the nanoparticle treatment. Such an improved device performance is attributed to the nano-scale changes in the structure of (InO)n ordering assisted by increased In concentration in the amorphous channel layer.
Berweger, Samuel; MacDonald, Gordon A.; Yang, Mengjin; ...
2017-02-02
We perform scanning microwave microscopy (SMM) to study the spatially varying electronic properties and related morphology of pristine and degraded methylammonium lead-halide (MAPI) perovskite films fabricated under different ambient humidity. Here, we find that higher processing humidity leads to the emergence of increased conductivity at the grain boundaries but also correlates with the appearance of resistive grains that contain PbI 2. Deteriorated films show larger and increasingly insulating grain boundaries as well as spatially localized regions of reduced conductivity within grains. These results suggest that while humidity during film fabrication primarily benefits device properties due to the passivation of trapsmore » at the grain boundaries and self-doping, it also results in the emergence of PbI 2-containing grains. We further establish that MAPI film deterioration under ambient conditions proceeds via the spatially localized breakdown of film conductivity, both at grain boundaries and within grains, due to local variations in susceptibility to deterioration. These results confirm that PbI 2 has both beneficial and adverse effects on device performance and provide new means for device optimization by revealing spatial variations in sample conductivity as well as morphological differences in resistance to sample deterioration.« less
Bias sputtered NbN and superconducting nanowire devices
NASA Astrophysics Data System (ADS)
Dane, Andrew E.; McCaughan, Adam N.; Zhu, Di; Zhao, Qingyuan; Kim, Chung-Soo; Calandri, Niccolo; Agarwal, Akshay; Bellei, Francesco; Berggren, Karl K.
2017-09-01
Superconducting nanowire single photon detectors (SNSPDs) promise to combine near-unity quantum efficiency with >100 megacounts per second rates, picosecond timing jitter, and sensitivity ranging from x-ray to mid-infrared wavelengths. However, this promise is not yet fulfilled, as superior performance in all metrics is yet to be combined into one device. The highest single-pixel detection efficiency and the widest bias windows for saturated quantum efficiency have been achieved in SNSPDs based on amorphous materials, while the lowest timing jitter and highest counting rates were demonstrated in devices made from polycrystalline materials. Broadly speaking, the amorphous superconductors that have been used to make SNSPDs have higher resistivities and lower critical temperature (Tc) values than typical polycrystalline materials. Here, we demonstrate a method of preparing niobium nitride (NbN) that has lower-than-typical superconducting transition temperature and higher-than-typical resistivity. As we will show, NbN deposited onto unheated SiO2 has a low Tc and high resistivity but is too rough for fabricating unconstricted nanowires, and Tc is too low to yield SNSPDs that can operate well at liquid helium temperatures. By adding a 50 W RF bias to the substrate holder during sputtering, the Tc of the unheated NbN films was increased by up to 73%, and the roughness was substantially reduced. After optimizing the deposition for nitrogen flow rates, we obtained 5 nm thick NbN films with a Tc of 7.8 K and a resistivity of 253 μΩ cm. We used this bias sputtered room temperature NbN to fabricate SNSPDs. Measurements were performed at 2.5 K using 1550 nm light. Photon count rates appeared to saturate at bias currents approaching the critical current, indicating that the device's quantum efficiency was approaching unity. We measured a single-ended timing jitter of 38 ps. The optical coupling to these devices was not optimized; however, integration with front-side optical structures to improve absorption should be straightforward. This material preparation was further used to fabricate nanocryotrons and a large-area imager device, reported elsewhere. The simplicity of the preparation and promising device performance should enable future high-performance devices.
Synthesis and properties of silicon nanowire devices
NASA Astrophysics Data System (ADS)
Byon, Kumhyo
Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed. The contributions of this study are to further understanding of the electrical transport properties of SiNWs and to provide optimized processes to fabricate emerging high performance nanoelectronic devices using SiNWs for future generation beyond bulk silicon.
49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...
49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...
49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...
49 CFR 232.405 - Design and performance standards for two-way end-of-train devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Design and performance standards for two-way end... Design and performance standards for two-way end-of-train devices. Two-way end-of-train devices shall be designed and perform with the features applicable to one-way end-of-train devices described in § 232.403...
Mansfield, Robert T; Lin, Kimberly Y; Zaoutis, Theoklis; Mott, Antonio R; Mohamad, Zeinab; Luan, Xianqun; Kaufman, Beth D; Ravishankar, Chitra; Gaynor, J William; Shaddy, Robert E; Rossano, Joseph W
2015-07-01
The use of ventricular assist devices has increased dramatically in adult heart failure patients. However, the overall use, outcome, comorbidities, and resource utilization of ventricular assist devices in pediatric patients have not been well described. We sought to demonstrate that the use of ventricular assist devices in pediatric patients has increased over time and that mortality has decreased. A retrospective study of the Pediatric Health Information System database was performed for patients 20 years old or younger undergoing ventricular assist device placement from 2000 to 2010. None. Four hundred seventy-five pediatric patients were implanted with ventricular assist devices during the study period: 69 in 2000-2003 (era 1), 135 in 2004-2006 (era 2), and 271 in 2007-2010 (era 3). Median age at ventricular assist device implantation was 6.0 years (interquartile range, 0.5-13.8), and the proportion of children who were 1-12 years old increased from 29% in era 1 to 47% in era 3 (p = 0.002). The majority of patients had a diagnosis of cardiomyopathy; this increased from 52% in era 1 to 72% in era 3 (p = 0.003). Comorbidities included arrhythmias (48%), pulmonary hypertension (16%), acute renal failure (34%), cerebrovascular disease (28%), and sepsis/systemic inflammatory response syndrome (34%). Two hundred forty-seven patients (52%) underwent heart transplantation and 327 (69%) survived to hospital discharge. Hospital mortality decreased from 42% in era 1 to 25% in era 3 (p = 0.004). Median hospital length of stay increased (37 d [interquartile range, 12-64 d] in era 1 vs 69 d [interquartile range, 35-130] in era 3; p < 0.001) and median adjusted hospital charges increased ($630,630 [interquartile range, $227,052-$853,318] in era 1 vs $1,577,983 [interquartile range, $874,463-$2,280,435] in era 3; p < 0.001). Factors associated with increased mortality include age less than 1 year (odds ratio, 2.04; 95% CI, 1.01-3.83), acute renal failure (odds ratio, 2.1; 95% CI, 1.26-3.65), cerebrovascular disease (odds ratio, 2.1; 95% CI, 1.25-3.62), and extracorporeal membrane oxygenation (odds ratio, 3.16; 95% CI, 1.79-5.60). Ventricular assist device placement in era 3 (odds ratio, 0.3; 95% CI, 0.15-0.57) and a diagnosis of cardiomyopathy (odds ratio, 0.5; 95% CI, 0.32-0.84), were associated with decreased mortality. Large-volume centers had lower mortality (odds ratio, 0.55; 95% CI, 0.34-0.88), lower use of extracorporeal membrane oxygenation, and higher charges. The use of ventricular assist devices and survival after ventricular assist device placement in pediatric patients have increased over time, with a concomitant increase in resource utilization. Age under 1 year, certain noncardiac morbidities, and the use of extracorporeal membrane oxygenation are associated with worse outcomes. Lower mortality was seen at larger volume ventricular assist device centers.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.
2018-02-01
Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.
Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers
Parry, Dave; Cooper, Chris E.
2018-01-01
The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis. uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming. PMID:29692951
Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers.
Jones, Ben; Parry, Dave; Cooper, Chris E
2018-01-01
The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis . uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.
Falk, Markus; Donaldsson, Snorri; Jonsson, Baldvin; Drevhammar, Thomas
2017-11-01
Medijet nasal continuous positive airway pressure (CPAP) generators are a family of devices developed from the Benveniste valve. Previous studies have shown that the in vitro performance of the Medijet disposable generator was similar to the Neopuff resistor system. We hypothesised that resistance would be the main mechanism of CPAP generation in the Medijet disposable generator. The in vitro performance of the Medijet reusable and disposable systems, the Neopuff resistor system and the Benveniste and Infant Flow nonresistor systems were investigated using static and dynamic bench tests. Large differences in performance were found between the different systems. The disposable Medijet demonstrated high resistance, low pressure stability and high imposed work of breathing. The results also showed that encapsulating the Benveniste valve changed it into a resistor system. The main mechanism of CPAP generation for the disposable Medijet generator was resistance. The Medijet device family showed increasing resistance with each design generation. The high resistance of the Medijet disposable generator could be of great value when examining the clinical importance of pressure stability. Our results suggest that this device should be used cautiously in patients where pressure-stable CPAP is believed to be clinically important. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Weems, Andrew C.; Boyle, Anthony J.; Maitland, Duncan J.
2017-03-01
The long-term shape-recovery behavior of shape memory polymers has often been shown to be dependent on the length of time the material has been stored in the secondary shape. Typically, recovery performance and shape fixity will decrease with increased time in the secondary shape. In medical materials, a shelf-life is crucial to establish as it sets the upper threshold for device performance in a clinical setting, and a reduction in shape recovery would limit the development of SMP medical devices. Here, we present a two-year study of strain recovery, strain fixity, and shape recovery kinetics for passively and actively actuated SMPs intended for vascular devices. While kinetic experiments using immersion DMA indicate slight material relaxation and a decrease in the time to recovery, these changes are not found for bulk recovery experiments. The results indicate that a two-year shelf-life for these SMPs is very reasonable, as there is no change in the recovery kinetics, strain recovery, or strain fixity associated with this aging time. Further, a thermal accelerated aging test is presented for more rapid testing of the shape memory behavior of these SMPs and is compared with the real time aging results, indicating that this test is a reasonable indicator of the two-year behavior.
Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells.
Bi, Dongqin; Luo, Jingshan; Zhang, Fei; Magrez, Arnaud; Athanasopoulou, Evangelia Nefeli; Hagfeldt, Anders; Grätzel, Michael
2017-04-10
Despite the rapid increase in the performance of perovskite solar cells (PSC), they still suffer from low lab-to-lab or people-to-people reproducibility. Aiming for a universal condition to high-performance devices, we investigated the morphology evolution of a composite perovskite by tuning annealing temperature and precursor concentration of the perovskite film. Here, we introduce thermal annealing as a powerful tool to generate a well-controlled excess of PbI 2 in the perovskite formulation and show that this benefits the photovoltaic performance. We demonstrated the correlation between the film microstructure and electronic property and device performance. An optimized average grain size/thickness aspect ratio of the perovskite crystallite is identified, which brings about a highly reproducible power conversion efficiency (PCE) of 19.5 %, with a certified value of 19.08 %. Negligible hysteresis and outstanding morphology stability are observed with these devices. These findings lay the foundation for further boosting the PCE of PSC and can be very instructive for fabrication of high-quality perovskite films for a variety of applications, such as light-emitting diodes, field-effect transistors, and photodetectors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Performance improvement of optical fiber coupler with electric heating versus gas heating.
Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping
2010-08-20
Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.
NASA Astrophysics Data System (ADS)
Aghandeh, Hadi; Sedigh Ziabari, Seyed Ali
2017-11-01
This study investigates a junctionless tunnel field-effect transistor with a dual material gate and a heterostructure channel/source interface (DMG-H-JLTFET). We find that using the heterostructure interface improves device behavior by reducing the tunneling barrier width at the channel/source interface. Simultaneously, the dual material gate structure decreases ambipolar current by increasing the tunneling barrier width at the drain/channel interface. The performance of the device is analyzed based on the energy band diagram at on, off, and ambipolar states. Numerical simulations demonstrate improvements in ION, IOFF, ION/IOFF, subthreshold slope (SS), transconductance and cut-off frequency and suppressed ambipolar behavior. Next, the workfunction optimization of dual material gate is studied. It is found that if appropriate workfunctions are selected for tunnel and auxiliary gates, the JLTFET exhibits considerably improved performance. We then study the influence of Gaussian doping distribution at the drain and the channel on the ambipolar performance of the device and find that a Gaussian doping profile and a dual material gate structure remarkably reduce ambipolar current. Gaussian doped DMG-H-JLTFET, also exhibits enhanced IOFF, ION/IOFF, SS and a low threshold voltage without degrading IOFF.
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G.; Salapura, Valentina
2012-07-24
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.
Zhou, Yingqiu; Tan, Haijie; Sheng, Yuewen; Fan, Ye; Xu, Wenshuo; Warner, Jamie H
2018-04-19
Here we study the layer-dependent photoconductivity in Gr/WS 2 /Gr vertical stacked tunneling (VST) cross-bar devices made using two-dimensional (2D) materials all grown by chemical vapor deposition. The larger number of devices (>100) enables a statistically robust analysis on the comparative differences in the photovoltaic response of monolayer and bilayer WS 2 , which cannot be achieved in small batch devices made using mechanically exfoliated materials. We show a dramatic increase in photovoltaic response for Gr/WS 2 (2L)/Gr compared to monolayers because of the long inter- and intralayer exciton lifetimes and the small exciton binding energy (both interlayer and intralayer excitons) of bilayer WS 2 compared with that of monolayer WS 2 . Different doping levels and dielectric environments of top and bottom graphene electrodes result in a potential difference across a ∼1 nm vertical device, which gives rise to large electric fields perpendicular to the WS 2 layers that cause band structure modification. Our results show how precise control over layer number in all 2D VST devices dictates the photophysics and performance for photosensing applications.
Circulation-Enhancing Device Improves CPR
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced Circulatory Systems, Inc. and NASA's Kennedy Space Center collaborated for five years on impedance threshold device technology. The resulting technology is encapsulated in a device called the ResQPOD Circulatory Enhancer, which improves the standard of care provided to patients with a variety of clinical conditions due to low blood flow. ResQPOD generates negative intrathoracic pressure during respiration to increase blood flow to the body's vital organs. It is unique in that it non-invasively enhances the body's biophysical performance without depending on pharmaceutical or other outside agents. ResQPOD uses the relationship of the heart, brain, lungs and chest cavity in a manner similar to a bellows to increase venous blood return to the heart. Multiple studies have shown a significant improvement in cardiac output and blood flow to the brain with the use of the impedance threshold device, as well as the device's ability to prevent shock secondary to blood loss. ResQPOD has been added to the set of medical equipment that is available for returning astronaut crews, and commercial applications have fallen into two categories: Non-spontaneously breathing patients who can benefit from enhanced circulation, and spontaneously breathing patients who suffer from transient hypotension or low blood pressure.
Nanowire Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Borshchevsky, Alexander; Fleurial, Jean-Pierre; Herman, Jennifer; Ryan, Margaret
2005-01-01
Nanowire thermoelectric devices, now under development, are intended to take miniaturization a step beyond the prior state of the art to exploit the potential advantages afforded by shrinking some device features to approximately molecular dimensions (of the order of 10 nm). The development of nanowire-based thermoelectric devices could lead to novel power-generating, cooling, and sensing devices that operate at relatively low currents and high voltages. Recent work on the theory of thermoelectric devices has led to the expectation that the performance of such a device could be enhanced if the diameter of the wires could be reduced to a point where quantum confinement effects increase charge-carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. In addition, even in the absence of these effects, the large aspect ratios (length of the order of tens of microns diameter of the order of tens of nanometers) of nanowires would be conducive to the maintenance of large temperature differences at small heat fluxes. The predicted net effect of reducing diameters to the order of tens of nanometers would be to increase its efficiency by a factor of .3. Nanowires made of thermoelectric materials and devices that comprise arrays of such nanowires can be fabricated by electrochemical growth of the thermoelectric materials in templates that contain suitably dimensioned pores (10 to 100 nm in diameter and 1 to 100 microns long). The nanowires can then be contacted in bundles to form devices that look similar to conventional thermoelectric devices, except that a production version may contain nearly a billion elements (wires) per square centimeter, instead of fewer than a hundred as in a conventional bulk thermoelectric device or fewer than 100,000 as in a microdevice. It is not yet possible to form contacts with individual nanowires. Therefore, in fabricating a nanowire thermoelectric device, one forms contacts on nanowires in bundles of the order of 10-microns wide. The fill factor for the cross-section of a typical bundle is about 1/2. Nanowires have been grown in alumina templates with pore diameters of 100 and 40 nm.
Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus
The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various attributes that would make them superior for use in X-ray astronomy. In particular, PMOS has: "no" photo-charge recombination; "no" Random Telegraph Signal noise (RTS); and lower read noise. The existing SRI/Sarnoff PMOS devices are small and have been developed for non-intensified night vision applications, however, no x-ray evaluation of a monolithic PMOS device has ever been made. In addition to these PMOS devices, SAO will also evaluate existing NMOS scale-able format devices that can be fabricated in any rectangular size/shape using stitchable reticles. These "Mk by Nk" devices would be ideal for large X-ray focal planes or long grating readouts. The Sarnoff/SRI Mk by Nk format devices have been designed, with foresight, so that they can be fabricated in either PMOS or NMOS by changing a single fabrication reticle and by changing the type of Si substrate. If X-ray performance results are expected, this proposal will lead the way to future fabrication of Mk by Nk PMOS devices that would be ideal for X-ray astronomy missions such as "X-ray Surveyor". SAO will also investigate the interaction of directly deposited Optical Blocking Filters (OBFs) on various back side passivated devices, and their resultant effects on very "soft" x-ray response. The latest CMOS processes and very fast on-chip, and off-chip digital readout signal chains and camera systems will be demonstrated.
Design and fabrication of high-performance diamond triple-gate field-effect transistors
Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo
2016-01-01
The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications. PMID:27708372
The plasmatron: Advanced mode thermionic energy conversion
NASA Technical Reports Server (NTRS)
Hansen, L. K.; Hatch, G. L.; Rasor, N. S.
1976-01-01
A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices.
40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...
40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...
40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...
40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...
40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...
Indium-gallium-zinc-oxide thin-film transistor with a planar split dual-gate structure
NASA Astrophysics Data System (ADS)
Liu, Yu-Rong; Liu, Jie; Song, Jia-Qi; Lai, Pui-To; Yao, Ruo-He
2017-12-01
An amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from 4.0 × 10-6S to 1.6 × 10-5S for a change of control gate voltage from -2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.
Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics.
García de Arquer, F Pelayo; Konstantatos, Gerasimos
2015-06-01
Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metal-semiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metal-insulator-semiconductor heterojunction as a candidate for plasmonic hot-carrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.
Effects of ultrathin oxides in conducting MIS structures on GaAs
NASA Technical Reports Server (NTRS)
Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.
1978-01-01
Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.
Bluetooth Communication for Battery Powered Medical Devices
NASA Astrophysics Data System (ADS)
Babušiak, Branko; Borik, Štefan
2016-01-01
wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.
Improved model for detection of homogeneous production batches of electronic components
NASA Astrophysics Data System (ADS)
Kazakovtsev, L. A.; Orlov, V. I.; Stashkov, D. V.; Antamoshkin, A. N.; Masich, I. S.
2017-10-01
Supplying the electronic units of the complex technical systems with electronic devices of the proper quality is one of the most important problems for increasing the whole system reliability. Moreover, for reaching the highest reliability of an electronic unit, the electronic devices of the same type must have equal characteristics which assure their coherent operation. The highest homogeneity of the characteristics is reached if the electronic devices are manufactured as a single production batch. Moreover, each production batch must contain homogeneous raw materials. In this paper, we propose an improved model for detecting the homogeneous production batches of shipped lot of electronic components based on implementing the kurtosis criterion for the results of non-destructive testing performed for each lot of electronic devices used in the space industry.
Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C
2009-11-17
As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.
RF upset susceptibilities of CMOS and low power Schottky D-type flip-flops
NASA Astrophysics Data System (ADS)
Kenneally, Daniel J.; Koellen, Daniel S.; Epshtein, Stan
A description is given of measurements of RF upset levels on two D-type flip-flops, the CD4013B and 54ALS74A, which are functionally identical but fabricated from different technologies: CMOS and low-power Schottky. Continuous-wave electromagnetic interference (CW EMI) from 1 MHz to 200 MHz was coupled into the clock, data, and collector bias, Vcc, ports of each device type while test vectors were used to verify normal operation and subsequent upsets. Both the CMOS and the Schottky devices show decreasing RF susceptibility with increasing frequencies from 1 to 200 MHz. The CMOS device roll-off is almost 18 dB/decade as compared to about 12 dB/decade for the Schottky device. The differences in the Vcc ports' susceptibilities are also apparent. The CMOS device's upset levels decrease steeply with increasing frequency at approximate roll-offs of 60 dB/decade up to 5 MHz and 15 dB/decade from 5 to 100 MHz. Over the same bands, the Schottky device susceptibility at the Vcc port remains strikingly constant at a 6-dBm upset level. Measurements on the clock and data ports seem to suggest that: (1) the CMOS device is `RF harder' than the Schottky device by 3 to 18 dB at least above the 5 to 10 MHz range and out to 100 MHz; and (2) below that range, the Schottky device may be `RF harder' by 3 to 6 dB, but there are not enough measurement data to confirm this performance below 5 MHz.
Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells
NASA Astrophysics Data System (ADS)
Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif
2015-09-01
Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.
Engineering of Metal Oxide Nanoparticles for Application in Electrochemical Devices
NASA Astrophysics Data System (ADS)
Santos, Lidia Sofia Leitao
The growing demand for materials and devices with new functionalities led to the increased interest in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by solvothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the performance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The deposition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.