Sample records for increase endogenous levels

  1. Effects of theobroxide, a natural product, on the level of endogenous jasmonoids.

    PubMed

    Yang, Qing; Gao, Xiquan; Fujino, Yumiko; Matsuura, Hideyuki; Yoshihara, Teruhiko

    2004-01-01

    The natural potato microtuber inducing substance, theobroxide, strongly induces the formation of tuber of potato (Solanum tuberosum L.) and flower bud of morning glory (Pharbitis nil) plants under non-inducing conditions (long days) (Yoshihara et al., 2000). In the present study, theobroxide was evaluated for its effect on the level of endogenous jasmonoids in different tissues of such two plants. An in vitro bioassay using cultures of single-node segments of potato stems was performed with the supplement of theobroxide in the medium. The endogenous jasmonic acid (JA) and its analogue tuberonic acid (TA, 12-hydroxyjasmonic acid) in segments and microtubers were quantitatively analyzed. The increase in the endogenous JA level caused by theobroxide was observed in both segments and microtubers. Endogenous TA was only detected in segments, and the content increased with the concentration of theobroxide. As for morning glory, the whole plant was sprayed with theobroxide for 1 approximately 5 weeks under different photoperiods and endogenous JA in the leaves was quantitatively analyzed. Theobroxide spraying increased the level of endogenous JA in the leaves of the plants grown under both long and short days.

  2. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  3. Effect of storage temperature on endogenous GHB levels in urine.

    PubMed

    LeBeau, M A; Miller, M L; Levine, B

    2001-06-15

    Because gamma-hydroxybutyrate (GHB) is an endogenous substance present in the body and is rapidly eliminated after ingestion, toxicologists investigating drug-facilitated sexual assault cases are often asked to differentiate between endogenous and exogenous levels of GHB in urine samples. This study was designed to determine the effects of storage temperature on endogenous GHB levels in urine. Specifically, it was designed to ascertain whether endogenous levels can be elevated to a range considered indicative of GHB ingestion. Urine specimens from two subjects that had not been administered exogenous GHB were collected during a 24h period and individually pooled. The pooled specimens were separated into standard sample cups and divided into three storage groups: room temperature ( approximately 25 degrees C), refrigerated (5 degrees C), and frozen (-10 degrees C). Additionally, some specimens were put through numerous freeze/thaw cycles to mimic situations that may occur if multiple laboratories analyze the same specimen. Periodic analysis of the samples revealed increases in the levels of endogenous GHB over a 6-month period. The greatest increase (up to 404%) was observed in the samples maintained at room temperature. The refrigerated specimens showed increases of 140-208%, while the frozen specimens showed smaller changes (88-116%). The specimens subjected to multiple freeze/thaw cycles mirrored specimens that had been thawed only once. None of the stored urine specimens demonstrated increases in GHB concentrations that would be consistent with exogenous GHB ingestion.

  4. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  5. Increased carboxyhemoglobin level during liver resection with inflow occlusion.

    PubMed

    Godai, Kohei; Hasegawa-Moriyama, Maiko; Kuniyoshi, Tamotsu; Matsunaga, Akira; Kanmura, Yuichi

    2013-04-01

    Controlling stress responses associated with ischemic changes due to bleeding and ischemia/reperfusion injury is essential for anesthetic management. Endogenous carboxyhemoglobin (COHb) is produced in the oxidative degradation of heme proteins by the stress-response enzyme heme oxygenase. Although the COHb level is elevated in critically ill patients, changes in endogenous COHb during anesthesia have not been well investigated. Therefore, we evaluated changes in endogenous COHb levels in patients undergoing liver resections with inflow occlusion. Levels of COHb were significantly increased after the Pringle maneuver. The inflow occlusion time in patients with increased COHb after the Pringle maneuver (∆COHb > 0.3 %) was significantly longer than in patients without increased COHb (∆COHb < 0.3 %) (P = 0.01). In addition, COHb changes were correlated with inflow occlusion time (P = 0.005, R(2) = 0.21). Neither total blood loss, transfusion volume of packed red blood cells, operation time, nor anesthetic time differed between patients with and without increased COHb. The results indicated that endogenous COHb levels were increased by inflow occlusion in patients undergoing liver resections, which suggests that changes in COHb may correlate with hepatic ischemia/reperfusion injury induced by inflow occlusion.

  6. Nutritional Control of Regreening and Degreening in Citrus Peel Segments 1

    PubMed Central

    Huff, Albert

    1983-01-01

    A method for reversibly regreening and degreening citrus epicarp in vitro using peel segments was developed. Peel segments from mature degreened fruit promptly regreened when kept in light upon agar medium containing low (15 millimolar) concentrations of sucrose. Higher concentrations of sucrose inhibited this regreening, but NO3− and certain amino acids included in the media overcame the inhibition by sucrose. However, l-serine strongly inhibited regreening. In the presence of nitrogen, sucrose promoted regreening. Peel segments from green fruit remained green on media with low concentrations of sucrose and on media with high concentrations of sucrose and 60 millimolar KNO3, but degreened in response to high concentrations of sucrose in the absence of nitrogen. Nitrate overcame the degreening effects of high sucrose concentrations in both light and dark. Peel segments were reversibly degreened and regreened by transferring the segments between appropriate media. Nitrate in the media markedly reduced the levels of endogenous sugars in the epicarp and increased endogenous amino acid levels. Sucrose in the media increased endogenous sugar levels and, in the presence of nitrate, increased endogenous amino acid levels. In the absence of nitrogen, high sucrose concentrations reduced endogenous amino acid concentrations. PMID:16663202

  7. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis.

    PubMed

    Liu, Yang; Fang, Yang; Huang, Mengjun; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Zhang, Guohua; He, Kaize; Zhao, Yun; Zhao, Hai

    2015-01-01

    Duckweed is a novel aquatic bioenergy crop that is found ubiquitously throughout the world. Uniconazole plays an important role in improving crop production through the regulation of endogenous hormone levels. We found that a high quantity and quality of duckweed growth can be achieved by uniconazole application, although the mechanisms are unknown. The fronds of Landoltia punctata were sprayed evenly with 800 mg/L uniconazole. The dry weight following treatment increased by 10% compared to the controls at 240 h. Endogenous cytokinin (CK) and abscisic acid (ABA) content both increased compared to the control, while the level of gibberellins (GAs) decreased. Additionally, gene expression profiling results showed that the expression of transcripts encoding key enzymes involved in endogenous CK and ABA biosynthesis were up-regulated, while the transcripts of key enzymes for GAs biosynthesis were down-regulated. On the other hand, chlorophyll a and chlorophyll b contents were both increased compared with the control. Moreover, the net photosynthetic rate was elevated to 25.6 μmol CO2/m(2)/s compared with the control value of 22.05 μmol CO2/m(2)/s. Importantly, the expression of some chlorophyll biosynthesis-related transcripts was up-regulated. Uniconazole treatment altered endogenous hormone levels and enhanced chlorophyll content and net photosynthetic rate in duckweed by regulating key enzymes involved in endogenous hormone and chlorophyll biosynthesis. The alterations of endogenous hormones and the increase of chlorophyll and photosynthetic rate data support the increase of biomass and starch accumulation.

  8. Proteolysis controls endogenous substance P levels.

    PubMed

    Mitchell, Andrew J; Lone, Anna Mari; Tinoco, Arthur D; Saghatelian, Alan

    2013-01-01

    Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP(1-9)-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.

  9. Proteolysis Controls Endogenous Substance P Levels

    PubMed Central

    Mitchell, Andrew J.; Lone, Anna Mari; Tinoco, Arthur D.; Saghatelian, Alan

    2013-01-01

    Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels. PMID:23894327

  10. Aerobic Exercise, Estrogens, and Breast Cancer Risk

    DTIC Science & Technology

    2011-11-01

    on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism in sedentary, eumenorrheic, healthy premenopausal women...changes in menstrual cycle length, and 4) limited changes in estrogen metabolism. The resulting increases in urinary 2-hydroxyestrone levels and 2...effects of a 16-week, aerobic exercise intervention on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism of young

  11. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2009-01-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 µg/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with β-tubulin III. However, 21-day treatment (50 µg/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo. PMID:17760863

  12. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover.

    PubMed

    Li, Zhou; Li, Yaping; Zhang, Yan; Cheng, Bizhen; Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2018-06-09

    Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    PubMed

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs.

  14. Endogenous benzodiazepine-like compounds and diazepam binding inhibitor in serum of patients with liver cirrhosis with and without overt encephalopathy

    PubMed Central

    Avallone, R; Zeneroli, M; Venturini, I; Corsi, L; Schreier, P; Kleinschnitz, M; Ferrarese, C; Farina, F; Baraldi, C; Pecora, N; Frigo, M; Baraldi, M

    1998-01-01

    Background/Aim—Despite some controversy, it has been suggested that endogenous benzodiazepine plays a role in the pathogenesis of hepatic encephalopathy. The aim of the present study was to evaluate the concentrations of endogenous benzodiazepines and the peptide, diazepam binding inhibitor, in the blood of patients with liver cirrhosis with and without overt encephalopathy, and to compare these levels with those of consumers of commercial benzodiazepines. 
Subjects—Normal subjects (90), benzodiazepine consumers (14), and cirrhotic patients (113) were studied. 
Methods—Endogenous benzodiazepines were measured by the radioligand binding technique after high performance liquid chromatography (HPLC) purification. The presence of diazepam and N-desmethyldiazepam was assayed by HPLC-electrospray tandem mass spectrometry. Diazepam binding inhibitor was studied in serum by radioimmunoassay. 
Results—Endogenous benzodiazepines were below the limit of detection in 7% of patients with encephalopathy. When detectable, their levels were at least comparable with those of benzodiazepine consumers and correlated with the liver dysfunction but not the stage of encephalopathy. Serum levels of diazepam binding inhibitor tended to decrease when endogenous benzodiazepines levels increased. 
Conclusions—Endogenous benzodiazepines may accumulate in patients with liver cirrhosis during the course of the disease, and the phenomenon appears to be independent of the presence or absence of encephalopathy. 

 Keywords: benzodiazepine consumers; diazepam binding inhibitor; endogenous benzodiazepines; liver cirrhosis; overt hepatic encephalopathy PMID:9691927

  15. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers.

    PubMed

    Chai, Weiwen; Liebman, Michael; Kynast-Gales, Susan; Massey, Linda

    2004-12-01

    Increased rates of either oxalate absorption or endogenous oxalate synthesis can contribute to hyperoxaluria, a primary risk factor for the formation of calcium oxalate-containing kidney stones. This study involves a comparative assessment of oxalate absorption and endogenous oxalate synthesis in subpopulations of stone formers (SFs) and non-stone formers (NSFs) and an assessment of the effect of ascorbate supplementation on oxalate absorption and endogenous oxalate synthesis. Twenty-nine individuals with a history of calcium oxalate kidney stones (19 men, 10 women) and 19 age-matched NSFs (8 men, 11 women) participated in two 6-day controlled feeding experimental periods: ascorbate-supplement (2 g/d) and no-supplement treatments. An oxalate load consisting of 118 mg of unlabeled oxalate and 18 mg of 13C2 -oxalic acid was administered the morning of day 6 of each experimental period. Mean 13C2 -oxalic acid absorption averaged across the ascorbate and no-supplement treatments was significantly greater in SFs (9.9%) than NSFs (8.0%). SFs also had significantly greater 24-hour post-oxalate load urinary total oxalate and endogenous oxalate levels with both treatments. Twenty-four-hour urinary total oxalate level correlated strongly with both 13C2 -oxalic acid absorption (SFs, r = 0.76; P < 0.01; NSFs, r = 0.62; P < 0.01) and endogenous oxalate synthesis (SFs, r = 0.95; P < 0.01; NSFs, r = 0.92; P < 0.01). SFs are characterized by greater rates of both oxalate absorption and endogenous oxalate synthesis, and both these factors contribute to the hyperoxaluric state. The finding that ascorbate supplementation increased urinary total and endogenous oxalate levels suggested that this practice is a risk factor for individuals predisposed to kidney stones.

  16. Effect of feeding level on ileal and total tract digestibility of nutrients and energy from soybean meal-based diets for piglets.

    PubMed

    Goerke, M; Mosenthin, R; Jezierny, D; Sauer, N; Piepho, H-P; Messerschmidt, U; Eklund, M

    2014-12-01

    A total of 36 piglets with an initial body weight (BW) of 5.6 ± 0.7 kg, fitted with simple T-cannulas at the distal ileum, were used to evaluate the effect of three graded feeding levels (50, 75 or 100 g/kg BW(0.75) day) on apparent ileal digestibility (AID) and total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and energy, and on ATTD of organic matter (OM), ether extracts (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF) and digestible (DE), metabolisable (ME) and net energy (NE) content in soybean meal (SBM)-casein-cornstarch-based diets. The AID of DM, N and energy and ATTD of NDF, ADF and EE in the diets were not affected (p > 0.05) by the feed intake (FI) level. There was a small decrease in ATTD of DM, N (CP), OM, ash and energy, and in DE, ME and NE content in the diets (p < 0.05) with increasing FI level. The net disappearance in the large intestine (in % of ileal recovery) decreased for DM, N and energy (p < 0.05) with increasing FI level. The design of the study allowed for estimating ileal endogenous loss of N and total tract endogenous loss of ash, N and EE, for estimating corresponding true ileal and total tract digestibility values, and for estimating urinary endogenous N loss. High variability in estimates of ileal endogenous N loss and total tract endogenous losses of N, EE and ash reflects great variation in individual endogenous losses between animals. Estimation of true total tract digestibility of N, EE and ash by regression analysis was affected by their decrease in ATTD with increasing FI level, as estimates for true digestibility were lower compared to their apparent values. The present results suggest that FI level can affect both apparent and true total tract nutrient digestibility in piglets. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  17. Protection from experimental asthma by an endogenous bronchodilator.

    PubMed

    Que, Loretta G; Liu, Limin; Yan, Yun; Whitehead, Gregory S; Gavett, Stephen H; Schwartz, David A; Stamler, Jonathan S

    2005-06-10

    Mechanisms that protect against asthma remain poorly understood. S-nitrosoglutathione (GSNO), an endogenous bronchodilator, is depleted from asthmatic airways, suggesting a protective role. We report that, following allergen challenge, wild-type mice exhibiting airway hyperresponsivity have increased airway levels of the enzyme GSNO reductase (GSNOR) and are depleted of lung S-nitrosothiols (SNOs). In contrast, mice with genetic deletion of GSNOR exhibit increases in lung SNOs and are protected from airway hyperresponsivity. Our results indicate that endogenous SNOs, governed by GSNOR, are critical regulators of airway responsivity and may provide new therapeutic approaches to asthma.

  18. [Changes in polyamine levels in Citrus sinensis Osb. cv. Valencia callus during somatic embryogenesis].

    PubMed

    Liu, Hua-Ying; Xiao, Lang-Tao; Lu, Xu-Dong; Hu, Jia-Jin; Wu, Shun; He, Chang-Zheng; Deng, Xiu-Xin

    2005-06-01

    Somatic embryogenetic capability and changes in polyamine level and their relationship were analyzed using the long-term (8 years) subcultured calli of Citrus sinensis Osb. cv. Valencia as materials. The results showed that endogenous polyamine contents in embryogenic calli were higher than those in non-embryogenic calli, and the embryogenetic capability was positively correlated to the levels of endogenous polyamines. When the calli were transferred to a differentiation medium, the putrescine content rapidly increased and reached a peak, then fell gradually. Applying exogenous putrescine raised the embryogenesis frequency and endogenous putrescine level. It indicated that increase in putrescine content at early stage of differentiation promoted embryogenesis. With the development of somatic embryo, spermidine content reached its the highest level at globular embryo stage, spermine content rose and reached a peak at a later stage of globular embryo development. Furthermore, changes of the putrescine, spermidine and spermine contents during somatic embryogenesis were similar in Valencia calli which had different ploidy levels, but their contents decreased following the increasing of ploidy level. Changes in arginine decarboxylase activity were positively correlated to the polyamine levels, which suggest that the later is a key factor in regulating the polyamine levels during somatic embryogenesis in citrus plants.

  19. Oral contraceptives cause evolutionarily novel increases in hormone exposure

    PubMed Central

    Lovett, Jennie L; Chima, Margo A; Wexler, Juliana K; Arslanian, Kendall J; Friedman, Andrea B; Yousif, Chantal B; Strassmann, Beverly I

    2017-01-01

    Abstract Background and objectives In the evolutionary past, women spent most of their reproductive lives either pregnant or in lactational amenorrhea, and rarely menstruated. The current pattern of frequent menses, and the associated increase in endogenous hormonal exposure, has been implicated in the current breast cancer epidemic. It is not known, however, whether oral contraceptives further increase, or actually decrease, hormonal exposure over one menstrual cycle. Here, we examined variation in hormonal exposure across seven oral contraceptive (OC) formulations, and produced the first quantitative comparison of exogenous versus endogenous hormone exposure. Methodology Data from 12 studies of serum estradiol (E2) and progesterone (P4) were aggregated to create a composite graph of endogenous hormone levels over one menstrual cycle in European or American women (age 19–40 years). Pharmacokinetic package insert data, also from Western women, were used to calculate exposures for hormones in seven different OC formulations. Endogenous and exogenous hormone levels were compared after adjusting for the relative binding affinity (RBA) of progestin to the progesterone receptor and ethinyl estradiol (EE) to the estrogen receptor. Results After adjusting for RBA, median ethinyl estradiol exposure across 28 days in the OCs was 11.4 nmol/l, similar to median E2 exposure. One formulation, however, was 40% higher in ethinyl estradiol exposure relative to median endogenous estradiol. Median exposure from progestins in OCs (1496 nmol/l) was 4-fold higher than the median endogenous exposure from P4 (364 nmol/l). Exposure from OC progestins ranged from one sixtieth to 8-fold median endogenous P4 over 28 days. Conclusions and implications Given that breast cancer risk increases with hormonal exposure, our finding that four widely prescribed formulations more than quadruple progestin exposure relative to endogenous progesterone exposure is cause for concern. As not all formulations produce the same exposures, these findings are pertinent to contraceptive choice. We also identify critical gaps in the provision of relevant data on pharmacokinetics and carcinogenicity by drug manufacturers. PMID:28685096

  20. Estimation of endogenous protein and amino acid ileal losses in weaned piglets by regression analysis using diets with graded levels of casein

    PubMed Central

    2013-01-01

    Background Many studies have investigated endogenous loss of proteins and amino acids (AAs) at the ileal level in growing pigs. However, only a few studies have researched this subject in piglets. Knowledge regarding AA ileal digestibility in piglets would be helpful during the formulation of diets for weaning piglets, rather than just using coefficients obtained in growing pigs. Therefore, in this study, we sought to estimate endogenous protein and AA ileal losses in piglets. Furthermore, apparent and true ileal digestibility (AID and TID) of protein and AAs from casein were measured. Results The average flow of protein was 20.8 g/kg of dry matter intake (DMI). Basal protein loss, as estimated by regression, was 16.9 g/kg DMI. Glutamic acid, arginine, and aspartic acid (2.2, 1.4, and 1.2 g/kg DMI, respectively) were the AAs for which greater losses were seen. The AID of protein and AAs increased as the protein level in the diet increased. A higher increment in AID was observed between diets with 80 and160 g CP/kg of feed; this finding was mainly attributable to increases in glycine and arginine (46.1% and 18%, respectively). The TID of protein was 97.8, and the TID of AAs varied from 93.9 for histidine to 100.2 for phenylalanine. Conclusions The basal endogenous protein loss in piglets was 16.9 g/kg DMI. Endogenous protein was rich in glutamic acid, aspartic acid, and arginine, which represented 32.7% of endogenous protein loss in weaning piglets. The TID of casein was high and varied from 93.0 for histidine to 100.2 for phenylalanine. PMID:24053636

  1. The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation

    PubMed Central

    Zhang, Da; Wang, Xiuli; Tian, Xiaoyu; Zhang, Lulu; Yang, Guosheng; Tao, Yinghong; Liang, Chen; Li, Kun; Yu, Xiaoqi; Tang, Xinjing; Tang, Chaoshu; Zhou, Jing; Kong, Wei; Du, Junbao; Huang, Yaqian; Jin, Hongfang

    2018-01-01

    Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo. PMID:29760703

  2. Increased serum bile acid concentration following low-dose chronic administration of thioacetamide in rats, as evidenced by metabolomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence ofmore » compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.« less

  3. Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-06-01

    Sugars are generally used to extend the vase life of cut flowers. Such beneficial effects have been associated with an improvement of water relations and an increase in available energy for respiration by floral tissues. In this study we aimed at evaluating to what extent (i) endogenous levels of sugars in outer and inner tepals, androecium and gynoecium are altered during opening and senescence of lily flowers; (ii) sugar levels increase in various floral tissues after sucrose addition to the vase solution; and (iii) sucrose addition alters the hormonal balance of floral tissues. Results showed that endogenous glucose levels increased during flower opening and decreased during senescence in all floral organs, while sucrose levels increased in outer and inner tepals and the androecium during senescence. Sucrose treatment accelerated flower opening, and delayed senescence, but did not affect tepal abscission. Such effects appeared to be exerted through a specific increase in the endogenous levels of sucrose in the gynoecium and of glucose in all floral tissues. The hormonal balance was altered in the gynoecium as well as in other floral tissues. Aside from cytokinin and auxin increases in the gynoecium; cytokinins, gibberellins, abscisic acid and salicylic acid levels increased in the androecium, while abscisic acid decreased in outer tepals. It is concluded that sucrose addition to the vase solution exerts an effect on flower opening and senescence by, among other factors, altering the hormonal balance of several floral tissues. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    PubMed Central

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  5. Acute myocardial infarction without significant coronary stenoses associated with endogenous subclinical hyperthyroidism.

    PubMed

    Patanè, Salvatore; Marte, Filippo; Sturiale, Mauro

    2012-04-05

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. It has been reported that subclinical hyperthyroidism is not associated with coronary heart disease or mortality from cardiovascular causes but it is sufficient to induce arrhythmias including atrial fibrillation and atrial flutter. Nowadays, there is growing interest regarding endogenous sublinical hyperthyroidism and the cardiovascular system. We present a case of acute myocardial infarction without significant coronary stenoses in a 75-year-old Italian woman with endogenous subclinical hyperthyroidism. Also this case focuses attention on the importance of a correct evaluation of endogenous subclinical hyperthyroidism. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Relationship between endogenous auxin and cytokinin levels and morphogenic responses inActinidia deliciosa tissue cultures.

    PubMed

    Centeno, M L; Rodríguez, A; Feito, I; Fernández, B

    1996-11-01

    Thein vitro culture ofActinidia deliciosa petioles results in a decline of cytokinin content and an increase of auxin levels. The addition of plant growth regulators (PGRs) to the medium lead to recovery of the initial auxin content, and callus induction occurs at the basal end of the explants. Endogenous auxin/cytokinin ratio was higher at this side than in the apical one, due to unequal distribution of endogenous PGRs in the cultured petioles. Some of the induced calluses showed shoot formation when they were transferred to proliferation medium. Most important differences found in hormonal content between organogenic and non-organogenic callus concerned benzyladenine levels. In this paper the relationships between explant behaviour and their hormonal content is discussed.

  7. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.

  8. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever. PMID:28414302

  9. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G.

    PubMed

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T; Choudhury, Biswa P; Naidu, Natasha N; Kanda, Yutaka; Hoang, Long T; Hibberd, Martin L; Tremoulet, Adriana H; Varki, Ajit; Burns, Jane C

    2013-01-01

    Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient's own endogenous IgG. We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.

  10. Treatment Response in Kawasaki Disease Is Associated with Sialylation Levels of Endogenous but Not Therapeutic Intravenous Immunoglobulin G

    PubMed Central

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T.; Choudhury, Biswa P.; Naidu, Natasha N.; Kanda, Yutaka; Hoang, Long T.; Hibberd, Martin L.; Tremoulet, Adriana H.; Varki, Ajit; Burns, Jane C.

    2013-01-01

    Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals. PMID:24324693

  11. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  12. Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia

    PubMed Central

    Chen, Li; Lodge, Daniel J

    2015-01-01

    Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511

  13. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    PubMed

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-07-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.

  14. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    PubMed Central

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-01-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen. PMID:6862633

  15. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  16. Increases in Endogenous or Exogenous Progestins Promote Virus-Target Cell Interactions within the Non-human Primate Female Reproductive Tract.

    PubMed

    Carias, Ann M; Allen, Shannon A; Fought, Angela J; Kotnik Halavaty, Katarina; Anderson, Meegan R; Jimenez, Maria L; McRaven, Michael D; Gioia, Casey J; Henning, Tara R; Kersh, Ellen N; Smith, James M; Pereira, Lara E; Butler, Katherine; McNicholl, S Janet M; Hendry, R Michael; Kiser, Patrick F; Veazey, Ronald S; Hope, Thomas J

    2016-09-01

    Currently, there are mounting data suggesting that HIV-1 acquisition in women can be affected by the use of certain hormonal contraceptives. However, in non-human primate models, endogenous or exogenous progestin-dominant states are shown to increase acquisition. To gain mechanistic insights into this increased acquisition, we studied how mucosal barrier function and CD4+ T-cell and CD68+ macrophage density and localization changed in the presence of natural progestins or after injection with high-dose DMPA. The presence of natural or injected progestins increased virus penetration of the columnar epithelium and the infiltration of susceptible cells into a thinned squamous epithelium of the vaginal vault, increasing the likelihood of potential virus interactions with target cells. These data suggest that increasing either endogenous or exogenous progestin can alter female reproductive tract barrier properties and provide plausible mechanisms for increased HIV-1 acquisition risk in the presence of increased progestin levels.

  17. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    PubMed Central

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  18. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.

  19. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    PubMed

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  20. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors.

    PubMed

    Zhu, Xiaoyan; Fréchou, Magalie; Liere, Philippe; Zhang, Shaodong; Pianos, Antoine; Fernandez, Neïké; Denier, Christian; Mattern, Claudia; Schumacher, Michael; Guennoun, Rachida

    2017-11-08

    Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes. SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential. Copyright © 2017 the authors 0270-6474/17/3710998-23$15.00/0.

  1. Detection of endogenous lithium in neuropsychiatric disorders--a model for biological transmutation.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2002-01-01

    The human hypothalamus produces an endogenous membrane Na(+)-K(+) ATPase inhibitor, digoxin. A digoxin induced model of cellular/neuronal quantal state and perception has been described by the authors. Biological transmutation has been described in microbial systems in the quantal state. The study focuses on the plasma levels of digoxin, RBC membrane Na(+)-K(+) ATPase activity, plasma levels of magnesium and lithium in neuropsychiatric and systemic disorders. Inhibition of RBC membrane Na(+)-K(+) ATPase activity was observed in most cases along with an increase in the levels of serum digoxin and lithium and a decrease in the level of serum Mg(++). The generation of endogenous lithium would obviously occur due to biological transmutation from magnesium. Digoxin and lithium together can produce added membrane Na(+)-K(+) ATPase inhibition. The role of membrane Na(+)-K(+) ATPase inhibition in the pathogenesis of neuropsychiatric and systemic disorders is discussed. The inhibition of membrane Na(+)-K(+) ATPase can contribute to an increase in intracellular calcium and a decrease in magnesium, which can result in a defective neurotransmitter transport mechanism, mitochondrial dysfunction and apoptosis, defective golgi body function and protein processing dysfunction, immune dysfunction and oncogenesis. Copyright 2002 John Wiley & Sons, Ltd.

  2. Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice.

    PubMed

    Wert, S E; Glasser, S W; Korfhagen, T R; Whitsett, J A

    1993-04-01

    Transgenic animals bearing a chimeric gene containing 5'-flanking regions of the human surfactant protein C (SP-C) gene ligated to the bacterial chloramphenicol acetyltransferase (CAT) gene were analyzed by in situ hybridization histochemistry to determine the temporal and spatial distribution of transgene expression during organogenesis of the murine lung. Ontogenic expression of the SP-C-CAT gene was compared to that of the endogenous SP-C gene and to the Clara cell CC10 gene. High levels of SP-C-CAT expression were observed as early as Day 10 of gestation in epithelial cells of the primordial lung buds. Low levels of endogenous SP-C mRNA were detected a day later, but only in the more distal epithelial cells of the newly formed, primitive, lobar bronchi. On Gestational Days 13 through 16, transcripts for both the endogenous and chimeric gene were restricted to distal epithelial elements of the branching bronchial tubules and were no longer detected in the more proximal regions of the bronchial tree. Although high levels of SP-C-CAT expression were maintained throughout organogenesis, endogenous SP-C expression increased dramatically on Gestational Day 15, coincident with acinar tubule differentiation at the lung periphery. Low levels of endogenous CC10 expression were detected by Gestational Day 16 in both lobar and segmental bronchi. By the time of birth, CC10 transcripts were expressed at high levels in the trachea and at all levels of the bronchial tree; endogenous SP-C mRNA was restricted to epithelial cells of the terminal alveolar saccules; and SP-C-CAT expression was now detected in both alveolar and bronchiolar epithelial cells. These results indicate that (1) cis-acting regulatory elements of the human SP-C gene can direct high levels of foreign gene expression to epithelial cells of the embryonic mouse lung; (2) expression of the human SP-C-CAT chimeric gene is developmentally regulated, exhibiting a morphogenic expression pattern similar, but not identical, to that of the endogenous murine SP-C gene; (3) the embryonic expression of endogenous SP-C and chimeric SP-C-CAT transcripts identifies progenitor cells of the distal respiratory epithelium; and (4) differentiation of bronchial epithelium is coincident with loss of SP-C expression and subsequent acquisition of CC10 expression in proximal regions of the developing bronchial tubules.

  3. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    PubMed

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  4. Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.

    PubMed

    Ravi Kumar, A; Kurup, Parameswara Achutha

    2004-06-01

    The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns were suggestive of right hemispheric chemical dominance. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test.

  5. Exchanging partially hydrogenated fat for palmitic acid in the diet increases LDL-cholesterol and endogenous cholesterol synthesis in normocholesterolemic women.

    PubMed

    Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas

    2003-08-01

    Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.

  6. Endogenous subclinical hyperthyroidism and cardiovascular system: time to reconsider?

    PubMed

    Patanè, Salvatore; Marte, Filippo; Sturiale, Mauro

    2011-05-19

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. Exogenous sublinical hyperthyroidism is a thyroid metabolic state caused by L-thyroxine administration. Endogenous subclinical hyperthyroidism is a thyroid metabolic state in patients with autonomously functioning thyroid nodule or multinodular goiter, various forms of thyroiditis, in areas with endemic goiter and particularly in elderly subjects. Endogenous subclinical hyperthyroidism is currently the subject of numerous studies and it yet remains controversial particularly as it relates to its treatment and to cardiovascular impact nevertheless established effects have been demonstrated. Recently, acute myocardial infarction without significant coronary stenoses and recurrent acute pulmonary embolism have been reported associated with subclinical hyperthyroidism without L-thyroxine administration. So, it is very important to recognize and to treat promptly also endogenous subclinical hyperthyroidism. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Endogenous ouabain and the renin-angiotensin-aldosterone system: distinct effects on Na handling and blood pressure in human hypertension.

    PubMed

    Manunta, Paolo; Hamlyn, John M; Simonini, Marco; Messaggio, Elisabetta; Lanzani, Chiara; Bracale, Maria; Argiolas, Giuseppe; Casamassima, Nunzia; Brioni, Elena; Glorioso, Nicola; Bianchi, Giuseppe

    2011-02-01

    To evaluate whether the renin-angiotensin-aldosterone system (RAAS) and endogenous ouabain system differently affect renal Na handling and blood pressure. Three hundred and one patients in whom we compared blood pressure, and renal Na tubular reabsorption in the basal condition and 2 h (T120) after saline infusion. Following multivariate-adjusted linear and quartiles analysis, baseline mean blood pressure (MBP) was significantly higher (113.7 ± 1.33 mmHg) in the fourth versus the first endogenous ouabain quartile (103.8 ± 1.04 mmHg) and the trend across the quartiles was highly significant (β = 0.23, P = 3.53e-04). In contrast, an inverse relationship was present in the renin activity (PRA) quartiles with MBP highest in the first (112.5 ± 1.26) and lowest in the fourth PRA quartile (107.6 ± 1.48, P = 0.039). Following an acute saline load, changes in MBP and the slope of the pressure-natriuresis relationship were inversely related across the PRA quartiles. The fractional excretion of sodium (FENa) showed a negative linear trend going from the first to the third endogenous ouabain quartiles (2.35 ± 0.17 and 1.90 ± 0.14%, P = 0.05). Patients in the fourth endogenous ouabain quartile (>323 pmol/l) showed increased FENa T120 (2.78 ± 0.18%, P < 0.01) and increased Na tubular rejection fraction (P = 0.007) after Na load. After the saline load, there was a biphasic relationship between plasma endogenous ouabain and FENa favoring Na retention at low endogenous ouabain and Na excretion at high endogenous ouabain levels. The RAAS and endogenous ouabain system are two independent and complementary systems having an inverse (RAAS) or a direct (endogenous ouabain system) relationship with hemodynamic parameters.

  8. Increased oxidative phosphorylation in response to acute and chronic DNA damage

    PubMed Central

    Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R

    2016-01-01

    Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274

  9. Endogenous gamma-aminobutyric acid modulates tonic guinea pig airway tone and propofol-induced airway smooth muscle relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W

    2009-04-01

    Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.

  10. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  11. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast

    PubMed Central

    Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P

    2009-01-01

    Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems. PMID:19323825

  12. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Tokuda, Eiichi; Watanabe, Shunsuke; Okawa, Eriko; Ono, Shin-ichi

    2015-04-01

    Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1(G93A)). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1(G93A) mice, even if the induction was initiated when peak body weight had decreased by 10%. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1(G93A) aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1(G93A) mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.

  13. Overexpression of 20-Oxidase Confers a Gibberellin-Overproduction Phenotype in Arabidopsis

    PubMed Central

    Huang, Shihshieh; Raman, Anuradha S.; Ream, Joel E.; Fujiwara, Hideji; Cerny, R. Eric; Brown, Sherri M.

    1998-01-01

    In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype. PMID:9808721

  14. In-vivo characterization of endogenous porphyrin fluorescence from DMBA-treated Swiss Albino mice skin carcinogenesis for measuring tissue transformation

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Ebenezar, Jeyasingh; Hemamalini, Srinivasan; Aruna, Prakasa R.

    2002-05-01

    Steady state fluorescence spectroscopic characterization of endogenous porphyrin emission from DMBA treated skin carcinogenesis in Swiss albino mice was carried out. The emission of endogenous porphyrin from normal and abnormal skin tissues was studied both in the presence and absence of exogenous ALA to compare the resultant porphyrin emission characterictics. The mice skin is excited at 405nm and emission spectra are scanned from 430 to 700nm. The average fluorescence emission spectra of mice skin at normal and various tissues transformation conditions were found to be different. Two peaks around 460nm and 636nm were observed and they may be attributed to NADH, Elastin and collagen combination and endogenous porphyrin emission. The intensity at 636nm increases as the stage of the cancer increases. Although exogenous ALA enhances the PPIX level in tumor, the synthesis of PPIX was also found in normal surrounding skin, in fact, with higher concentration than that of tumor tissues.

  15. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe.

    PubMed

    Wang, Hong; Zhang, Peisheng; Tian, Yong; Zhang, Yuan; Yang, Heping; Chen, Shu; Zeng, Rongjin; Long, Yunfei; Chen, Jian

    2018-04-30

    A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.

  16. Diversity of pubertal testosterone changes in boys with constitutional delay in growth and/or adolescence.

    PubMed

    Kulin, H E; Finkelstein, J W; D'Arcangelo, M R; Susman, E J; Chinchilli, V; Kunselman, S; Schwab, J; Demers, L; Lookingbill, G

    1997-01-01

    In a group of 22 boys with constitutional delay in growth and/or adolescence, intermittent testosterone enanthate treatment was employed in a randomized clinical trial at multiple doses ranging from 25-100 mg every two weeks for three month periods extending over 15-21 months. Twelve of the patients displayed a prompt increase in endogenous testosterone levels during the study period, reaching levels in the adult male range (> 250 ng/dl). The remaining 10 boys showed sluggish changes in endogenous testosterone during the investigation, ranging from 35-177 ng/dl. The bone ages and testicular sizes of the two groups at study initiation did not differ though urine LH was significantly less at study entry in the slowly maturing group. The data reveal a great diversity in the pace and pattern of endogenous testosterone changes in the study population. The results also suggest that exogenous sex steroid treatment of such patients does not speed up the central nervous system processes controlling the onset and progression of puberty. Boys with delayed puberty should be followed until endogenous testosterone levels reach the adult male range in order to rule out mild gonadotropin deficits.

  17. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    PubMed Central

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  18. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  19. Endogeous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats.

    PubMed

    Chen, Siyao; Zheng, Saijun; Liu, Zhiwei; Tang, Chaoshu; Zhao, Bin; Du, Junbao; Jin, Hongfang

    2015-02-01

    The role of endogenous sulfur dioxide (SO2), an efficient gasotransmitter maintaining homeostasis, in the development of acute lung injury (ALI) remains unidentified. We aimed to investigate the role of endogenous SO2 in the pathogenesis of ALI. An oleic acid (OA)-induced ALI rat model was established. Endogenous SO2 levels, lung injury, oxidative stress markers and apoptosis were examined. OA-induced ALI rats showed a markedly downregulated endogenous SO2/aspartate aminotransferase 1 (AAT1)/AAT2 pathway and severe lung injury. Chemical colorimetry assays demonstrated upregulated reactive oxygen species generation and downregulated antioxidant capacity in OA-induced ALI rats. However, SO2 increased endogenous SO2 levels, protected against oxidative stress and alleviated ALI. Moreover, compared with OA-treated cells, in human alveolar epithelial cells SO2 downregulated O2(-) and OH(-) generation. In contrast, L-aspartic acid-β-hydroxamate (HDX, Sigma-Aldrich Corporation), an inhibitor of endogenous SO2 generating enzyme, promoted free radical generation, upregulated poly (ADP-ribose) polymerase expression, activated caspase-3, as well as promoted cell apoptosis. Importantly, apoptosis could be inhibited by the free radical scavengers glutathione (GSH) and N-acetyl-L-cysteine (NAC). The results suggest that SO2/AAT1/AAT2 pathway might protect against the development of OA-induced ALI by inhibiting oxidative stress.

  20. Endogenous γ-aminobutyric Acid Modulates Tonic Guinea Pig Airway Tone and Propofol-induced Airway Smooth Muscle Relaxation

    PubMed Central

    Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.

    2009-01-01

    Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939

  1. Hypothalamic digoxin and hemispheric chemical dominance: relation to alcoholic addiction, alcoholic cirrhosis, and acquired hepatocerebral degeneration.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin (modulate tryptophan/tyrosine transport), dolichol (important in N -glycosylation of proteins), and ubiquinone (free radical scavenger). It was considered pertinent to assess the pathway in alcoholic addiction, alcoholic cirrhosis, and acquired hepatocerebral degeneration. Since endogenous digoxin can regulate neurotransmitter transport, the pathway was also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis. In the patient group there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites as reduced endogenous morphine synthesis from tyrosine. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these groups of patients. The same patterns were obtained in individuals with right hemispheric chemical dominance. Alcoholic cirrhosis, alcoholic addiction, and acquired hepatocerebral degeneration are associated with an upregulated isoprenoid pathway and elevated digoxin secretion from the hypothalamus. This can contribute to NMDA excitotoxicity and altered connective tissue/lipid metabolism important in its pathogenesis. Endogenous morphine deficiency plays a role in alcoholic addiction. Alcoholic cirrhosis, addiction, and acquired hepato -cerebral degeneration occur in right hemispheric chemically dominant individuals. Ninety percent of the patients with alcoholic addiction, alcoholic cirrhosis, and acquired hepatocerebral degeneration were right-handed and left hemispheric dominant by the dichotic listening test. However, their biochemical patterns were similar to those obtained in right hemispheric chemical dominance. Hemispheric chemical dominance is a different entity and has no correlation with handedness or the dichotic listening test.

  2. Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low.

    PubMed Central

    Bunker, T W; Koetje, D S; Stephenson, L C; Creelman, R A; Mullet, J E; Grimes, H D

    1995-01-01

    The response of individual members of the lipoxygenase multigene family in soybeans to sink deprivation was analyzed. RNase protection assays indicated that a novel vegetative lipoxygenase gene, vlxC, and three other vegetative lipoxygenase mRNAs accumulated in mature leaves in response to a variety of sink limitations. These data suggest that several members of the lipoxygenase multigene family are involved in assimilate partitioning. The possible involvement of jasmonic acid as a signaling molecule regulating assimilate partitioning into the vegetative storage proteins and lipoxygenases was directly assessed by determining the endogenous level of jasmonic acid in leaves from plants with their pods removed. There was no rise in the level of endogenous jasmonic acid coincident with the strong increase in both vlxC and vegetative storage protein VspB transcripts in response to sink limitation. Thus, expression of the vegetative lipoxygenases and vegetative storage proteins is not regulated by jasmonic acid in sink-limited leaves. PMID:7549487

  3. Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low.

    PubMed

    Bunker, T W; Koetje, D S; Stephenson, L C; Creelman, R A; Mullet, J E; Grimes, H D

    1995-08-01

    The response of individual members of the lipoxygenase multigene family in soybeans to sink deprivation was analyzed. RNase protection assays indicated that a novel vegetative lipoxygenase gene, vlxC, and three other vegetative lipoxygenase mRNAs accumulated in mature leaves in response to a variety of sink limitations. These data suggest that several members of the lipoxygenase multigene family are involved in assimilate partitioning. The possible involvement of jasmonic acid as a signaling molecule regulating assimilate partitioning into the vegetative storage proteins and lipoxygenases was directly assessed by determining the endogenous level of jasmonic acid in leaves from plants with their pods removed. There was no rise in the level of endogenous jasmonic acid coincident with the strong increase in both vlxC and vegetative storage protein VspB transcripts in response to sink limitation. Thus, expression of the vegetative lipoxygenases and vegetative storage proteins is not regulated by jasmonic acid in sink-limited leaves.

  4. Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis.

    PubMed

    Li, Wei; Tang, Chaoshu; Jin, Hongfang; Du, Junbao

    2011-09-01

    This study aimed to explore the effect of onion extract on endogenous hydrogen sulfide (H2S) and adrenomedulin (ADM) and on atherosclerotic progression in rats with atherosclerosis (AS). Male Sprague-Dawley rats were randomly divided into control, AS and AS+onion groups. Ultrastructure of aorta and atherosclerotic lesions both in aorta and in coronary artery were detected. Plasma and aortic H2S were detected by using a sulfide- sensitive electrode. Plasma and aortic ADM was determined with radioimmunoassay. Cystathionine-γ-lyase (CSE), calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1, RAMP2 and RAMP3) mRNA expressions were analysed. Glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and NO synthase (NOS) contents in plasma, SOD1, SOD2 and ICAM-1 expressions in aorta were detected. Rats in the AS group showed marked atherosclerotic lesions both in aorta and in coronary artery but decreased aortic H2S production. Decreased plasma and aortic ADM content, but increased levels of aortic CRLR, RAMP2 and RAMP3 mRNAs were observed. Plasma GSH-PX and SOD were reduced but MDA elevated. Plasma ICAM-1 and NO contents and iNOS activity were increased. Onion extract, however, lessened atherosclerotic lesions and increased endogenous aortic H2S production, but decreased plasma ADM content, aortic ADM content and aortic CRLR, RAMP2 and RAMP3 mRNAs. In addition, it increased plasma GSH-PX level and SOD activities but reduced MDA; it decreased inflammatory response but increased plasma eNOS activity and NO content. Onion extract exerted a marked antiatherogenic effect in association with the up-regulation of the endogenous CSE/H2S pathway but down-regulation of the ADM/CRLR family in atherosclerotic rats.

  5. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.

    PubMed

    Li, Xin; Zhang, Lan; Ahammed, Golam Jalal; Li, Zhi-Xin; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2017-07-01

    Flavonoids are one of the key secondary metabolites determining the quality of tea. Although exogenous brassinosteroid (BR), a steroidal plant hormone, can stimulate polyphenol biosynthesis in tea plants (Camellia sinensis L.), the relevance of endogenous BR in flavonoid accumulation and the underlying mechanisms remain largely unknown. Here we show that BR enhances flavonoid concentration in tea leaves by inducing an increase in the endogenous concentration of nitric oxide (NO). Notably, exogenous BR increased levels of flavonoids as well as NO in a concentration dependent manner, while suppression of BR levels by an inhibitor of BR biosynthesis, brassinazole (BRz), decreased the concentrations of both flavonoids and NO in tea leaves. Interestingly, combined treatment of BR and BRz reversed the inhibitory effect of BRz alone on the concentrations of flavonoids and NO. Likewise, exogenous NO also increased flavonoids and NO levels dose-dependently. When the NO level in tea leaves was suppressed by using a NO scavenger, 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), flavonoid concentration dramatically decreased. Although individual application of 0.1μM BR increased the concentrations of flavonoids and NO, combined treatment with exogenous NO scavenger, cPTIO, reversed the effect of BR on flavonoid concentration. Furthermore, BR or sodium nitroprusside (SNP) promoted but cPTIO inhibited the transcription and activity of phenylalanine ammonia-lyase (PAL) in leaves, while combined treatment of BR with SNP or cPTIO had no additive effect. The results of this study suggest that an optimal level of endogenous NO is essential for BR-induced promotion of flavonoid biosynthesis in tea leaves. In conclusion, this study unveiled a crucial mechanism of BR-induced flavonoid biosynthesis, which might have potential implication in improving the quality of tea. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Elevations of Endogenous Kynurenic Acid Produce Spatial Working Memory Deficits

    PubMed Central

    Chess, Amy C.; Simoni, Michael K.; Alling, Torey E.; Bucci, David J.

    2007-01-01

    Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the α7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787

  7. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  8. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility.

    PubMed

    González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H

    2014-01-01

    An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p < 0.05) than ileal endogenous fluxes and total tract endogenous losses of Ca, but ileal endogenous fluxes were less (p < 0.05) than total tract endogenous losses. Standardised digestibility of Ca was not affected by the level of phytic acid, but decreased (p < 0.05) as Ca level increased in L. calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p < 0.05). The standardised duodenal digestibility (SDD), standardised ileal digestibility (SID) and standardised total tract digestibility (STTD) of Ca were not different if calcium carbonate was the source of dietary Ca. However, the STTD of Ca in L. calcareum Ca was greater (p < 0.05) than the SID and SDD of Ca. The SDD, SID and STTD of Ca in calcium carbonate were greater (p < 0.05) than those of L. calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly absorbed before the duodenum, but Ca from L. calcareum Ca is mostly absorbed in the jejunum and ileum.

  9. Mild Staphylococcus aureus Skin Infection Improves the Course of Subsequent Endogenous S. aureus Bacteremia in Mice

    PubMed Central

    van den Berg, Sanne; de Vogel, Corné P.; van Belkum, Alex; Bakker-Woudenberg, Irma A. J. M.

    2015-01-01

    Staphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and evaluate protection in relation to anti-staphylococcal antibody levels. Skin infections once or twice by a clinical S. aureus isolate (isolate P) or S. aureus strain 8325-4 were induced in mice free of S. aureus and anti-staphylococcal antibodies. Five weeks later, immunoglobulin G (IgG) levels in blood against 25 S. aureus antigens were determined, and LD50 or LD100 bacteremia caused by S. aureus isolate P was induced. S. aureus skin infections led to elevated levels of anti-staphylococcal IgG in blood. One skin infection improved the course of subsequent severe endogenous bacteremia only. A second skin infection further improved animal survival rate, which was associated with increased pre-bacteremia IgG levels against Efb, IsaA, LukD, LukE, Nuc, PrsA and WTA. In conclusion, S. aureus isolate P skin infection in mice reduces the severity of subsequent endogenous S. aureus bacteremia only. Although cellular immune effects cannot be rules out, anti-staphylococcal IgG against specified antigens may contribute to this effect. PMID:26060995

  10. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.

    PubMed

    Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S

    2009-06-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.

  11. A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain.

    PubMed

    Heany, Sarah J; van Honk, Jack; Stein, Dan J; Brooks, Samantha J

    2016-02-01

    Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and affective stimuli, while neurodevelopmentally the volumes of a broader network of brain structures are associated with testosterone levels in a sexually dimorphic manner.

  12. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid.

    PubMed

    Lindgren, L Ove; Stålberg, Kjell G; Höglund, Anna-Stina

    2003-06-01

    Phytoene synthase catalyzes the dimerization of two molecules of geranylgeranyl pyrophosphate to phytoene and has been shown to be rate limiting for the synthesis of carotenoids. To elucidate if the capacity to produce phytoene is limiting also in the seed of Arabidopsis (Wassilewskija), a gene coding for an endogenous phytoene synthase was cloned and coupled to a seed-specific promoter, and the effects of the overexpression were examined. The resulting transgenic plants produced darker seeds, and extracts from the seed of five overexpressing plants had a 43-fold average increase of beta-carotene and a total average amount of beta-carotene of approximately 260 microg g-1 fresh weight. Lutein, violaxanthin, and chlorophyll were significantly increased, whereas the levels of zeaxanthin only increased by a factor 1.1. In addition, substantial levels of lycopene and alpha-carotene were produced in the seeds, whereas only trace amounts were found in the control plants. Seeds from the transgenic plants exhibited delayed germination, and the degree of delay was positively correlated with the increased levels of carotenoids. The abscisic acid levels followed the increase of the carotenoids, and plants having the highest carotenoid levels also had the highest abscisic acid content. Addition of gibberellic acid to the growth medium only partly restored germination of the transgenic seeds.

  13. Biological Characterization and Clinical Utilization of Metastatic ProstateCancer Associated lincRNA SchLAP1

    DTIC Science & Technology

    2017-07-01

    followed by RNA isolation and qPCR analysis. CRISPR Based Overexpression of PCAT14 Stable cell lines overexpressing PCAT14 endogenously were made using...Supplementary Figure 2B, C). To overexpress PCAT14, we used a CRISPR (clustered regularly interspaced short palindromic repeat)- Cas9 Synergistic...the workflow to endogenously overexpress PCAT14 in prostate cancer cells using CRISPR /SAM system. B. Bar plots represent fold increase in PCAT14 level

  14. An investigation of the effects of MitoQ on human peripheral mononuclear cells.

    PubMed

    Marthandan, Shiva; Murphy, Michael P; Billett, Ellen; Barnett, Yvonne

    2011-03-01

    MitoQ is a ubiquinone derivative targeted to mitochondria which is known to have both antioxidant and anti-apoptotic properties within mammalian cells. Previous research has suggested that the age-related increase in oxidative DNA damage in T lymphocytes might contribute to their functional decline with age. This paper describes the impact of mitoQ on unchallenged or oxidatively challenged ex vivo human peripheral blood mononuclear cells from healthy 25-30 or 55-60 year old volunteers. When cells were challenged with hydrogen peroxide (H(2)O(2)), following mitoQ treatment (0.1-1.0 μM), the ratio of reduced to oxidized forms of glutathione increased, the levels of oxidative DNA damage decreased and there was an increase in the mitochondrial membrane potential. Low levels of mitoQ (0.1 or 0.25 μM) had no impact on endogenous DNA damage, whilst higher levels (0.5 and 1.0 μM) of mitoQ significantly reduced endogenous levels of DNA damage. The results of this investigation suggest that mitoQ may have anti-immunosenescent potential.

  15. Elk-3 is a transcriptional repressor of nitric-oxide synthase 2.

    PubMed

    Chen, Yen-Hsu; Layne, Matthew D; Chung, Su Wol; Ejima, Kuniaki; Baron, Rebecca M; Yet, Shaw-Fang; Perrella, Mark A

    2003-10-10

    The inducible isoform of nitric-oxide synthase (NOS2), a key enzyme catalyzing the dramatic increase in nitric oxide by lipopolysaccharide (LPS), plays an important role in the pathophysiology of endotoxemia and sepsis. Recent evidence suggests that Ets transcription factors may contribute to NOS2 induction by inflammatory stimuli. In this study, we investigated the role of Ets transcription factors in the regulation of NOS2 by LPS and transforming growth factor (TGF)-beta 1. Transient transfection assays in macrophages showed that Ets-2 produced an increase in NOS2 promoter activity, whereas the induction by Ets-1 was modest and NERF2 had no effect. Elk-3 (Net/Erp/Sap-2a) markedly repressed NOS2 promoter activity in a dose-dependent fashion, and overexpression of Elk-3 blunted the induction of endogenous NOS2 message. Mutation of the Net inhibitory domain of Elk-3, but not the C-terminal-binding protein interaction domain, partially alleviated this repressive effect. We also found that deletion of the Ets domain of Elk-3 completely abolished its repressive effect on the NOS2 promoter. LPS administration to macrophages led to a dose-dependent decrease in endogenous Elk-3 mRNA levels, and this decrease in Elk-3 preceded the induction of NOS2 mRNA. In a mouse model of endotoxemia, the expression of Elk-3 in kidney, lung, and heart was significantly down-regulated after systemic administration of LPS, and this down-regulation also preceded NOS2 induction. Moreover, TGF-beta 1 significantly increased endogenous Elk-3 mRNA levels that had been down-regulated by LPS in macrophages. This increase in Elk-3 correlated with a TGF-beta 1-induced down-regulation of NOS2. Taken together, our data suggest that Elk-3 is a strong repressor of NOS2 promoter activity and mRNA levels and that endogenous expression of Elk-3 inversely correlates with NOS2. Thus, Elk-3 may serve as an important mediator of NOS2 gene expression.

  16. Clinical study of the hypothesis of endogenous collateral wind on acute coronary syndrome: a review.

    PubMed

    Wang, Xian; Zhang, Cong; Yang, Ran; Zhu, Haiyan; Zhao, Huaibing; Li, Xiaoming

    2014-01-01

    Acute Coronary Syndrome (ACS), is a serious threat to people's health, and life, and in recent years, the incidence has increased yearly. This study was to propose the hypothesis of "endogenous collateral wind" based on the patho-mechanism of thrombogenesis complicated by ruptured plaque on ACS, and the theory of traditional Chinese medicine. Through successful coronary angiography (CAG), and intravascular ultrasound (IVUS), patients with coronary artery disease were made the differential diagnosis such as blood stasis, blood stasis due to phlegm obstruction, and endogenous collateral wind. The levels of plasma inflammatory marker were measured to study on the characteristics of "endogenous collateral wind". Luo heng dripping pills with promoting blood circulation to expel wind-evil, and remove wetness were made based on the hypothesis of "endogenous collateral wind" on ACS. Patients with unstable angina were randomly divided into 3, groups based on therapeutic methods: conventional therapy group, Luo Heng dripping pills group and Tongxinluo caps. Differences among groups were compared. There were great changes in number and degree of coronary arteriostenosis confirmed by CAG, the types of ACC/AHA lesion and Levin lesion confirmed by CAG, remodeling index, positive or negative remodeling percentage measured by IVUS, the plasma levels of plasma inflammatory marker measured by ELLSA in the patients with endogenous collateral wind, compared with patients with blood stasis and blood stasis due to phlegm obstruction. The total effective rate of improved angina in Luo Heng dripping pills group was significantly higher than those in other two groups. The levels of plasma inflammatory marker were significantly lower in Luo Heng dripping pills group. There were some pathological basis which were found about the hypothesis of "endogenous collateral wind" on acute coronary syndrome. It provided evidences for patients with coronary artery disease treated by medicines with expelling evil-wind, and removing wetness.

  17. Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.

    PubMed

    Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo

    2006-06-01

    The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.

  18. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia

    PubMed Central

    Fox, Amy C.; McConnell, Kevin W.; Yoseph, Benyam P.; Breed, Elise; Liang, Zhe; Clark, Andrew T.; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A.; Dunne, W. Michael; Burd, Eileen M.; Coopersmith, Craig M.

    2012-01-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within two days while 44% of conventional mice survived for 7 days (p=0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. GF mice had significantly lower levels of TNF and IL-1β in BAL fluid compared to conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, since sepsis induces a greater increase in gut apoptosis in Rag-1−/− mice than wild type (WT) mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1−/− mice and septic GF WT mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local pro-inflammatory response. Additionally, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria. PMID:23042193

  19. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    PubMed

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  20. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  1. Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women

    PubMed Central

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2011-01-01

    The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370

  2. Testosterone: from initiating change to modulating social organisation in domestic fowl ( Gallus gallus domesticus)

    NASA Astrophysics Data System (ADS)

    Kent, John P.; Murphy, Kenneth J.; Bannon, Finian J.; Hynes, Niamh M.; Hayden, Thomas J.

    2009-07-01

    Testosterone (T) concentrations in many species are sensitive to seasonal changes and to changes in social conditions. However, the effect of the natural or endogenous T increase in the juvenile on their social behaviour is not well understood. In this study, T and behaviour were measured from the pro-social juvenile to the adult stage in semi-feral domestic fowl. During the pro-social phase T levels and the distance chicks maintained between each other, i.e. inter-individual distance (IID) were low. Then, as T increased, a corresponding increase in IID occurred and continued in males until dispersal to individual adult male territories. In the new and initially stable adult social structure, T declined and IID remained high, indicating a new behavioural mechanism was in place. Males first mated as T levels were declining. They were then challenged; then T increased, and then IID increased again. Adult male T levels fluctuate, being low or declining in a socially stable environment and increasing following a challenge, suggesting a regulatory or modulating role for T. The results are consistent with T having an endogenous role: in the juvenile, driving behavioural change towards adulthood, and in adulthood, a modulating role regulating social organisation.

  3. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    PubMed

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    PubMed

    Chen, S; Blanck, G; Pollack, R E

    1983-09-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.

  5. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    PubMed Central

    Chen, S; Blanck, G; Pollack, R E

    1983-01-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation. Images PMID:6310588

  6. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor).

    PubMed

    Jacobs, Chris G C; Gallagher, Joe D; Evison, Sophie E F; Heckel, David G; Vilcinskas, Andreas; Vogel, Heiko

    2017-05-01

    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study

    PubMed Central

    Mumford, Sunni L.; Dasharathy, Sonya S.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Cole, Stephen R.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2013-01-01

    STUDY QUESTION Do uric acid levels across the menstrual cycle show associations with endogenous estradiol (E2) and reproductive hormone concentrations in regularly menstruating women? SUMMARY ANSWER Mean uric acid concentrations were highest during the follicular phase, and were inversely associated with E2 and progesterone, and positively associated with FSH. WHAT IS KNOWN ALREADY E2 may decrease serum levels of uric acid in post-menopausal women; however, the interplay between endogenous reproductive hormones and uric acid levels among regularly menstruating women has not been elucidated. STUDY DESIGN, SIZE, DURATION The BioCycle study was a prospective cohort study conducted at the University at Buffalo research centre from 2005 to 2007, which followed healthy women for one (n = 9) or 2 (n = 250) menstrual cycle(s). PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were healthy women aged 18–44 years. Hormones and uric acid were measured in serum eight times each cycle for up to two cycles. Marginal structural models with inverse probability of exposure weights were used to evaluate the associations between endogenous hormones and uric acid concentrations. MAIN RESULTS AND THE ROLE OF CHANCE Uric acid levels were observed to vary across the menstrual cycle, with the lowest levels observed during the luteal phase. Every log-unit increase in E2 was associated with a decrease in uric acid of 1.1% (β = −0.011; 95% confidence interval (CI): −0.019, −0.004; persistent-effects model), and for every log-unit increase in progesterone, uric acid decreased by ∼0.8% (β = −0.008; 95% CI: −0.012, −0.004; persistent-effects model). FSH was positively associated with uric acid concentrations, such that each log-unit increase was associated with a 1.6% increase in uric acid (β = 0.016; 95% CI: 0.005, 0.026; persistent-effects model). Progesterone and FSH were also associated with uric acid levels in acute-effects models. Of 509 cycles, 42 were anovulatory (8.3%). Higher uric acid levels were associated with increased odds of anovulation (odds ratio 2.39, 95% CI: 1.25, 4.56). LIMITATIONS, REASONS FOR CAUTION The change in uric acid levels among this cohort of healthy women was modest, and analysis was limited to two menstrual cycles. The women in this study were healthy and regularly menstruating, and as such there were few women with high uric acid levels and anovulatory cycles. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate the importance of taking menstrual cycle phase into account when measuring uric acid in premenopausal women, and confirm the hypothesized beneficial lowering effects of endogenous E2 on uric acid levels. These findings suggest that there could be an underlying association affecting both sporadic anovulation and high uric acid levels among young, regularly menstruating women. Further studies are needed to confirm these findings and elucidate the connection between uric acid and reproductive and later cardiovascular health. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (contract # HHSN275200403394C). No competing interests declared. PMID:23562957

  8. Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots.

    PubMed

    Sereflioglu, Seda; Dinler, Burcu Seckin; Tasci, Eda

    2017-03-01

    In this paper, we describe the alleviated effects of alpha-tocopherol (α-T) on oxidative damage and its possible role as a signal transmitter in plants during salt stress. The results show that exogenously applied α-T under salt stress increased root length and weight, but reduced hydrogen peroxide (H 2 O 2 ), superoxide anion radical (O 2 . -) and malondialdehyde (MDA) content in soybean roots. The proline content was reduced by α-T treatment. Interestingly, endogenous auxin (IAA) level was significantly increased after α-T application as compared to salt stress alone. Moreover, α-T reduced significantly superoxide dismutase (SOD) enzyme and isoenzyme activity but upregulated peroxidase (POX) 2, 3 and glutathione-s-transferase (GST) 1, 3 isoenzyme expression. However, ascorbate peroxidase (APX) enzyme activity was not affected at all. Consequently, the results show that α-T serves as a signal molecule under salinity from leaves to roots by increasing remarkably endogenous IAA levels and increasing partially antioxidant activity in roots.

  9. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity.

    PubMed

    Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B

    2012-09-01

    The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.

  10. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    PubMed

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  11. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity.

    PubMed

    O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-08-07

    Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.

  12. Dual Roles of Endogenous Platelet-activating Factor Acetylhydrolase in a Murine Model of Necrotizing Enterocolitis

    PubMed Central

    Lu, Jing; Pierce, Marissa; Franklin, Andrew; Jilling, Tamas; Stafforini, Diana M.; Caplan, Michael

    2010-01-01

    Human preterm infants with necrotizing enterocolitis (NEC) have increased circulating and luminal levels of platelet-activating factor (PAF) and decreased serum PAF-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF. Formula supplemented with recombinant PAF-AH decreases NEC in a neonatal rat model. We hypothesized that endogenous PAF-AH contributes to neonatal intestinal homeostasis, and therefore developed PAF-AH−/− mice using standard approaches to study the role of this enzyme in the neonatal NEC model. Following exposure to a well-established NEC model, intestinal tissues were evaluated for histology, pro-inflammatory cytokine mRNA synthesis, and death using standard techniques. We found that mortality rates were significantly lower in PAF-AH−/− pups compared to wild-type controls before 24 hours of life but surviving PAF-AH−/− animals were more susceptible to NEC development compared to wild-type controls. Increased NEC incidence was associated with prominent inflammation characterized by elevated intestinal mRNA expression of sPLA2, iNOS and CXCL1. In conclusion, the data support a protective role for endogenous PAF-AH in the development of NEC, and since preterm neonates have endogenous PAF-AH deficiency, this may place them at increased risk for disease. PMID:20531249

  13. Hypothalamic digoxin, hemispheric chemical dominance, and chronic bronchitis emphysema.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator, and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins), and ubiquinone (free radical scavenger). This was assessed in patients with chronic bronchitis emphysema. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find the role of hemispheric dominance in the pathogenesis of chronic bronchitis emphysema. All the 15 patients with chronic bronchitis emphysema were right-handed/left hemispheric dominant by the dichotic listening test. In patients with chronic bronchitis emphysema there was elevated digoxin synthesis, increased dolichol, and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate levels of RBC membrane in patients with chronic bronchitis emphysema. The same biochemical patterns were obtained in individuals with right hemispheric dominance. Endogenous digoxin by activating the calcineurin signal transduction pathway of T-cell can contribute to immune activation in chronic bronchitis emphysema. Increased free radical generation can also lead to immune activation. Endogenous synthesis of nicotine can contribute to the pathogenesis of the disease. Altered glycoconjugate metabolism and membranogenesis can lead to defective lysosomal stability contributing to the disease process by increased release of lysosomal proteases. The role of an endogenous digoxin and hemispheric dominance in the pathogenesis of chronic bronchitis emphysema and in the regulation of lung structure/function is discussed. The biochemical patterns obtained in chronic bronchitis emphysema is similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. But all the patients with chronic bronchitis emphysema were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Chronic bronchitis emphysema occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function. Hemispheric chemical dominance can play a role in the regulation of lung function and structure.

  14. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    PubMed

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Alleviation of ischaemia-reperfusion injury by endogenous estrogen involves maintaining Bcl-2 expression via the ERα signalling pathway.

    PubMed

    Zhang, Zeng-Li; Qin, Pei; Liu, Yuhong; Zhang, Li-Xia; Guo, Hang; Deng, You-Liang; Yizhao-Liu; Hou, Yu-Shu; Wang, Li-Yang; Miao, Yi; Ma, Yu-Long; Hou, Wu-Gang

    2017-04-15

    The neuroprotective effects of estrogen against cerebral ischaemia have been confirmed by multiple basic and clinical studies. However, most of these studies used exogenous estrogen administered via different injection methods, and the neuroprotective effects of endogenous estrogen produced by ovaries during different phases of estrous cycle and the underlying mechanisms involved have rarely been explored. In this study, we first identified the stage of estrous cycle via vaginal smears and then measured serum estradiol levels at each phase via radioimmunoassay. We found that the estradiol level was highest in the proestrous and lowest in the diestrous. However, ovariectomy or treatment with the aromatase inhibitor letrozole significantly decreased estradiol levels compared to that of rats in diestrous. Western blotting showed that ovariectomy or letrozole treatment significantly decreased ERα and Bcl-2 protein expression and dramatically increased Bax protein expression compared with the rats in diestrous or proestrous. Rats also underwent 2h of ischaemia via middle cerebral artery occlusion followed by a 24-h reperfusion. Ovariectomy or letrozole treatment significantly decreased the neurological scores and the number of intact neurons detected via Nissl staining and dramatically increased the infarct volume detected via TTC staining and the extent of apoptosis detected via TUNEL staining and Western blotting for cleaved-caspase 3 protein expression. These results demonstrate that endogenous estrogen alleviates ischaemia-reperfusion injury by maintaining Bcl-2 expression via ERα signalling pathway and highlight the neuroprotective effects of endogenous estrogen during different stages of the estrous cycle, providing preliminary information on the underlying mechanism of this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars

    PubMed Central

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2017-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape (Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L-tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N-acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N-acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N-acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro. Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant–rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions. PMID:28119731

  17. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars.

    PubMed

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2016-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape ( Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L -tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N -acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N -acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N -acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro . Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions.

  18. Quantifying reflexivity in financial markets: Toward a prediction of flash crashes

    NASA Astrophysics Data System (ADS)

    Filimonov, Vladimir; Sornette, Didier

    2012-05-01

    We introduce a measure of activity of financial markets that provides a direct access to their level of endogeneity. This measure quantifies how much of price changes is due to endogenous feedback processes, as opposed to exogenous news. For this, we calibrate the self-excited conditional Poisson Hawkes model, which combines in a natural and parsimonious way exogenous influences with self-excited dynamics, to the E-mini S&P 500 futures contracts traded in the Chicago Mercantile Exchange from 1998 to 2010. We find that the level of endogeneity has increased significantly from 1998 to 2010, with only 70% in 1998 to less than 30% since 2007 of the price changes resulting from some revealed exogenous information. Analogous to nuclear plant safety measures concerned with avoiding “criticality,” our measure provides a direct quantification of the distance of the financial market from a critical state defined precisely as the limit of diverging trading activity in the absence of any external driving.

  19. Analysis of alpha hemoglobin stabilizing protein overexpression in murine β-thalassemia

    PubMed Central

    Nasimuzzaman, Md; Khandros, Eugene; Wang, Xiaomei; Kong, Yi; Zhao, Huifen; Weiss, David; Rivella, Stefano; Weiss, Mitchell J.; Persons, Derek A.

    2013-01-01

    Excess free α-globin is cytotoxic and contributes to the pathophysiology of β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds free α-globin to promote its folding and inhibit its ability to produce damaging reactive oxygen species. Reduced AHSP levels correlate with increased severity of β-thalassemia in some human cohorts, but causal mechanistic relationships are not established for these associations. We used transgenic and lentiviral gene transfer methods to investigate whether supraphysiologic AHSP levels could mitigate the severity of β-thalassemia intermedia by providing an increased sink for the excess pool of α-globin chains. We tested wild-type AHSP and two mutant versions with amino acid substitutions that confer 3- or 13-fold higher affinity for α-globin. Erythroid overexpression of these AHSP proteins up to 11-fold beyond endogenous levels had no major effects on hematologic parameters in β-thalassemic animals. Our results demonstrate that endogenous AHSP is not limiting for α-globin detoxification in a murine model of β-thalassemia. PMID:20815047

  20. First-in-man-proof of concept study with molidustat: a novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia.

    PubMed

    Böttcher, M; Lentini, S; Arens, E R; Kaiser, A; van der Mey, D; Thuss, U; Kubitza, D; Wensing, G

    2018-07-01

    Insufficient erythropoietin (EPO) synthesis is a relevant cause of renal anaemia in patients with chronic kidney disease. Molidustat, a selective hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor, increases endogenous EPO levels dose dependently in preclinical models. We examined the pharmacokinetics, safety, tolerability and effect on EPO levels of single oral doses of molidustat in healthy male volunteers. This was a single-centre, randomized, single-blind, placebo-controlled, group-comparison, dose-escalation study. Molidustat was administered at doses of 5, 12.5, 25, 37.5 or 50 mg as a polyethylene glycol-based solution. In total, 45 volunteers received molidustat and 14 received placebo. Molidustat was absorbed rapidly, and the mean maximum plasma concentration and area under the concentration-time curve increased dose dependently. The mean terminal half-life was 4.64-10.40 h. A significant increase in endogenous EPO was observed following single oral doses of molidustat of 12.5 mg and above. Geometric mean peak EPO levels were 14.8 IU l -1 (90% confidence interval 13.0, 16.9) for volunteers who received placebo and 39.8 IU l -1 (90% confidence interval: 29.4, 53.8) for those who received molidustat 50 mg. The time course of EPO levels resembled the normal diurnal variation in EPO. Maximum EPO levels were observed approximately 12 h postdose and returned to baseline after approximately 24-48 h. All doses of molidustat were well tolerated and there were no significant changes in vital signs or laboratory safety parameters. Oral administration of molidustat to healthy volunteers elicited a dose-dependent increase in endogenous EPO. These results support the ongoing development of molidustat as a potential new treatment for patients with renal anaemia. © 2018 The British Pharmacological Society.

  1. Modelling the vicious circle between obesity and physical activity in children and adolescents using a bivariate probit model with endogenous regressors.

    PubMed

    Yeh, C-Y; Chen, L-J; Ku, P-W; Chen, C-M

    2015-01-01

    The increasing prevalence of obesity in children and adolescents has become one of the most important public health issues around the world. Lack of physical activity is a risk factor for obesity, while being obese could reduce the likelihood of participating in physical activity. Failing to account for the endogeneity between obesity and physical activity would result in biased estimation. This study investigates the relationship between overweight and physical activity by taking endogeneity into consideration. It develops an endogenous bivariate probit model estimated by the maximum likelihood method. The data included 4008 boys and 4197 girls in the 5th-9th grades in Taiwan in 2007-2008. The relationship between overweight and physical activity is significantly negative in the endogenous model, but insignificant in the comparative exogenous model. This endogenous relationship presents a vicious circle in which lower levels of physical activity lead to overweight, while those who are already overweight engage in less physical activity. The results not only reveal the importance of endogenous treatment, but also demonstrate the robust negative relationship between these two factors. An emphasis should be put on overweight and obese children and adolescents in order to break the vicious circle. Promotion of physical activity by appropriate counselling programmes and peer support could be effective in reducing the prevalence of obesity in children and adolescents.

  2. A winged helix forkhead (FOXD2) tunes sensitivity to cAMP in T lymphocytes through regulation of cAMP-dependent protein kinase RIalpha.

    PubMed

    Johansson, C Christian; Dahle, Maria K; Blomqvist, Sandra Rodrigo; Grønning, Line M; Aandahl, Einar M; Enerbäck, Sven; Taskén, Kjetil

    2003-05-09

    Forkhead/winged helix (FOX) transcription factors are essential for control of the cell cycle and metabolism. Here, we show that spleens from Mf2-/- (FOXD2-/-) mice have reduced mRNA (50%) and protein (35%) levels of the RIalpha subunit of the cAMP-dependent protein kinase. In T cells from Mf2-/- mice, reduced levels of RIalpha translates functionally into approximately 2-fold less sensitivity to cAMP-mediated inhibition of proliferation triggered through the T cell receptor-CD3 complex. In Jurkat T cells, FOXD2 overexpression increased the endogenous levels of RIalpha through induction of the RIalpha1b promoter. FOXD2 overexpression also increased the sensitivity of the promoter to cAMP. Finally, co-expression experiments demonstrated that protein kinase Balpha/Akt1 work together with FOXD2 to induce the RIalpha1b promoter (10-fold) and increase endogenous RIalpha protein levels further. Taken together, our data indicate that FOXD2 is a physiological regulator of the RIalpha1b promoter in vivo working synergistically with protein kinase B to induce cAMP-dependent protein kinase RIalpha expression, which increases cAMP sensitivity and sets the threshold for cAMP-mediated negative modulation of T cell activation.

  3. Regulation of GPR119 receptor activity with endocannabinoid-like lipids.

    PubMed

    Syed, Samreen K; Bui, Hai Hoang; Beavers, Lisa S; Farb, Thomas B; Ficorilli, James; Chesterfield, Amy K; Kuo, Ming-Shang; Bokvist, Krister; Barrett, David G; Efanov, Alexander M

    2012-12-15

    The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119. Another lipid, 2-oleoylglycerol (2-OG), also activated GPR119 receptor but with significantly lower potency. Endogenous levels of endocannabinoid-like lipids were measured in intestine in fasted and refed mice. Of the lipid GPR119 agonists studied, the intestinal levels of only OEA, LEA, and 2-OG increased significantly upon refeeding. Intestinal levels of OEA and LEA in the fasted mice were low. In the fed state, OEA levels only moderately increased, whereas LEA levels rose drastically. 2-OG was the most abundant of the three GPR119 agonists in intestine, and its levels were radically elevated in fed mice. Our data suggest that, in lean mice, 2-OG and LEA may serve as physiologically relevant endogenous GPR119 agonists that mediate receptor activation upon nutrient uptake.

  4. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots.

    PubMed

    Yuan, Yuan; Liu, Yunjun; Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi

    2012-01-01

    The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.

  5. Endogenous Business Cycle Dynamics within Metzlers Inventory Model: Adding an Inventory Floor.

    PubMed

    Sushko, Irina; Wegener, Michael; Westerhoff, Frank; Zaklan, Georg

    2009-04-01

    Metzlers inventory model may produce dampened fluctuations in economic activity, thus contributing to our understanding of business cycle dynamics. For some parameter combinations, however, the model generates oscillations with increasing amplitude, implying that the inventory stock of firms eventually turns negative. Taking this observation into account, we reformulate Metzlers model by simply putting a floor to the inventory level. Within the new piecewise linear model, endogenous business cycle dynamics may now be triggered via a center bifurcation, i.e. for certain parameter combinations production changes are (quasi-)periodic.

  6. Further evidence for GHB naturally occurring in common non-alcoholic beverages.

    PubMed

    Elliott, Simon P; Fais, Paolo

    2017-08-01

    GHB has been implicated in many cases of suspected surreptitious administration with the purpose of increasing victim vulnerability to sexual assault. Low amounts of endogenous (or naturally occurring) GHB, which do not reach pharmacologically active levels, have been detected in alcoholic and non-alcoholic beverages. Due to the continued requirement to obtain data on the presence of endogenous GHB in various beverage types, GHB concentrations were measured in a series of non-alcoholic beverages. Tonic water and lemon flavoured tonic water beverages were analysed at 0, 24 and 96h after the bottle opening using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) on an Agilent 6890/7000C Triple Quadrupole. GHB was detected in all beverages at very low amounts ranging from 89 to 145ng/mL (0.089-0.145mg/L) and did not demonstrate a general trend of variation for concentration along the tested time span (96h). The presented data provide additional evidence for the endogenous nature of GHB in non-alcoholic beverages at very low concentrations, which are many orders of magnitude lower than those described to produce any pharmacological effect on the subject. However, when considering a case of alleged drug-facilitated sexual assault, a low level of GHB detected in a drink may be related both to a surreptitiously GHB administration with subsequent dilution for concealment or to the presence of endogenous GHB. On this basis, a comprehensive analysis of all the available information, including circumstantial data demonstrating possible attempts to conceal GHB administration and an assessment of levels of endogenous GHB in the suspected beverage type, is of the utmost importance for a proper interpretation of the toxicological results. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters.

    PubMed

    Hu, Rujiu; Li, Jing; Soomro, Rab Nawaz; Wang, Fei; Feng, Yan; Yang, Xiaojun; Yao, Junhu

    2017-01-01

    This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs) in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg) were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05) across all treatments. The amino acid (AA) profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05) by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05). The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients.

  8. The 15N-leucine single-injection method allows for determining endogenous losses and true digestibility of amino acids in cecectomized roosters

    PubMed Central

    Hu, Rujiu; Li, Jing; Soomro, Rab Nawaz; Wang, Fei; Feng, Yan; Yang, Xiaojun

    2017-01-01

    This study was conducted to assess the influence of dietary protein content in poultry when using the 15N-leucine single-injection method to determine endogenous amino acid losses (EAALs) in poultry. Forty-eight cecectomized roosters (2.39 ± 0.23 kg) were randomly allocated to eight dietary treatments containing protein levels of 0, 3%, 6%, 9%, 12%, 15%, 18% and 21%. Each bird was precisely fed an experimental diet of 25 g/kg of body weight. After feeding, all roosters were subcutaneously injected with a 15N-leucine solution at a dose of 20 mg/kg of body weight. Blood was sampled 23 h after the injection, and excreta samples were continuously collected during the course of the 48-h experiment. The ratio of 15N-enrichment of leucine in crude mucin to free leucine in plasma ranged from 0.664 to 0.763 and remained relatively consistent (P > 0.05) across all treatments. The amino acid (AA) profiles of total endogenous AAs, except isoleucine, alanine, aspartic acid, cysteine, proline and serine, were not influenced (P > 0.05) by dietary protein contents. The predominant endogenous AAs in the excreta were glutamic acid, aspartic acid, threonine, serine and proline. The order of the relative proportions of these predominant AAs also remained relatively constant (P > 0.05). The endogenous losses of total AAs determined with the 15N-leucine single-injection method increased curvilinearly with the dietary protein contents. The true digestibility of most AAs and total AAs was independent of their respective dietary protein levels. Collectively, the 15N-leucine single-injection method is appropriate for determining EAALs and the true digestibility of AAs in poultry fed varying levels of protein-containing ingredients. PMID:29166671

  9. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.

    PubMed

    Vanini, Giancarlo; Wathen, Bradley L; Lydic, Ralph; Baghdoyan, Helen A

    2011-02-16

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.

  10. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  11. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Kumar, Sanjiv; Datar, Sanjeev; Oishi, Peter; Kalka, Gokhan; Schreiber, Christian; Fratz, Sohrab; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO−) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO− donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24h (with exogenous activation of cGMP) revealed increased ONOO− levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO− and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity. PMID:21351102

  12. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome

    PubMed Central

    Lanaspa, Miguel A; Ishimoto, Takuji; Li, Nanxing; Cicerchi, Christina; Orlicky, David J.; Ruzicky, Philip; Rivard, Christopher; Inaba, Shinichiro; Roncal-Jimenez, Carlos A.; Bales, Elise S.; Diggle, Christine P.; Asipu, Aruna; Petrash, J. Mark; Kosugi, Tomoki; Maruyama, Shoichi; Sanchez-Lozada, Laura G.; McManaman, James L.; Bonthron, David T; Sautin, Yuri Y.; Johnson, Richard J.

    2013-01-01

    Carbohydrates with high glycemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations glucose are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously-produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase deficient mice were protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism whereby glucose promotes the development of metabolic syndrome. PMID:24022321

  14. Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes.

    PubMed

    Perl, Sivan H; Bloch, Olga; Zelnic-Yuval, Dana; Love, Itamar; Mendel-Cohen, Lior; Flor, Hadar; Rapoport, Micha J

    2018-05-01

    High levels of circulating GLP-1 are associated with severity of sepsis in critically ill nondiabetic patients. Whether patients with type 2 diabetes (T2D) display different activation of the endogenous GLP-1 system during sepsis and whether it is affected by diabetes-related metabolic parameters are not known. Serum levels of GLP-1 (total and active forms) and its inhibitor enzyme sDPP-4 were determined by ELISA on admission and after 2 to 4 days in 37 sepsis patients with (n = 13) and without T2D (n = 24) and compared to normal healthy controls (n = 25). Correlations between GLP-1 system activation and clinical, inflammatory, and diabetes-related metabolic parameters were performed. A 5-fold (P < .001) and 2-fold (P < .05) increase in active and total GLP-1 levels, respectively, were found on admission as compared to controls. At 2 to 4 days from admission, the level of active GLP-1 forms in surviving patients were decreased significantly (P < .005), and positively correlated with inflammatory marker CRP (r = 0.33, P = .05). T2D survivors displayed a similar but more enhanced pattern of GLP-1 response than nondiabetic survivors. Nonsurvivors demonstrate an early extreme increase of both total and active GLP-1 forms, 9.5-fold and 5-fold, respectively (P < .05). The initial and late levels of circulating GLP-1 inhibitory enzyme sDPP-4 were twice lower in all studied groups (P < .001), compared with healthy controls. Taken together, these data indicate that endogenous GLP-1 system is activated during sepsis. Patients with T2D display an enhanced and prolonged activation as compared to nondiabetic patients. Extreme early increased GLP-1 levels during sepsis indicate poor prognosis. Copyright © 2018 John Wiley & Sons, Ltd.

  15. The interactions of multisensory integration with endogenous and exogenous attention

    PubMed Central

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  16. The interactions of multisensory integration with endogenous and exogenous attention.

    PubMed

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.

    PubMed

    Liu, Yang; Chen, Xiaoyi; Wang, Xinhui; Fang, Yang; Huang, Mengjun; Guo, Ling; Zhang, Yin; Zhao, Hai

    2018-06-22

    Duckweed is a valuable feedstock for bioethanol production due to its high biomass and starch accumulation. In our preliminary experiment, we found that abscisic acid (ABA) could simultaneously increase starch and biomass accumulation of duckweed, but the mechanisms are still unclear. The results showed that the biomass production of duckweed reached up to 59.70 and 63.93 g m -2 in 6 days, respectively, with an increase of 7% (P < 0.05) compared to the control. The starch percentage increased from 2.29% up to 46.18% after 14 days of treatment, with a total of starch level 2.6-fold higher than that of the control. Moreover, the level of endogenous ABA, zeatin-riboside (ZR) and indole-3-acetic acid (IAA) increased, while gibberellins (GAs) decreased. Notably, ABA content in treated samples reached 336.5 mg/kg (fresh weight), which was 7.5-fold greater than that of the control. Importantly, the enzyme activities involved in starch biosynthesis increased while those catalyzing starch degradation decreased after ABA application. Taken together, these results indicated that ABA can promote biomass and starch accumulation by regulating endogenous hormone levels and the activity of starch metabolism related key enzymes. These results will provide an operable method for high starch accumulation in duckweed for biofuels production.

  18. The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2004-01-01

    The antiapoptotic action of exogenous growth hormone (GH) has been reported for several lymphoid cell lines; however, the potential role of endogenous GH in apoptosis has not been thoroughly investigated. This study was designed to investigate the effects of endogenous GH on apoptosis induced by methyl methanesulfonate (MMS) in a T cell lymphoma overexpressing GH (GHo). The results of these experiments have shown that in EL4 lymphoma cells, overexpression of GH sustained viability after exposure to MMS compared to control cells. The extent of DNA fragmentation measured by ladder formation on agarose gels was reduced in GHo cells following treatment with MMS, when compared to control cells. Adding exogenous GH to control cells and treatment of GHo cells with antibodies to GH had no effect on MMS-induced DNA ladder formation. In further studies, DNA microarray analysis suggested a marked decrease in the constitutive expression of bax, BAD, and caspases 3, 8, and 9 in GHo cells compared to controls. In addition, after treatment with MMS, the activities of caspases 2, 3, 6, 8, and 9 were all lower than control in GHo cells. Western blot analysis detected an increase in Bcl-2 while the levels of nuclear factor kappa B (NFkappaB) remained unchanged in GHo cells. Treatment of EL4 cells with antisense deoxyoligonucleotides to GH and specific inhibitors of NFkappaB (SN-50) increased DNA fragmentation. GHo cells show increased levels of phosphorylated Akt and GSK-3, suggesting inactivation of this proapoptotic protein. The results, taken together with our previous data which showed increased nitric oxide formation in GHo cells, suggest a possible mechanism for the antiapoptotic effects of endogenous GH through the production of nitric oxide and support the idea that endogenous GH may play an important role in the survival of lymphocytes exposed to stressful stimuli. Copyright 2004 S. Karger AG, Basel

  19. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  20. Repression of endogenous Smad7 by Ski.

    PubMed

    Denissova, Natalia G; Liu, Fang

    2004-07-02

    The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.

  1. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli.

    PubMed Central

    Taverna, P; Sedgwick, B

    1996-01-01

    Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation. PMID:8752326

  2. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  3. Effects of the dietary ratio of ruminal degraded to undegraded protein and feed intake on intestinal flows of endogenous nitrogen and amino acids in goats.

    PubMed

    Zhou, Chuanshe; Chen, Liang; Tan, Zhiliang; Tang, Shaoxun; Han, Xuefeng; Wang, Min; Kang, Jinhe; Yan, Qiongxian

    2015-01-01

    This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4×4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2×2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p<0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.

  4. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    PubMed

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro.

    PubMed

    Zhou, Yan; Qiu, Lian-Bo; An, Guang-Zhou; Zhou, Jia-Xing; Du, Le; Ma, Ya-Hong; Guo, Guo-Zhen; Ding, Gui-Rong

    2017-01-01

    The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.

  6. Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia.

    PubMed

    Matias, Mariana Leticia; Romão, Mariana; Weel, Ingrid Cristina; Ribeiro, Vanessa Rocha; Nunes, Priscila Rezeck; Borges, Vera Therezinha; Araújo, João Pessoa; Peraçoli, José Carlos; de Oliveira, Leandro; Peraçoli, Maria Terezinha

    2015-01-01

    Preeclampsia (PE) is a specific syndrome of pregnancy, characterized by hypertension and proteinuria. This pathology is associated with hyperuricemia and elevated serum levels of inflammatory cytokines. Uric acid crystals may activate an intracellular complex called inflammasome, which is important for processing and release of inflammatory cytokines. This study investigated the state of monocyte activation, both endogenous and stimulated with monosodium urate (MSU), by gene expression of NLRP1 and NLRP3 receptors as well as their association with inflammatory cytokines expression. Monocytes were obtained from peripheral blood of 23 preeclamptic pregnant women, 23 normotensive pregnant women (NT) and 23 healthy non-pregnant women (NP). Inflammasome activation was evaluated by the gene expression of NLRP1, NLRP3, caspase-1, IL-1β, IL-18 and TNF-α by RT-qPCR in unstimulated monocytes (endogenous expression), or after cell stimulation with MSU (stimulated expression). The concentration of cytokines was assessed by ELISA. In preeclamptic pregnant women, gene expression of NLRP1, NLRP3, caspase-1, IL-1β and TNF-α by monocytes stimulated or not with MSU was significantly higher than in NT and NP groups. Stimulation of monocytes from preeclamptic and non-pregnant women with MSU induced increased gene expression of NLRP3, caspase-1 and TNF-α in relation to the endogenous expression in these groups, while this was not observed in the NT group. The cytokine determination showed that monocytes from women with PE produced higher endogenous levels of IL-1β, IL-18 and TNF-α compared to the other groups, while the stimulus with MSU led to higher production of these cytokines in preeclamptic group than in the NT group. In conclusion, the results showed increased basal gene expression of NLRP1 and NLRP3 receptors in monocytes from PE group. These cells stimulation with MSU demonstrates that uric acid plays a role in NLRP3 inflammasome activation, suggesting the participation of this inflammatory complex in the pathogenesis of preeclampsia.

  7. MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia

    PubMed Central

    Jiao, Jian; Herl, Lauren D.; Farese, Robert V.; Gao, Fen-Biao

    2010-01-01

    Progranulin deficiency is thought to cause some forms of frontotemporal dementia (FTD), a major early-onset age-dependent neurodegenerative disease. How progranulin (PGRN) expression is regulated is largely unknown. We identified an evolutionarily conserved binding site for microRNA-29b (miR-29b) in the 3′ untranslated region (3′UTR) of the human PGRN (hPGRN) mRNA. miR-29b downregulates the expression of luciferase through hPGRN or mouse PGRN (mPGRN) 3′UTRs, and the regulation was abolished by mutations in the miR-29b binding site. To examine the direct effect of manipulating endogenous miR-29b on hPGRN expression, we established a stable NIH3T3 cell line that expresses hPGRN under the control of the cytomegalovirus promoter. Ectopic expression of miR-29b decreased hPGRN expression at the both mRNA and protein levels. Conversely, knockdown of endogenous miR-29b with locked nucleic acid increased the production and secretion of hPGRN in NIH3T3 cells. Endogenous hPGRN in HEK 293 cells was also regulated by miR-29b. These findings identify miR-29b as a novel posttranscriptional regulator of PGRN expression, raising the possibility that miR-29b or other miRNAs might be targeted therapeutically to increase hPGRN levels in some FTD patients. PMID:20479936

  8. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    PubMed

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  9. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress 1

    PubMed Central

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv `Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots. Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium. Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed. PMID:16664467

  10. Pressure pain threshold and β-endorphins plasma level are higher in lean polycystic ovary syndrome women.

    PubMed

    Kiałka, Marta; Milewicz, Tomasz; Mrozińska, Sandra; Rogatko, Iwona; Sztefko, Krystyna; Majewska, Renata

    2017-12-01

    Despite some evidence that indicates that the evolution of polycystic ovary syndrome (PCOS) is related to the activity of the endogenous opioid system, and that concentration of plasma β-endorphin levels can increase pain threshold, there are no studies which evaluate pressure pain threshold in the PCOS women population. In 48 lean women with PCOS and 38 lean women without this disorder plasma β-endorphins and PPT were measured. The β-endorphins level was higher in the PCOS group compared to the controls (15.28±2.49 pg/mL vs. 6.33±1.71 pg/mL, P<0.001). In PCOS group PPTs measured on deltoid and trapezius muscles were higher compared to the controls (9.33±1.3 kg/cm² vs. 5.19±0.57 kg/cm², P<0.001; 8.23±1.04 kg/cm² vs. 4.79±0.55 kg/cm², P<0.001). The β-endorphin levels positively correlated with PPTs in PCOS group. Increase in β-endorphin level of 1 pg/mL was associated with increase of PPT value on deltoid muscle of 0.23 kg/cm² (R=0.632, P=0.011) and of 0.18 kg/cm² on trapezius muscle (R=0.588, P=0.037). There were no correlations between testosterone level and PPT in PCOS group. β-endorphin serum level as well as PPT are higher in lean PCOS group than in controls. We found correlations between β-endorphin levels and PPT in the PCOS group. It may suggest the role of endogenous opioids in the pathogenesis of PCOS and also that the increases in circulating plasma β-endorphins concentration can increases PPT in this group.

  11. [The role of endogenous and exogenous factors in the etiology of skin melanoma].

    PubMed

    Zaridze, D G; Mukeriia, A F; Basieva, T Kh; Shlenskaia, I N; Bukin, Iu V

    1992-01-01

    The results of case-control study of skin melanoma carried out in Moscow are presented. They point to considerable influence of endogenous factors on the relative risk of melanoma. The risk of melanoma is increased by such factors as light color of the skin, presence of freckles and moles. Exposure to UV-radiation raised the risk of melanoma, however, after relevant adjustment for the said factors relative risk was reduced. Consumption of greens and high blood levels of alpha-tocopherol significantly decreased the risk of melanoma. Female users of oral contraceptives had significantly lower risk of skin melanoma.

  12. Effects of Acifluorfen on Endogenous Antioxidants and Protective Enzymes in Cucumber (Cucumis sativus L.) Cotyledons

    PubMed Central

    Kenyon, William H.; Duke, Stephen O.

    1985-01-01

    The herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate) causes strong photooxidative destruction of pigments and lipids in sensitive plant species. Antioxidants and oxygen radical scavengers slow the bleaching action of the herbicide. The effect of acifluorfen on glutathione and ascorbate levels in cucumber (Cucumis sativus L.) cotyledon discs was investigated to assess the relationship between herbicide activity and endogenous antioxidants. Acifluorfen decreased the levels of glutathione and ascorbate over 50% in discs exposed to less than 1.5 hours of white light (450 microeinsteins per square meter per second). Coincident increases in dehydroascorbate and glutathione disulfide were not observed. Acifluorfen also caused the rapid depletion of ascorbate in far-red light grown plants which were photosynthetically incompetent. Glutathione reductase, dehydroascorbate reductase, superoxide dismutase, ascorbate oxidase, ascorbate free radical reductase, peroxidase, and catalase activities rapidly decreased in acifluorfen-treated tissue exposed to white light. None of the enzymes were inhibited in vitro by the herbicide. Acifluorfen causes irreversible photooxidative destruction of plant tissue, in part, by depleting endogenous antioxidants and inhibiting the activities of protective enzymes. PMID:16664506

  13. Sex Hormones and the QT Interval: A Review

    PubMed Central

    Sedlak, Tara; Shufelt, Chrisandra; Iribarren, Carlos

    2012-01-01

    Abstract A prolonged QT interval is a marker for an increased risk of ventricular tachyarrhythmias. Both endogenous and exogenous sex hormones have been shown to affect the QT interval. Endogenous testosterone and progesterone shorten the action potential, and estrogen lengthens the QT interval. During a single menstrual cycle, progesterone levels, but not estrogen levels, have the dominant effect on ventricular repolarization in women. Studies of menopausal hormone therapy (MHT) in the form of estrogen-alone therapy (ET) and estrogen plus progesterone therapy (EPT) have suggested a counterbalancing effect of exogenous estrogen and progesterone on the QT. Specifically, ET lengthens the QT, whereas EPT has no effect. To date, there are no studies on oral contraception (OC) and the QT interval, and future research is needed. This review outlines the current literature on sex hormones and QT interval, including the endogenous effects of estrogen, progesterone, and testosterone and the exogenous effects of estrogen and progesterone therapy in the forms of MHT and hormone contraception. Further, we review the potential mechanisms and pathophysiology of sex hormones on the QT interval. PMID:22663191

  14. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants

    PubMed Central

    Yu, Sha; Cao, Li; Zhou, Chuan-Miao; Zhang, Tian-Qi; Lian, Heng; Sun, Yue; Wu, Jianqiang; Huang, Jirong; Wang, Guodong; Wang, Jia-Wei

    2013-01-01

    The transition from the juvenile to adult phase in plants is controlled by diverse exogenous and endogenous cues such as age, day length, light, nutrients, and temperature. Previous studies have shown that the gradual decline in microRNA156 (miR156) with age promotes the expression of adult traits. However, how age temporally regulates the abundance of miR156 is poorly understood. We show here that the expression of miR156 responds to sugar. Sugar represses miR156 expression at both the transcriptional level and post-transcriptional level through the degradation of miR156 primary transcripts. Defoliation and photosynthetic mutant assays further demonstrate that sugar from the pre-existing leaves acts as a mobile signal to repress miR156, and subsequently triggers the juvenile-to-adult phase transition in young leaf primordia. We propose that the gradual increase in sugar after seed germination serves as an endogenous cue for developmental timing in plants. DOI: http://dx.doi.org/10.7554/eLife.00269.001 PMID:23543845

  15. The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes

    PubMed Central

    Fredericks, William J.; Sepulveda, Jorge; Lal, Priti; Tomaszewski, John E.; Lin, Ming-Fong; McGarvey, Terry; Rauscher, Frank J; Malkowicz, S. Bruce

    2013-01-01

    Castrate-Resistant Prostate Cancer (CRPC) is characterized by persistent androgen receptor-driven tumor growth in the apparent absence of systemic androgens. Current evidence suggests that CRPC cells can produce their own androgens from endogenous sterol precursors that act in an intracrine manner to stimulate tumor growth. The mechanisms by which CRPC cells become steroidogenic during tumor progression are not well defined. Herein we describe a novel link between the elevated cholesterol phenotype of CRPC and the TERE1 tumor suppressor protein, a prenyltransferase that synthesizes vitamin K-2, which is a potent endogenous ligand for the SXR nuclear hormone receptor. We show that 50% of primary and metastatic prostate cancer specimens exhibit a loss of TERE1 expression and we establish a correlation between TERE1 expression and cholesterol in the LnCaP-C81 steroidogenic cell model of the CRPC. LnCaP-C81 cells also lack TERE1 protein, and show elevated cholesterol synthetic rates, higher steady state levels of cholesterol, and increased expression of enzymes in the de novo cholesterol biosynthetic pathways than the non-steroidogenic prostate cancer cells. C81 cells also show decreased expression of the SXR nuclear hormone receptor and a panel of directly regulated SXR target genes that govern cholesterol efflux and steroid catabolism. Thus, a combination of increased synthesis, along with decreased efflux and catabolism likely underlies the CRPC phenotype: SXR might coordinately regulate this phenotype. Moreover, TERE1 controls synthesis of vitamin K-2, which is a potent endogenous ligand for SXR activation, strongly suggesting a link between TERE1 levels, K-2 synthesis and SXR target gene regulation. We demonstrate that following ectopic TERE1 expression or induction of endogenous TERE1, the elevated cholesterol levels in C81 cells are reduced. Moreover, reconstitution of TERE1 expression in C81 cells reactivates SXR and switches on a suite of SXR target genes that coordinately promote both cholesterol efflux and androgen catabolism. Thus, loss of TERE1 during tumor progression reduces K-2 levels resulting in reduced transcription of SXR target genes. We propose that TERE1 controls the CPRC phenotype by regulating the endogenous levels of Vitamin K-2 and hence the transcriptional control of a suite of steroidogenic genes via the SXR receptor. These data implicate the TERE1 protein as a previously unrecognized link affecting cholesterol and androgen accumulation that could govern acquisition of the CRPC phenotype. PMID:23919967

  16. Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget'.

    PubMed

    Chen, Xiaomin; Baldermann, Susanne; Cao, Shuyan; Lu, Yao; Liu, Caixia; Hirata, Hiroshi; Watanabe, Naoharu

    2015-02-01

    2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Peripheral vasopressin but not oxytocin relates to severity of acute psychosis in women with acutely-ill untreated first-episode psychosis

    PubMed Central

    Rubin, Leah H.; Carter, C. Sue; Bishop, Jeffrey R.; Pournajafi-Nazarloo, Hossein; Harris, Margret S. H.; Hill, Scot K.; Reilly, James L.; Sweeney, John A.

    2013-01-01

    Background In women with chronic schizophrenia, higher levels of peripheral oxytocin have been associated with lower levels of positive but not negative symptoms. Sex-specific associations between endogenous levels of oxytocin (OT) and arginine-vasopressin (AVP) with clinical symptoms and cognition in untreated early course patients have not been examined. Method Clinical ratings and neuropsychological testing were performed in thirty-eight acutely ill, unmedicated first-episode schizophrenia patients (14 women, 24 men). Serum hormone assays were obtained in patients and thirty-eight demographically similar healthy controls. Results Patients demonstrated increased AVP levels compared to controls (p=0.01). Higher AVP levels were associated with greater positive symptoms (r=0.58, p=0.03) and worse verbal learning (r=−0.63, p=0.02) in female, but not male, patients. OT levels did not statistically differ between patients and controls, and were unrelated to clinical symptoms or cognition in patients. Conclusion Results suggest an association of endogenous AVP with increased positive symptom severity and worse cognition in untreated female, but not male, schizophrenia patients. Findings support the role of neuroendocrine alterations in acute psychosis and the importance of examining sex-specific neuroendocrine alterations early in the course of schizophrenia. PMID:23465965

  18. Endogenous carboxyhemoglobin concentrations in the assessment of severity in patients with community-acquired pneumonia.

    PubMed

    Corbacioglu, Seref Kerem; Kilicaslan, Isa; Bildik, Fikret; Guleryuz, Atacan; Bekgoz, Burak; Ozel, Ayca; Keles, Ayfer; Demircan, Ahmet

    2013-03-01

    Previous studies have shown that carbon monoxide, which is endogenously produced, is increased in community-acquired pneumonia (CAP). However, it has not been studied enough whether severity of pneumonia is correlated with increased carboxyhemoglobin (COHb) concentrations in CAP. The aim of this study was to determine whether endogenous carbon monoxide levels in patients with CAP were higher compared with the control group and, if so, to determine whether COHb concentrations could predict severity in CAP. Eighty-two patients with CAP were evaluated in this cross-sectional study during a 10-month period. Demographic data, pneumonia severity index and confusion, uremia, rate respiratory, pressure blood, age>65 (CURB-65) scores, hospital admission or discharge decisions, and 30-day hospital mortality rate were recorded. In addition, 83 control subjects were included to study. The COHb concentration was measured in arterial blood sample. The levels of COHb in patients with CAP were 1.70% (minimum-maximum, 0.8-3.2), whereas those in control subjects, 1.40% (minimum-maximum, 0.8-2.9). The higher COHb concentrations in patients with CAP were statistically significant (P < .05). Concentration of COHb correlated with pneumonia severity index (P = .04, r = 0.187); however, it did not correlate with CURB-65 (P = .218, r = 0.112). Although COHb concentrations show an increase in patients with pneumonia, it was concluded that this increase did not act as an indicator in diagnosis process or prediction of clinical severity for the physicians. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Molecular Beacon-Based MicroRNA Imaging During Neurogenesis.

    PubMed

    Lee, Jonghwan; Kim, Soonhag

    2016-01-01

    The fluorescence monitoring system for examining endogenous microRNA (miRNA) activity in cellular level provides crucial information on not only understanding a critical role of miRNA involving a variety of biological processes, but also evaluating miRNA expression patterns in a noninvasive manner. In this protocol, we report the details of a new procedure for a molecular beacon-based miRNA monitoring system, which includes the illustration scheme for miRNA detection strategy, exogenous miRNA detection, and measurement of endogenous miRNA expression level during neurogenesis. The fluorescence signal of miR-124a beacon quenched by BHQ2 was gradually recovered as increasing concentration of the miR-124a in tube. The functional work of miR-124a beacon was examined in intracellular environment, allowing for the internalization of the miR-124a beacon by lipofectamine, which resulted in activated fluorescent signals of the miR-124a beacon in the HeLa cells after the addition of synthetic miR-124a. The endogenous miR-124a expression level was detected by miR-124a beacon system during neurogenesis, showing brighter fluorescence intensity in cytoplasmic area of P19 cells after induction of neuronal differentiation by retinoic acid. The molecular beacon based-miRNA detection technique could be applicable to the simultaneous visualization of a variety of miRNA expression patterns using different fluorescence dyes. For the study of examining endogenous miRNA expression level using miRNA-beacon system, if cellular differentiation step is already prepared, transfection step of miR-124a beacon into P19 cells, and acquisition of activated fluorescence signal measured by confocal microscope can be conducted approximately within 6 h.

  20. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  1. Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers.

    PubMed

    Morgan, N K; Walk, C L; Bedford, M R; Burton, E J

    2015-07-01

    There is little consensus as to the capability of poultry to utilize dietary phytate without supplemental phytase. Therefore, an experiment was conducted to examine the extent to which endogenous phytase of intestinal and cereal origin contributes to phytate degradation in birds aged 0 to 14 d posthatch. Ross 308 broilers (n = 720) were fed one of 4 experimental diets with differing dietary ingredient combinations and approximate total phytate levels of 10 g/kg, dietary phytase activity analyzed at 460 U/kg, dietary calcium (Ca) levels of 11 g/kg, and nonphytate-phosphorus (P) levels of 4 g/kg. Broiler performance, gizzard, duodenum, jejunum and ileum pH, Ca and P digestibility and solubility, amount of dietary phytate hydrolyzed in the gizzard, jejunum, and ileal digesta phytase activity were analyzed at d 4, 6, 8, 10, 12, and 14 posthatch. Intestinal endogenous phytase activity increased significantly (P < 0.001) between d 4 and 6, resulting in increased phytate hydrolysis in the gizzard (P = 0.003), jejunum (P < 0.001), and ileum (P < 0.001). Phytase activity and phytate hydrolysis continued to increase with age, with a greater phytase activity and associated increase in phytate hydrolysis and mineral utilization between d 10 and 12. Gizzard and jejunum Ca and P solubility and ileal Ca and P digestibility increased significantly (P < 0.001), and gastrointestinal pH decreased significantly (P < 0.001) between d 4 and 6. By d 14, phytase activity recovered in the ileum was approximately 45 U/kg. There were strong correlations between phytase activity measured in the ileum and phytate hydrolyzed in the gizzard (r = 0.905, P < 0.001), jejunum (r = 0.901, P = 0.023), and ileum (r = 0.938, P = 0.042). This study shows intestinal- and dietary-derived endogenous phytase activity is responsible for phytate-P hydrolysis in broilers. © 2015 Poultry Science Association Inc.

  2. Failure of systemic hypoxia to blunt α-adrenergic vasoconstriction in the human forearm

    PubMed Central

    Dinenno, Frank A; Joyner, Michael J; Halliwill, John R

    2003-01-01

    Systemic hypoxia in humans evokes forearm vasodilatation despite significant reflex increases in sympathetic vasoconstrictor nerve activity and noradrenaline spillover. We sought to determine whether post-junctional α-adrenergic vasoconstrictor responsiveness to endogenous noradrenaline release is blunted during systemic hypoxia. To do so, we conducted a two-part study in healthy young adults. In protocol 1, we measured forearm blood flow (FBF; venous occlusion plethysmography) and calculated the vascular conductance (FVC) responses to brachial artery infusions of two doses of tyramine (evokes endogenous noradrenaline release) in 10 adults during normoxia and mild systemic hypoxia (85 % O2 saturation; pulse oximetry of the earlobe). Systemic hypoxia evoked significant forearm vasodilatation as indicated by the increases in FBF and FVC (∼20–23 %; P < 0.05). The low and high doses of tyramine evoked significant reductions in FVC (vasoconstriction) that were similar in magnitude during normoxia (−29 ± 3 and −53 ± 4 %) and mild hypoxia (−35 ± 4 and −58 ± 3 %; P = 0.33). In protocol 2, forearm vasoconstrictor responses to the high dose of tyramine were determined in eight young adults during normoxia and during graded levels of systemic hypoxia (85, 80 and 75 % O2 saturation). The reductions in FVC were similar during normoxia (−59 ± 2 %) and the three levels of hypoxia (85 % O2 saturation, −64 ± 3 %; 80 % O2 saturation, −62 ± 1 %; 75 % O2 saturation, −61 ± 3 %; P = 0.37). In both protocols, the tyramine-induced increases in deep venous noradrenaline concentrations were similar during normoxia and all levels of hypoxia. Our results demonstrate that post-junctional α-adrenergic receptor vasoconstrictor responsiveness to endogenous noradrenaline release is not blunted during mild-to-moderate systemic hypoxia in healthy humans. PMID:12730336

  3. Growth conditions determine different melatonin levels in Lupinus albus L.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2013-09-01

    Melatonin, an indoleamine, which has recently been assigned several roles in plant physiology as a growth promoter, as rooting agent, and as antioxidant in senescence delay and cytoprotection, seems to have a relevant function in plant stress situations. The presence of melatonin increases the resistance of lupin plant tissues (Lupinus albus L.) against natural or artificially induced adverse situations. In this work, we studied the response of lupin plants in controlled stress situations (drought-, anaerobic-, pH-, and cold stress and using ZnSO4 , NaCl, and H2 O2 as chemical stressors) and measured the changes in endogenous melatonin levels in lupin plants. Also, the effect of abscisic acid, ethylene, and natural environmental conditions were evaluated. In general, nearly all stressful factors caused an increase in melatonin in the investigated organs. The chemical stress provoked by ZnSO4 or NaCl caused the most pronounced changes in the endogenous level of melatonin, followed by cold and drought stressors. In some cases, the level of melatonin increased 12-fold with respect to the levels in control plants, indicating that melatonin biosynthesis is upregulated in common stress situations, in which it may serve as a signal molecule and/or as a direct antistress agent due to its well-known antioxidative properties. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. [Protective effects of metaprot and ethomerzol in carbophos intoxications].

    PubMed

    Vorob'eva, V V; Zarubina, I V; Shabanov, P D

    2012-01-01

    The mechanisms of protective action of thiobenzimidazole derivatives metaprot and ethomerzol (25 and 50 mg/kg) have been studied on a model of carbophos intoxication (256.0 +/- 8.7 mg/kg) in rats. Both compounds recovered the resistance to physical loads in forced swimming test, normalized the activity of aspartate and alanine transaminases, and reduced bilirubin, creatinine, and urea nitrogen levels in the blood serum. The intoxication was accompanied with increasing concentration of malonic dialdehyde and decreasing level of recovered glutation in the blood, as well as with the signs of endogenic intoxication. Metaprot and ethomerzol diminished disorders of both the lipid peroxidation and endogenic intoxication processes. Thus, the antihypoxic, antioxidant, actoprotective, energotropic, and reparative effects of metaprot and ethomerzol have been proved. Ethomerzol was more effective than metaprot in these tests.

  5. Endogenous Intoxication and Saliva Lipid Peroxidation in Patients with Lung Cancer.

    PubMed

    Bel'skaya, Lyudmila V; Kosenok, Victor K; Massard, Gilbert

    2016-11-16

    This research was aimed at a search for regularities in changes to parameters of endogenous intoxication and saliva lipid peroxidation in patients with lung cancer, non-malignant lung diseases, and apparently healthy people. All patients went through saliva sampling at an amount of 1 mL. A concentration of malondialdehyde (MDA) was measured according to a reaction with thiobarbituric acid, and a level of middle molecules (MM) was measured with UV spectroscopy at 254 and 280 nm, while the content of lipid peroxidation products was measured according to a degree of heptane extract light absorption at wavelengths of 220, 232, 278, and 400 nm. It has been revealed that in the context of lung cancer, the level of diene conjugates decreases, increasing the level of triene conjugates, Schiff's bases, and MM. As a tumor grows, there is a decrease in the level of lipid peroxidation primary products and an increase in endotoxemia phenomena. The process is more apparent when going from local to locally advanced disease states. The nature of the MDA change is nonlinearly associated with tumor progression. The findings might be used to optimize traditional aids of diagnostics, in disease state forecasting, in treatment monitoring, etc.

  6. Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Scutellaria baicalensis Georgi Roots

    PubMed Central

    Wu, Chong; Chen, Shunqin; Wang, Zhouyong; Yang, Zhaochun; Qin, Shuangshuang; Huang, Luqi

    2012-01-01

    The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi. PMID:23077481

  7. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia.

    PubMed

    Zhang, Caixi; Tateishi, Naoya; Tanabe, Kenji

    2010-10-01

    To clarify the relationship between pollen density and gametophytic competition in Pyrus pyrifolia, gametophytic performance, gibberellin metabolism, fruit set, and fruit quality were investigated by modifying P. pyrifolia pollen grain number and density with Lycopodium spores. Higher levels of pollen density improved seed viability, fruit set, and fruit quality. Treatments with the highest pollen density showed a significantly increased fruit growth rate and larger fruit at harvest. High pollen density increased germination rate and gave a faster pollen tube growth, both in vivo and in vitro. Endogenous gibberellin (GA) concentrations increased in pollen tubes soon after germination and the concentration of two growth-active GAs, GA(3), and GA(4), was positively correlated to final fruit size, cell numbers in the mesocarp, and pollen tube growth rate. These two GAs appear to be biosynthesized de novo in pollen tube and are the main pollen-derived bioactive GAs found after pollen germination. GA(1) levels in the pollen tube appear to be related to a pollen-style interaction that occurred after the pollen grains landed on the stigma.

  8. Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants.

    PubMed

    Wang, Shengman; Wang, Lihong; Hua, Weiqi; Zhou, Min; Wang, Qingqing; Zhou, Qing; Huang, Xiaohua

    2015-11-01

    Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical in the environment that exerts potential harm to plants. Phytohormones play important roles both in regulating multiple aspects of plant growth and in plants' responses to environmental stresses. But how BPA affects plant growth by regulating endogenous hormones remains poorly understood. Here, we found that treatment with 1.5 mg L(-1) BPA improved the growth of soybean seedlings, companied by increases in the contents of indole-3-acetic acid (IAA) and zeatin (ZT), and decreases in the ratios of abscisic acid (ABA)/IAA, ABA/gibberellic acid (GA), ABA/ZT, ethylene (ETH)/GA, ETH/IAA, and ETH/ZT. Treatment with higher concentrations of BPA (from 3 to 96 mg L(-1)) inhibited the growth of soybean seedlings, meanwhile, decreased the contents of IAA, GA, ZT, and ETH, and increased the content of ABA and the ratios of ABA/IAA, ABA/GA, ABA/ZT, ETH/GA, ETH/IAA, and ETH/ZT. The increases in the ratios of growth and stress hormones were correlated with the increase in the BPA content of the roots. Thus, BPA could affect plant growth through changing the levels of single endogenous hormone and the ratios of growth and stress hormones in the roots because of BPA absorption by the roots.

  9. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  10. Increased endogenous DNA oxidation correlates to increased iron levels in melanocytes relative to keratinocytes.

    PubMed

    Pelle, Edward; Huang, Xi; Zhang, Qi; Pernodet, Nadine; Yarosh, Daniel B; Frenkel, Krystyna

    2014-01-01

    The endogenous oxidative state of normal human epidermal melanocytes was investigated and compared to normal human epidermal keratinocytes (NHEKs) in order to gain new insight into melanocyte biology. Previously, we showed that NHEKs contain higher levels of hydrogen peroxide (H2O2) than melanocytes and that it can migrate from NHEKs to melanocytes by passive permeation. Nevertheless, despite lower concentrations of H2O2, we now report higher levels of oxidative DNA in melanocytes as indicated by increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG): 4.49 (±0.55 SEM) 8-oxo-dG/10(6) dG compared to 1.49 (±0.11 SEM) 8-oxo-dG/10(6) dG for NHEKs. An antioxidant biomarker, glutathione (GSH), was also lower in melanocytes (3.14 nmoles (±0.15 SEM)/cell) in comparison to NHEKs (5.98 nmoles (±0.33 SEM)/cell). Intriguingly, cellular bioavailable iron as measured in ferritin was found to be nearly fourfold higher in melanocytes than in NHEKs. Further, ferritin levels in melanocytes were also higher than in hepatocarcinoma cells, an iron-rich cell, and it indicates that higher relative iron levels may be characteristic of melanocytes. To account for the increased oxidative DNA and lower GSH and H2O2 levels that we observe, we propose that iron may contribute to higher levels of oxidation by reacting with H2O2 through a Fenton reaction leading to the generation of DNA-reactive hydroxyl radicals. In conclusion, our data support the concept of elevated oxidation and high iron levels as normal parameters of melanocytic activity. We present new evidence that may contribute to our understanding of the melanogenic process and lead to the development of new skin care products.

  11. Endogenous Memory CD8 T Cells Are Activated Within Cardiac Allografts Without Mediating Rejection

    PubMed Central

    Setoguchi, Kiyoshi; Hattori, Yusuke; Iida, Shoichi; Baldwin, William M.; Fairchild, Robert L.

    2013-01-01

    Endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts within 12–24 hours post-transplant in mice and are activated to proliferate and produce IFN-γ. To more accurately assess the graft injury directly imposed by these endogenous memory CD8 T cells, we took advantage of the ability of anti-LFA-1 mAb given to allograft recipients on days 3 and 4 post-transplant to inhibit the generation of primary effector T cells. When compared to grafts from IgG treated recipients on day 7 post-transplant, allografts from anti-LFA-1 mAb treated recipients had increased numbers of CD8 T cells but these grafts had marked decreases in expression levels of mRNA encoding effector mediators associated with graft injury and decreases in donor-reactive CD8 T cells producing IFN-γ. Despite this decreased activity within the allograft, CD8 T cells in allografts from recipients treated with anti-LFA-1 mAb continued to proliferate up to day 7 post-transplant and did not upregulate expression of the exhaustion marker LAG-3 but did have decreased expression of ICOS. These results indicate that endogenous memory CD8 T cells infiltrate and proliferate in cardiac allografts in mice but do not express sufficient levels of functions to mediate overt graft injury and acute rejection. PMID:23914930

  12. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure.

    PubMed

    Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan

    2017-01-01

    The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.

  13. Revealing of endogenous Marinobufagin by an ultra-specific and sensitive UHPLC-MS/MS assay in pregnant women.

    PubMed

    Lenaerts, Charline; Bond, Liz; Tuytten, Robin; Blankert, Bertrand

    2018-09-01

    Marinobufagenin (MBG) is a bufadienolide cardiac inotrope implicated in volume expansion-mediated hypertensive states including essential hypertension and preeclampsia (PE). Endogenous MBG is an inhibitor of the α1-isoform of Na + ,K + -ATPase with vasoconstrictive and cardiotonic properties, causing hypertension and natriuresis. Elevated endogenous MBG-like material levels have been described by immunoassays in salt-sensitive pregnant and preeclamptic rats as well as in preeclamptic human patients. The rise of endogenous MBG-like material appears prior the development of the main symptoms of PE, leading us to consider MBG as one of the potential biomarkers for PE. The weak specificity and the high variability of the published immunoassays gives no certification about endogenous MBG existence. This led us to set-up a highly specific and sensitive analytical method to detect MBG in plasma at low levels relying on liquid chromatography combined to mass spectrometry (UHPLC-MS/MS) with recording of 7 highly specific MRM transitions for MBG. Pure MBG standard used in the method development was obtained by purification from the Bufo marinus toad venom. d 3 -25-hydroxyvitamin D3 was used as internal standard. An increasing organic gradient with mobile phase A and B composed of 97:3 (v/v) H 2 O: MeOH and 50:45:5 (v/v/v) MeOH:IPA:H 2 O at pH 4.5 respectively was used on a Pursuit 3 PFP column (100 mm × 3 mm; 3 µm) to allow elution and separation of the plasmatic compounds. Chromatographic analyses of plasma samples were preceded by a precipitation of proteins pretreatment. The developed UHPLC-MS/MS assay has been applied to early-pregnant women plasma samples allowing us to investigate MBG plasma levels. Thanks to the high specificity of the assay we were able to authenticate and certify the presence of endogenous MBG in early-pregnant women plasma with the use of the 7 selected specific mass transitions. These pioneering preliminary results are giving a promising perspective for early preeclampsia risk assessment in pregnant women. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

    PubMed

    Sharma, Upasna; Conine, Colin C; Shea, Jeremy M; Boskovic, Ana; Derr, Alan G; Bing, Xin Y; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W; Sun, Fengyun; Song, Lina; Carone, Benjamin R; Ricci, Emiliano P; Li, Xin Z; Fauquier, Lucas; Moore, Melissa J; Sullivan, Robert; Mello, Craig C; Garber, Manuel; Rando, Oliver J

    2016-01-22

    Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. Copyright © 2016, American Association for the Advancement of Science.

  15. Hypothalamic digoxin, hemispheric chemical dominance, and sarcoidosis.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-11-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with systemic sarcoidosis. All l5 patients with sarcoidosis were right-handed/left hemispheric dominant by the dichotic listening test. The pathway was also studied in normal right hemispheric, left hemispheric, and bihemispheric dominant individuals for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol, and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these patients. The neurotransmitter/digoxin-mediated increased intra cellular calcium induced immune activation, ubiquinone deficiency-related mitochondrial dysfunction/free radical generation, and increased dolichol-related altered glycoconjugate metabolism/endogenous self-glycoprotein antigen generation are crucial to the pathogenesis of sarcoidosis. The biochemical patterns obtained in sarcoidosis are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. But all the patients with sarcoidosis were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Sarcoidosis occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  16. Endogenous strychnine: description of hypo- and hyperstrychninergic state in relation to neuropsychiatric diseases.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2002-10-01

    Previous work from our laboratory has demonstrated the presence of endogenous strychnine in the mammalian brain and human serum samples. The present study examines the role of strychnine in neuropsychiatric disorders. Strychnine is synthesized from tryptophan. The blood levels of tyrosine, tryptophan, and strychnine were studied as also RBC membrane Na(+)-K+ ATPase activity. It was found that serum tyrosine levels were reduced and that tryptophan levels were elevated in all neuropsychiatric disorders studied with a reduction in RBC Na(+)-K+ ATPase activity. Strychnine was present in significant amounts in the serum of patients with epilepsy, Parkinson's disease, and manic depressive psychosis. The presence of strychnine in significant amounts could be related to elevated tryptophan levels, suggesting the synthesis of these alkaloids from tryptophan. Na(+)-K+ ATPase inhibition present in most of the disorders could be related to increased depolarizing strychninergic transmission. The role of strychnine in the pathogenesis of these disorders, in the setting of membrane Na(+)-K+ ATPase inhibition, is discussed.

  17. Effects of positive acceleration on the metabolism of endogenous carbon monoxide and serum lipid in atherosclerotic rabbits

    PubMed Central

    Luo, Huilan; Chen, Yongsheng; Wang, Junhua

    2010-01-01

    Background: Atherosclerosis (AS) is caused mainly due to the increase in the serum lipid, thrombosis, and injuries of the endothelial cells. During aviation, the incremental load of positive acceleration that leads to dramatic stress reactions and hemodynamic changes may predispose pilots to functional disorders and even pathological changes of organs. However, much less is known on the correlation between aviation and AS pathogenesis. Methods and Results: A total of 32 rabbits were randomly divided into 4 groups with 8 rabbits in each group. The control group was given a high cholesterol diet but no acceleration exposure, whereas the other 3 experimental groups were treated with a high cholesterol diet and acceleration exposure for 4, 8, and 12 weeks, respectively. In each group, samples of celiac vein blood and the aorta were collected after the last exposure for the measurement of endogenous CO and HO-1 activities, as well as the levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). As compared with the control group, the endocardial CO content and the HO-1 activity in aortic endothelial cells were significantly elevated at the 4th, 8th, and 12th weekend, respectively (P < 0.05 or <0.01). And these measures tended upward as the exposure time was prolonged. Levels of TC and LDL-C in the experimental groups were significantly higher than those in the control group, presenting an upward tendency. Levels of TG were found significantly increased in the 8-week-exposure group, but significantly declined in the 12-week-exposure group (still higher than those in the control group). Levels of the HDL-C were increased in the 4-week-exposure group, declined in the 8-week-exposure group, and once more increased in the 12-week-exposure group, without significant differences with the control group. Conclusions: Positive acceleration exposure may lead to a significant increase of endogenous CO content and HO-1 activity and a metabolic disorder of serum lipid in high-cholesterol diet–fed rabbits, which implicates that the acceleration exposure might accelerate the progression of AS. PMID:20877690

  18. Endogenous ω-3 Polyunsaturated Fatty Acid Production Confers Resistance to Obesity, Dyslipidemia, and Diabetes in Mice

    PubMed Central

    Li, Jie; Li, Fanghong R.; Wei, Dong; Jia, Wei; Kang, Jing X.; Stefanovic-Racic, Maja

    2014-01-01

    Despite the well-documented health benefits of ω-3 polyunsaturated fatty acids (PUFAs), their use in clinical management of hyperglycemia and obesity has shown little success. To better define the mechanisms of ω-3 PUFAs in regulating energy balance and insulin sensitivity, we deployed a transgenic mouse model capable of endogenously producing ω-3 PUFAs while reducing ω-6 PUFAs owing to the expression of a Caenorhabditis elegans fat-1 gene encoding an ω-3 fatty acid desaturase. When challenged with high-fat diets, fat-1 mice strongly resisted obesity, diabetes, hypercholesterolemia, and hepatic steatosis. Endogenous elevation of ω-3 PUFAs and reduction of ω-6 PUFAs did not alter the amount of food intake but led to increased energy expenditure in the fat-1 mice. The requirements for the levels of ω-3 PUFAs as well as the ω-6/ω-3 ratios in controlling blood glucose and obesity are much more stringent than those in lipid metabolism. These metabolic phenotypes were accompanied by attenuation of the inflammatory state because tissue levels of prostaglandin E2, leukotriene B4, monocyte chemoattractant protein-1, and TNF-α were significantly decreased. TNF-α–induced nuclear factor-κB signaling was almost completely abolished. Consistent with the reduction in chronic inflammation and a significant increase in peroxisome proliferator–activated receptor-γ activity in the fat-1 liver tissue, hepatic insulin signaling was sharply elevated. The activities of prolipogenic regulators, such as liver X receptor, stearoyl-CoA desaturase-1, and sterol regulatory element binding protein-1 were sharply decreased, whereas the activity of peroxisome proliferator–activated receptor-α, a nuclear receptor that facilitates lipid β-oxidation, was markedly increased. Thus, endogenous conversion of ω-6 to ω-3 PUFAs via fat-1 strongly protects against obesity, diabetes, inflammation, and dyslipidemia and may represent a novel therapeutic modality to treat these prevalent disorders. PMID:24978197

  19. RanBP9 at the intersection between cofilin and Aβ pathologies: rescue of neurodegenerative changes by RanBP9 reduction.

    PubMed

    Woo, J A; Boggess, T; Uhlar, C; Wang, X; Khan, H; Cappos, G; Joly-Amado, A; De Narvaez, E; Majid, S; Minamide, L S; Bamburg, J R; Morgan, D; Weeber, E; Kang, D E

    2015-03-05

    Molecular pathways underlying the neurotoxicity and production of amyloid β protein (Aβ) represent potentially promising therapeutic targets for Alzheimer's disease (AD). We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice while promoting cofilin activation and mitochondrial dysfunction. Translocation of cofilin to mitochondria and induction of cofilin-actin pathology require the activation/dephosphorylation of cofilin by Slingshot homolog 1 (SSH1) and cysteine oxidation of cofilin. In this study, we found that endogenous RanBP9 positively regulates SSH1 levels and mediates Aβ-induced translocation of cofilin to mitochondria and induction of cofilin-actin pathology in cultured cells, primary neurons, and in vivo. Endogenous level of RanBP9 was also required for Aβ-induced collapse of growth cones in immature neurons (days in vitro 9 (DIV9)) and depletion of synaptic proteins in mature neurons (DIV21). In vivo, amyloid precursor protein (APP)/presenilin-1 (PS1) mice exhibited 3.5-fold increased RanBP9 levels, and RanBP9 reduction protected against cofilin-actin pathology, synaptic damage, gliosis, and Aβ accumulation associated with APP/PS1 mice. Brains slices derived from APP/PS1 mice showed significantly impaired long-term potentiation (LTP), and RanBP9 reduction significantly enhanced paired pulse facilitation and LTP, as well as partially rescued contextual memory deficits associated with APP/PS1 mice. Therefore, these results underscore the critical importance of endogenous RanBP9 not only in Aβ accumulation but also in mediating the neurotoxic actions of Aβ at the level of synaptic plasticity, mitochondria, and cofilin-actin pathology via control of the SSH1-cofilin pathway in vivo.

  20. Dietary exposure of largemouth bass to OCPs changes expression of genes important for reproduction.

    PubMed

    Garcia-Reyero, Natàlia; Barber, David S; Gross, Timothy S; Johnson, Kevin G; Sepúlveda, María S; Szabo, Nancy J; Denslow, Nancy D

    2006-07-20

    Dieldrin and p,p'-DDE are ubiquitous contaminants known to act as endocrine disruptors, causing impaired development and reproduction in fish and wildlife. In order to elucidate the mechanisms by which dieldrin and p,p'-DDE cause endocrine disruption in largemouth bass (Micropterus salmoides), fish were exposed subchronically through the diet to both contaminants. Following 120 days of exposure, p,p'-DDE decreased estradiol in females, but increased 11-ketotestosterone in both sexes. Dieldrin on the other hand, decreased estradiol and 11-ketotestosterone in both sexes. Both pesticides also altered steady state mRNA expression levels of a set of genes chosen to represent three possible mechanisms of endocrine disruption: (1) direct interaction with soluble sex steroid receptors, (2) biosynthesis of endogenous sex hormones, and (3) metabolism of endogenous hormones. p,p'-DDE acted as a weak estrogen, increasing the expression of vitellogenin and estrogen receptor alpha in the liver. p,p'-DDE also altered the expression of genes involved in the synthesis of endogenous hormones as well as their metabolism. Dieldrin, on the other hand, only altered expression of vitellogenin and not estrogen receptor alpha. Dieldrin also altered the expression of genes involved in hormone synthesis and metabolism, and it dramatically lowered plasma hormone levels. Both pesticides targeted expression of genes involved in all three modes of action, suggesting that they each have multiple modes of action.

  1. Dietary exposure of largemouth bass to OCPs changes expression of genes important for reproduction

    USGS Publications Warehouse

    Garcia-Reyero, Natalia; Barber, D.S.; Gross, T.S.; Johnson, K.G.; Sepulveda, M.S.; Szabo, N.J.; Denslow, N.D.

    2006-01-01

    Dieldrin and p,p???-DDE are ubiquitous contaminants known to act as endocrine disruptors, causing impaired development and reproduction in fish and wildlife. In order to elucidate the mechanisms by which dieldrin and p,p???-DDE cause endocrine disruption in largemouth bass (Micropterus salmoides), fish were exposed subchronically through the diet to both contaminants. Following 120 days of exposure, p,p???-DDE decreased estradiol in females, but increased 11-ketotestosterone in both sexes. Dieldrin on the other hand, decreased estradiol and 11-ketotestosterone in both sexes. Both pesticides also altered steady state mRNA expression levels of a set of genes chosen to represent three possible mechanisms of endocrine disruption: (1) direct interaction with soluble sex steroid receptors, (2) biosynthesis of endogenous sex hormones, and (3) metabolism of endogenous hormones. p,p???-DDE acted as a weak estrogen, increasing the expression of vitellogenin and estrogen receptor ?? in the liver. p,p???-DDE also altered the expression of genes involved in the synthesis of endogenous hormones as well as their metabolism. Dieldrin, on the other hand, only altered expression of vitellogenin and not estrogen receptor ??. Dieldrin also altered the expression of genes involved in hormone synthesis and metabolism, and it dramatically lowered plasma hormone levels. Both pesticides targeted expression of genes involved in all three modes of action, suggesting that they each have multiple modes of action. ?? 2006 Elsevier B.V. All rights reserved.

  2. Dietary exposure of largemouth bass to OCPs changes expression of genes important for reproduction

    PubMed Central

    Garcia-Reyero, Natàlia; Barber, David S.; Gross, Timothy S.; Johnson, Kevin G.; Sepúlveda, María S.; Szabo, Nancy J.; Denslow, Nancy D.

    2007-01-01

    Dieldrin and p,p′-DDE are ubiquitous contaminants known to act as endocrine disruptors, causing impaired development and reproduction in fish and wildlife. In order to elucidate the mechanisms by which dieldrin and p,p′-DDE cause endocrine disruption in largemouth bass (Micropterus salmoides), fish were exposed subchronically through the diet to both contaminants. Following 120 days of exposure, p,p′-DDE decreased estradiol in females, but increased 11-ketotestosterone in both sexes. Dieldrin on the other hand, decreased estradiol and 11-ketotestosterone in both sexes. Both pesticides also altered steady state mRNA expression levels of a set of genes chosen to represent three possible mechanisms of endocrine disruption: (1) direct interaction with soluble sex steroid receptors, (2) biosynthesis of endogenous sex hormones, and (3) metabolism of endogenous hormones. p,p′-DDE acted as a weak estrogen, increasing the expression of vitellogenin and estrogen receptor α in the liver. p,p′-DDE also altered the expression of genes involved in the synthesis of endogenous hormones as well as their metabolism. Dieldrin, on the other hand, only altered expression of vitellogenin and not estrogen receptor α . Dieldrin also altered the expression of genes involved in hormone synthesis and metabolism, and it dramatically lowered plasma hormone levels. Both pesticides targeted expression of genes involved in all three modes of action, suggesting that they each have multiple modes of action. PMID:16765462

  3. An Endogenous Carbon-Sensing Pathway Triggers Increased Auxin Flux and Hypocotyl Elongation1[C][W][OA

    PubMed Central

    Lilley, Jodi L. Stewart; Gee, Christopher W.; Sairanen, Ilkka; Ljung, Karin; Nemhauser, Jennifer L.

    2012-01-01

    The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis. PMID:23073695

  4. Fibroblast Activation Protein Cleaves and Inactivates Fibroblast Growth Factor 21*

    PubMed Central

    Dunshee, Diana Ronai; Bainbridge, Travis W.; Kljavin, Noelyn M.; Zavala-Solorio, Jose; Schroeder, Amy C.; Chan, Ruby; Corpuz, Racquel; Wong, Manda; Zhou, Wei; Deshmukh, Gauri; Ly, Justin; Sutherlin, Daniel P.; Ernst, James A.; Sonoda, Junichiro

    2016-01-01

    FGF21 is a stress-induced hormone with potent anti-obesity, insulin-sensitizing, and hepatoprotective properties. Although proteolytic cleavage of recombinant human FGF21 in preclinical species has been observed previously, the regulation of endogenously produced FGF21 is not well understood. Here we identify fibroblast activation protein (FAP) as the enzyme that cleaves and inactivates human FGF21. A selective chemical inhibitor, immunodepletion, or genetic deletion of Fap stabilized recombinant human FGF21 in serum. In addition, administration of a selective FAP inhibitor acutely increased circulating intact FGF21 levels in cynomolgus monkeys. On the basis of our findings, we propose selective FAP inhibition as a potential therapeutic approach to increase endogenous FGF21 activity for the treatment of obesity, type 2 diabetes, non-alcoholic steatohepatitis, and related metabolic disorders. PMID:26797127

  5. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.

    PubMed

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-03-26

    Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.

  6. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    PubMed

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  7. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    PubMed

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  8. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A.; Nagel, Bonnie J.

    2014-01-01

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. PMID:25312831

  9. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    EPA Science Inventory

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  10. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    Humans are concurrently exposed to xenoestrogens and to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in infants to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with...

  11. Studies on the pathogenesis of fever. IX. Characteristics of endogenous serum pyrogen and mechanisms governing its release.

    PubMed

    PETERSDORF, R G; KEENE, W R; BENNETT, I L

    1957-12-01

    The "endogenous serum pyrogen" that appears in the circulating blood after a single intravenous injection of endotoxin does not produce leukopenia in normal animals, fails to provoke the local Shwartzman reaction, and elicits no "tolerance" when injected daily. Suppression of the febrile response to endotoxin by prednisone does not prevent the appearance of pyrogen in the blood. Animals given large amounts of endotoxin daily continue to respond with high fevers despite failure of endogenous serum pyrogen to appear in detectable amounts after the first two or three injections. Analysis of the response to daily injections shows clearly that the fever during the first 2 hours after administration of endotoxin is unrelated to levels of endogenous serum pyrogen; in contrast, the magnitude of the fever after the 2nd hour correlates well with endogenous pyrogen in some instances. The leukopenic response to endotoxin could not be correlated with the appearance of endogenous serum pyrogen. The differences between endotoxin and endogenous pyrogen and the similarities between leukocyte extracts (sterile exudates) and endogenous pyrogen are summarized and discussed. Dissociation of the febrile response to bacterial endotoxin and levels of endogenous serum pyrogen are discussed and it is concluded that a mechanism involving both direct and indirect action of endotoxins offers the best explanation for the pyrogenic action of these bacterial products.

  12. Benefits of Prepartum Nest-building Behaviour on Parturition and Lactation in Sows - A Review.

    PubMed

    Yun, Jinhyeon; Valros, Anna

    2015-11-01

    It is well known that prepartum sows have an innate motivation to build a nest before parturition. Under commercial conditions, however, the farrowing crate, which is widely used in modern pig husbandry, inhibits this innate behaviour through the lack of space, materials, or both. Thus, restriction of nest-building behaviour could generate increased stress, resulting in a decrease in maternal endogenous hormones. Hence, it could lead to detrimental effects on farrowing and lactating performance. Here we review interactions between prepartum nest-building behaviour, stress and maternal endogenous hormone levels, and discuss their effects on parturition, lactation, and welfare of sows and offspring.

  13. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geest, Rick van der, E-mail: r.van.der.geest@lacdr

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast,more » the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver injury and hypercholesterolemia. • GR antagonist RU-486 similarly improves the cholestasis phenotype. • Endogenous glucocorticoids promote re-uptake of circulating bile acids into liver.« less

  14. A comparative study of human IgE binding to proteins of a genetically modified (GM) soybean and six non-GM soybeans grown in multiple locations.

    PubMed

    Lu, Mei; Jin, Yuan; Ballmer-Weber, Barbara; Goodman, Richard E

    2018-02-01

    Prior to commercialization, genetically modified (GM) crops are evaluated to determine the allergenicity of the newly expressed protein. Some regulators require an evaluation of endogenous allergens in commonly allergenic crops including soybean to determine if genetic transformation increased endogenous allergen concentrations, even asking for IgE testing using sera from individual sensitized subjects. Little is known about the variability of the expression of endogenous allergens among non-GM varieties or under different environmental conditions. We tested IgE binding to endogenous allergenic proteins in an experimental non-commercial GM line, a non-GM near-isoline control, and five non-GM commercial soybean lines replicated at three geographically separated locations. One-dimensional (1D) and two-dimensional (2D) immunoblotting and ELISA were performed using serum or plasma from eleven soybean allergic patients. The results of immunoblots and ELISA showed no significant differences in IgE binding between the GM line and its non-GM near-isoline control. However, some distinct differences in IgE binding patterns were observed among the non-GM commercial soybean lines and between different locations, highlighting the inherent variability in endogenous allergenic proteins. Understanding the potential variability in the levels of endogenous allergens is necessary to establish a standard of acceptance for GM soybeans compared to non-GM soybean events and lines. Copyright © 2018. Published by Elsevier Ltd.

  15. STUDIES ON THE PATHOGENESIS OF FEVER

    PubMed Central

    Petersdorf, Robert G.; Keene, Willis R.; Bennett, Ivan L.

    1957-01-01

    The "endogenous serum pyrogen" that appears in the circulating blood after a single intravenous injection of endotoxin does not produce leukopenia in normal animals, fails to provoke the local Shwartzman reaction, and elicits no "tolerance" when injected daily. Suppression of the febrile response to endotoxin by prednisone does not prevent the appearance of pyrogen in the blood. Animals given large amounts of endotoxin daily continue to respond with high fevers despite failure of endogenous serum pyrogen to appear in detectable amounts after the first two or three injections. Analysis of the response to daily injections shows clearly that the fever during the first 2 hours after administration of endotoxin is unrelated to levels of endogenous serum pyrogen; in contrast, the magnitude of the fever after the 2nd hour correlates well with endogenous pyrogen in some instances. The leukopenic response to endotoxin could not be correlated with the appearance of endogenous serum pyrogen. The differences between endotoxin and endogenous pyrogen and the similarities between leukocyte extracts (sterile exudates) and endogenous pyrogen are summarized and discussed. Dissociation of the febrile response to bacterial endotoxin and levels of endogenous serum pyrogen are discussed and it is concluded that a mechanism involving both direct and indirect action of endotoxins offers the best explanation for the pyrogenic action of these bacterial products. PMID:13481245

  16. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells.

    PubMed

    Jeong, Sin-Gu; Cho, Goang-Won

    2015-05-15

    Cellular senescence is characterized by functional decline induced by cumulative damage to DNA, proteins, lipids, and carbohydrates. Previous studies have reported that replicative senescence is caused by excessive amounts of reactive oxygen species (ROS) produced as a result of aerobic energy metabolism. In this study, we established human bone marrow mesenchymal stromal cells (hBM-MSCs) in replicative senescence after culture over a long term to investigate the relationship between ROS levels and stem cell potential and to determine whether differentiation potential can be restored by antioxidant treatment. Intracellular ROS levels were increased in hBM-MSCs; this was accompanied by a decrease in the expression of the antioxidant enzymes catalase and superoxide dismutase (SOD)1 and 2 and of phosphorylated forkhead box O1 (p-FOXO1) as well as an increase in the expression of p53 and p16, along with a reduction in differentiation potential. When the antioxidant ascorbic acid was used to eliminate excess ROS, the levels of antioxidant enzymes (catalase, SOD1 and 2, p-FOXO1, and p53) were partly restored. Moreover, differentiation into adipocytes and osteocytes was higher in hBM-MSCs treated with ascorbic acid than in the untreated control cells. These results suggest that the decline in differentiation potential caused by increased endogenous ROS production during in vitro expansion can be reversed by treatment with antioxidants such as ascorbic acid. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. PLASMA OXYTOCIN LEVELS PREDICT SOCIAL CUE RECOGNITION IN INDIVIDUALS WITH SCHIZOPHRENIA

    PubMed Central

    Strauss, Gregory P.; Keller, William R.; Koenig, James I.; Gold, James M.; Frost, Katherine H.; Buchanan, Robert W.

    2015-01-01

    Lower endogenous levels of the neuropeptide oxytocin may be an important biological predictor of social cognition impairments in schizophrenia (SZ). Prior studies have demonstrated that lower-level social cognitive processes (e.g., facial affect perception) are significantly associated with reduced plasma oxytocin levels in SZ; however, it is unclear whether higher-level social cognition, which requires inferential processes and knowledge not directly presented in the stimulus, is associated with endogenous oxytocin. The current study explored the association between endogenous oxytocin levels and lower- and higher-level social cognition in 40 individuals diagnosed with SZ and 22 demographically matched healthy controls (CN). All participants received the Social Cue Recognition Test (SCRT), which presents participants with videotaped interpersonal vignettes and subsequent true/false questions related to concrete or abstract aspects of social interactions in the vignettes. Results indicated that SZ had significantly higher plasma oxytocin concentrations than CN. SZ and CN did not differ on SCRT hits, but SZ had more false positives and lower sensitivity scores than CN. Higher plasma oxytocin levels were associated with better sensitivity scores for abstract items in CN and fewer false positives for concrete items in individuals with SZ. Findings indicate that endogenous oxytocin levels predict accurate encoding of lower-level socially relevant information in SZ. PMID:25673435

  18. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  19. Effect of mitochondrial dysfunction and oxidative stress on endogenous levels of coenzyme Q(10) in human cells.

    PubMed

    Yen, Hsiu-Chuan; Chen, Feng-Yuan; Chen, Shih-Wei; Huang, Yu-Hsiang; Chen, Yun-Ru; Chen, Chih-Wei

    2011-01-01

    Little is known about the regulation of endogenous CoQ(10) levels in response to mitochondrial dysfunction or oxidative stress although exogenous CoQ(10) has been extensively used in humans. In this study, we first demonstrated that acute treatment of antimycin A, an inhibitor of mitochondrial complex III, and the absence of mitochondrial DNA suppressed CoQ(10) levels in human 143B cells. Because these two conditions also enhanced formation of reactive oxygen species (ROS), we further investigated whether oxidative stress or mitochondrial dysfunction primarily contributed to the decrease of CoQ(10) levels. Results showed that H(2)O(2) augmented CoQ(10) levels, but carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a chemical uncoupler, decreased CoQ(10) levels in 143B cells. However, H(2)O(2) and FCCP both increased mRNA levels of multiple COQ genes for biosynthesis of CoQ(10) . Our findings suggest that ROS induced CoQ(10) biosynthesis, whereas mitochondrial energy deficiency caused secondary suppression of CoQ(10) levels possibly due to impaired import of COQ proteins into mitochondria. Copyright © 2011 Wiley Periodicals, Inc.

  20. Cytokines in the regulation of allograft rejection.

    PubMed

    Huber, C; Irschick, E

    1988-01-01

    Stimulation of T lymphocytes with alloantigen leads to release of both IL-2 and IFN-gamma. IL-2 enhances clonal expansion of alloantigen-activated T cells. This permits it to overcome acquired allograft tolerance which, at the efferent limb of the cellular immune response, is caused by reduced clone size of donor-specific cytotoxic lymphocyte precursor cells. Cells exhibiting a low constitutive expression of class I MHC antigenes are refractory to lysis by cytotoxic T cells. This second type of tolerance located at the level of the allogeneic target cells can be easily broken by exogenous IFN-gamma, which increases the density of class I MHC antigens. There is suggestive evidence for enhanced endogenous production of lymphokines during rejection of cardiac allografts in mice and men. Rejection episodes are also associated with increased expression of class I and elevated frequency of class II MHC antigen-positive cells in the cardiac transplants. Whereas early immune recognition of histoincompatible grafts is primarily related to the presence of genetic barriers between donor and recipient, the further amplification of alloreactivity is driven by the release of antigen-unspecific lymphokines. Production of endogenous lymphokines can be modified by a variety of means: methylprednisone, ciclosporin and specific antibodies against lymphokines or their receptors represent effective inhibitors of this amplification mechanism which can finally lead to irreversible graft damage. It is well established in clinical experience that infectious complications subsequent to allografting may precipitate rejection or graft-vs.-host disease. Our finding of increased endogenous IFN-gamma levels during infections, in particular in those caused by cytomegalovirus, provides an explanation for this association.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    PubMed

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  2. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis

    PubMed Central

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B.

    2009-01-01

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5–E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1–independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis. PMID:19416849

  3. Jasmonates act positively in adventitious root formation in petunia cuttings.

    PubMed

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  4. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.

    PubMed

    Hernández-Montiel, H L; Vásquez López, C M; González-Loyola, J G; Vega-Anaya, G C; Villagrán-Herrera, M E; Gallegos-Corona, M A; Saldaña, C; Ramos Gómez, M; García Horshman, P; García Solís, P; Solís-S, J C; Robles-Osorio, M L; Ávila Morales, J; Varela-Echavarría, A; Paredes Guerrero, R

    2014-06-01

    Aging is a multifactorial universal process and constitutes the most important risk factor for chronic-degenerative diseases. Although it is a natural process, pathological aging arises when these changes occur quickly and the body is not able to adapt. This is often associated with the generation of reactive oxygen species (ROS), inflammation, and a decrease in the endogenous antioxidant systems, constituting a physiopathological state commonly found in chronic-degenerative diseases. At the testicular level, aging is associated with tissue atrophy, decreased steroidogenesis and spermatogenesis, and sexual behavior disorders. This situation, in addition to the elevated generation of ROS in the testicular steroidogenesis, provides a critical cellular environment causing oxidative damage at diverse cellular levels. To assess the effects of a reduction in the levels of ROS, thiamine pyrophosphate (TPP) was chronically administered in senile Wistar rats. TPP causes an activation of intermediate metabolism routes, enhancing cellular respiration and decreasing the generation of ROS. Our results show an overall decrease of atrophic histological changes linked to aging, with higher levels of serum testosterone, sexual activity, and an increase in the levels of endogenous antioxidant enzymes in TPP-treated animals. These results suggest that TPP chronic administration decreases the progression of age-related atrophic changes by improving the intermediate metabolism, and by increasing the levels of antioxidant enzymes.

  5. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor.

    PubMed

    Rex, Christopher S; Lauterborn, Julie C; Lin, Ching-Yi; Kramár, Eniko A; Rogers, Gary A; Gall, Christine M; Lynch, Gary

    2006-08-01

    Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP.

  6. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulka, Michael, E-mail: michael.kulka@fda.hhs.go; Calvo, Mona S., E-mail: mona.calvo@fda.hhs.go; Ngo, Diana T., E-mail: diana.ngo@fda.hhs.go

    2009-05-25

    The latent, constitutively expressed protein RNase L is activated in coxsackievirus and HAV strain 18f infected FRhK-4 cells. Endogenous oligoadenylate synthetase (OAS) from uninfected and virus infected cell extracts synthesizes active forms of the triphosphorylated 2-5A oligomer (the only known activator of RNase L) in vitro and endogenous 2-5A is detected in infected cell extracts. However, only the largest OAS isoform, OAS3, is readily detected throughout the time course of infection. While IFNbeta treatment results in an increase in the level of all three OAS isoforms in FRhK-4 cells, IFNbeta pretreatment does not affect the temporal onset or enhancement ofmore » RNase L activity nor inhibit virus replication. Our results indicate that CVB1 and HAV/18f activate the 2-5OAS/RNase L pathway in FRhK-4 cells during permissive infection through endogenous levels of OAS, but contrary to that reported for some picornaviruses, CVB1 and HAV/18f replication is insensitive to this activated antiviral pathway.« less

  7. Cystathionine γ-Lyase-Produced Hydrogen Sulfide Controls Endothelial NO Bioavailability and Blood Pressure.

    PubMed

    Szijártó, István András; Markó, Lajos; Filipovic, Milos R; Miljkovic, Jan Lj; Tabeling, Christoph; Tsvetkov, Dmitry; Wang, Ning; Rabelo, Luiza A; Witzenrath, Martin; Diedrich, André; Tank, Jens; Akahoshi, Noriyuki; Kamata, Shotaro; Ishii, Isao; Gollasch, Maik

    2018-06-01

    Hydrogen sulfide (H 2 S) and NO are important gasotransmitters, but how endogenous H 2 S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H 2 S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H 2 S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H 2 S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H 2 S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H 2 S to contribute to systemic blood pressure function. © 2018 American Heart Association, Inc.

  8. Nurse staffing levels and Medicaid reimbursement rates in nursing facilities.

    PubMed

    Harrington, Charlene; Swan, James H; Carrillo, Helen

    2007-06-01

    To examine the relationship between nursing staffing levels in U.S. nursing homes and state Medicaid reimbursement rates. Facility staffing, characteristics, and case-mix data were from the federal On-Line Survey Certification and Reporting (OSCAR) system and other data were from public sources. Ordinary least squares and two-stage least squares regression analyses were used to separately examine the relationship between registered nurse (RN) and total nursing hours in all U.S. nursing homes in 2002, with two endogenous variables: Medicaid reimbursement rates and resident case mix. RN hours and total nursing hours were endogenous with Medicaid reimbursement rates and resident case mix. As expected, Medicaid nursing home reimbursement rates were positively related to both RN and total nursing hours. Resident case mix was a positive predictor of RN hours and a negative predictor of total nursing hours. Higher state minimum RN staffing standards was a positive predictor of RN and total nursing hours while for-profit facilities and the percent of Medicaid residents were negative predictors. To increase staffing levels, average Medicaid reimbursement rates would need to be substantially increased while higher state minimum RN staffing standards is a stronger positive predictor of RN and total nursing hours.

  9. 5-Lipoxygenase as an endogenous modulator of amyloid beta formation in vivo

    PubMed Central

    Chu, Jin; Praticò, Domenico

    2010-01-01

    Objective The 5-lipoxygenase (5-LO) enzymatic pathway is widely distributed within the central nervous system, and is up-regulated in Alzheimer's disease. However, the mechanism whereby it may influence the disease pathogenesis remains elusive. Methods We evaluated the molecular mechanism by which 5-LO regulates Amyloid β (Aβ) formation in vitro and in vivo by pharmacological and genetic approaches. Results Here we show that 5-LO regulates the formation of Aβ by activating the cAMP-response element binding protein (CREB), which in turn increases transcription of the γ-secretase complex. Preventing CREB activation by pharmacologic inhibition or dominant negative mutants blocks the 5-LO-dependent elevation of Aβ formation and the increase of γ-secretase mRNA and protein levels. Moreover, 5-LO targeted gene disruption or its in vivo selective pharmacological inhibition results in a significant reduction of Aβ, CREB and γ-secretase levels. Interpretation These data establish a novel functional role for 5-LO in regulating endogenous formation of Aβ levels in the central nervous system. Thus, 5-LO pharmacological inhibition may be beneficial in the treatment and prevention of Alzheimer's disease. PMID:21280074

  10. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  11. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  12. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    PubMed Central

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; Howard, Daryl L.; Howland, John G.; Hackett, Mark J.

    2016-01-01

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl−, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl− and Fe while K+ levels increase further from the ventricle as Cl− levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl− surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models. PMID:27351594

  13. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE PAGES

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; ...

    2016-06-28

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  14. Does More Public Health Spending Buy Better Health?

    PubMed Central

    Sung, Jaesang; Honore, Peggy

    2015-01-01

    Background: In this article, we attempt to address a persistent question in the health policy literature: Does more public health spending buy better health? This is a difficult question to answer due to unobserved differences in public health across regions as well as the potential for an endogenous relationship between public health spending and public health outcomes. Methods: We take advantage of the unique way in which public health is funded in Georgia to avoid this endogeneity problem, using a twelve year panel dataset of Georgia county public health expenditures and outcomes in order to address the “unobservables” problem. Results: We find that increases in public health spending lead to increases in mortality by several different causes, including early deaths and heart disease deaths. We also find that increases in such spending leads to increases in morbidity from heart disease. Conclusions: Our results suggest that more public health funding may not always lead to improvements in health outcomes at the county level. PMID:28462255

  15. Effect of CPPU on Carbohydrate and Endogenous Hormone Levels in Young Macadamia Fruit

    PubMed Central

    Lu, Chaozhong; Lin, Wenqiu; Zou, Minghong; Zhang, Hanzhou; Wan, Jifeng; Huang, Xuming

    2016-01-01

    N-(2-Chloro-4-pyridyl)-N′-phenylurea (CPPU) is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1–2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp) and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA), gibberellin acid (GA3), and zeatin riboside (ZR) and decreased the abscisic acid (ABA) in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones. PMID:27387814

  16. Thioredoxin-deficient mice, a novel phenotype sensitive to ambient air and hypersensitive to hyperoxia-induced lung injury

    PubMed Central

    2014-01-01

    Pulmonary oxygen toxicity is a major clinical problem for patients undergoing supplemental oxygen therapy. Thioredoxin (Trx) is an endogenous antioxidant protein that regenerates oxidatively inactivated proteins. We examined how Trx contributes to oxygen tolerance by creating transgenic mice with decreased levels of functional thioredoxin (dnTrx-Tg) using a dominant-negative approach. These mice showed decreased Trx activity in the lung although the expression of mutant protein is three times higher than the wild-type mice. Additionally, we found that these mice showed increased oxidation of endogenous Trx in room air. When exposed to hyperoxia (>90% O2) for 4 days, they failed to recover and showed significant mortality. Even in normal oxygen levels, these mice displayed a significant decrease in aconitase and NADH dehydrogenase activities, decreased mitochondrial energy metabolism, increased p53 and Gadd45α expression, and increased synthesis of proinflammatory cytokines. These effects were further increased by hyperoxia. We also generated mice overexpressing Trx (Trx-Tg) and found they maintained lung redox balance during exposure to high oxygen and thus were resistant to hyperoxia-induced lung injury. These mice had increased levels of reduced Trx in the lung in normoxia as well as hyperoxia. Furthermore, the levels of aconitase and NADH dehydrogenase activities were maintained in these mice concomitant with maintenance of mitochondrial energy metabolism. The genotoxic stress markers such as p53 or Gadd45α remained in significantly lower levels in hyperoxia compared with dnTrx-Tg or wild-type mice. These studies establish that mice deficient in functional Trx exhibit a phenotype of sensitivity to ambient air and hypersensitivity to hyperoxia. PMID:25539854

  17. The association of reproductive and lifestyle factors with a score of multiple endogenous hormones

    PubMed Central

    Shafrir, Amy L.; Zhang, Xuehong; Poole, Elizabeth M.; Hankinson, Susan E.; Tworoger, Shelley S.

    2014-01-01

    Introduction We recently reported that high levels of multiple sex and growth hormones were associated with increased postmenopausal breast cancer risk. Limited research has explored the relationship between reproductive, anthropometric, and lifestyle factors and levels of multiple hormones simultaneously. Methods This cross-sectional analysis included 738 postmenopausal Nurses' Health Study participants who were controls in a breast cancer nested case-control study and had measured levels of estrone, estradiol, estrone sulfate, testosterone, androstenedione, dehydroepiandrosterone sulfate, prolactin and sex hormone binding globulin (SHBG). A score was created by summing the number of hormones a woman had above (below for SHBG) each hormone's age-adjusted geometric mean. The association between lifestyle, anthropometric, and reproductive exposures and the score was assessed using generalized linear models. Results The hormone score ranged from 0 to 8 with a mean of 4.0 (standard deviation=2.2). Body mass index (BMI) and alcohol consumption at blood draw were positively associated with the hormone score: a 5 unit increase in BMI was associated with a 0.79 (95%CI: 0.63, 0.95) unit increase in the score (p<0.0001) and each 15 grams/day increase in alcohol consumption was associated with a 0.41 (95%CI: 0.18, 0.63) unit increase in the score (p=0.0004). Family history of breast cancer, age at menarche, and physical activity were not associated with the score. Conclusions Reproductive breast cancer risk factors were not associated with elevated levels of multiple endogenous hormones, whereas anthropometric and lifestyle factors, particularly BMI and alcohol consumption, tended to be associated with higher levels of multiple hormones. PMID:25048255

  18. The association of reproductive and lifestyle factors with a score of multiple endogenous hormones.

    PubMed

    Shafrir, Amy L; Zhang, Xuehong; Poole, Elizabeth M; Hankinson, Susan E; Tworoger, Shelley S

    2014-10-01

    We recently reported that high levels of multiple sex and growth hormones were associated with increased postmenopausal breast cancer risk. Limited research has explored the relationship between reproductive, anthropometric, and lifestyle factors and levels of multiple hormones simultaneously. This cross-sectional analysis included 738 postmenopausal Nurses' Health Study participants who were controls in a breast cancer nested case-control study and had measured levels of estrone, estradiol, estrone sulfate, testosterone, androstenedione, dehydroepiandrosterone sulfate, prolactin, and sex hormone binding globulin (SHBG). A score was created by summing the number of hormones a woman had above (below for SHBG) each hormone's age-adjusted geometric mean. The association between lifestyle, anthropometric, and reproductive exposures and the score was assessed using generalized linear models. The hormone score ranged from 0 to 8 with a mean of 4.0 (standard deviation = 2.2). Body mass index (BMI) and alcohol consumption at blood draw were positively associated with the hormone score: a 5 unit increase in BMI was associated with a 0.79 (95%CI: 0.63, 0.95) unit increase in the score (p < 0.0001) and each 15 g/day increase in alcohol consumption was associated with a 0.41 (95%CI: 0.18, 0.63) unit increase in the score (p = 0.0004). Family history of breast cancer, age at menarche, and physical activity were not associated with the score. Reproductive breast cancer risk factors were not associated with elevated levels of multiple endogenous hormones, whereas anthropometric and lifestyle factors, particularly BMI and alcohol consumption, tended to be associated with higher levels of multiple hormones.

  19. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    PubMed

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  20. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    PubMed

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  1. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    PubMed

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. ASSAYS FOR ENDOGENOUS COMPONENTS OF HUMAN MILK: COMPARISON OF FRESH AND FROZEN SAMPLES AND CORRESPONDING ANALYTES IN SERUM

    EPA Science Inventory

    Breast milk is a primary source of nutrition that contains many endogenous compounds that may affect infant development. The goals of this study were to develop reliable assays for selected endogenous breast milk components and to compare levels of those in milk and serum collect...

  3. Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Massicotte, Frédéric; Fernandes, Julio Cesar; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lajeunesse, Daniel

    2006-03-01

    Human osteoarthritis (OA) is characterized by cartilage loss, bone sclerosis, osteophyte formation and inflammation of the synovial membrane. We previously reported that OA osteoblasts (Ob) show abnormal phenotypic characteristics possibly responsible for bone sclerosis and that two subgroups of OA patients can be identified by low or high endogenous production of prostaglandin E2 (PGE2) by OA Ob. Here, we determined that the elevated PGE2 levels in the high OA subgroup were linked with enhanced cyclooxygenase-2 (COX-2) protein levels compared to normal and low OA Ob. A linear relationship was observed between endogenous PGE2 levels and insulin-like growth factor 1 (IGF-1) levels in OA Ob. As parathyroid hormone (PTH) and PGE2 are known stimulators of IGF-1 production in Ob, we next evaluated their effect in OA Ob. Both subgroups increased their IGF-1 production similarly in response to PGE2, while the high OA subgroup showed a blunted response to PTH compared to the low OA group. Conversely, only the high OA group showed a significant inhibition of IGF-1 production when PGE2 synthesis was reduced with Naproxen, a non-steroidal antiinflammatory drug (NSAID) that inhibits cyclooxygenases (COX). The PGE2-dependent stimulation of IGF-1 synthesis was due in part to the cAMP/protein kinase A pathway since both the direct inhibition of this pathway with H-89 and the inhibition of EP2 or EP4 receptors, linked to cAMP production, reduced IGF-1 synthesis. The production of the most abundant IGF-1 binding proteins (IGFBPs) in bone tissue, IGFBP-3, -4, and -5, was lower in OA compared to normal Ob independently of the OA group. Under basal condition, OA Ob expressed similar IGF-1 mRNA to normal Ob; however, PGE2 stimulated IGF-1 mRNA expression more in OA than normal Ob. These data suggest that increased IGF-1 levels correlate with elevated endogenous PGE2 levels in OA Ob and that higher IGF-1 levels in OA Ob could be important for bone sclerosis in OA.

  4. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    PubMed

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  5. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    PubMed Central

    Masino, Susan A.; Geiger, Jonathan D.

    2015-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903

  6. Cortisol and testosterone increase financial risk taking and may destabilize markets.

    PubMed

    Cueva, Carlos; Roberts, R Edward; Spencer, Tom; Rani, Nisha; Tempest, Michelle; Tobler, Philippe N; Herbert, Joe; Rustichini, Aldo

    2015-07-02

    It is widely known that financial markets can become dangerously unstable, yet it is unclear why. Recent research has highlighted the possibility that endogenous hormones, in particular testosterone and cortisol, may critically influence traders' financial decision making. Here we show that cortisol, a hormone that modulates the response to physical or psychological stress, predicts instability in financial markets. Specifically, we recorded salivary levels of cortisol and testosterone in people participating in an experimental asset market (N = 142) and found that individual and aggregate levels of endogenous cortisol predict subsequent risk-taking and price instability. We then administered either cortisol (single oral dose of 100 mg hydrocortisone, N = 34) or testosterone (three doses of 10 g transdermal 1% testosterone gel over 48 hours, N = 41) to young males before they played an asset trading game. We found that both cortisol and testosterone shifted investment towards riskier assets. Cortisol appears to affect risk preferences directly, whereas testosterone operates by inducing increased optimism about future price changes. Our results suggest that changes in both cortisol and testosterone could play a destabilizing role in financial markets through increased risk taking behaviour, acting via different behavioural pathways.

  7. Cortisol and testosterone increase financial risk taking and may destabilize markets

    PubMed Central

    Cueva, Carlos; Roberts, R. Edward; Spencer, Tom; Rani, Nisha; Tempest, Michelle; Tobler, Philippe N.; Herbert, Joe; Rustichini, Aldo

    2015-01-01

    It is widely known that financial markets can become dangerously unstable, yet it is unclear why. Recent research has highlighted the possibility that endogenous hormones, in particular testosterone and cortisol, may critically influence traders’ financial decision making. Here we show that cortisol, a hormone that modulates the response to physical or psychological stress, predicts instability in financial markets. Specifically, we recorded salivary levels of cortisol and testosterone in people participating in an experimental asset market (N = 142) and found that individual and aggregate levels of endogenous cortisol predict subsequent risk-taking and price instability. We then administered either cortisol (single oral dose of 100 mg hydrocortisone, N = 34) or testosterone (three doses of 10 g transdermal 1% testosterone gel over 48 hours, N = 41) to young males before they played an asset trading game. We found that both cortisol and testosterone shifted investment towards riskier assets. Cortisol appears to affect risk preferences directly, whereas testosterone operates by inducing increased optimism about future price changes. Our results suggest that changes in both cortisol and testosterone could play a destabilizing role in financial markets through increased risk taking behaviour, acting via different behavioural pathways. PMID:26135946

  8. IGFBP1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation.

    PubMed

    Lu, Jing; Liu, Ka-Cheuk; Schulz, Nadja; Karampelias, Christos; Charbord, Jérémie; Hilding, Agneta; Rautio, Linn; Bertolino, Philippe; Östenson, Claes-Göran; Brismar, Kerstin; Andersson, Olov

    2016-09-15

    There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole-genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β-cell regeneration. We then tested the proteins' ability to potentiate β-cell regeneration in zebrafish at supraphysiological levels. One protein, insulin-like growth factor (Igf) binding-protein 1 (Igfbp1), potently promoted β-cell regeneration by potentiating α- to β-cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1's effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co-expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type-2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β-cell regeneration and highlight its clinical importance in diabetes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  9. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    PubMed

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  10. Decreased lymphocytes and increased risk for infection are common in endogenous pediatric Cushing syndrome.

    PubMed

    Tatsi, Christina; Boden, Rebecca; Sinaii, Ninet; Keil, Meg; Lyssikatos, Charalampos; Belyavskaya, Elena; Rosenzweig, Sergio D; Stratakis, Constantine A; Lodish, Maya B

    2018-02-01

    BackgroundHypercortisolemia results in changes of the immune system and elevated infection risk, but data on the WBC changes in pediatric Cushing syndrome (CS) are not known. We describe the changes of the WBC lineages in pediatric endogenous hypercortisolemia, their associations with the markers of disease severity, and the presence of infections.MethodsWe identified 197 children with endogenous CS. Clinical and biochemical data were recorded. Sixty-six children with similar age and gender, and normocortisolemia served as controls.ResultsThe absolute lymphocyte count of CS patients was significantly lower than that of controls, while the total WBC and the absolute neutrophil counts were significantly higher. These changes correlated with several markers of CS severity and improved after resolution of hypercortisolemia. Infections were identified in 35 patients (17.8%), and their presence correlated to elevated serum morning cortisol, midnight cortisol, and urinary free cortisol levels, as well as with the decrease in absolute lymphocyte count.ConclusionsChildren with endogenous CS have abnormal WBC counts, which correlate with the severity of CS, and normalize after cure. Infections are common in this population; clinicians should be aware of this complication of CS and have low threshold in diagnosis and treating infections in CS.

  11. The Influence of Endogenous and Exogenous Spatial Attention on Decision Confidence.

    PubMed

    Kurtz, Phillipp; Shapcott, Katharine A; Kaiser, Jochen; Schmiedt, Joscha T; Schmid, Michael C

    2017-07-25

    Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.

  12. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    PubMed

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  13. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  14. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  15. Subchronic sleep restriction causes tissue-specific insulin resistance.

    PubMed

    Rao, Madhu N; Neylan, Thomas C; Grunfeld, Carl; Mulligan, Kathleen; Schambelan, Morris; Schwarz, Jean-Marc

    2015-04-01

    Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole-body and hepatic fat oxidation, respectively). We postulate that elevated NEFA levels are partially responsible for the decrease in peripheral sensitivity and modulation of hepatic metabolism (ie, increase in gluconeogenesis without increase in endogenous glucose production). Elevated cortisol and metanephrine levels may contribute to insulin resistance by increasing lipolysis and NEFA levels.

  16. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Increased concentrations of endogenous 13-cis- and all-trans-retinoic acids in diffuse idiopathic skeletal hyperostosis, as demonstrated by HPLC.

    PubMed

    Periquet, B; Lambert, W; Garcia, J; Lecomte, G; De Leenheer, A P; Mazieres, B; Thouvenot, J P; Arlet, J

    1991-11-09

    Endogenous 13-cis- and all-trans-retinoic acids have been quantitated in human serum using a solvent extraction procedure followed by isocratic reversed phase high performance liquid chromatography and UV detection. In healthy adults, after an overnight fasting period, the concentrations of 13-cis- and all-trans-retinoic acids yielded 5.3 +/- 2.43 nmol/l and 11.8 +/- 3.3 nmol/l, respectively (mean +/- SD). The method has been successfully applied to the analysis of both isomers in serum from patients with idiopathic skeletal hyperostosis in whom, the 13-cis- as well as all-trans-retinoic acid levels were raised as compared to the control group.

  18. Political economy. On the endogeneity of political preferences: evidence from individual experience with democracy.

    PubMed

    Fuchs-Schündeln, Nicola; Schündeln, Matthias

    2015-03-06

    Democracies depend on the support of the general population, but little is known about the determinants of this support. We investigated whether support for democracy increases with the length of time spent under the system and whether preferences are thus affected by the political system. Relying on 380,000 individual-level observations from 104 countries over the years 1994 to 2013, and exploiting individual-level variation within a country and a given year in the length of time spent under democracy, we find evidence that political preferences are endogenous. For new democracies, our findings imply that popular support needs time to develop. For example, the effect of around 8.5 more years of democratic experience corresponds to the difference in support for democracy between primary and secondary education. Copyright © 2015, American Association for the Advancement of Science.

  19. Foreign Aid versus Military Intervention in the War on Terror

    ERIC Educational Resources Information Center

    Azam, Jean-Paul; Thelen, Veronique

    2010-01-01

    This article presents a theoretical framework and some empirical results showing that the level of foreign aid received reduces the supply of terrorist attacks from recipient countries, while U.S. military interventions are liable to increase this supply. Due account is taken of endogeneity problems in producing these results. They suggest that…

  20. Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene

    USDA-ARS?s Scientific Manuscript database

    Transgenic agricultural crops with increased nutritive value present prospects for contributing to public health. However, their acceptance is poor in many countries due to the perception that genetic modification may cause unintended effects on expression of native genes in the host plant. Here, w...

  1. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-12-17

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    PubMed

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  3. Endogenous hormone levels and anatomical characters of haustoria in Santalum album L. seedlings before and after attachment to the host.

    PubMed

    Zhang, Xinhua; Teixeira da Silva, Jaime A; Duan, Jun; Deng, Rufang; Xu, Xinlan; Ma, Guohua

    2012-06-15

    The physiological and anatomical attributes of haustoria tissues in hemi-parasitic Santalum album L. seedlings, growing on the potential host, Kuhnia rosmarnifolia Vent., were investigated before and after attachment to the host. Quantization of endogenous levels of indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), GA-like substances (GAs) and abscisic acid (ABA) was performed by HPLC. Histological preparations were used to characterize structural differences between pre- and post-attachment haustoria. The contents of GAs and ABA were higher in attached haustoria, with 3.61 and 3.50μgg(-1) fresh weight, respectively, and three times higher than in non-attached haustoria. Cytokinins, Z, ZR and IAA levels were also high, and their contents in attached haustoria increased 2.04-, 2.17-, and 2.82-fold more, respectively, than in non-attached haustoria. A high auxin-to-cytokinin ratio contributed to haustorial development of S. album. A numerous amount of starch in parenchyma cells around the meristematic region above the haustorial gland and the endophyte tissue of the post-attachment haustoria were reported in a Santalaceae member for the first time. Many lysosomes were present and large-scale digestion of host cells occurred at the interface between the parasite and host. The haustorial penetration in S. album into the host stele was suggested to be a function of mechanical force and enzymatic activity. Analysis of the endogenous hormone levels and the structural characters in S. album haustoria indicated that the haustoria were able to synthesize phytohormones, which appeared to be necessary for cell division and differentiation during haustorial development. These results suggest that endogenous hormones are involved in the haustorial development of S. album and in water and nutrient transport in the host-parasite association. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery.

    PubMed

    Sousa, Joana Beatriz; Vieira-Rocha, Maria Sofia; Sá, Carlos; Ferreirinha, Fátima; Correia-de-Sá, Paulo; Fresco, Paula; Diniz, Carmen

    2014-01-01

    Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.

  5. Laying-sequence-specific variation in yolk oestrogen levels, and relationship to plasma oestrogen in female zebra finches (Taeniopygia guttata)

    PubMed Central

    Williams, Tony D.; Ames, Caroline E.; Kiparissis, Yiannis; Wynne-Edwards, Katherine E.

    2005-01-01

    We investigated the relationship between plasma and yolk oestrogens in laying female zebra finches (Taeniopygia guttata) by manipulating plasma oestradiol (E2) levels, via injection of oestradiol-17β, in a sequence-specific manner to maintain chronically high plasma levels for later-developing eggs (contrasting with the endogenous pattern of decreasing plasma E2 concentrations during laying). We report systematic variation in yolk oestrogen concentrations, in relation to laying sequence, similar to that widely reported for androgenic steroids. In sham-manipulated females, yolk E2 concentrations decreased with laying sequence. However, in E2-treated females plasma E2 levels were higher during the period of rapid yolk development of later-laid eggs, compared with control females. As a consequence, we reversed the laying-sequence-specific pattern of yolk E2: in E2-treated females, yolk E2 concentrations increased with laying-sequence. In general therefore, yolk E2 levels were a direct reflection of plasma E2 levels. However, in control females there was some inter-individual variability in the endogenous pattern of plasma E2 levels through the laying cycle which could generate variation in sequence-specific patterns of yolk hormone levels even if these primarily reflect circulating steroid levels. PMID:15695208

  6. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    PubMed

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model.

    PubMed

    Oztas, Berrin; Sahin, Deniz; Kir, Hale; Eraldemir, Fatma Ceyla; Musul, Mert; Kuskay, Sevinç; Ates, Nurbay

    2017-02-01

    The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The MMP-9 -1562 C/T Polymorphism in the Presence of Metabolic Syndrome Increases the Risk of Clinical Events in Patients with Coronary Artery Disease

    PubMed Central

    Opstad, Trine B.; Arnesen, Harald; Pettersen, Alf Å.; Seljeflot, Ingebjørg

    2014-01-01

    Background and Objectives Elevated levels of matrix metalloproteinase (MMP)-9 have been associated with the metabolic syndrome (MetS) and cardiovascular events. The MMP-9 −1562 C/T polymorphism has furthermore been shown as a risk factor for coronary artery disease (CAD). The non-favourable cardiometabolic state in MetS may increase the risk. We aimed to investigate the influence of MMP-9 −1562 C/T polymorphism in subjects with CAD and MetS. Methods Patients (n = 1000) with verified CAD stratified in Mets +/− (n = 244/756), were analyzed for the MMP-9 −1562 C/T polymorphism and related to clinical events after 2 years follow-up. Serum levels of total MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1were analyzed in all, whereas MMP-9 activity, extracellular matrix metalloproteinase inducer (EMMPRIN), and expression of the two genes were analyzed in a subset of 240 randomly selected patients. Results Totally, 106 clinical endpoints were recorded. In MetS; the T-allele associated with 5.5 fold increase in event rate (p<0.0001), increased with number of MetS components, a 117% increase in total MMP-9 levels (TT homozygous, p = 0.05), significantly higher total- and endogenous active MMP-9 and TIMP-1 levels (p<0.01 all), and EMMPRIN was inversely correlated with pro- and endogenous active MMP-9 (p<0.05, both). In non-MetS; the T-allele was not associated with new events, nor higher MMP-9 levels. EMMPRIN was significantly correlated with total MMP-9 and TIMP-1 (p<0.01, both) and the two genes were inter-correlated (p<0.001). Conclusion In CAD patients with MetS, the MMP-9 T-allele increased the risk of clinical events, probably mediated through elevated MMP-9 levels and altered MMP-9 regulation. PMID:25191702

  9. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease.

    PubMed

    Opstad, Trine B; Arnesen, Harald; Pettersen, Alf Å; Seljeflot, Ingebjørg

    2014-01-01

    Elevated levels of matrix metalloproteinase (MMP)-9 have been associated with the metabolic syndrome (MetS) and cardiovascular events. The MMP-9 -1562 C/T polymorphism has furthermore been shown as a risk factor for coronary artery disease (CAD). The non-favourable cardiometabolic state in MetS may increase the risk. We aimed to investigate the influence of MMP-9 -1562 C/T polymorphism in subjects with CAD and MetS. Patients (n = 1000) with verified CAD stratified in Mets +/- (n = 244/756), were analyzed for the MMP-9 -1562 C/T polymorphism and related to clinical events after 2 years follow-up. Serum levels of total MMP-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were analyzed in all, whereas MMP-9 activity, extracellular matrix metalloproteinase inducer (EMMPRIN), and expression of the two genes were analyzed in a subset of 240 randomly selected patients. Totally, 106 clinical endpoints were recorded. In MetS; the T-allele associated with 5.5 fold increase in event rate (p<0.0001), increased with number of MetS components, a 117% increase in total MMP-9 levels (TT homozygous, p = 0.05), significantly higher total- and endogenous active MMP-9 and TIMP-1 levels (p<0.01 all), and EMMPRIN was inversely correlated with pro- and endogenous active MMP-9 (p<0.05, both). In non-MetS; the T-allele was not associated with new events, nor higher MMP-9 levels. EMMPRIN was significantly correlated with total MMP-9 and TIMP-1 (p<0.01, both) and the two genes were inter-correlated (p<0.001). In CAD patients with MetS, the MMP-9 T-allele increased the risk of clinical events, probably mediated through elevated MMP-9 levels and altered MMP-9 regulation.

  10. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  12. Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: a focus on gas cell stabilization mechanisms.

    PubMed

    Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A

    2015-04-01

    Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins

    PubMed Central

    Janer, Alexandre; Martin, Elodie; Muriel, Marie-Paule; Latouche, Morwena; Fujigasaki, Hiroto; Ruberg, Merle; Brice, Alexis; Trottier, Yvon; Sittler, Annie

    2006-01-01

    The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, β-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders. PMID:16818720

  14. Glucagon effects on 3H-histamine uptake by the isolated guinea-pig heart during anaphylaxis.

    PubMed

    Rosic, Mirko; Parodi, Oberdan; Jakovljevic, Vladimir; Colic, Maja; Zivkovic, Vladimir; Jokovic, Vuk; Pantovic, Suzana

    2014-01-01

    We estimated the influence of acute glucagon applications on (3)H-histamine uptake by the isolated guinea-pig heart, during a single (3)H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, O2 (-), and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change (3)H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, (3)H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of (3)H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9-7.38 × 10(-8) μM) is significantly lower than the histamine level in the absence of glucagon (10.35-10.45 × 10(-8) μM). Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL) in comparison with the period before glucagon administration (2.49 nmol/mL). Then, in the presence of glucagon, O2 (-) level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis.

  15. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    PubMed

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  16. The Human Endogenous Protection System against Cell-Free Hemoglobin and Heme Is Overwhelmed in Preeclampsia and Provides Potential Biomarkers and Clinical Indicators

    PubMed Central

    Johansson, Maria E.; Edström-Hägerwall, Anneli; Larsson, Irene; Jälmby, Maya; Hansson, Stefan R.; Åkerström, Bo

    2015-01-01

    Preeclampsia (PE) complicates 3–8% of all pregnancies and manifests clinically as hypertension and proteinuria in the second half of gestation. The pathogenesis of PE is not fully understood but recent studies have described the involvement of cell-free fetal hemoglobin (HbF). Hypothesizing that PE is associated with prolonged hemolysis we have studied the response of the cell-free Hb- and heme defense network. Thus, we have investigated the levels of cell-free HbF (both free, denoted HbF, and in complex with Hp, denoted Hp-HbF) as well as the major human endogenous Hb- and heme-scavenging systems: haptoglobin (Hp), hemopexin (Hpx), α1-microglobulin (A1M) and CD163 in plasma of PE women (n = 98) and women with normal pregnancies (n = 47) at term. A significant increase of the mean plasma HbF concentration was observed in women with PE. Plasma levels of Hp and Hpx were statistically significantly reduced, whereas the level of the extravascular heme- and radical scavenger A1M was significantly increased in plasma of women with PE. The Hpx levels significantly correlated with maternal blood pressure. Furthermore, HbF and the related scavenger proteins displayed a potential to be used as clinical biomarkers for more precise diagnosis of PE and are candidates as predictors of identifying pregnancies with increased risk of obstetrical complications. The results support that PE pathophysiology is associated with increased HbF-concentrations and an activation of the physiological Hb-heme defense systems. PMID:26368565

  17. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity.

    PubMed

    Lastochkina, Oksana; Pusenkova, Ludmila; Yuldashev, Ruslan; Babaev, Marat; Garipova, Svetlana; Blagova, Dar'ya; Khairullin, Ramil; Aliniaeifard, Sasan

    2017-12-01

    Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Endogenous CO monitoring in exhalation with tunable diode lasers: applications to clinical and biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Shulagin, Yurii A.; D'yachenko, Alexander I.

    1999-07-01

    Middle IR tunable diode lasers were applied to studies of pulmonary excretion of endogenous carbon monoxide (CO). Variations of the CO content level in exhaled air of healthy nonsmokers were investigated for different environmental conditions with the applied laser technique. Correlation of the obtained data with atmospheric CO contamination and elevated oxygen content were studied as well as diurnal variations of the endogenous CO in exhalation was observed. Criteria for correct conditions of the endogenous CO detection in breath could be derive don this basis. Developed laser approach and methods were applied for the analysis of the excreted CO level in different diseases like bronchial asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, anemia and hepatitis. Laser based close-to-real-time monitoring of the endogenous CO elimination with breath in the course of different dynamic tests was demonstrated to be informative in studies of blood oxygen transport and pH variations in tissues for different challenges tests in human physiology.

  19. Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice.

    PubMed

    Jang, Jung Eun; Park, Han-Sol; Yoo, Hyun Ju; Baek, In-Jeoung; Yoon, Ji Eun; Ko, Myoung Seok; Kim, Ah-Ram; Kim, Hyoun Sik; Park, Hye-Sun; Lee, Seung Eun; Kim, Seung-Whan; Kim, Su Jung; Leem, Jaechan; Kang, Yu Mi; Jung, Min Kyo; Pack, Chan-Gi; Kim, Chong Jai; Sung, Chang Ohk; Lee, In-Kyu; Park, Joong-Yeol; Fernández-Checa, José C; Koh, Eun Hee; Lee, Ki-Up

    2017-08-01

    Free cholesterol (FC) accumulation in the liver is an important pathogenic mechanism of nonalcoholic steatohepatitis (NASH). Plasmalogens, key structural components of the cell membrane, act as endogenous antioxidants and are primarily synthesized in the liver. However, the role of hepatic plasmalogens in metabolic liver disease is unclear. In this study, we found that hepatic levels of docosahexaenoic acid (DHA)-containing plasmalogens, expression of glyceronephosphate O-acyltransferase (Gnpat; the rate-limiting enzyme in plasmalogen biosynthesis), and expression of Pparα were lower in mice with NASH caused by accumulation of FC in the liver. Cyclodextrin-induced depletion of FC transactivated Δ-6 desaturase by increasing sterol regulatory element-binding protein 2 expression in cultured hepatocytes. DHA, the major product of Δ-6 desaturase activation, activated GNPAT, thereby explaining the association between high hepatic FC and decreased Gnpat expression. Gnpat small interfering RNA treatment significantly decreased peroxisome proliferator-activated receptor α (Pparα) expression in cultured hepatocytes. In addition to GNPAT, DHA activated PPARα and increased expression of Pparα and its target genes, suggesting that DHA in the DHA-containing plasmalogens contributed to activation of PPARα. Accordingly, administration of the plasmalogen precursor, alkyl glycerol (AG), prevented hepatic steatosis and NASH through a PPARα-dependent increase in fatty acid oxidation. Gnpat +/- mice were more susceptible to hepatic lipid accumulation and less responsive to the preventive effect of fluvastatin on NASH development, suggesting that endogenous plasmalogens prevent hepatic steatosis and NASH. Increased hepatic FC in animals with NASH decreased plasmalogens, thereby sensitizing animals to hepatocyte injury and NASH. Our findings uncover a novel link between hepatic FC and plasmalogen homeostasis through GNPAT regulation. Further study of AG or other agents that increase hepatic plasmalogen levels may identify novel therapeutic strategies against NASH. (Hepatology 2017;66:416-431). © 2017 by the American Association for the Study of Liver Diseases.

  20. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  1. Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties

    PubMed Central

    Matveev, Victor; Zucker, Robert S.; Sherman, Arthur

    2004-01-01

    Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389

  2. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals.

    PubMed

    Dilger, R N; Adeola, O

    2006-04-01

    This study evaluated regression of total P output against dietary P intake to simultaneously estimate endogenous P loss and true P utilization in broiler chicks. Soybean meal (SBM) served as the model ingredient, and a comparison was made between conventional and low-phytate SBM varieties. These feedstuffs were chosen to minimize nutritive differences to dietary phytate content. Low-phytate SBM contained 57% less phytate than conventional SBM. Four isocaloric diets were formulated to contain graded levels of each soybean meal (8 diets total); therefore, the diets also contained graded levels of dietary P. Chromium sesquioxide was included in diets as an indigestible marker, and free access to experimental diets was provided to 288 male broiler chicks from 15 to 22 d posthatch. The experiment was arranged as a randomized complete block design with 6 blocks of 8 cages (6 birds per cage) and similar initial BW across dietary treatments. As P intake ranged from 0.9 to 3.9 g/ kg of DM, apparent prececal P digestibilities increased (linear and quadratic, P < 0.01) for conventional SBM and low-phytate SBM. Increasing linear relationships (P < 0.01) were observed for total P output (mg/kg of DM intake) with graded P intake, regardless of SBM variety. True P retention was greater (P < 0.01) for low-phytate SBM (76.9%) than for conventional SBM (59.8%). Endogenous P estimates were not different between soybean meals (P > 0.10), and an overall estimate of 235 mg of P/ kg of DM intake was observed. This study concluded 1) the regression approach may be applicable in the estimation of endogenous P loss in broiler chicks and 2) the difference in P utilization between conventional and low-phytate soybean meals is influenced by dietary phytate content when broiler chicks are fed P-deficient diets.

  3. Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: review of the available pre-clinical data, and first human studies.

    PubMed

    Darmani, Nissar A; Izzo, Angelo A; Degenhardt, Brian; Valenti, Marta; Scaglione, Giuseppe; Capasso, Raffaele; Sorrentini, Italo; Di Marzo, Vincenzo

    2005-06-01

    The endogenous cannabimimetic compound, and anandamide analogue, N-palmitoyl-ethanolamine (PEA), was shown to exert potent anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic and inflammatory pain by acting via several possible mechanisms. However, only scant data have been reported on the regulation of PEA levels during pathological conditions in animals or, particularly, humans. We review the current literature on PEA and report the results of three separate studies indicating that its concentrations are significantly increased during three different inflammatory and neuropathic conditions, two of which have been assessed in humans, and one in a mouse model. In patients affected with chronic low back pain, blood PEA levels were not significantly different from those of healthy volunteers, but were significantly and differentially increased (1.6-fold, P<0.01, N=10 per group) 30 min following an osteopathic manipulative treatment. In the second study, the paw skin levels of PEA in mice with streptozotocin-induced diabetic neuropathic pain were found to be significantly higher (1.5-fold, P<0.005, N=5) than those of control mice. In the third study, colonic PEA levels in biopsies from patients with ulcerative colitis were found to be 1.8-fold higher (P<0.05, N=8-10) than those in healthy subjects. These heterogeneous data, together with previous findings reviewed here, substantiate the hypothesis that PEA is an endogenous mediator whose levels are increased following neuroinflammatory or neuropathic conditions in both animals and humans, possibly to exert a local anti-inflammatory and analgesic action.

  4. Endogenous excitatory drive to the respiratory system in rapid eye movement sleep in cats.

    PubMed

    Orem, J; Lovering, A T; Dunin-Barkowski, W; Vidruk, E H

    2000-09-01

    A putative endogenous excitatory drive to the respiratory system in rapid eye movement (REM) sleep may explain many characteristics of breathing in that state, e.g. its irregularity and variable ventilatory responses to chemical stimuli. This drive is hypothetical, and determinations of its existence and character are complicated by control of the respiratory system by the oscillator and its feedback mechanisms. In the present study, endogenous drive was studied during apnoea caused by mechanical hyperventilation. We reasoned that if there was a REM-dependent drive to the respiratory system, then respiratory activity should emerge out of the background apnoea as a manifestation of the drive. Diaphragmatic muscle or medullary respiratory neuronal activity was studied in five intact, unanaesthetized adult cats who were either mechanically hyperventilated or breathed spontaneously in more than 100 REM sleep periods. Diaphragmatic activity emerged out of a background apnoea caused by mechanical hyperventilation an average of 34 s after the onset of REM sleep. Emergent activity occurred in 60 % of 10 s epochs in REM sleep and the amount of activity per unit time averaged approximately 40 % of eupnoeic activity. The activity occurred in episodes and was poorly related to pontogeniculo-occipital waves. At low CO2 levels, this activity was non-rhythmic. At higher CO2 levels (less than 0.5 % below eupnoeic end-tidal percentage CO2 levels in non-REM (NREM) sleep), activity became rhythmic. Medullary respiratory neurons were recorded in one of the five animals. Nineteen of twenty-seven medullary respiratory neurons were excited in REM sleep during apnoea. Excited neurons included inspiratory, expiratory and phase-spanning neurons. Excitation began about 43 s after the onset of REM sleep. Activity increased from an average of 6 impulses s-1 in NREM sleep to 15.5 impulses s-1 in REM sleep. Neuronal activity was non-rhythmic at low CO2 levels and became rhythmic when levels were less than 0.5 % below eupnoeic end-tidal levels in NREM sleep. The level of CO2 at which rhythmic neuronal activity developed corresponded to eupnoeic end-tidal CO2 levels in REM sleep. These results demonstrate an endogenous excitatory drive to the respiratory system in REM sleep and account for rapid and irregular breathing and the lower set-point to CO2 in that state.

  5. Effects of Ozone Oxidative Preconditioning on TNF-α Release and Antioxidant-Prooxidant Intracellular Balance in Mice During Endotoxic Shock

    PubMed Central

    Zamora, Zullyt B.; Borrego, Aluet; López, Orlay Y.; Delgado, René; González, Ricardo; Menéndez, Silvia; Hernández, Frank; Schulz, Siegfried

    2005-01-01

    Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-α levels and as a modulator of oxidative stress on hepatic tissue in endotoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2, 0.4, and 1.2 mg/kg) once daily for five days before LPS (0.1 mg/kg, intraperitoneal). TNF-α was measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-α levels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-α levels in a dose-dependent manner. Statistically significant decreases in TNF-α levels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at 0.2 (78%), 0.4 (98%), and 1.2 (99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-α production and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems. PMID:15770062

  6. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.).

    PubMed

    Singh, Amit Pal; Dixit, Garima; Kumar, Amit; Mishra, Seema; Kumar, Navin; Dixit, Sameer; Singh, Pradyumna Kumar; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Dhankher, Om Prakash; Norton, Gareth J; Chakrabarty, Debasis; Tripathi, Rudra Deo

    2017-06-01

    Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (As III ) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of As III on plant growth. Nitric oxide supplementation to As III treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether As III was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for As III uptake. The endogenous level of NO and SA were positively correlated to each other either when As III was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in As III stressed plants. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish.

    PubMed

    Chanarat, Sochaya; Benjakul, Soottawat; H-Kittikun, Aran

    2012-03-15

    Microbial transglutaminase (MTGase) has been used to increase the gel strength of surimi. Nevertheless, its effectiveness varies with fish species. The aim of this study was to elucidate the effect of MTGase at different levels on protein cross-linking and gel property of surimi from threadfin bream, Indian mackerel and sardine in the presence and absence of endogenous transglutaminase. Breaking force of all surimi gels increased as MTGase levels (0-0.6 U g⁻¹) increased except for threadfin bream surimi gel, where the breaking force decreased at 0.6 U g⁻¹ (P < 0.05). In the presence of EDTA, the gel strengthening effect was lower, suggesting the combined effect of endogenous transglutaminase with MTGase. With the addition of MTGase, the gel with the highest increase in breaking force showed highest decrease in myosin heavy chain. When cross-linking activity of MTGase on natural actomyosin (NAM) was determined, the highest decreasing rate in ε-amino group content with the concomitant increased formation of cross-linked proteins was found in NAM from threadfin bream. The reactivity of muscle proteins toward MTGase-induced cross-linking was in agreement with surimi gel strengthening. The composition and properties of muscle proteins of varying fish species more likely determined protein cross-linking induced by MTGase, thereby affecting their gel properties.

  8. Protein Kinase Inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating Leukemia Inhibitory Factor

    PubMed Central

    Chen, Xin; Hausman, Bryan S.; Luo, Guangbin; Zhou, Guang; Murakami, Shunichi; Rubin, Janet; Greenfield, Edward M.

    2013-01-01

    The Protein Kinase Inhibitor (Pki) gene family inactivates nuclear PKA and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in MEFs, murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of Leukemia Inhibitory Factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. PMID:23963683

  9. Daily Nutritional Dose Supplementation with Antioxidant Nutrients and Phytochemicals Improves DNA and LDL Stability: A Double-Blind, Randomized, and Placebo-Controlled Trial

    PubMed Central

    Kim, You Jin; Ahn, Yoon Hee; Lim, Yeni; Kim, Ji Yeon; Kim, Joohee; Kwon, Oran

    2013-01-01

    Reactive oxygen species are important risk factors for age-related diseases, but they also act as signaling factors for endogenous antioxidative defense. The hypothesis that a multi-micronutrient supplement with nutritional doses of antioxidant nutrients and phytochemicals (MP) may provide protection against oxidative damage and maintain the endogenous antioxidant defense capacity was assessed in subjects with a habitually low intake of fruits and vegetables. In a randomized, placebo-controlled, and parallel designed trial, 89 eligible subjects were assigned to either placebo or MP for eight weeks. Eighty subjects have completed the protocol and included for the analysis. MP treatment was superior at increasing serum folate (p < 0.0001) and resistance to DNA damage (p = 0.006, tail intensity; p = 0.030, tail moment by comet assay), and LDL oxidation (p = 0.009) compared with the placebo. Moreover, the endogenous oxidative defense capacity was not weakened after MP supplementation, as determined by the levels of glutathione peroxidase (p = 0.442), catalase (p = 0.686), and superoxide dismutase (p = 0.804). The serum folate level was negatively correlated with DNA damage (r = −0.376, p = 0.001 for tail density; r = −0.329, p = 0.003 for tail moment), but no correlation was found with LDL oxidation (r = −0.123, p = 0.275). These results suggest that MP use in healthy subjects with habitually low dietary fruit and vegetable intake may be beneficial in providing resistance to oxidative damage to DNA and LDL without suppressing the endogenous defense mechanisms. PMID:24352096

  10. Vitamin A supplementation increases levels of retinoic acid compounds in human plasma: possible implications for teratogenesis.

    PubMed

    Eckhoff, C; Nau, H

    1990-01-01

    The concentrations of retinoic acid compounds were monitored by a newly developed highly sensitive HPLC procedure in plasma of six volunteers who received 833 IU vitamin A per kg body weight per day during a 20-day period. There was a significant increase of all-trans-retinoic acid (two-fold), 13-cis-retinoic acid (7-fold) and 13-cis-4-oxoretinoic acid (5-fold) over endogenous plasma levels of these retinoids. The same compounds had previously been found after treatment with the teratogenic drug isotretinoin (Roaccutan, Accutane). Our results raise the possibility that high vitamin A intake may carry a teratogenic risk attributable to increased levels of retinoic acid compounds generated from retinol by metabolic processes.

  11. A comparison of mutagen production in fried ground chicken and beef: effect of supplemental creatine.

    PubMed

    Knize, M G; Shen, N H; Felton, J S

    1988-11-01

    Ground chicken breast and ground beef with either endogenous or a 10-fold increase in the concentration of creatine were fried at 220 degrees C for 10 min per side. One patty (100 g) of chicken meat yielded 120,000 Salmonella (TA1538) revertants following metabolic activation. The pan residues had 39% of the total activity. Added creatine (10-fold the endogenous level) increased mutagen yields an average of 2-fold. Beef cooked under identical conditions yielded 150,000 revertants/100 g for the meat patties and pan residues combined. Added creatine to beef prior to cooking increased mutagen yields 3-fold. The mutagenic profiles following initial HPLC separation showed that chicken samples with endogenous or added creatine were remarkably similar. Chicken and beef HPLC mutagenicity profiles were also similar to each other, but not identical. This suggests that the general mutagen-forming reactions with the two different types of muscle are qualitatively similar with only minor quantitative differences. The pan residues from both meat types with and without added creatine showed some significant differences in the mutagen peak profile. This work suggests that the types of mutagens formed in chicken are similar to those formed in beef and that creatine appears to be involved in the formation of all the mutagenic compounds produced from fried muscle tissue.

  12. Independent Circadian and Sleep/Wake Regulation of Adipokines and Glucose in Humans

    PubMed Central

    Shea, Steven A.; Hilton, Michael F.; Orlova, Christine; Ayers, R. Timothy; Mantzoros, Christos S.

    2010-01-01

    Leptin and adiponectin play important physiological roles in regulating appetite, food intake, and energy balance and have pathophysiological roles in obesity and anorexia nervosa. To assess the relative contributions of day/night patterns in behaviors (sleep/wake cycle and food intake) and of the endogenous circadian pacemaker on observed day/night patterns of adipokines, in six healthy subjects we measured circulating leptin, soluble leptin receptor, adiponectin, glucose, and insulin levels throughout a constant routine protocol (38 h of wakefulness with constant posture, temperature, and dim light, as well as identical snacks every 2 h) and throughout sleep and fasting periods before and after the constant routine. There were significant endogenous circadian rhythms in leptin, glucose, and insulin, with peaks around the usual time of awakening. Sleep/fasting resulted in additional systematic decreases in leptin, glucose, and insulin, whereas wakefulness/food intake resulted in a systematic increase in leptin. Thus, the day/night pattern in leptin is likely caused by combined effects from the endogenous circadian pacemaker and day/night patterns in behaviors. Our data imply that alterations in the sleep/wake schedule would lead to an increased daily range in circulating leptin, with lowest leptin upon awakening, which, by influencing food intake and energy balance, could be implicated in the increased prevalence of obesity in the shift work population. PMID:15687326

  13. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  14. Genetic Inactivation of D-Amino Acid Oxidase Enhances Extinction and Reversal Learning in Mice

    ERIC Educational Resources Information Center

    Labrie, Viviane; Duffy, Steven; Wang, Wei; Barger, Steven W.; Baker, Glen B.; Roder, John C.

    2009-01-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic…

  15. Impact of PRRSV infection and dietary soybean meal on ileal amino acid digestibility and endogenous amino acid losses in growing pigs

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant disease in the swine industry and increasing soybean meal (SBM) during this disease challenge may improve performance. Our objectives were to determine the impact of SBM level on apparent total tract (ATTD) and ileal (AID) ...

  16. Subclinical Hyperthyroidism and the Risk of Coronary Heart Disease and Mortality

    PubMed Central

    Collet, Tinh-Hai; Gussekloo, Jacobijn; Bauer, Douglas C.; den Elzen, Wendy P. J.; Cappola, Anne R.; Balmer, Philippe; Iervasi, Giorgio; Åsvold, Bjørn O.; Sgarbi, José A.; Völzke, Henry; Gencer, Bariş; Maciel, Rui M. B.; Molinaro, Sabrina; Bremner, Alexandra; Luben, Robert N.; Maisonneuve, Patrick; Cornuz, Jacques; Newman, Anne B.; Khaw, Kay-Tee; Westendorp, Rudi G. J.; Franklyn, Jayne A.; Vittinghoff, Eric; Walsh, John P.; Rodondi, Nicolas

    2013-01-01

    Background Data from prospective cohort studies regarding the association between subclinical hyperthyroidism and cardiovascular outcomes are conflicting. We aimed to assess the risks of total and coronary heart disease (CHD) mortality, CHD events, and atrial fibrillation (AF) associated with endogenous subclinical hyperthyroidism among all available large prospective cohorts. Methods Individual data on 52 674 participants were pooled from 10 cohorts. Coronary heart disease events were analyzed in 22 437 participants from 6 cohorts with available data, and incident AF was analyzed in 8711 participants from 5 cohorts. Euthyroidism was defined as thyrotropin level between 0.45 and 4.49 mIU/L and endogenous subclinical hyperthyroidism as thyrotropin level lower than 0.45 mIU/L with normal free thyroxine levels, after excluding those receiving thyroid-altering medications. Results Of 52 674 participants, 2188 (4.2%) had subclinical hyperthyroidism. During follow-up, 8527 participants died (including 1896 from CHD), 3653 of 22 437 had CHD events, and 785 of 8711 developed AF. In age-and sex-adjusted analyses, subclinical hyperthyroidism was associated with increased total mortality (hazard ratio [HR], 1.24, 95% CI, 1.06–1.46), CHD mortality (HR, 1.29; 95% CI, 1.02–1.62), CHD events (HR, 1.21; 95% CI, 0.99–1.46), and AF (HR, 1.68; 95% CI, 1.16–2.43). Risks did not differ significantly by age, sex, or preexisting cardiovascular disease and were similar after further adjustment for cardiovascular risk factors, with attributable risk of 14.5% for total mortality to 41.5% for AF in those with subclinical hyperthyroidism. Risks for CHD mortality and AF (but not other outcomes) were higher for thyrotropin level lower than 0.10 mIU/L compared with thyrotropin level between 0.10 and 0.44 mIU/L (for both, P value for trend, ≤.03). Conclusion Endogenous subclinical hyperthyroidism is associated with increased risks of total, CHD mortality, and incident AF, with highest risks of CHD mortality and AF when thyrotropin level is lower than 0.10 mIU/L. PMID:22529182

  17. Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses.

    PubMed

    Maunder, Ed; Kilding, Andrew E; Plews, Daniel J

    2018-05-18

    Ironman triathlons are ultra-endurance events of extreme duration. The performance level of those competing varies dramatically, with elite competitors finishing in ~ 8:00:00, and lower performing amateurs finishing in ~ 14-15:00:00. When applying appropriate values for swimming, cycling and running economies to these performance times, it is demonstrated that the absolute energy cost of these events is high, and the rate of energy expenditure increases in proportion with the athlete's competitive level. Given the finite human capacity for endogenous carbohydrate storage, minimising the endogenous carbohydrate cost associated with performing exercise at competitive intensities should be a goal of Ironman preparation. A range of strategies exist that may help to achieve this goal, including, but not limited to, adoption of a low-carbohydrate diet, exogenous carbohydrate supplementation and periodised training with low carbohydrate availability. Given the diverse metabolic stimuli evoked by Ironman triathlons at different performance levels, it is proposed that the performance level of the Ironman triathlete is considered when adopting metabolic strategies to minimise the endogenous carbohydrate cost associated with exercise at competitive intensities. Specifically, periodised training with low carbohydrate availability combined with exogenous carbohydrate supplementation during competition might be most appropriate for elite and top-amateur Ironman triathletes who elicit very high rates of energy expenditure. Conversely, the adoption of a low-carbohydrate or ketogenic diet might be appropriate for some lower performance amateurs (> 12 h), in whom associated high rates of fat oxidation may be almost completely sufficient to match the energy demands required.

  18. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress.

    PubMed

    Jin, Peng; Yu, Hai-Ling; Tian-Lan; Zhang, Feng; Quan, Zhe-Shan

    2015-06-01

    Oleoylethanolamide (OEA) is an endocannabinoid analog that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In this study, we examined whether OEA is effective against depression and investigated the role of circulating endogenous acylethanolamides during stress. Mice were subjected to 28days of chronic unpredictable mild stress (CUMS), and during the last 21days, treated with oral OEA (1.5-6mg/kg) or 6mg/kg fluoxetine. Sucrose preference and open field test activity were used to evaluate depression-like behaviors during CUMS and after OEA treatment. Weights of the prefrontal cortex and hippocampus were determined, and the adrenal index was measured. Furthermore, changes in serum adrenocorticotropic hormone (ACTH), corticosterone (CORT) and total antioxidant capacity (T-AOC), brain-derived neurotrophic factor (BDNF), and lipid peroxidation product malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities in the hippocampus and prefrontal cortex were detected. Our findings indicate that OEA normalized sucrose preferences, locomotion distances, rearing frequencies, prefrontal cortex and hippocampal atrophy, and adrenal indices. In addition, OEA reversed the abnormalities of BDNF and MDA levels and SOD activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of ACTH, CORT, and T-AOC. The antidepressant effects of OEA may be related to the regulation of BDNF levels in the hippocampus and prefrontal cortex, antioxidant defenses, and normalizing hyperactivity in the hypothalamic-pituitary-adrenal axis (HPA). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Reference Pricing with Endogenous or Exogenous Payment Limits: Impacts on Insurer and Consumer Spending.

    PubMed

    Brown, Timothy T; Robinson, James C

    2016-06-01

    Reference pricing (RP) theories predict different outcomes when reference prices are fixed (exogenous) versus being a function of market prices (MPs) (endogenous). Exogenous RP results in MPs at both high-price and low-price firms converging towards the reference price from above and below, respectively. Endogenous RP results in MPs at both high-price and low-price firms decreasing, with low-price firms acting strategically to decrease the reference price in order to gain market share. We extend these models to a hospital context focusing on insurer and consumer payments. Under exogenous RP, insurer and consumer payments to low-price hospitals increase, and insurer payments to high-price hospitals decrease, but predictions regarding consumer payments are ambiguous for high-price hospitals. Under endogenous RP, insurer payments to high-price and low-price hospitals decrease, and consumer payments to low-price hospitals decrease, but predictions regarding consumer payments are ambiguous for high-price hospitals. We test these predictions with difference-in-differences specifications using 2008-2013 data on patients undergoing joint replacement. For 2 years following RP implementation, insurer payments to high-price and low-price hospitals moved downward, consistent with endogenous RP. However, when the reference price was not reset to account for changes in MPs, insurer payments to low-price hospitals reverted to pre-implementation levels, consistent with exogenous RP. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl.

    PubMed

    Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro

    2016-12-01

    Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A model of the endogenous glucose balance incorporating the characteristics of glucose transporters.

    PubMed

    Arleth, T; Andreassen, S; Federici, M O; Benedetti, M M

    2000-07-01

    This paper describes the development and preliminary test of a model of the endogenous glucose balance that incorporates the characteristics of the glucose transporters GLUT1, GLUT3 and GLUT4. In the modeling process the model is parameterized with nine parameters that are subsequently estimated from data in the literature on the hepatic- and endogenous- balances at various combinations of blood glucose and insulin levels. The ability of the resulting endogenous balance to fit blood glucose measured from patients was tested on 20 patients. The fit obtained with this model compared favorably with the fit obtained with the endogenous balance currently incorporated in the DIAS system.

  2. History of research on angiogenesis.

    PubMed

    Ribatti, Domenico

    2014-01-01

    Over the past 25 years, the number of Medline publications dealing with angiogenesis has increased in a nonlinear fashion, reflecting the interest among basic scientists and clinicians in this field. Under physiological conditions, angiogenesis is regulated by the local balance between endogenous stimulators and inhibitors of this process. In tumor growth, there is an imbalance between endogenous stimulator and inhibitor levels, leading to an 'angiogenic switch'. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. This paper offers an account of the most relevant discoveries in this field of biomedical research. Copyright © 2014 S. Karger AG, Basel.

  3. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells.

    PubMed

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A; Parks, Ashley J; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum; Sherr, David H

    2016-11-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER - /PR - /Her2 - breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER - /PR - /Her2 - cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. Copyright © 2016 by The Author(s).

  4. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER−/PR−/Her2− Human Breast Cancer Cells

    PubMed Central

    Novikov, Olga; Wang, Zhongyan; Stanford, Elizabeth A.; Parks, Ashley J.; Ramirez-Cardenas, Alejandra; Landesman, Esther; Laklouk, Israa; Sarita-Reyes, Carmen; Gusenleitner, Daniel; Li, Amy; Monti, Stefano; Manteiga, Sara; Lee, Kyongbum

    2016-01-01

    The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER−/PR−/Her2− breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER−/PR−/Her2− cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness. PMID:27573671

  5. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics

    PubMed Central

    Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene

    2007-01-01

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917

  6. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.

    PubMed

    Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene

    2007-12-26

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.

  7. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  8. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. combination effect of hypertonic disease with chronic pancreatitis on the processes maintain homeostasis.

    PubMed

    Babinets, Liliya S; Medvid, Igor I; Herasymets, Iryna I; Borovyk, Iryna O; Migenko, Liudmyla M; Migenko, Bogdan O; Ryabokon, Svitlana S; Korylchuk, Neonila I; Botcyk, Natalia E; Tvorko, Vadym M

    Introduction: Abnormalities comorbidity - a frequent phenomenon in medical practice. This determines the relevance of research processes maintaining homeostasis with a combination of various diseases. The aim of this study was to examine and compare the character of vegetative, antioxidant, kallikrein-kinin system and parameters of endogenous intoxication disorders in the patients with isolated essential hypertension and with combination of hypertonic disease and chronic pancreatitis. Materials and Methods: Cardiointervalography was used in the research with definition of standard statistical and spectral heart rate variability. Determination of superoxide dismutase, glutathione, catalase, middle molecular peptides, total proteolytic activity of plasma by the hydrolysis of protamine sulfate, prekallikrein, kallikrein, α1 -proteinase inhibitor, α2 -macroglobulin and kininase II was conducted by laboratory methods. Results: Sympathicotonia with the moderate tension of adaptation processes, violation of antioxidant protection, kallikrein-kinin system and displays of endogenous intoxication were found in the patients with isolated hypertension. Reduction of sympathicotonia, reducing total power spectrum, increasing the share of humoral-metabolic effects on heart rate, tendency to asympathicotonia autonomic reactivity, lower levels of superoxide dismutase, glutathione, prekallikrein, α2 -macroglobulin, kininase II, higher levels of catalase, middle molecular peptides, total proteolytic activity of plasma kallikrein were observed upon accession the concomitant chronic pancreatitis. Conclusions: The signs of compensatory mechanisms disruption and increased autonomic nervous system imbalance with a decrease in ductility autonomous processes in the load were determined upon accession the concomitant chronic pancreatitis. The combination of pathologies also accompanied by more severe manifestations of endogenous intoxication, significant violations of antioxidant and kallikrein-kinin systems.

  10. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential

    PubMed Central

    Flores, Omar; Kennedy, Edward M.; Skalsky, Rebecca L.; Cullen, Bryan R.

    2014-01-01

    It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function. PMID:24464996

  11. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential.

    PubMed

    Flores, Omar; Kennedy, Edward M; Skalsky, Rebecca L; Cullen, Bryan R

    2014-04-01

    It has previously been assumed that the generally high stability of microRNAs (miRNAs) reflects their tight association with Argonaute (Ago) proteins, essential components of the RNA-induced silencing complex (RISC). However, recent data have suggested that the majority of mature miRNAs are not, in fact, Ago associated. Here, we demonstrate that endogenous human miRNAs vary widely, by >100-fold, in their level of RISC association and show that the level of Ago binding is a better indicator of inhibitory potential than is the total level of miRNA expression. While miRNAs of closely similar sequence showed comparable levels of RISC association in the same cell line, these varied between different cell types. Moreover, the level of RISC association could be modulated by overexpression of complementary target mRNAs. Together, these data indicate that the level of RISC association of a given endogenous miRNA is regulated by the available RNA targetome and predicts miRNA function.

  12. Transgenesis affects endogenous soybean allergen levels less than traditional breeding.

    PubMed

    Hill, Ryan C; Fast, Brandon J; Herman, Rod A

    2017-10-01

    The regulatory body that oversees the safety assessment of genetically modified (GM) crops in the European Union, the European Food Safety Authority (EFSA), uniquely requires that endogenous allergen levels be quantified as part of the compositional characterization of GM versions of crops, such as soybean, that are considered to be major allergenic foods. The value of this requirement for assessing food safety has been challenged for multiple reasons including negligible risk of altering allergen levels compared with traditional non-GM breeding. Scatter plots comparing the mean endogenous allergen levels in non-GM soybean isoline grain with the respective levels in GM grain or concurrently grown non-GM commercial reference varieties clearly show that transgenesis causes less change compared with traditional breeding. This visual assessment is confirmed by the quantitative fit of the line of identity (y = x) to the datasets. The current science on allergy does not support the requirement for quantifying allergen levels in GM crops to support safety assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterizing the nutritional strategy of incubating king eiders Somateria spectabilis in northern Alaska

    USGS Publications Warehouse

    Bentzen, R.L.; Powell, A.N.; Williams, T.D.; Kitaysky, A.S.

    2008-01-01

    We measured plasma concentrations of variables associated with lipid metabolism (free fatty acids, glycerol, triglyceride, and ??- hydroxybutyrate), protein metabolism (uric acid), and baseline corticosterone to characterize the nutritional state of incubating king eiders Somateria spectabilis and relate this to incubation constancy at two sites, Kuparuk and Teshekpuk, in northern Alaska. King eiders at both sites appeared to employ a partial-income incubation strategy, relying on both endogenous and exogenous energy resources. Females maintained high invariant levels of free fatty acids, ??-hydroxybutyrate, and glycerol throughout incubation, indicating that fat reserves were a major energy source, and not completely depleted during incubation. Similarly, uric acid did not increase, suggesting effective protein sparing or protein ingestion and adequate lipid reserves throughout incubation. Baseline corticosterone and triglyceride levels increased during incubation, indicative of an increase in foraging during late stages of incubation. Incubating females at Kuparuk had higher triglyceride concentrations but also had higher ??-hydroxybutyrate concentrations than females at Teshekpuk. This dichotomy may reflect a short-term signal of feeding overlaying the longer-term signal of reliance on endogenous lipid reserves due to higher food intake yet higher metabolic costs at Kuparuk because of its colder environment. Incubation constancy was not correlated with plasma concentrations of lipid or protein metabolites. ?? 2008 The Authors.

  14. α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation.

    PubMed

    Moon, Jae Yun; Choi, Su Jin; Heo, Cheol Ho; Kim, Hwan Myung; Kim, Hye Sun

    2017-07-01

    α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. © 2017 Federation of European Biochemical Societies.

  15. Nitrogen metabolism of sheep and goats consuming Acacia brevispica and Sesbania sesban

    USGS Publications Warehouse

    Woodward, A.; Reed, J.D.

    1997-01-01

    We described the effects of two East African browses, Acacia brevispica and Sesbania sesban, on nitrogen metabolism of sheep and goats. The A. brevispica had a substantial amount of proanthocyanidins (condensed tannins); S. sesban did not. The browses were fed at three levels in combination with vetch (Vicia dasycarpa) and teff straw (Eragrostis abyssinica). Fecal N, N balance, and plasma urea N (PUN) were estimated with intact animals. Ruminal ammonia (RuA) and VFA concentrations were estimated with ruminally fistulated animals. Urinary N loss, PUN, RuA, and VFA concentrations were higher for S. sesban diets than for A. brevispica diets. Fecal N was highest with diets including A. brevispica due to high levels of fecal neutral-detergent insoluble N. Nitrogen retention was highest for diets including S. sesban. Nitrogen retention was adequate for A. brevispica diets because low urinary N compensated for high fecal N. Four hypotheses describe possible effects of tannins on N metabolism: 1) escape of protein from the rumen to the lower tract; 2) increased microbial yield; 3) increase in N-containing endogenous products; and 4) protein made indigestible in tannin-protein complexes. The effect of tannins in A. brevispica on N metabolism can best be described by the formation of indigestible tannin-protein complexes, although increased production of endogenous products is also possible.

  16. Endogenous estrogens and breast cancer risk: the case for prospective cohort studies.

    PubMed Central

    Toniolo, P G

    1997-01-01

    It is generally agreed that estrogens, and possibly androgens, are important in the etiology of breast cancer, but no consensus exists as to the precise estrogenic or androgenic environment that characterizes risk, or the exogenous factors that influence the hormonal milieu. Nearly all the epidemiological studies conducted in the 1970s and 1980s were hospital-based case-control studies in which specimen sampling was performed well after the clinical appearance of the disease. Early prospective cohort studies also had limitations in their small sample sizes or short follow-up periods. However, more recent case-control studies nested within large cohorts, such as the New York University Women's Health Study and the Ormoni e Dieta nell'Eziologia dei Tumori study in Italy, are generating new data indicating that increased levels of estrone, estradiol and bioavailable estradiol, as well as their androgenic precursors, may be associated with a 4- to 6-fold increase in the risk of postmenopausal breast cancer. Further new evidence, which complements and expands the observations from the latter studies, shows that women with the thickest bone density, which may be a surrogate for cumulated exposure to hormones, experience severalfold increased risk of subsequent breast cancer as compared to women with thin bones. These data suggests that endogenous sex hormones are a key factor in the etiology of postmenopausal breast cancer. New prospective cohort studies should be conducted to examine the role of endogenous sex hormones in blood and urine samples obtained early in the natural history of breast cancer jointly with an assessment of bone density and of other important risk factors, such as mammographic density, physical activity, body weight, and markers of individual susceptibility, which may confer increased risk through an effect on the metabolism of endogenous hormones or through specific metabolic responses to Western lifestyle and diet. PMID:9168000

  17. Circulating Hepcidin-25 Is Reduced by Endogenous Estrogen in Humans.

    PubMed

    Lehtihet, Mikael; Bonde, Ylva; Beckman, Lena; Berinder, Katarina; Hoybye, Charlotte; Rudling, Mats; Sloan, John H; Konrad, Robert J; Angelin, Bo

    2016-01-01

    Hepcidin reduces iron absorption by binding to the intestinal iron transporter ferroportin, thereby causing its degradation. Although short-term administration of testosterone or growth hormone (GH) has been reported to decrease circulating hepcidin levels, little is known about how hepcidin is influenced in human endocrine conditions associated with anemia. We used a sensitive and specific dual-monoclonal antibody sandwich immunoassay to measure hepcidin-25 in patients (a) during initiation of in vitro fertilization when endogenous estrogens were elevated vs. suppressed, (b) with GH deficiency before and after 12 months substitution treatment, (c) with hyperthyroidism before and after normalization, and (d) with hyperprolactinemia before and after six months of treatment with a dopamine agonist. In response to a marked stimulation of endogenous estrogen production, median hepcidin levels decreased from 4.85 to 1.43 ng/mL (p < 0.01). Hyperthyroidism, hyperprolactinemia, or GH substitution to GH-deficient patients did not influence serum hepcidin-25 levels. In humans, gonadotropin-stimulated endogenous estrogen markedly decreases circulating hepcidin-25 levels. No clear and stable correlation between iron biomarkers and hepcidin-25 was seen before or after treatment of hyperthyroidism, hyperprolactinemia or growth hormone deficiency.

  18. Circulating Hepcidin-25 Is Reduced by Endogenous Estrogen in Humans

    PubMed Central

    Lehtihet, Mikael; Bonde, Ylva; Beckman, Lena; Berinder, Katarina; Hoybye, Charlotte; Rudling, Mats; Sloan, John H.; Konrad, Robert J.; Angelin, Bo

    2016-01-01

    Objective Hepcidin reduces iron absorption by binding to the intestinal iron transporter ferroportin, thereby causing its degradation. Although short-term administration of testosterone or growth hormone (GH) has been reported to decrease circulating hepcidin levels, little is known about how hepcidin is influenced in human endocrine conditions associated with anemia. Research design and methods We used a sensitive and specific dual–monoclonal antibody sandwich immunoassay to measure hepcidin-25 in patients (a) during initiation of in vitro fertilization when endogenous estrogens were elevated vs. suppressed, (b) with GH deficiency before and after 12 months substitution treatment, (c) with hyperthyroidism before and after normalization, and (d) with hyperprolactinemia before and after six months of treatment with a dopamine agonist. Results In response to a marked stimulation of endogenous estrogen production, median hepcidin levels decreased from 4.85 to 1.43 ng/mL (p < 0.01). Hyperthyroidism, hyperprolactinemia, or GH substitution to GH-deficient patients did not influence serum hepcidin-25 levels. Conclusions In humans, gonadotropin-stimulated endogenous estrogen markedly decreases circulating hepcidin-25 levels. No clear and stable correlation between iron biomarkers and hepcidin-25 was seen before or after treatment of hyperthyroidism, hyperprolactinemia or growth hormone deficiency. PMID:26866603

  19. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa).

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-01-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece. © 2015 The American Society of Photobiology.

  20. Hydrocortisone reduces the beneficial effects of toll-like receptor 2 deficiency on survival in a mouse model of polymicrobial sepsis.

    PubMed

    Bergt, Stefan; Wagner, Nana-Maria; Heidrich, Manja; Butschkau, Antje; Nöldge-Schomburg, Gabriele E F; Vollmar, Brigitte; Roesner, Jan P

    2013-11-01

    Toll-like receptors (TLRs) play a crucial role in early host defense against microorganisms. Toll-like receptor 2 (TLR2) polymorphisms have a prevalence of 10%; functional defects of TLR2 are associated with higher susceptibility toward gram-positive bacteria, and TLR2 deficiency has been associated with an impaired adrenal stress response. In the present study, we compared endogenous corticosterone production of wild-type (WT) and TLR2-deficient (TLR2) mice and analyzed survival after hydrocortisone therapy during sepsis induced by cecal ligation and puncture (CLP). Male C57BL/6J (WT); and B6.129-Tlr2tm1Kir/J (TLR2) mice were subjected to CLP or sham operation and randomly assigned to postoperative treatment with either hydrocortisone (5 mg/kg) or vehicle (n = 10 mice/group). Survival was documented for an observation period of 48 h. Endogenous corticosterone production following hydrocortisone treatment and lipoteichoic acid (LTA) exposure, interleukin 6 (IL-6) and IL-1β plasma levels, and blood counts were determined following sham operation or CLP using another n = 5 mice/group. Statistical analysis was performed using analysis of variance/Bonferroni. TLR2 mice exhibited a lack of suppression and an attenuated increase in endogenous corticosterone production following hydrocortisone or LTA treatment, respectively. After CLP, TLR2 mice exhibited an uncompromised adrenal stress response, higher IL-6 levels, and increased survival compared with WT controls (75 vs. 35%; P < 0.05). Hydrocortisone therapy of TLR2 mice completely abolished this advantage (decrease in survival to 45%, P < 0.05 vs. vehicle-treated TLR2 mice) and was associated with decreased IL-1β plasma concentrations. Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for individuals with functional TLR2 polymorphisms.

  1. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  2. Zero gravity and cardiovascular homeostasis. The relationship between endogenous hyperprolactinemia and plasma aldosterone

    NASA Technical Reports Server (NTRS)

    Haber, E.; Re, R. N.; Kourides, I. A.; Weihl, A. C.; Maloof, F.

    1978-01-01

    Prolactin, thyrotropin and aldosterone were measured by radioimmunoassay and plasma renin activity by the radioimmunoassay of angiotensin I in normal women before and after the intravenous injection of 200 micrograms of thyrotropin releasing hormone. Prolactin increased at 15 minutes following thyrotropin releasing hormone. Plasma renin activity was not different from control levels during the first hour following the administration of thyrotropin releasing hormone, nor did the plasma aldosterone concentration differ significantly from the control levels during this period. However, with upright posture, an increase in aldosterone and in plasma renin activity was noted, demonstrating a normal capacity to secrete aldosterone. Similarly, no change in aldosterone was seen in 9 patients with primary hypothyroidism given thyrotropin releasing hormone, despite the fact that the increase in prolactin was greater than normal. These data demonstrate that acutely or chronically elevated serum prolactin levels do not result in increased plasma aldosterone levels in humans.

  3. Role of Endogenous Cholecystokinin on Growth of Human Pancreatic Cancer

    PubMed Central

    Matters, Gail L.; McGovern, Christopher; Harms, John F.; Markovic, Kevin; Anson, Krystal; Jayakumar, Calpurnia; Martenis, Melissa; Awad, Christina; Smith, Jill P.

    2012-01-01

    Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer. Although down regulation of gastrin inhibits growth of pancreatic cancer, the contribution of endogenous CCK to tumor growth is unknown. The purpose of this study was to evaluate the role of endogenous CCK on autocrine growth of pancreatic cancer. Pancreatic cancer cell lines were analyzed for CCK mRNA and peptide expression by real time RT-PCR and radioimmunoassay, respectively. The effect of endogenous CCK on growth was evaluated by treating cancer cells with CCK neutralizing antibodies and by down regulating CCK mRNA by RNAi. Wild type pancreatic cancer cells expressed significantly lower CCK mRNA and peptide levels than gastrin. Neither treatment of pancreatic cancer cells with CCK antibodies nor the down regulation of CCK mRNA and peptide by shRNAs altered growth in vitro or in vivo. Conversely, when gastrin mRNA expression was down regulated, the same cells failed to produce tumors in spite of having sustained levels of endogenous CCK. Pancreatic cancer cells produce CCK and gastrin; however, the autocrine production of gastrin is more important for stimulating tumor growth. PMID:21186400

  4. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II

    PubMed Central

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-01-01

    The calcineurin (CaN) enzyme–transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 μM, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKCɛ compared to samples incubated without PKCɛ. Endogenous cardiostimulants which activate Gαq-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate. PMID:15821752

  5. Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood.

    PubMed

    Ambrosetti, Valery; Guerra, Marcelo; Ramírez, Luisa A; Reyes, Aldo; Álvarez, Daniela; Olguín, Sofía; González-Mañan, Daniel; Fernandois, Daniela; Sotomayor-Zárate, Ramón; Cruz, Gonzalo

    2016-07-01

    Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.

  6. Invasive fungal infections in endogenous Cushing's syndrome

    PubMed Central

    Scheffel, Rafael Selbach; Dora, José Miguel; Weinert, Letícia Schwerz; Aquino, Valério; Maia, Ana Luiza; Canani, Luis Henrique; Goldani, Luciano Z.

    2010-01-01

    Cushing's syndrome is a condition characterized by elevated cortisol levels that can result from either augmented endogenous production or exogenous administration of corticosteroids. The predisposition to fungal infections among patients with hypercortisolemia has been noted since Cushing's original description of the disease. We describe here a patient with endogenous Cushing's syndrome secondary to an adrenocortical carcinoma, who developed concomitant disseminated cryptococcosis and candidiasis in the course of his disease. PMID:24470886

  7. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.

    PubMed

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara

    2011-01-01

    Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.

  8. Low- and high-testosterone individuals exhibit decreased aversion to economic risk.

    PubMed

    Stanton, Steven J; Mullette-Gillman, O'Dhaniel A; McLaurin, R Edward; Kuhn, Cynthia M; LaBar, Kevin S; Platt, Michael L; Huettel, Scott A

    2011-04-01

    Testosterone is positively associated with risk-taking behavior in social domains (e.g., crime, physical aggression). However, the scant research linking testosterone to economic risk preferences presents inconsistent findings. We examined the relationship between endogenous testosterone and individuals' economic preferences (i.e., risk preference, ambiguity preference, and loss aversion) in a large sample (N = 298) of men and women. We found that endogenous testosterone levels have a significant U-shaped association with individuals' risk and ambiguity preferences, but not loss aversion. Specifically, individuals with low or high levels of testosterone (more than 1.5 SD from the mean for their gender) were risk and ambiguity neutral, whereas individuals with intermediate levels of testosterone were risk and ambiguity averse. This relationship was highly similar in men and women. In contrast to received wisdom regarding testosterone and risk, the present data provide the first robust evidence for a nonlinear association between economic preferences and levels of endogenous testosterone.

  9. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors.

    PubMed

    Lindberg, Anton; Nag, Sangram; Schou, Magnus; Takano, Akihiro; Matsumoto, Junya; Amini, Nahid; Elmore, Charles S; Farde, Lars; Pike, Victor W; Halldin, Christer

    2017-11-01

    The serotonergic system is widely present in all regions of the central nervous system (CNS) and plays a key modulatory role in many of its functions. Positron emission tomography (PET) is used to study several serotonin receptors in CNS in vivo. The G-protein coupled receptor 5-HT 1B is mostly present in the occipital cortex and in midbrain and is linked to several psychiatric disorders. There is evidence that agonist PET radioligands for neuroreceptors are more sensitive to endogenous neurotransmitters than antagonists. Our previously developed 5-HT 1B receptor PET radioligand, [ 11 C]AZ10419369, is now considered a partial agonist. In this work we are aiming to develop a full antagonist PET radioligand for imaging brain 5-HT 1B receptors, and evaluate its sensitivity to increased endogenous serotonin concentration. [ 11 C]AZ10419096 was synthesized by rapid methylation of the prepared corresponding N-desmethyl precursor with [ 11 C]methyl triflate. Five PET measurements were performed in cynomolgus monkeys, consisting of two at baseline, one after treatment of a monkey with a 5-HT 1B antagonist, AR-A000002, and two in which fenfluramine was administered during scanning to induce endogenous serotonin release. [ 11 C]AZ10419096 was synthesized in high yield and purity within 30 min, including purification, formulation and sterile filtration. The baseline PET measurements demonstrated [ 11 C]AZ10419096 to have favorable radioligand characteristics, including high specific binding in brain regions that have high 5-HT 1B density, such as occipital cortex and globus pallidus, as well as subsequent rapid elimination from brain and a minor abundance of lipophilic radiometabolites in plasma. AR-A00002 completely blocked radioligand receptor-specific binding. Fenfluramine produced a distinct displacement of radioligand consistent with an expected increase of synaptic endogenous serotonin concentration. [ 11 C]AZ10419096, a full 5-HT 1B antagonist PET radioligand, demonstrates high specific binding in monkey brain that is sensitive to competition from a known 5-HT 1B antagonist as well as to putatively increased endogenous serotonin levels. Published by Elsevier Inc.

  10. Apparent and true ileal and total tract digestibility of fat in canola press-cake or canola oil and effects of increasing dietary fat on amino acid and energy digestibility in growing pigs.

    PubMed

    Zhou, X; Beltranena, E; Zijlstra, R T

    2017-06-01

    Digestibility of remaining oil in canola press-cake (CPC) may be lower than that of extracted, liquid canola oil (CO) because oil may be partly entrapped in the CPC matrix. To determine true digestibility of fat in ingredients, endogenous fat losses should be estimated. Dietary fat may interact with digestion of other dietary components. To test these hypotheses, 10 ileal-cannulated pigs (initial BW, 25.4 kg) were fed 10 diets for 8 periods in a 10 × 8 Youden square. A basal diet was formulated based on wheat, barley, and canola meal. The 4 CPC and 4 CO test diets were prepared by replacing identical portion of basal diet with 10%, 20%, 30%, or 40% CPC, or 1.5%, 3.0%, 4.5%, or 6.0% CO, respectively, to match the fat content of CPC diet with CO diet at each fat level. An N-free diet based on corn starch was prepared to measure basal endogenous losses of AA. Apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID) of acid-hydrolyzed ether extract (AEE) were calculated for each diet. True ileal digestibility (TID) and true total tract (TTTD) digestibility of AEE in CPC and CO, and total endogenous losses of AEE were estimated by regressing apparent digestible AEE (g/kg of DMI) against dietary AEE intake (g/kg of DM) at the total tract and distal ileum, respectively. The mean AID and ATTD of AEE in CPC diets were 78.9% and 61.5%, which were lower ( < 0.01) than 81.9% and 63.4% in CO diets. Apparent ileal and total tract digestible AEE content in CPC and CO diets increased linearly ( < 0.01) with increasing AEE intake. Endogenous losses of AEE were greater ( < 0.05) for the total tract than for the ileum (23.4 vs. 9.4 g/kg of DMI). Dietary fat source did not affect ( > 0.05) total tract or ileal endogenous losses of AEE. The TID and TTTD of AEE in CPC were 92.3% and 94.5%, respectively, lower ( < 0.01) than 96.5% and 100% in CO. Increasing dietary inclusion of CO linearly increased ( < 0.001) standardized ileal digestibility (SID) of CP, Lys, Met, Thr, and Trp, and quadratically increased ( < 0.001) the AID and ATTD of energy in the basal part of the test diets. In conclusion, CPC had lower TID and TTTD of AEE than CO. Dietary fat source did not affect endogenous losses of AEE. The lower digestibility of AEE in CPC than in CO indicates that fat digestibility of CPC should be considered to predict its nutritional value accurately. Dietary inclusion of CO may increase digestibility of CP and energy originating from the balance of the diet.

  11. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health

    PubMed Central

    Villamena, Frederick A.

    2018-01-01

    Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations. PMID:29607218

  13. Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation.

    PubMed

    McLeay, Yanita; Stannard, Stephen; Houltham, Stuart; Starck, Carlene

    2017-01-01

    Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.

  14. A Comprehensive Review on Clinical Applications of Comet Assay

    PubMed Central

    Gunasekarana, Vidya; Chand, Parkash

    2015-01-01

    Increased levels of DNA damage and ineffective repair mechanisms are the underlying bio-molecular events in the pathogenesis of most of the life-threatening diseases like cancer and degenerative diseases. The sources of DNA damage can be either exogenous or endogenous in origin. Imbalance between the oxidants and antioxidants resulting in increased reactive oxygen species mostly accounts for the endogenously derived attacks on DNA. Among the various methods employed in the estimation of DNA damage, alkaline comet assay is proven to be a relatively simple and versatile tool in the assessment of DNA damage and also in determining the efficacy of DNA repair mechanism. The aim of this article is to review the application of comet assay in the field of medicine towards human biomonitoring, understanding the pathogenesis of cancer and progression of chronic and degenerative diseases, prediction of tumour radio & chemosensitivity and in male infertility. A standardized protocol and analysis system of various variants of comet assay in different types of cells, across the labs will be of useful and reliable clinical tool in the field of Medicine for the estimation of levels of DNA damage and repair mechanisms. PMID:25954633

  15. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    PubMed

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  16. Development of a keratinocyte-based screening model for antipsoriatic drugs using green fluorescent protein under the control of an endogenous promoter.

    PubMed

    Pol, Arno; van Ruissen, Fred; Schalkwijk, Joost

    2002-08-01

    Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.

  17. Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress.

    PubMed

    Llugany, M; Martin, S R; Barceló, J; Poschenrieder, C

    2013-08-01

    Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling. Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC-ESI(-)-MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.

  18. Effects of induction/inhibition of endogenous heme oxygenase-1 on lipid metabolism, endothelial function, and atherosclerosis in rabbits on a high fat diet.

    PubMed

    Liu, Danan; He, Zuoyun; Wu, Lirong; Fang, Ying

    2012-01-01

    The heme oxygenase-1 (HO-1) / carbon monoxide (CO) system has been presumed as a therapeutic target for preventing atherosclerosis. However, the exact mechanism(s) underlying this system remains largely undefined. This study aims to examine the influence of induction/inhibition of HO-1 on atherosclerotic plaque using pharmacological approaches and to elucidate potential mechanisms. Rabbits were randomly assigned to receive a standard diet (control group), high fat diet (HFD), HFD plus HO inducer hemin (HFD + H group), and HFD plus an HO inhibitor, zinc protoporphyrin-9 (ZnPP9, HFD + Z group). Atherosclerotic plaque was evaluated using oil red O staining and histological analyses. Immunohistochemistry, western blotting, and RT-PCR were employed to study the expression of HO-1 and endothelin-1 (ET-1). Levels of CO, nitric oxide (NO), eNOS/iNOS activities, NF-κB activity, and TNF-α level were determined. No significant differences of serum lipid levels were observed among the HFD, HFD + Z, and HFD + H groups. In rabbits, HFD induced typical atherosclerotic plaque and increased intima/media thickness ratio, which was markedly reduced in the HFD + H group and further aggravated in the HFD + Z group. Furthermore, hemin increased HO-1 expression, CO levels, and eNOS activity, while decreasing iNOS levels, ET-1 expression, NF-κB activity, and TNF-α level. ZnPP9 caused opposite effects. Induction of the endogenous HO-1/CO system by hemin can prevent atherosclerosis though increasing CO levels, regulating eNOS activity, NF-κB activity, TNF-α levels, and ET-1 levels in rabbits. Our results add new evidence for the importance of HO-1 in the genesis and development of atherosclerosis and provide several possible mechanisms underlying the anti-atherosclerosis effects of HO-1.

  19. Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes.

    PubMed

    Wang, Kai; Xiao, Tongfang; Yue, Qingwei; Wu, Fei; Yu, Ping; Mao, Lanqun

    2017-09-05

    Quantitative description of ascorbate secretion at a single-cell level is of great importance in physiological studies; however, most studies on the ascorbate secretion have so far been performed through analyzing cell extracts with high performance liquid chromatography, which lacks time resolution and analytical performance on a single-cell level. This study demonstrates a single-cell amperometry with carbon fiber microelectrodes (CFEs) to selectively monitor amperometric vesicular secretion of endogenous ascorbate from a single rat adrenal chromaffin cell. The CFEs are electrochemically pretreated in a weakly basic solution (pH 9.5), and such pretreatment essentially enables the oxidation of ascorbate to occur at a relatively low potential (i.e., 0.0 V vs Ag/AgCl), and further a high selectivity for ascorbate measurement over endogenously existing electroactive species such as epinephrine, norepinephrine, and dopamine. The selectivity is ensured by much larger amperometric response at the pretreated CFEs toward ascorbate over those toward other endogenously existing electroactive species added into the solution or ejected to the electrode with a micropuffer pipet, and by the totally suppressed current response by adding ascorbate oxidase into the cell lysate. With the pretreated CFE-based single-cell amperometry developed here, exocytosis of endogenous ascorbate of rat adrenal chromaffin cells is directly observed and ensured with the calcium ion-dependent high K + -induced secretion of endogenous ascorbate from the cells. Moreover, the quantitative information on the exocytosis of endogenous ascorbate is provided.

  20. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA.

    PubMed

    Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H

    1993-03-01

    The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders had significantly higher GABA levels than nonresponders or controls. In contrast to the difference in plasma GABA, vigabatrin responders and nonresponders did not differ in dose or plasma level of vigabatrin. These data may indicate that determination of plasma GABA is a valuable non-invasive method for therapeutic monitoring in patients on medication with vigabatrin.

  1. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.

    PubMed

    Barba-Espín, Gregorio; Diaz-Vivancos, Pedro; Job, Dominique; Belghazi, Maya; Job, Claudette; Hernández, José Antonio

    2011-11-01

    In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels. © 2011 Blackwell Publishing Ltd.

  2. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model.

    PubMed

    Bladen, Catherine L; Kozlowski, David J; Dynan, William S

    2012-11-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as by-products of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0-1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms.

  3. Endogenous steroid hormone levels in early pregnancy and risk of testicular cancer in the offspring: a nested case-referent study.

    PubMed

    Holl, Katsiaryna; Lundin, Eva; Surcel, Heljä-Marja; Grankvist, Kjell; Koskela, Pentti; Dillner, Joakim; Hallmans, Göran; Wadell, Göran; Olafsdottir, Gudridur H; Ogmundsdottir, Helga M; Pukkala, Eero; Lehtinen, Matti; Stattin, Pär; Lukanova, Annekatrin

    2009-06-15

    According to the leading hypothesis on testicular cancer (TC) etiology exposure to a specific pattern of steroid hormones in utero, in particular, to high levels of estrogens and low levels of androgens is the major determinant of TC risk in the offspring. We performed a case-referent study nested within Finnish, Swedish and Icelandic maternity cohorts exploiting early pregnancy serum samples to evaluate the role of maternal endogenous steroid hormones with regard to the risk of TC. TC cases and referents were aged between 0 and 25 years. For each case-index mother pair, three or four matched referent-referent mother pairs were identified using national population registries. First trimester or early second trimester sera were retrieved from the index mothers of 73 TC cases and 286 matched referent mothers, and were tested for dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, estradiol, estrone, and sex hormone binding globulin (SHBG). Offspring of mothers with high DHEAS levels had a significantly decreased risk of TC (OR for highest vs. lowest DHEAS quartile, 0.18 (95% CI 0.06-0.58). In contrast, offspring of mothers with high androstenedione levels had an increased risk of TC (OR 4.1; 95% CI 1.2-12.0). High maternal total estradiol level also tended to be associated with an increased risk of TC in the offspring (OR 32; 95% CI 0.98-1,090). We report the first direct evidence that interplay of maternal steroid hormones in the early pregnancy is important in the etiology of TC in the offspring. Copyright 2008 UICC.

  4. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    PubMed

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  5. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells

    PubMed Central

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  6. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*

    PubMed Central

    Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.

    2016-01-01

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367

  7. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.

    PubMed

    Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R

    2016-12-30

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Are endogenous cardenolides controlled by atrial natriuretic peptide.

    PubMed

    Brar, Kanwarjeet S; Gao, Yonglin; El-Mallakh, Rif S

    2016-07-01

    Endogenous cardenolides are digoxin-like substances and ouabain-like substances that have been implicated in the pathogenesis of hypertension and mood disorders in clinical and pre-clinical studies. Regulatory signals for endogenous cardenolides are still unknown. These endogenous compounds are believed to be produced by the adrenal gland in the periphery and the hypothalamus in the central nervous system, and constitute part of an hormonal axis that may regulate the catalytic activity of the α subunit of Na(+)/K(+)-ATPase. A review of literature suggests that there is great overlap in physiological environments that are associated with either elevations or reductions in the levels of atrial natriuretic peptide (ANP) and endogenous cardenolides. This suggests that these two factors may share a common regulatory signal or perhaps that ANP may be involved in the regulation of endogenous cardenolides. Copyright © 2016. Published by Elsevier Ltd.

  9. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus

    PubMed Central

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-01-01

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep–wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176

  10. AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells.

    PubMed

    Lecoq, Anne-Lise; Viengchareun, Say; Hage, Mirella; Bouligand, Jérôme; Young, Jacques; Boutron, Audrey; Zizzari, Philippe; Lombès, Marc; Chanson, Philippe; Kamenický, Peter

    2016-05-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas through unknown molecular mechanisms. The best-known interacting partner of AIP is the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the effects of xenobiotics implicated in carcinogenesis. As 75% of AIP mutations disrupt the physical and/or functional interaction with AhR, we postulated that the tumorigenic potential of AIP mutations might result from altered AhR signaling. We evaluated the impact of AIP mutations on the AhR signaling pathway, first in fibroblasts from AIP-mutated patients with pituitary adenomas, by comparison with fibroblasts from healthy subjects, then in transfected pituitary GH3 cells. The AIP protein level in mutated fibroblasts was about half of that in cells from healthy subjects, but AhR expression was unaffected. Gene expression analyses showed significant modifications in the expression of the AhR target genes CYP1B1 and AHRR in AIP-mutated fibroblasts, both before and after stimulation with the endogenous AhR ligand kynurenine. Kynurenine increased Cyp1b1 expression to a greater extent in GH3 cells overexpressing wild type compared with cells expressing mutant AIP Knockdown of endogenous Aip in these cells attenuated Cyp1b1 induction by the AhR ligand. Both mutant AIP expression and knockdown of endogenous Aip affected the kynurenine-dependent GH secretion of GH3 cells. This study of human fibroblasts bearing endogenous heterozygous AIP mutations and transfected pituitary GH3 cells shows that AIP mutations affect the AIP protein level and alter AhR transcriptional activity in a gene- and tissue-dependent manner. © 2016 Society for Endocrinology.

  11. Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression.

    PubMed

    Tanabe, Katsuyuki; Sato, Yasufumi; Wada, Jun

    2018-06-24

    Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A 165 b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.

  12. Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition

    PubMed Central

    Bosson, Andrew D.; Zamudio, Jesse R.; Sharp, Phillip A.

    2016-01-01

    SUMMARY Target competition (ceRNA crosstalk) within miRNA-regulated gene networks has been proposed to influence biological systems. To assess target competition, we characterize and quantitate miRNA networks in two cell types. Argonaute iCLIP reveals that hierarchical binding of high- to low-affinity miRNA targets is a key characteristic of in vivo activity. Quantification of cellular miRNA and mRNA/ncRNA target pool levels indicates that miRNA:target pool ratios and an affinity partitioned target pool accurately predict in vivo Ago binding profiles and miRNA susceptibility to target competition. Using single-cell reporters, we directly test predictions and estimate that ~3,000 additional high-affinity target sites can affect active miRNA families with low endogenous miRNA:target ratios, such as miR-92/25. In contrast, the highly expressed miR-294 and let-7 families are not susceptible to increases of nearly 10,000 sites. These results show differential susceptibility based on endogenous miRNA:target pool ratios and provide a physiological context for ceRNA competition in vivo. PMID:25449132

  13. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    PubMed

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of exogenous gamma-aminobutyric acid on α-amylase activity in the aleurone of barley seeds.

    PubMed

    Sheng, Yidi; Xiao, Huiyuan; Guo, Chunli; Wu, Hong; Wang, Xiaojing

    2018-03-03

    Gamma-aminobutyric acid (GABA), a nonprotein amino acid, often accumulates in plants exposed to certain environmental stimuli. Previous studies indicated that a closed relationship existed between endogenous GABA and seed germination. However, there are few studies on the effect of exogenous GABA on seed germination. The objective of this study was to explore whether exogenous GABA affected α-amylase activity which the activation is an important stage in seed germination. The level of endogenous GABA in barley seeds rose gradually during germination, suggesting that endogenous GABA was involved in germination. We measured starch degradation under application of various concentration GABA and found that GABA promoted seed starch degradation with a dose-responsive effect. The relationship between GABA and α-amylase activity was investigated by treating barley aleurone with exogenous GABA. The result showed that α-amylase activity began to rise after about 24 h and reached a peak at 48 h. Molecular evidence suggested that GABA increased α-amylase gene expression. We explore the possible roles played by GABA in signal transduction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Akt phosphorylation and NFkappaB activation are counterregulated under conditions of oxidative stress.

    PubMed

    Taylor, Juliet M; Crack, Peter J; Gould, Jodee A; Ali, Uğur; Hertzog, Paul J; Iannello, Rocco C

    2004-11-01

    This study was designed to elucidate the mechanisms involved in elevated cell death arising from an altered endogenous oxidant state. Increased levels of cell death were detected in cells lacking Gpx1 following the addition of exogenous H2O2. This increased apoptosis correlated with a down-regulation in the activation of the PI(3)K-Akt survival pathway. The importance of this pathway in protecting against H2O2-induced cell death was highlighted by the increased susceptibility of wild-type cells to apoptosis when treated with the PI(3)K inhibitor, LY294002. Activation of the oxidative stress sensitive transcription factor, NFkappaB, was elevated in the Gpx1-/- cells. Significantly, NFkappaB activation could be increased in wild-type cells through the addition of dominant-negative Akt. Therefore, our results suggest that the increased susceptibility of Gpx1-/- cells to H2O2-induced apoptosis can be attributed in part to diminished activation of Akt despite an up-regulation in the activation of the prosurvival NFkappaB. Thus, the PI(3)K-Akt and NFkappaB pathways can act independently of each other in an endogenous model of oxidative stress.

  16. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    PubMed

    Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers.

  17. Addressing the need for biomarker liquid chromatography/mass spectrometry assays: a protocol for effective method development for the bioanalysis of endogenous compounds in cerebrospinal fluid.

    PubMed

    Benitex, Yulia; McNaney, Colleen A; Luchetti, David; Schaeffer, Eric; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2013-08-30

    Research on disorders of the central nervous system (CNS) has shown that an imbalance in the levels of specific endogenous neurotransmitters may underlie certain CNS diseases. These alterations in neurotransmitter levels may provide insight into pathophysiology, but can also serve as disease and pharmacodynamic biomarkers. To measure these potential biomarkers in vivo, the relevant sample matrix is cerebrospinal fluid (CSF), which is in equilibrium with the brain's interstitial fluid and circulates through the ventricular system of the brain and spinal cord. Accurate analysis of these potential biomarkers can be challenging due to low CSF sample volume, low analyte levels, and potential interferences from other endogenous compounds. A protocol has been established for effective method development of bioanalytical assays for endogenous compounds in CSF. Database searches and standard-addition experiments are employed to qualify sample preparation and specificity of the detection thus evaluating accuracy and precision. This protocol was applied to the study of the histaminergic neurotransmitter system and the analysis of histamine and its metabolite 1-methylhistamine in rat CSF. The protocol resulted in a specific and sensitive novel method utilizing pre-column derivatization ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS), which is also capable of separating an endogenous interfering compound, identified as taurine, from the analytes of interest. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells.

    PubMed

    Dinarello, C A; Cannon, J G; Mancilla, J; Bishai, I; Lees, J; Coceani, F

    1991-10-25

    Fever induced by endogenous as well as exogenous pyrogens is often prevented by cyclooxygenase inhibitors; endogenous pyrogens stimulate prostaglandin E2 (PGE2) in or near the thermoregulatory centers of the brain. The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), are two pyrogens which stimulate brain PGE2 formation during fever and also increase PGE2 synthesis in human mononuclear cells in vitro. In the present study, we examined whether interleukin-6 (IL-6) stimulates PGE2 formation in a manner similar to IL-1 and TNF. Both glycosylated and non-glycosylated forms of recombinant human IL-6 were tested. Following intravenous injection into rabbits, the glycosylated IL-6 was more pyrogenic than the non-glycosylated form and there was no evidence of synergy in the production of fever when IL-6 and IL-1 were given simultaneously. IL-6 fever was blocked by prior administration of the cyclooxygenase inhibitor ibuprofen. IL-6 was also pyrogenic in the cat by either the systemic or the intraventricular route. However, in both species, IL-6 was less effective than IL-1 beta. When given intraventricularly to cats, IL-6 produced an increase in PGE2 levels of the cerebrospinal fluid in parallel with the rise in body temperature. In the latter respect, IL-6 imitated IL-1 beta; however, IL-6 from 0.15-15 micrograms/ml did not increase mononuclear cell PGE2 production in vitro whereas IL-1 beta induced 20-30-fold increases in PGE2 at 100 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    PubMed

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  20. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi, E-mail: uehara@pharm.okayama-u.ac.jp

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and themore » oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.« less

  1. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice

    PubMed Central

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-01-01

    Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242

  2. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  3. Effectiveness of Panax ginseng on Acute Myocardial Ischemia Reperfusion Injury Was Abolished by Flutamide via Endogenous Testosterone-Mediated Akt Pathway

    PubMed Central

    Pei, Luo; Shaozhen, Hou; Gengting, Dong; Tingbo, Chen; Liang, Liu; Hua, Zhou

    2013-01-01

    Mechanisms for Panax ginseng's cardioprotective effect against ischemia reperfusion injury involve the estrogen-mediated pathway, but little is known about the role of androgen. A standardized Panax ginseng extract (RSE) was orally given with or without flutamide in a left anterior descending coronary artery ligation rat model. Infarct size, CK and LDH activities were measured. Time-related changes of NO, PI3K/Akt/eNOS signaling, and testosterone concentration were also investigated. RSE (80 mg/kg) significantly inhibited myocardial infarction and CK and LDH activities, while coadministration of flutamide abolished this effect of RSE. NO was increased by RSE and reached a peak after 15 min of ischemia; however, flutamide cotreatment suppressed this elevation. Western blot analysis showed that RSE significantly reversed the decreases of expression and activation of PI3K, Akt, and eNOS evoked by ischemia, whereas flutamide attenuated the effects of these protective mechanisms induced by RSE. RSE completely reversed the dropping of endogenous testosterone level induced by I/R injury. Flutamide plus RSE treatment not only abolished RSE's effect but also produced a dramatic change on endogenous testosterone level after pretreatment and ischemia. Our results for the first time indicate that blocking androgen receptor abolishes the ability of Panax ginseng to protect the heart from myocardial I/R injury. PMID:24282438

  4. Protective Role of Endogenous Gangliosides for Lysosomal Pathology in a Cellular Model of Synucleinopathies

    PubMed Central

    Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto, Makoto

    2009-01-01

    Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were characterized as having extensive formation of lysosomal inclusions bodies. Treatment of these cells with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosyl ceramide synthase, resulted in various features of lysosomal pathology, including compromised lysosomal activity, enhanced lysosomal membrane permeabilization, and increased cytotoxicity. Consistent with these findings, expression levels of lysosomal membrane proteins, ATP13A2 and LAMP-2, were significantly decreased, and electron microscopy demonstrated alterations in the lysosomal membrane structures. Furthermore, the accumulation of both P123H β-syn and α-synuclein proteins was significant in PDMP-treated cells because of the suppressive effect of PDMP on the autophagy pathway. Finally, the detrimental effects of PDMP on lysosomal pathology were significantly ameliorated by the addition of gangliosides to the cultured cells. These data suggest that endogenous gangliosides may play protective roles against the lysosomal pathology of synucleinopathies. PMID:19349362

  5. Protection of groundnut plants from rust disease by application of glucan isolated from a biocontrol agent Acremonium obclavatum.

    PubMed

    Sathiyabama, M; Balasubramanian, R

    2018-05-01

    Prior treatment of groundnut leaves with glucan isolated from a biocontrol agent, Acremonium obclavatum, protected against the rust disease. Glucan treated leaves showed increased levels of chitinase and β-1,3-glucanase in the apoplastic fluid. An increase in endogenous levels of salicylic acid also was observed in treated leaves. Treated leaves also showed a significant reduction in rust disease development in groundnut leaves. Enhanced activities of glucanohydrolases of treated groundnut leaves might have affected the biotrophic rust pathogen, which is known to colonize in the apoplastic spaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Hypothalamic digoxin and hemispheric chemical dominance: relation to speech and language dysfunction.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-06-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. Since endogenous digoxin can regulate neurotransmitter transport and dolichols can modulate glycoconjugate synthesis important in synaptic connectivity, the pathway was assessed in patients with dyslexia, delayed recovery from global aphasia consequent to a dominant hemispheric thrombotic infarct, and developmental delay of speech milestone. The pathway was also studied in right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of speech disorders. The plasma/serum--activity of HMG CoA reductase, magnesium, digoxin, dolichol, ubiquinone--and tryptophan/tyrosine catabolic patterns, as well as RBC (Na+)-K+ ATPase activity, were measured in the above mentioned groups. The glycoconjugate metabolism and membrane composition was also studied. The study showed that in dyslexia, developmental delay of speech milestone, and delayed recovery from global aphasia there was an upregulated isoprenoidal pathway with increased digoxin and dolichol levels. The membrane (Na+)-K+ ATPase activity, serum magnesium and ubiquinone levels were low. The tryptophan catabolites were increased and the tyrosine catabolites including dopamine decreased in the serum contributing to a speech dysfunction. There was an increase in carbohydrate residues of glycoproteins, glycosaminoglycans, and glycolipids levels as well as an increased activity of GAG degrading enzymes and glyco hydrolases in the serum. The cholesterol:phospholipid ratio of RBC membrane increased and membrane glycoconjugates showed a decrease. All of these could contribute to altered synaptic inactivity in these disorders. The patterns correlated with those obtained in right hemispheric chemical dominance. Right hemispheric chemical dominance may play a role in the genesis of these disorders. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test.

  7. Neuropeptide cycloprolylglycine increases the levels of brain-derived neurotrophic factor in neuronal cells.

    PubMed

    Gudasheva, T A; Koliasnikova, K N; Antipova, T A; Seredenin, S B

    2016-07-01

    It was shown for the first time that the endogenous cyclic dipeptide cycloprolylglycine (CPG) at concentrations of 10(-7) and 10(-3) M and piracetam at a concentration of 10(-3) M increased the content of brainderived neurotrophic factor (BDNF) in the culture of neuronal cells in normal state and under conditions of glutamate and 6-oxydopamine neurotoxicity. This may indicate the possible involvement of BDNF in the mechanism of action of neuropeptide CPG and piracetam.

  8. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum.

    PubMed

    Kumar, Pavan; Jander, Georg

    2017-04-05

    Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.

  9. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation.

    PubMed

    Aksakal, Ozkan; Tabay, Dilruba; Esringu, Aslıhan; Icoglu Aksakal, Feyza; Esim, Nevzat

    2017-02-15

    The purpose of the present study was to evaluate the role of proline (Pro) in relieving UV-B radiation-induced oxidative stress in lettuce. Lettuce seedlings were exposed to 3.3 W m -2 UV-B radiation for 12 h after pre-treatment sprayed with 20 mM Pro. The data for malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), endogenous Pro level, the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)], total phenolic concentration, antioxidant capacity, expression of phenylalanine ammonia lyase (PAL), γ-tocopherol methyltransferase (γ-TMT) and proline dehydrogenase (ProDH) genes, phytohormone levels such as abscisic acid (ABA), gibberellic acid (GA), indole acetic acid (IAA) and salicylic acid (SA), soluble sugars and organic acids were recorded. It was found that Pro alleviated the oxidative damage in the seedlings of lettuce as demonstrated by lower lipid peroxidation and H 2 O 2 content, increasing the endogenous Pro level, the activity of antioxidant enzymes, total phenolic concentration and the antioxidant capacity. Additionally, it was revealed that exogenous application of Pro enhanced the levels of GA, IAA, the concentrations of soluble sugars and organic acids and expressions of PAL, γ-TMT and ProDH genes as compared to the control. The results obtained in this study suggest that pre-treatment with exogenous Pro provides important contributions to the increase in the UV-B tolerance of lettuce by regulating the biochemical mechanisms of UV-B response.

  10. Detection of endogenous boldenone in the entire male horses.

    PubMed

    Ho, Emmie N M; Yiu, Kenneth C H; Tang, Francis P W; Dehennin, Louis; Plou, Philippe; Bonnaire, Yves; Wan, Terence S M

    2004-09-05

    Boldenone (1,2-dehydrotestosterone) is a common veterinary anabolic agent. Its structure is very similar to testosterone. Testosterone is endogenous in the horse, whereas there has been no report concerning the detection of endogenous boldenone. This paper reports the direct observation of sulphate conjugate of boldenone in equine urine from entires. The detection procedures involved solid-phase extraction, immunoaffinity column (IAC) purification, and then LC-MS-MS analysis on a Q-ToF instrument. The identification of boldenone sulphate has provided direct evidence for the endogenous nature of boldenone in entire male horses. Quantification data for the normal level of boldenone in Hong Kong racehorses will also be discussed.

  11. Are family physicians good for you? Endogenous doctor supply and individual health.

    PubMed

    Gravelle, Hugh; Morris, Stephen; Sutton, Matt

    2008-08-01

    To investigate the impact of family physician (FP) supply on individual health, adjusting for factors that affect both health and FPs' choice of location. A total of 49,541 individuals in 351 English local authorities (LAs). Data on individual health and personal characteristics from three rounds (1998, 1999, and 2000) of the Health Survey for England were linked to LA data on FP supply. Three methods for analyzing self-reported health were used. FP supply, instrumented by house prices and by age-weighted capitation payments for patients on FP lists, was included in individual-level health regressions along with individual and LA covariates. When no instruments are used FPs have a positive but statistically insignificant effect on health. When FP supply is instrumented by age-related capitation it has markedly larger and statistically significant effects. A 10 percent increase in FP supply increases the probability of reporting very good health by 6 percent. After allowing for endogeneity, an increase in FP supply has a significant positive effect on self-reported individual health.

  12. Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker.

    PubMed

    Lepri, O.; Bassie, L.; Thu-Hang, P.; Christou, P.; Capell, T.

    2002-09-01

    We used the polyamine biosynthetic pathway and rice as a relevant model to understand the genetic basis of variation in endogenous levels of metabolites and key enzymes involved in the pathway. Wild-type tissues and also tissues containing a commonly used selectable marker gene were employed. We detected a wide variation in levels of arginine decarboxylase activity and in the three polyamines, putrescine, spermidine and spermine, in different tissues and varieties, but this was not dependent on the presence of the selectable marker. A more-extensive profile of enzyme activities (ADC, ODC, SAMDC, DAO and PAO) and polyamine levels in different tissues was generated in two different varieties. Our results indicate that genetic background is important in terms of the basal levels of metabolites and enzyme activity, particularly in situations in which we aim to engineer metabolic pathways that are also encoded by homologous endogenous genes. We did not find any evidence that the presence of a selectable marker in any way influences enzyme activity or metabolite levels.

  13. True phosphorus digestibility and the endogenous phosphorus outputs associated with brown rice for weanling pigs measured by the simple linear regression analysis technique.

    PubMed

    Yang, H; Li, A K; Yin, Y L; Li, T J; Wang, Z R; Wu, G; Huang, R L; Kong, X F; Yang, C B; Kang, P; Deng, J; Wang, S X; Tan, B E; Hu, Q; Xing, F F; Wu, X; He, Q H; Yao, K; Liu, Z J; Tang, Z R; Yin, F G; Deng, Z Y; Xie, M Y; Fan, M Z

    2007-03-01

    The objectives of this study were to determine true phosphorus (P) digestibility, degradability of phytate-P complex and the endogenous P outputs associated with brown rice feeding in weanling pigs by using the simple linear regression analysis technique. Six barrows with an average initial body weight of 12.5 kg were fitted with a T-cannula and fed six diets according to a 6 × 6 Latin-square design. Six maize starch-based diets, containing six levels of P at 0.80, 1.36, 1.93, 2.49, 3.04, and 3.61 g/kg per kg dry-matter (DM) intake (DMI), were formulated with brown rice. Each experimental period lasted 10 days. After a 7-day adaptation, all faecal samples were collected on days 8 and 9. Ileal digesta samples were collected for a total of 24 h on day 10. The apparent ileal and faecal P digestibility values of brown rice were affected ( P < 0.01) by the P contents in the assay diets. The apparent ileal and faecal P digestibility values increased from - 48.0 to 36.7% and from - 35.6 to 40.0%, respectively, as P content increased from 0.80 to 3.61 g/kg DMI. Linear relationships ( P < 0.05), expressed as g/kg DMI, between the apparent ileal and faecal digestible P and dietary levels of P, suggested that true P digestibility and the endogenous P outputs associated with brown rice feeding could be determined by using the simple regression analysis technique. There were no differences ( P>0.05) in true P digestibility values (57.7 ± 5.4 v. 58.2 ± 5.9%), phytate P degradability (76.4 ± 6.7 v. 79.0 ± 4.4%) and the endogenous P outputs (0.812 ± 0..096 v. 0.725 ± 0.083 g/kg DMI) between the ileal and the faecal levels. The endogenous faecal P output represented 14 and 25% of the National Research Council (1998) recommended daily total and available P requirements in the weanling pig, respectively. About 58% of the total P in brown rice could be digested and absorbed by the weanling pig. Our results suggest that the large intestine of the weanling pigs does not play a significant role in the digestion of P in brown rice. Diet formulation on the basis of total or apparent P digestibility with brown rice may lead to P overfeeding and excessive P excretion in pigs.

  14. A RAPID Method for Blood Processing to Increase the Yield of Plasma Peptide Levels in Human Blood.

    PubMed

    Teuffel, Pauline; Goebel-Stengel, Miriam; Hofmann, Tobias; Prinz, Philip; Scharner, Sophie; Körner, Jan L; Grötzinger, Carsten; Rose, Matthias; Klapp, Burghard F; Stengel, Andreas

    2016-04-28

    Research in the field of food intake regulation is gaining importance. This often includes the measurement of peptides regulating food intake. For the correct determination of a peptide's concentration, it should be stable during blood processing. However, this is not the case for several peptides which are quickly degraded by endogenous peptidases. Recently, we developed a blood processing method employing Reduced temperatures, Acidification, Protease inhibition, Isotopic exogenous controls and Dilution (RAPID) for the use in rats. Here, we have established this technique for the use in humans and investigated recovery, molecular form and circulating concentration of food intake regulatory hormones. The RAPID method significantly improved the recovery for (125)I-labeled somatostatin-28 (+39%), glucagon-like peptide-1 (+35%), acyl ghrelin and glucagon (+32%), insulin and kisspeptin (+29%), nesfatin-1 (+28%), leptin (+21%) and peptide YY3-36 (+19%) compared to standard processing (EDTA blood on ice, p <0.001). High performance liquid chromatography showed the elution of endogenous acyl ghrelin at the expected position after RAPID processing, while after standard processing 62% of acyl ghrelin were degraded resulting in an earlier peak likely representing desacyl ghrelin. After RAPID processing the acyl/desacyl ghrelin ratio in blood of normal weight subjects was 1:3 compared to 1:23 following standard processing (p = 0.03). Also endogenous kisspeptin levels were higher after RAPID compared to standard processing (+99%, p = 0.02). The RAPID blood processing method can be used in humans, yields higher peptide levels and allows for assessment of the correct molecular form.

  15. Nandrolone excretion is not increased by exhaustive exercise in trained athletes.

    PubMed

    Schmitt, Nelly; Flament, Marie-Madeleine; Goubault, Claude; Legros, Patrick; Grenier-Loustalot, Marie France; Denjean, André

    2002-09-01

    The anabolic steroid nandrolone is widely used as a performance enhancer. Traces of its naturally occurring metabolite 19-norandrosterone (19-NA) have been found in human urine (below 0.6 ng.mL(-1)), and it has been suggested that strenuous exercise may increase urinary 19-NA. The aim of our study was to assess the effect of exhaustive exercise on the nandrolone excretion under controlled conditions in two groups of trained male athletes, one composed of judoka and the other of long-distance runners. A Wingate test and a treadmill limited-time test (running at 85% (.)VO(2max)) were carried out on 14 judoka and 15 athletes. Hydration was controlled during each session. Urine samples were obtained before each test and 30 min, 60 min, and 24 h after each test. Urinary 19-NA concentrations were determined using gas chromatography coupled with mass spectrometry. Baseline urinary 19-NA concentrations varied widely across individuals, from undetectable levels to 0.250 ng.mL (-1)(mean, 0.048 +/- 0.050 ng.mL(-1)). The both exercise tests did not significantly modified urinary 19-NA levels in the two groups of subjects. Our study provides compelling evidence that endogenous nandrolone production in male athletes, during two very different types of exercise, produces urine levels far below the IOC threshold of 2 ng.mL(-1) urine. Thus, exercise does not induce endogenous nandrolone secretion.

  16. lin-4 and the NRDE pathway are required to activate a transgenic lin-4 reporter but not the endogenous lin-4 locus in C. elegans.

    PubMed

    Jiao, Alan L; Foster, Daniel J; Dixon, Julia; Slack, Frank J

    2018-01-01

    As the founding member of the microRNA (miRNA) gene family, insights into lin-4 regulation and function have laid a conceptual foundation for countless miRNA-related studies that followed. We previously showed that a transcriptional lin-4 reporter in C. elegans was positively regulated by a lin-4-complementary element (LCE), and by lin-4 itself. In this study, we sought to (1) identify additional factors required for lin-4 reporter expression, and (2) validate the endogenous relevance of a potential positive autoregulatory mechanism of lin-4 expression. We report that all four core nuclear RNAi factors (nrde-1, nrde-2, nrde-3 and nrde-4), positively regulate lin-4 reporter expression. In contrast, endogenous lin-4 levels were largely unaffected in nrde-2;nrde-3 mutants. Further, an endogenous LCE deletion generated by CRISPR-Cas9 revealed that the LCE was also not necessary for the activity of the endogenous lin-4 promoter. Finally, mutations in mature lin-4 did not reduce primary lin-4 transcript levels. Taken together, these data indicate that under growth conditions that reveal effects at the transgenic locus, a direct, positive autoregulatory mechanism of lin-4 expression does not occur in the context of the endogenous lin-4 locus.

  17. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    PubMed

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  18. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate.

    PubMed

    Weitkunat, Karolin; Schumann, Sara; Nickel, Daniela; Hornemann, Silke; Petzke, Klaus J; Schulze, Matthias B; Pfeiffer, Andreas Fh; Klaus, Susanne

    2017-06-01

    Background: The risk of type 2 diabetes is inversely correlated with plasma concentrations of odd-chain fatty acids [OCFAs; pentadecanoic acid (15:0) and heptadecanoic acid (17:0)], which are considered as biomarkers for dairy fat intake in humans. However, rodent studies suggest that OCFAs are synthesized endogenously from gut-derived propionate. Propionate increases with dietary fiber consumption and has been shown to improve insulin sensitivity. Objective: We hypothesized that OCFAs are produced in humans from dietary fibers by a novel endogenous pathway. Design: In a randomized, double-blind crossover study, 16 healthy individuals were supplemented with cellulose (30 g/d), inulin (30 g/d), or propionate (6 g/d) for 7 d. In addition, human hepatoma cells were incubated with different propionate concentrations. OCFAs were determined in plasma phospholipids and hepatoma cells by gas chromatography. Results: Cellulose did not affect plasma OCFA levels, whereas inulin and propionate increased pentadecanoic acid by ∼17% ( P < 0.05) and 13% ( P = 0.05), respectively. The effect on heptadecanoic acid was even more pronounced, because it was elevated in almost all participants by inulin (11%; P < 0.01) and propionate (13%; P < 0.001). Furthermore, cell culture experiments showed a positive association between propionate and OCFA levels ( R 2 = 0.99, P < 0.0001), whereas palmitate (16:0) was negatively correlated ( R 2 = 0.83, P = 0.004). Conclusions: Our data show that gut-derived propionate is used for the hepatic synthesis of OCFAs in humans. The association of OCFAs with a decreased risk of type 2 diabetes may therefore also relate to dietary fiber intake and not only dairy fat. This trial was registered at www.germanctr.de as DRKS00010121. © 2017 American Society for Nutrition.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less

  20. CCN3 (NOV) Is a Negative Regulator of CCN2 (CTGF) and a Novel Endogenous Inhibitor of the Fibrotic Pathway in an in Vitro Model of Renal Disease

    PubMed Central

    Riser, Bruce L.; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R.; Rambow, Jo Ann; Riser, Melisa L.; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C.

    2009-01-01

    Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-β, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-β treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-β treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-β to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments. PMID:19359517

  1. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease.

    PubMed

    Riser, Bruce L; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R; Rambow, Jo Ann; Riser, Melisa L; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C

    2009-05-01

    Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-beta treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-beta treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-beta to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments.

  2. Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

    PubMed Central

    Kaplan, Raphael; Adhikari, Mohit H.; Hindriks, Rikkert; Mantini, Dante; Murayama, Yusuke; Logothetis, Nikos K.; Deco, Gustavo

    2016-01-01

    Summary The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1, 2, 3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]—particularly in DMN regions [6, 7, 8]. Mechanistic support for the DMN’s role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples—both during sleep [9, 10] and awake deliberative periods [11, 12, 13]. Ripples are ideally suited for memory consolidation [14, 15], since the reactivation of hippocampal place cell ensembles occurs during ripples [16, 17, 18, 19]. Moreover, the number of ripples after learning predicts subsequent memory performance in rodents [20, 21, 22] and humans [23], whereas electrical stimulation of the hippocampus after learning interferes with memory consolidation [24, 25, 26]. A recent study in macaques showed diffuse fMRI neocortical activation and subcortical deactivation specifically after ripples [27]. Yet it is unclear whether ripples and other hippocampal neural events influence endogenous fluctuations in specific RSNs—like the DMN—unitarily. Here, we examine fMRI datasets from anesthetized monkeys with simultaneous hippocampal electrophysiology recordings, where we observe a dramatic increase in the DMN fMRI signal following ripples, but not following other hippocampal electrophysiological events. Crucially, we find increases in ongoing DMN activity after ripples, but not in other RSNs. Our results relate endogenous DMN fluctuations to hippocampal ripples, thereby linking network-level resting fMRI fluctuations with behaviorally relevant circuit-level neural dynamics. PMID:26898464

  3. The Role of Endogenous Serotonin in Methamphetamine-Induced Neurotoxicity to Dopamine Nerve Endings of the Striatum

    PubMed Central

    Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.

    2010-01-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968

  4. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M

    2010-11-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  5. The contribution of hepatic inactivation of testosterone to the lowering of serum testosterone levels by ketoconazole.

    PubMed

    Wilson, V S; LeBlanc, G A

    2000-03-01

    Hepatic biotransformation processes can be modulated by chemical exposure and these alterations can impact the biotransformation of endogenous substrates. Furthermore, chemically mediated alterations in the biotransformation of endogenous steroid hormones have been implicated as a mechanism by which steroid hormone homeostasis can be disrupted. The fungicide ketoconazole has been shown to lower serum testosterone levels and alter both gonadal synthesis and hepatic inactivation of testosterone. The present study examined whether the effects of ketoconazole on the hepatic biotransformation of testosterone contribute to its lowering of serum testosterone levels. Results also were used to validate further the use of the androgen-regulated hepatic testosterone 6alpha/15alpha-hydroxylase ratio as an indicator of androgen status. Male CD-1 mice were fed from 0 to 160 mg/kg ketoconazole in honey. Four h after the initial treatment, serum testosterone levels, gonadal testosterone secretion, and hepatic testosterone hydroxylase activity decreased, and the hepatic testosterone 6alpha/15alpha-hydroxylase ratio increased in a dose-dependent manner. Immunoblot analysis indicated that the transient decline in hepatic biotransformation was not due to reduced P450 protein levels. Rather, hepatic testosterone biotransformation activities were found to be differentially susceptible to direct inhibition by ketoconazole. Differential inhibition was also responsible for the increase seen in the 6alpha/15alpha-hydroxylase ratio. The changes in serum testosterone levels could be explained by decreased gonadal synthesis of testosterone and were not impacted by decreased hepatic biotransformation of testosterone. These results demonstrate that changes in the hepatic hydroxylation of testosterone by ketoconazole, and perhaps other chemicals, have little or no influence serum testosterone levels.

  6. Is really endogenous ghrelin a hunger signal in chickens? Association of GHSR SNPs with increase appetite, growth traits, expression and serum level of GHRL, and GH.

    PubMed

    El-Magd, Mohammed Abu; Saleh, Ayman A; Abdel-Hamid, Tamer M; Saleh, Rasha M; Afifi, Mohammed A

    2016-10-01

    Chicken growth hormone secretagogue receptor (GHSR) is a receptor for ghrelin (GHRL), a peptide hormone produced by chicken proventriculus, which stimulates growth hormone (GH) release and food intake. The purpose of this study was to search for single nucleotide polymorphisms (SNPs) in exon 2 of GHSR gene and to analyze their effect on the appetite, growth traits and expression levels of GHSR, GHRL, and GH genes as well as serum levels of GH and GHRL in Mandara chicken. Two adjacent SNPs, A239G and G244A, were detected in exon 2 of GHSR gene. G244A SNP was non-synonymous mutation and led to replacement of lysine amino acid (aa) by arginine aa, while A239G SNP was synonymous mutation. The combined genotypes of A239G and G244A SNPs produced three haplotypes; GG/GG, GG/AG, AG/AG, which associated significantly (P<0.05) with growth traits (body weight, average daily gain, shank length, keel length, chest circumference) at age from >4 to 16w. Chickens with the homozygous GG/GG haplotype showed higher growth performance than other chickens. The two SNPs were also correlated with mRNA levels of GHSR and GH (in pituitary gland), and GHRL (in proventriculus and hypothalamus) as well as with serum level of GH and GHRL. Also, chickens with GG/GG haplotype showed higher mRNA and serum levels. This is the first study to demonstrate that SNPs in GHSR can increase appetite, growth traits, expression and level of GHRL, suggesting a hunger signal role for endogenous GHRL. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Developmental changes in drug-metabolizing enzyme expression during metamorphosis of Xenopus tropicalis.

    PubMed

    Mori, Junpei; Sanoh, Seigo; Kashiwagi, Keiko; Hanada, Hideki; Shigeta, Mitsuki; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Kotake, Yaichiro; Sugihara, Kazumi; Kitamura, Shigeyuki; Kashiwagi, Akihiko; Ohta, Shigeru

    2017-01-01

    A large number of chemicals are routinely detected in aquatic environments, and these chemicals may adversely affect aquatic organisms. Accurate risk assessment requires understanding drug-metabolizing systems in aquatic organisms because metabolism of these chemicals is a critical determinant of chemical bioaccumulation and related toxicity. In this study, we evaluated mRNA expression levels of nuclear receptors and drug-metabolizing enzymes as well as cytochrome P450 (CYP) activities in pro-metamorphic tadpoles, froglets, and adult frogs to determine how drug-metabolizing systems are altered at different life stages. We found that drug-metabolizing systems in tadpoles were entirely immature, and therefore, tadpoles appeared to be more susceptible to chemicals compared with metamorphosed frogs. On the other hand, cyp1a mRNA expression and CYP1A-like activity were higher in tadpoles. We found that thyroid hormone (TH), which increases during metamorphosis, induced CYP1A-like activity. Because endogenous TH concentration is significantly increased during metamorphosis, endogenous TH would induce CYP1A-like activity in tadpoles.

  8. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  9. Effect of malnutrition on iron homeostasis in black-necked swans (Cygnus melanocoryphus).

    PubMed

    Norambuena, M Cecilia; Bozinovic, Francisco

    2009-12-01

    The Cayumapu River black-necked swan (Cygnus melanocoryphus) population in southern Chile suffered a syndrome of malnutrition and hyperferremia in 2005. The iron metabolic imbalance could not be explained on the basis of the quality of their diet. Hence, the primary objective of this study was to determine the relationship between malnutrition and iron homeostasis in black-necked swans. It was proposed that catabolic processes could increase serum iron levels due to the release of endogenous iron from tissues. A free-living swan population undergoing natural nutritional imbalance due to molting was studied. In addition, swans captured were subjected to a diet restriction until they became emaciated. The results revealed that neither lipolytic activity nor emaciation affected serum iron concentrations. The increment of total iron binding capacity observed was in agreement with the reduction of endogenous iron stored, with the increase of erythropoeitic demand, or with both. Future studies are needed to determine the effect of incremental erythropoietic activity on iron homeostasis in anemic, malnourished birds.

  10. MicroRNA-based biotechnology for plant improvement.

    PubMed

    Zhang, Baohong; Wang, Qinglian

    2015-01-01

    MicroRNAs (miRNAs) are an extensive class of newly discovered endogenous small RNAs, which negatively regulate gene expression at the post-transcription levels. As the application of next-generation deep sequencing and advanced bioinformatics, the miRNA-related study has been expended to non-model plant species and the number of identified miRNAs has dramatically increased in the past years. miRNAs play a critical role in almost all biological and metabolic processes, and provide a unique strategy for plant improvement. Here, we first briefly review the discovery, history, and biogenesis of miRNAs, then focus more on the application of miRNAs on plant breeding and the future directions. Increased plant biomass through controlling plant development and phase change has been one achievement for miRNA-based biotechnology; plant tolerance to abiotic and biotic stress was also significantly enhanced by regulating the expression of an individual miRNA. Both endogenous and artificial miRNAs may serve as important tools for plant improvement. © 2014 Wiley Periodicals, Inc.

  11. Two-Stage Bayesian Model Averaging in Endogenous Variable Models*

    PubMed Central

    Lenkoski, Alex; Eicher, Theo S.; Raftery, Adrian E.

    2013-01-01

    Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471

  12. Combination of exogenous cell transplantation and 5-HT{sub 4} receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hui; Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi; Zheng, Bai-Jun

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT{sub 4} receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT{sub 4} receptor agonist/antagonist. The labeled ENCCs were then transplantedmore » into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75{sup NTR} and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT{sub 4} receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.« less

  13. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through decreased spermine and changes in the ratio of polyamines in cowpea.

    PubMed

    Huang, Xingxue; Bie, Zhilong

    2010-01-01

    This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.

  14. The stargazin-related protein γ7 interacts with the mRNA binding protein hnRNP A2 and regulates the stability of specific mRNAs including CaV2.2

    PubMed Central

    Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.

    2009-01-01

    The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037

  15. Effect of a 20-day ski trek on fuel selection during prolonged exercise at low workload with ingestion of 13C-glucose.

    PubMed

    Péronnet, F; Abdelaoui, M; Lavoie, C; Marrao, C; Kerr, S; Massicotte, D; Giesbrecht, G

    2009-05-01

    Fuel selection was measured in five subjects (36.0 +/- 10.5 years old; 87.3 +/- 12.5 kg; mean +/- SD) during a 120-min tethered walking with ski poles (1.12 l O(2) min(-1)) with ingestion of (13)C-glucose (1.5 g kg(-1)), before and after a 20-day 415-km ski trek [physical activity level (PAL) approximately 3], using respiratory calorimetry, urea excretion, and (13)C/(12)C in expired CO(2) and in plasma glucose. Before the ski trek, protein oxidation contributed 9.7 +/- 1.6% to the energy yield (%En) while fat and carbohydrate (CHO) oxidation provided 73.5 +/- 5.5 and 16.7 +/- 6.5%En. Plasma glucose was the main source of CHO (52.9 +/- 9.5%En) with similar contributions from exogenous glucose (27.2 +/- 3.1%En), glucose from the liver (25.6 +/- 8.3%En) and muscle glycogen (20.9 +/- 4.0%En). Endogenous CHO contributed 46.6 +/- 3.9%En. Following the ski trek %En from protein, fat, CHO, exogenous glucose and endogenous CHO were not significantly modified (10.1 +/- 1.3, 15.8 +/- 6.7, 74.1 +/- 6.5, 28.7 +/- 3.0 and 45.5 +/- 7.5%En, respectively) but the %En from plasma glucose and glucose from the liver (41.1 +/- 3.6 and 12.4 +/- 4.0%En) were reduced, while that from muscle glycogen increased (33.0 +/- 4.5%En). These results show that in subjects in the fed state with glucose ingestion during exercise, CHO is the main substrate oxidized, with major contributions from both exogenous and endogenous CHO. Following a ~3-week period of prolonged low intensity exercise, the %En from protein, fat, CHO, exogenous glucose and endogenous CHO were not modified. However, the %En from glucose released from the liver was reduced (possibly due to an increased insulin sensitivity of the liver) while that from muscle glycogen was increased.

  16. Interdependency of Cystathione γ-Lyase and Cystathione β-Synthase in Hydrogen Sulfide–Induced Blood Pressure Regulation in Rats

    PubMed Central

    Roy, Alexander; Khan, Abdul H.; Islam, Mohammed T.; Prieto, Minolfa C.; Majid, Dewan S.A.

    2012-01-01

    Background Hydrogen sulfide (H2S), an endogenous vasoactive agent, is produced by cystathionine γ-lyase (CGL) and cystathionine β-synthase (CBS) enzymes. This study was conducted to evaluate the relative contribution of these enzymes in regulating systemic arterial pressure. Methods Sprague–Dawley rats were chronically treated with CGL inhibitor, -propargylglycine (PAG, 37.5 mg/kg/day; intraperitoneally, i.p.) or CBS inhibitor, aminooxyacetic acid (AOA, 8.75 mg/kg/day; i.p.) or in combination for 4 weeks and the effects on arterial pressure (tail-cuff plethysmography) and renal excretory function (24 h urine collections using metabolic cages) were assessed once in a week. Changes in renal blood flow (RBF; Ultrasonic flowmetry) and glomerular filtration rate (GFR; Inulin clearance) were assessed in acute experiments in anesthetized rats at the end of treatment period. Results Compared to vehicle treated control group, only the rats with combination therapy showed a decrease in urinary sulfate excretion rate (248 ± 47 vs. 591 ± 70 nmol/24 h; marker for endogenous H2S level) which was associated with an increase in mean arterial pressure (MAP; 130 ± 2 vs. 99 ± 2 mm Hg). Urine flow and sodium excretion were also increased in combination group as consequent to the increase in MAP. GFR did not alter due to these treatments but RBF was lowered (4 ± 0.3 vs. 7 ± 0.4 ml/min/g) only in the combination group compared to the control group. Conclusion These findings indicate that a deficiency in one enzyme's activity could be compensated by the activity of the other to maintain the endogenous H2S level, the deficiency of which modulates systemic and renal vascular resistances leading to the development of hypertension. PMID:21866187

  17. Influence of oral contraceptives on endogenous pain control in healthy women.

    PubMed

    Rezaii, Taraneh; Ernberg, Malin

    2010-06-01

    This study investigated the influence of oral contraceptives (OC) on diffuse noxious inhibitory control (DNIC) in healthy women. Fifteen women taking OC and 17 normally menstruating women (No-OC) were tested during high and low endogenous estrogens sessions. Saliva was sampled for analysis of endogenous estradiol level. Mechanical pressure (test stimuli) was applied to the masseter muscle and finger. The pain induced by this pressure was assessed on a 0-10 numerical rating scale (NRS) before, during, and after immersion of the contralateral hand in ice-cold water (cold pressor test, CPT) to induce DNIC. For all subjects, pain induced by the test stimuli decreased significantly during the CPT (P < 0.001). The decrease in general was larger in the No-OC group, with a significant difference between groups in the masseter muscle in the low session (P < 0.027). There were no significant differences between groups or sessions in estradiol levels. These results indicate that endogenous pain modulation may be less effective in OC users.

  18. Assays for endogenous components of human milk: comparison of fresh and frozen samples and corresponding analytes in serum.

    PubMed

    Hines, Erin P; Rayner, Jennifer L; Barbee, Randy; Moreland, Rae Ann; Valcour, Andre; Schmid, Judith E; Fenton, Suzanne E

    2007-05-01

    Breast milk is a primary source of nutrition that contains many endogenous compounds that may affect infant development. The goals of this study were to develop reliable assays for selected endogenous breast milk components and to compare levels of those in milk and serum collected from the same mother twice during lactation (2-7 weeks and 3-4 months). Reliable assays were developed for glucose, secretory IgA, interleukin-6, tumor necrosis factor-a, triglycerides, prolactin, and estradiol from participants in a US EPA study called Methods Advancement in Milk Analysis (MAMA). Fresh and frozen (-20 degrees C) milk samples were assayed to determine effects of storage on endogenous analytes. The source effect (serum vs milk) seen in all 7 analytes indicates that serum should not be used as a surrogate for milk in children's health studies. The authors propose to use these assays in studies to examine relationships between the levels of milk components and children's health.

  19. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  20. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin

    PubMed Central

    Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.

    2016-01-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544

  1. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids.

    PubMed

    Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence; Campbell, Raymond; Bramley, Peter M; Taylor, Mark; Fraser, Paul D

    2016-01-01

    To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4' β-oxygenase (crtW) and 3, 3' β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues.

    PubMed

    Enoki, Shinichi; Hattori, Tomoki; Ishiai, Shiho; Tanaka, Sayumi; Mikami, Masachika; Arita, Kayo; Nagasaka, Shu; Suzuki, Shunji

    2017-12-01

    We investigated the effect of vanillylacetone (VA) on anthocyanin accumulation with aim of improving grape berry coloration. Spraying Vitis vinifera cv. Muscat Bailey A berries with VA at veraison increased sugar/acid ratio, an indicator of maturation and total anthocyanin accumulation. To elucidate the molecular mechanism underlying the effect of VA on anthocyanin accumulation, in vitro VA treatment of a grapevine cell culture was carried out. Endogenous abscisic acid (ABA) content was higher in the VA-treated cell cultures than in control at 3h after treatment. Consistent with this, the relative expression levels of anthocyanin-synthesis-related genes, including DFR, LDOX, MybA1 and UFGT, in VA-treated cell cultures were much higher than those in control, and high total anthocyanin accumulation was noted in the VA-treated cell cultures as well. These results suggest that VA up-regulates the expression of genes leading to anthocyanin accumulation by inducing endogenous ABA. In addition, VA increased total anthocyanin content in a dose-dependent manner. Although VA treatment in combination with exogenous ABA did not exhibit any synergistic effect, treatment with VA alone showed an equivalent effect to that with exogenous ABA alone on total anthocyanin accumulation. These findings point to the possibility of using VA for improving grape berry coloration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid.

    PubMed

    Koshio, Aya; Hasegawa, Tomomi; Okada, Rieko; Takeno, Kiyotoshi

    2015-01-15

    The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Endogenous galectin-3 expression levels modulate immune responses in galectin-3 transgenic mice.

    PubMed

    Chaudhari, Aparna D; Gude, Rajiv P; Kalraiya, Rajiv D; Chiplunkar, Shubhada V

    2015-12-01

    Galectin-3 (Gal-3), a β-galactoside-binding mammalian lectin, is involved in cancer progression and metastasis. However, there is an unmet need to identify the underlying mechanisms of cancer metastasis mediated by endogenous host galectin-3. Galectin-3 is also known to be an important regulator of immune responses. The present study was aimed at analysing how expression of endogenous galectin-3 regulates host immunity and lung metastasis in B16F10 murine melanoma model. Transgenic Gal-3(+/-) (hemizygous) and Gal-3(-/-) (null) mice exhibited decreased levels of Natural Killer (NK) cells and lower NK mediated cytotoxicity against YAC-1 tumor targets, compared to Gal-3(+/+) (wild-type) mice. On stimulation, Gal-3(+/-) and Gal-3(-/-) mice splenocytes showed increased T cell proliferation than Gal-3(+/+) mice. Intracellular calcium flux was found to be lower in activated T cells of Gal-3(-/-) mice as compared to T cells from Gal-3(+/+) and Gal-3(+/-) mice. In Gal-3(-/-) mice, serum Th1, Th2 and Th17 cytokine levels were found to be lowest, exhibiting dysregulation of pro-inflammatory and anti-inflammatory cytokines balance. Marked decrease in serum IFN-γ levels and splenic IFN-γR1 (IFN-γ Receptor 1) expressing T and NK cell percentages were observed in Gal-3(-/-) mice. On recombinant IFN-γ treatment of splenocytes in vitro, Suppressor of Cytokine Signaling (SOCS) 1 and SOCS3 protein expression was higher in Gal-3(-/-) mice compared to that in Gal-3(+/+) and Gal-3(+/-) mice; suggesting possible attenuation of Signal Transducer and Activator of Transcription (STAT) 1 mediated IFN-γ signaling in Gal-3(-/-) mice. The ability of B16F10 melanoma cells to form metastatic colonies in the lungs of Gal-3(+/+) and Gal-3(-/-) mice remained comparable, whereas it was found to be reduced in Gal-3(+/-) mice. Our data indicates that complete absence of endogenous host galectin-3 facilitates lung metastasis of B16F10 cells in mice, which may be contributed by dysregulated immune responses resulting from decreased NK cytotoxicity, disturbed serum Th1, Th2, Th17 cytokine milieu, reduced serum IFN-γ levels and attenuation of splenic STAT1 mediated IFN-γ signalling in Gal-3(-/-) mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm.

    PubMed

    Nozaradan, Sylvie; Schönwiesner, Marc; Keller, Peter E; Lenc, Tomas; Lehmann, Alexandre

    2018-02-01

    The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference.

    PubMed

    Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-04-01

    Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Role of hydrogen sulfide in portal hypertension and esophagogastric junction vascular disease

    PubMed Central

    Wang, Chao; Han, Juan; Xiao, Liang; Jin, Chang-E; Li, Dong-Jian; Yang, Zhen

    2014-01-01

    AIM: To investigate the association between endogenous hydrogen sulfide (H2S) and portal hypertension as well as its effect on vascular smooth muscle cells. METHODS: Portal hypertension patients were categorized by Child-Pugh score based on bilirubin and albumin levels, prothrombin time, ascites and hepatic encephalopathy. Plasma H2S concentrations and portal vein diameters (PVDs) were compared between portal hypertension patients and control participants, as well as between portal hypertension patients with varying degrees of severity. In addition, we established a rabbit hepatic schistosomiasis portal hypertension (SPH) model and analyzed liver morphology, fibrosis grade, plasma and liver tissue H2S concentrations, as well as cystathionine γ-lyase (CSE) activity and phosphorylated extracellular signal-regulated kinase (pERK)1/2, B cell lymphoma (Bcl)-2 and Bcl-XL expression in portal vein smooth muscle cells, in addition to their H2S-induced apoptosis rates. RESULTS: In portal hypertension patients, endogenous H2S levels were significantly lower than those in healthy controls. The more severe the disease was, the lower were the H2S plasma levels, which were inversely correlated with PVD and Child-Pugh score. Liver tissue H2S concentrations and CSE expression were significantly lower in the SPH rabbit livers compared with the control animals, starting at 3 wk, whereas pERK 1/2 expressions gradually increased 12-20 wk after SPH model establishment. In portal vein smooth muscle cells, increasing H2S levels led to increased apoptosis, while Bcl-2 and Bcl-XL expression decreased. CONCLUSION: H2S prevents vascular restructuring caused by excessive proliferation of smooth muscle cells via apoptosis induction, which helps to maintain normal vascular structures. PMID:24574782

  8. Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles.

    PubMed

    Santos, Tiago; Ferreira, Raquel; Quartin, Emanuel; Boto, Carlos; Saraiva, Cláudia; Bragança, José; Peça, João; Rodrigues, Cecília; Ferreira, Lino; Bernardino, Liliana

    2017-09-01

    Neurogenic niches constitute a powerful endogenous source of new neurons that can be used for brain repair strategies. Neuronal differentiation of these cells can be regulated by molecules such as retinoic acid (RA) or by mild levels of reactive oxygen species (ROS) that are also known to upregulate RA receptor alpha (RARα) levels. Data showed that neural stem cells from the subventricular zone (SVZ) exposed to blue light (405nm laser) transiently induced NADPH oxidase-dependent ROS, resulting in β-catenin activation and neuronal differentiation, and increased RARα levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis both in vitro and in vivo, while offering a temporal and spatial control of RA release. In conclusion, this combinatory treatment offers great advantages to potentiate neuronal differentiation, and provides an innovative and efficient application for brain regenerative therapies. Controlling the differentiation of stem cells would support the development of promising brain regenerative therapies. Blue light transiently increased reactive oxygen species, resulting in neuronal differentiation and increased retinoic acid receptor (RARα) levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis, while offering a temporal and spatial control of RA release. In this sense, our approach relying on the modulation of endogenous stem cells for the generation of new neurons may support the development of novel clinical therapies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  10. Pulmonary vascular clearance of harmful endogenous macromolecules in a porcine model of acute liver failure.

    PubMed

    Nedredal, Geir I; Elvevold, Kjetil; Chedid, Marcio F; Ytrebø, Lars M; Rose, Christopher F; Sen, Sambit; Smedsrød, Bård; Jalan, Rajiv; Revhaug, Arthur

    2016-01-01

    Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.

  11. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    PubMed

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier. Copyright © 2015. Published by Elsevier B.V.

  12. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate

    PubMed Central

    Hollar, Amy R.; Choi, Jinyoung; Grimm, Adam T.; Buchholz, Daniel R.

    2011-01-01

    Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have 1) late onset of TR expression prior to the production of endogenous TH and 2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its increased TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates. PMID:21651912

  13. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone.

    PubMed

    Asahina, Masashi; Tamaki, Yuji; Sakamoto, Tomoaki; Shibata, Kyomi; Nomura, Takahito; Yokota, Takao

    2014-08-01

    In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  15. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking

    PubMed Central

    2005-01-01

    PKCζ (protein kinase Cζ) is a serine/threonine protein kinase controlled by insulin, various growth factors and phosphoinositide 3-kinase. It has been implicated in controlling glucose transport in response to insulin by the translocation of GLUT4-(glucose transporter 4) containing vesicles to the plasma membrane in stimulated cells. How PKCζ modulates GLUT4 vesicle trafficking remains unknown. A yeast two-hybrid screen using full-length human PKCζ identified 80K-H protein as an interactor with PKCζ. GST (glutathione S-transferase) pull-down assays with GST-tagged 80K-H constructs confirmed the interaction and showed that the N-terminal portion of 80K-H was not required for the interaction. Immunoprecipitates of endogenous PKCζ from Cho cells, 3T3-L1 adipocytes or L6 myotubes contained endogenous 80K-H, demonstrating a physiological interaction. Insulin stimulation enhanced the association 3–5-fold. Immunoprecipitates of endogenous 80K-H contained endogenous munc18c and immunoprecipitates of endogenous munc18c contained endogenous PKCζ, with insulin markedly increasing the amount of co-immunoprecipitated protein in each case. These results show that insulin triggers interactions in vivo between PKCζ, 80K-H and munc18c. Overexpression of 80K-H constructs mimicked the action of insulin in stimulating both glucose uptake and translocation of Myc-tagged GLUT4 in Cho cells, with the level of effect proportional to the ability of the constructs to associate with munc18c. These results identify 80K-H as a new player involved in GLUT4 vesicle transport and identify a link between a kinase involved in the insulin signalling cascade, PKCζ, and a known component of the GLUT4 vesicle trafficking pathway, munc18c. The results suggest a model whereby insulin triggers the formation of a PKCζ–80K-H–munc18c complex that enhances GLUT4 translocation to the plasma membrane. PMID:15707389

  16. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova; Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated themore » effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.« less

  17. Dietary acid, age, and serum bicarbonate levels among adults in the United States.

    PubMed

    Amodu, Afolarin; Abramowitz, Matthew K

    2013-12-01

    Greater dietary acid has been associated with lower serum bicarbonate levels in patients with CKD. Whether this association extends to the general population and if it is modified by age are unknown. This study examined the association of the dietary acid load, estimated by net endogenous acid production, with serum bicarbonate levels in adult participants in the National Health and Nutrition Examination Survey 1999-2004. The mean serum bicarbonate was 24.9 mEq/L (SEM=0.1), and the mean estimated net endogenous acid production was 57.4 mEq/d (SEM=0.4). Serum bicarbonate was linearly associated with age, such that the oldest participants had the highest serum bicarbonate levels. After multivariable adjustment, participants in the highest quartile of net endogenous acid production had 0.40 mEq/L (95% confidence interval, -0.55 to -0.26) lower serum bicarbonate and a 33% (95% confidence interval, 3 to 72) higher likelihood of acidosis compared with those participants in the lowest quartile. There was a significant interaction by age of the association of net endogenous acid production with serum bicarbonate (P=0.005). Among participants 20-39, 40-59, and ≥60 years old, those participants in the highest net endogenous acid production quartile had 0.26 (95% confidence interval, -0.49 to -0.03), 0.60 (95% confidence interval, -0.92 to -0.29), and 0.49 (95% confidence interval, -0.84 to -0.14) mEq/L lower serum bicarbonate, respectively, compared with participants in the lowest quartile. Greater dietary acid is associated with lower serum bicarbonate in the general US population, and the magnitude of this association is greater among middle-aged and elderly persons than younger adults.

  18. Transfer of endogenous pyrogens across artificial membranes?

    PubMed

    Lonnemann, G; Linnenweber, S; Burg, M; Koch, K M

    1998-05-01

    Synthetic high-flux dialyzer membranes used in continuous veno-venous hemofiltration are permeable to middle molecular size endogenous pyrogens, the pro-inflammatory cytokines IL-1 beta and TNF-alpha. The quantities removed by sieving are, however, negligible in vitro as well as in vivo. Adsorption of cytokines to the membrane polymer is the major mechanism of pyrogen removal. Adsorption seems to be semispecific for pro-inflammatory cytokines because levels of anti-inflammatory mediators were not changed or even increased during CVVH. Thus, CVVH may change cytokine profiles in septic patients supporting the predominance of anti-inflammatory over pro-inflammatory activity in plasma. It remains to be demonstrated whether modifications of extracorporeal blood purification systems (high-volume CVVH, plasma separation + adsorption) are able to amplify the change in cytokine profiles and whether this change influences outcome of septic patients.

  19. Effects of Low-Dose Ionizing Radiation and Menadione, an Inducer of Oxidative Stress, Alone and in Combination in a Vertebrate Embryo Model

    PubMed Central

    Bladen, Catherine L.; Kozlowski, David J.; Dynan, William S.

    2014-01-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as byproducts of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0–1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms. PMID:23092554

  20. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    PubMed Central

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas

    2015-01-01

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524

  1. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes. PMID:26176266

  2. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes.

  3. Endogenous network of firms and systemic risk

    NASA Astrophysics Data System (ADS)

    Ma, Qianting; He, Jianmin; Li, Shouwei

    2018-02-01

    We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.

  4. TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level

    NASA Astrophysics Data System (ADS)

    Bettin, C.; Oehlmann, J.; Stroben, E.

    1996-09-01

    Tributyltin (TBT) exposure at different concentrations (5, 60, and 100 ng TBT as Sn/l) induces a concentration- and time-dependent imposex (=pseudohermaphroditism) development in female Nucella lapillus and Hinia reticulata. In both species the average imposex stage, termed as vas deferens sequence (VDS) index, and the average female penis length increases with increasing TBT concentration and duration of TBT exposure. Testosterone added at a concentration of 500 ng/l induces a faster and more intensive imposex development compared to that induced by the TBT concentrations used in the present experiments. Radioimmunological determination of endogenous steroid content reveals increasing testosterone titres in female gastropods exposed to TBT which correlate with the TBT concentration used and the duration of the experiment. The most marked and highest increase of the endogenous testosterone level is exhibited by females, of both species exposed to testosterone. Simulataneous exposure to TBT and to the antiandrogen cyproterone acetate which suppresses imposex development completely in N. lapillus and reduces imposex development strongly in H. reticulata proves that the imposex-inducing effects of TBT are mediated by an increasing androgen level and are not caused directly by the organotin compound itself. Further-more, TBT-induced imposex development can be suppressed in both snails by adding estrogens to the aqueous medium. These observations suggest that TBT causes an inhibition of the cytochrome P-450 dependent aromatase system which catalyses the aromatization of androgens to estrogens. The increase of the androgen content or the shift of the androgen-estrogen balance in favour of androgens induces the development of pseudohermaphroditism in marine prosobranchs. Artificial inhibition of the cytochrome P-450 dependent aromatase system using SH 489 (1-methyl-1,4-androstadiene-3,17-dione) as a steroidal aromatase inhibitor and flavone as a nonsteroidal aromatase inhibitor induces imposex development in N. lapillus as well as in H. reticulata.

  5. Endogenous alpha-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil.

    PubMed

    Suzuki, Masayuki; Yamaguchi, Shoko; Iida, Toshii; Hashimoto, Ikue; Teranishi, Hiromi; Mizoguchi, Masaya; Yano, Fumihiko; Todoroki, Yasushi; Watanabe, Naoharu; Yokoyama, Mineyuki

    2003-01-01

    Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.

  6. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    PubMed

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.

  7. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  8. Myofibroblasts Electrotonically Coupled to Cardiomyocytes Alter Conduction: Insights at the Cellular Level from a Detailed In silico Tissue Structure Model

    PubMed Central

    Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P.

    2016-01-01

    Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5–30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium. PMID:27833567

  9. Endogenous Melanocortin System Activity Contributes to the Elevated Arterial Pressure in Spontaneously Hypertensive Rats

    PubMed Central

    da Silva, Alexandre A.; do Carmo, Jussara M.; Kanyicska, Bela; Dubinion, John; Brandon, Elizabeth; Hall, John E.

    2009-01-01

    Previous studies suggest that activation of the CNS melanocortin system reduces appetite while increasing sympathetic activity and arterial pressure. The present study tested whether endogenous activity of the CNS melanocortin 3/4 receptors (MC3/4-R) contributes to elevated arterial pressure in the spontaneously hypertensive rat (SHR), a model of hypertension with increased sympathetic activity. A cannula was placed in the lateral ventricle of male SHR and Wistar (WKY) rats for chronic intracerebroventricular (ICV) infusions (0.5 μL/h). Mean arterial pressure (MAP) and heart rate (HR) were recorded 24 hour/d using telemetry. After 5-day control period, rats were infused with MC3/4-R antagonist (SHU-9119, 1 nmol/h-ICV) for 12 days, followed by 5-day posttreatment period. MC3/4-R antagonism increased food intake in SHR by 90% and in WKY by 125%, resulting in marked weight gain, insulin resistance, and hyperleptinemia in SHR and WKY. Despite weight gain, MC3/4-R antagonism reduced HR in SHR and WKY (≈40 bpm), while lowering MAP to a greater extent in SHR (−22±4 mm Hg) than WKY (−4±3 mm Hg). SHU9119 treatment failed to cause further reductions in MAP during chronic adrenergic blockade with propranolol and terazosin. These results suggest that endogenous activity of the CNS melanocortin system contributes to the maintenance of adrenergic tone and elevated arterial pressure in SHR even though mRNA levels for POMC and MC4R in the mediobasal hypothalamus were not increased compared to WKY. These results also support the hypothesis that weight gain does not raise arterial pressure in the absence of a functional MC3/4-R. PMID:18285617

  10. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    PubMed

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hypothalamic digoxin, hemispheric chemical dominance, and sleep.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.

  12. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.

    PubMed

    Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L

    2004-11-01

    Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.

  13. [The importance of regulation of endogenous methylarginine concentrations in clinical practice].

    PubMed

    Kopieczna-Grzebieniak, Ewa; Goss, Małgorzata

    2005-01-01

    Endogenous methylarginines, the catabolism products of proteins containing post-translationally methylated arginine residues, are the modulators of arginine metabolism. Endogenous methylarginines compete with arginine about cationic aminoacid transporter and some of them, e.g. asymmetric dimethylarginine (ADMA) and N-mono-methylarginine (MMA), are competitive inhibitors of nitric oxide synthases. The changes of arginine metabolism, induced by these methylarginines, may have serious consequences, because arginine is the precursor of cell-signalling molecules such as NO, agmatine, glutamate and gamma-aminobutyric acid (GABA) and the regulatory molecules polyamines. ADMA has also prooxidant properties and increases endothelial adhesiveness for monocytes. Asymmetric methyl-arginines induce endothelial dysfunction, which may be reversed by L-arginine supplementation, what is defined as "arginine paradox". The increased plasma concentration of asymmetric methylarginines is induced by hypercholesterolemic or hyperhomocysteinemic diets and by rich sodium chloride intake. The high level of plasma asymmetric methyl-arginines accompanies atherosclerosis, hypertension, chronic renal failure, diabetes, insulin resistence, hyperthyreosis, schizophrenia and sclerosis multiplex. The causes of increased concentration ADMA and MMA in these diseases are just now discovered. The hope in the future is the modulation of methylarginines concentration by regulation of expression and activities of enzymes taking part in the metabolism of these substances, particularly of dimethyl-arginine dimethyl-aminotransferase. The main aim of the present study is to pay attention to possibility of the modulation of asymmetric methyl-arginines concentration, what may be a new way of synthase nitric oxide activity regulation in vivo and may be useful in future therapy of patologies in which synthesis of NO is troubled.

  14. Reward can modulate attentional capture, independent of top-down set.

    PubMed

    Munneke, Jaap; Hoppenbrouwers, Sylco S; Theeuwes, Jan

    2015-11-01

    The traditional distinction between exogenous and endogenous attentional control has recently been enriched with an additional mode of control, termed "selection history." Recent findings have indicated, for instance, that previously rewarded or punished stimuli capture more attention than their physical attributes would predict. As such, the value that is associated with certain stimuli modulates attentional capture. This particular influence has also been shown for endogenous attention. Although recent leads have emerged, elucidating the influences of reward on exogenous and endogenous attention, it remains unclear to what extent exogenous attention is modulated by reward when endogenous attention is already deployed. We used a Posner cueing task in which exogenous and endogenous cues were presented to guide attention. Crucially, the exogenous cue also indicated the reward value. That is, the color of the exogenous cue indicated how much reward could be obtained on a given trial. The results showed main effects of endogenous and exogenous attention (i.e., speeded reaction times when either cue was valid, as compared to when it was invalid). Crucially, an interaction between exogenous cue validity and reward level was observed, indicating that reward-based associative-learning processes rapidly influence attentional capture, even when endogenous attention has been actively deployed.

  15. Self-Enhancement of Hepatitis C Virus Replication by Promotion of Specific Sphingolipid Biosynthesis

    PubMed Central

    Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori

    2012-01-01

    Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle. PMID:22916015

  16. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

    PubMed

    Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori

    2012-01-01

    Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.

  17. Effect of endogenous angiotensin II on renal nerve activity and its cardiac baroreflex regulation.

    PubMed

    Dibona, G F; Jones, S Y; Sawin, L L

    1998-11-01

    The effects of physiologic alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity and its cardiac baroreflex regulation were studied. The effect of angiotensin II type 1 receptor blockade with intracerebroventricular losartan was examined in conscious rats consuming a low, normal, or high sodium diet that were instrumented for the simultaneous measurement of right atrial pressure and renal sympathetic nerve activity. The gain of cardiac baroreflex regulation of renal sympathetic nerve activity (% delta renal sympathetic nerve activity/mmHg mean right atrial pressure) was measured during isotonic saline volume loading. Intracerebroventricular losartan did not decrease arterial pressure but significantly decreased renal sympathetic nerve activity in low (-36+/-6%) and normal (-24+/-5%), but not in high (-2+/-3%) sodium diet rats. Compared with vehicle treatment, losartan treatment significantly increased cardiac baroreflex gain in low (-3.45+/-0.20 versus -2.89+/-0.17) and normal (-2.89+/-0.18 versus -2.54+/-0.14), but not in high (-2.27+/-0.15 versus -2.22+/-0.14) sodium diet rats. These results indicate that physiologic alterations in endogenous angiotensin II activity tonically influence basal levels of renal sympathetic nerve activity and its cardiac baroreflex regulation.

  18. Gallbladder emptying to endogenous and exogenous stimulation in chronic pancreatitis patients.

    PubMed

    Meguro, T; Shimosegawa, T; Kashimura, J; Kikuchi, Y; Koizumi, M; Toyota, T

    1994-02-01

    The present study was designed to analyze the underlying mechanism of gallbladder motor disturbance in chronic pancreatitis patients. Gallbladder emptying to endogenous (oral test meal, Daiyan 13 g) and exogenous stimulation (iv cerulein, 30 ng/kg for 5 min) was examined by real-time ultrasonography in 12 patients with chronic pancreatitis and 10 normal subjects (controls). Plasma cholecystokinin levels during the endogenous stimulation were measured by bioassay. In chronic pancreatitis patients compared with controls, the fasting gallbladder volume was significantly increased (29.5 +/- 2.2 vs. 21.5 +/- 2.8 ml), whereas the gallbladder emptying (percent change of the basal volume) to oral test meal was significantly decreased. Neither cholecystokinin secretion induced by the test meal, nor the gallbladder emptying response to intravenous cerulein, differed significantly between the two groups. However, when chronic pancreatitis patients were divided according to pathogenesis, it became clear that gallbladder emptying to intravenous cerulein was significantly greater in patients with alcoholic chronic pancreatitis than in patients with idiopathic pancreatitis. Gallbladder emptying during the intestinal phase is generally reduced in patients with chronic pancreatitis, but gallbladder responsiveness to exogenous stimulation might be heterogeneous according to the pathogenesis.

  19. Control of G1 arrest after DNA damage.

    PubMed Central

    Kastan, M B; Kuerbitz, S J

    1993-01-01

    The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425

  20. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression.

    PubMed

    Cai, Liqiong; Wang, Zehua; Liu, Denghua

    2016-05-01

    Cervical cancer is one of the most common female malignancies in the world, and chemotherapeutic drug resistance is a major obstacle to cancer therapy. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and catalyzes the repressive histone H3 lysine 27 trimethylation (H3K27me3). However, the role of EZH2 on the chemotherapy drug resistance in cervical cancers remains unclear. In the present study, the cervical carcinoma specimens and paired normal tissue specimens were obtained and the expression of EZH2 was detected by western blotting. The results showed that high levels of EZH2 were detected in cervical carcinoma tissues, compared with paired control tissues (**p < 0.01). Next, three pairs of shRNA specific to EZH2 were designed and used to interfere with endogenous EZH2 expression. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays following treatment with various concentrations of cisplatin in HeLa and HeLa/DDP cells. The MTT assay results showed that knockdown of EZH2 in HeLa/DDP cells caused a 2.29- or 1.83-fold decrease in the cisplatin IC50 values (for shRNA1-EZH2, 34.88 vs. 15.21 μg/mL; p < 0.01; for shRNA3-EZH2, 34.88 vs. 19.09 μg/mL; p < 0.01). The EZH2 activity was also suppressed by 3-deazaneplanocin A (DZNep), EZH2 inhibitor, and the results demonstrated that, meanwhile, DZNep potently inhibited cell viability of HeLa/DDP cells, partly by suppression the levels of EZH2 and H3K27me3, but not H3K27me2, which was detected by western blotting analysis. Moreover, cell migration assay results showed that knockdown of EZH2 decreased cell metastasis of cervical cancer cells. Furthermore, cell cycle was detected by fluorescence-activated cell sorting (FACS) assay and the results demonstrated that interference with EZH2 expression increased the percentage of cells at G0/G1 phase and the HeLa/DDP cells were blocked at G0/G1 phase. Interestingly, western blotting results revealed that higher expression of EZH2 was related with lower level of Dicer in HeLa/DDP cells. Finally, in vivo tumorigenicity experiments results demonstrated that interference with endogenous EZH2 by shRNA specific to EZH2 or inhibition EZH2 by DZNep could significantly increase antitumor effects in nude mice. Thus, inhibiting the levels of endogenous EZH2 effectively reversed the cisplatin resistance and increased the cisplatin sensitivity in cisplatin-resistant HeLa/DDP cells. EZH2 might be a potential target for treating chemotherapeutic drug-resistant cervical cancers.

  2. Endogenous technological and demographic change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other more realistic cases of technological success, we find that endogenous technology change only helps to delay the peak of population size before it inevitably starts to decline. While the model is a rather simple model of societal development, it is shown to be capable of replicating patterns of technological and population changes. It is capable of replicating the pattern of declining consumption per capita in presence of growth in aggregate production. It is also capable of replicating an exponential population rise, even under increasing water scarcity. The results of the model suggest that societies that declined or are declining in the face of extreme water scarcity may have done so due to slower rate of success of investment in technological advancement. The model suggests that the population decline occurs after a prolonged decline in consumption per capita, which in turn is due to the joint effect of initially increasing population and increasing water scarcity. This is despite technological advancement and increase in aggregate production. We suggest that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water scarce basins.

  3. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other more realistic cases of technological success, we find that endogenous technology change only helps to delay the peak of population size before it inevitably starts to decline. While the model is a rather simple model of societal development, it is shown to be capable of replicating patterns of technological and population changes. It is capable of replicating the pattern of declining consumption per capita in presence of growth in aggregate production. It is also capable of replicating an exponential population rise, even under increasing water scarcity. The results of the model suggest that societies that declined or are declining in the face of extreme water scarcity may have done so due to slower rate of success of investment in technological advancement. The model suggests that the population decline occurs after a prolonged decline in consumption per capita, which in turn is due to the joint effect of initially increasing population and increasing water scarcity. This is despite technological advancement and increase in aggregate production. We suggest that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water scarce basins.

  4. Autoimmune progesterone dermatitis: Case report with history of urticaria, petechiae and palpable pinpoint purpura triggered by medical abortion.

    PubMed

    Mbonile, Lumuli

    2016-03-17

    Autoimmune progesterone dermatitis (APD) is a rare autoimmune response to raised endogenous progesterone levels that occur during the luteal phase of the menstrual cycle. Cutaneous, mucosal lesions and other systemic manifestations develop cyclically during the luteal phase of the menstrual cycle when progesterone levels are elevated. APD symptoms usually start 3 - 10 days before menstruation and resolve 1 - 2 days after menstruation ceases. A 30-year-old woman presented with urticaria, petechiae and palpable pinpoint purpura lesions of the legs, forearms, neck and buttocks 1 week prior to her menses starting and 2 months after a medical abortion. She was diagnosed with allergic contact dermatitis and topical steroids were prescribed. Her skin conditions did not improve and were associated with her menstrual cycle. We performed an intradermal test using progesterone, which was positive. She was treated with oral contraceptive pills and the symptoms were resolved. This is a typical case of APD triggered by increased sensitivity to endogenous progesterone induced a few months after medical abortion.

  5. Optimal glucocorticoid therapy.

    PubMed

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  6. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice.

    PubMed

    Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2018-04-01

    Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.

  7. Regulation of Kv2.1 K+ conductance by cell surface channel density

    PubMed Central

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261

  8. Early growth response 1 (EGR-1) is a transcriptional regulator of mitochondrial carrier homolog 1 (MTCH 1)/presenilin 1-associated protein (PSAP).

    PubMed

    Nelo-Bazán, María Alejandra; Latorre, Pedro; Bolado-Carrancio, Alfonso; Pérez-Campo, Flor M; Echenique-Robba, Pablo; Rodríguez-Rey, José Carlos; Carrodeguas, José Alberto

    2016-03-01

    Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Administration of exogenous acylated ghrelin or rikkunshito, an endogenous ghrelin enhancer, improves the decrease in postprandial gastric motility in an acute restraint stress mouse model

    PubMed Central

    Nahata, M; Saegusa, Y; Sadakane, C; Yamada, C; Nakagawa, K; Okubo, N; Ohnishi, S; Hattori, T; Sakamoto, N; Takeda, H

    2014-01-01

    Background Physical or psychological stress causes functional disorders in the upper gastrointestinal tract. This study aims to elucidate the ameliorating effect of exogenous acylated ghrelin or rikkunshito, a Kampo medicine which acts as a ghrelin enhancer, on gastric dysfunction during acute restraint stress in mice. Methods Fasted and postprandial motor function of the gastric antrum was wirelessly measured using a strain gauge force transducer and solid gastric emptying was detected in mice exposed to restraint stress. Plasma corticosterone and ghrelin levels were also measured. To clarify the role of ghrelin on gastrointestinal dysfunction in mice exposed to stress, exogenous acylated ghrelin or rikkunshito was administered, then the mice were subjected to restraint stress. Key Results Mice exposed to restraint stress for 60 min exhibited delayed gastric emptying and increased plasma corticosterone levels. Gastric motility was decreased in mice exposed to restraint stress in both fasting and postprandial states. Restraint stress did not cause any change in plasma acylated ghrelin levels, but it significantly increased the plasma des-acyl ghrelin levels. Administration of acylated ghrelin or rikkunshito improved the restraint stress-induced delayed gastric emptying and decreased antral motility. Ameliorating effects of rikkunshito on stress-induced gastric dysfunction were abolished by simultaneous administration of a ghrelin receptor antagonist. Conclusions & Inferences Plasma acylated/des-acyl ghrelin imbalance was observed in acute restraint stress. Supplementation of exogenous acylated ghrelin or enhancement of endogenous ghrelin signaling may be useful in the treatment of decreased gastric function caused by stress. PMID:24684160

  10. Endogenous antipyretics.

    PubMed

    Roth, Joachim

    2006-09-01

    The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.

  11. Identification of suitable reference genes for hepatic microRNA quantitation.

    PubMed

    Lamba, Vishal; Ghodke-Puranik, Yogita; Guan, Weihua; Lamba, Jatinder K

    2014-03-07

    MicroRNAs (miRNAs) are short (~22 nt) endogenous RNAs that play important roles in regulating expression of a wide variety of genes involved in different cellular processes. Alterations in microRNA expression patterns have been associated with a number of human diseases. Accurate quantitation of microRNA levels is important for their use as biomarkers and in determining their functions. Real time PCR is the gold standard and the most frequently used technique for miRNA quantitation. Real time PCR data analysis includes normalizing the amplification data to suitable endogenous control/s to ensure that microRNA quantitation is not affected by the variability that is potentially introduced at different experimental steps. U6 (RNU6A) and RNU6B are two commonly used endogenous controls in microRNA quantitation. The present study was designed to investigate inter-individual variability and gender differences in hepatic microRNA expression as well as to identify the best endogenous control/s that could be used for normalization of real-time expression data in liver samples. We used Taqman based real time PCR to quantitate hepatic expression levels of 22 microRNAs along with U6 and RNU6B in 50 human livers samples (25 M, 25 F). To identify the best endogenous controls for use in data analysis, we evaluated the amplified candidates for their stability (least variability) in expression using two commonly used software programs: Normfinder and GeNormplus, Both Normfinder and GeNormplus identified U6 to be among the least stable of all the candidates analyzed, and RNU6B was also not among the top genes in stability. mir-152 and mir-23b were identified to be the two most stable candidates by both Normfinder and GeNormplus in our analysis, and were used as endogenous controls for normalization of hepatic miRNA levels. Measurements of microRNA stability indicate that U6 and RNU6B are not suitable for use as endogenous controls for normalizing microRNA relative quantitation data in hepatic tissue, and their use can led to possibly erroneous conclusions.

  12. Autoclave sterilization produces acrylamide in rodent diets: implications for toxicity testing.

    PubMed

    Twaddle, Nathan C; Churchwell, Mona I; McDaniel, L Patrice; Doerge, Daniel R

    2004-06-30

    Acrylamide (AA) is a neurotoxic and carcinogenic contaminant that is formed during the cooking of starchy foods. Assessment of human risks from toxicants is routinely performed using laboratory rodents, and such testing requires careful control of unintended exposures, particularly through the diet. This study describes an analytical method based on liquid chromatography with electrospray tandem mass spectrometry that was used to measure endogenous AA in rodent diets and to survey a number of commercial products for contamination. Method sensitivity permitted accurate quantification of endogenous levels of AA in raw diets below 20 ppb. Autoclaving a standard rodent diet (NIH-31) increased the AA content 14-fold, from 17 to 240 ppb. A nutritionally equivalent diet that was sterilized by irradiation was found to contain approximately 10 ppb of AA (NIH-31IR). A toxicokinetic study of AA and its epoxide metabolite, glycidamide, was performed by switching mice from NIH-31IR to the autoclaved diet for a 30 min feeding period (average AA dose administered was 4.5 microg/kg of body weight). The concentrations of AA and glycidamide were measured in serum collected at various times. The elimination half-lives and the areas under the respective concentration-time curves were similar for AA and glycidamide. Mice maintained on autoclaved NIH-31 diet, but otherwise untreated, showed elevated steady state levels of a glycidamide-derived DNA adduct in liver relative to mice maintained on the irradiated diet. This study demonstrates that a heat sterilization procedure used in laboratory animal husbandry (i.e., autoclaving) can lead to the formation of significant levels of AA in basal diets used for toxicity testing. AA in rodent diets is bioavailable, is distributed to tissues, and is metabolically activated to a genotoxic metabolite, which produces quantifiable cumulative DNA damage. Although the contribution of endogenous AA to the incidence of tumors in multiple organs of rodents otherwise untreated in chronic carcinogenicity bioassays (i.e., control groups) is not known, the reduction of endogenous AA through the use of a suitable irradiated diet was deemed to be critical for ongoing studies of AA carcinogenicity and neurotoxicity.

  13. Overexpression of exogenous kidney-specific Ngal attenuates progressive cyst development and prolongs lifespan in a murine model of polycystic kidney disease.

    PubMed

    Wang, Ellian; Chiou, Yuan-Yow; Jeng, Wen-Yih; Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chin, Hsian-Jean; Leo Wang, Chi-Kuang; Yu, Shang-Shiuan; Tsai, Shih-Chieh; Chiang, Chih-Ying; Cheng, Po-Hao; Lin, Hong-Jie; Jiang, Si-Tse; Chiu, Sou-Tyau; Hsieh-Li, Hsiu Mei

    2017-02-01

    Neutrophil gelatinase-associated lipocalin (Ngal) is a biomarker for acute and chronic renal injuries, including polycystic kidney disease (PKD). However, the effect of Ngal on PKD progression remains unexplored. To study this, we generated 3 strains of mice with different expression levels of Ngal within an established PKD model (Pkd1 L3/L3 ): Pkd1 L3/L3 (with endogenous Ngal), Pkd1 L3/L3 ; Ngal Tg/Tg (with endogenous and overexpression of exogenous kidney-specific Ngal) and Pkd1 L3/L3 ; Ngal -/- mice (with Ngal deficiency). Knockout of endogenous Ngal had no effect on phenotypes, cystic progression, or survival of the PKD mice. However, the transgenic mice had a significantly longer lifespan, smaller (but not fewer) renal cysts, and less interstitial fibrosis than the mice without or with endogenous Ngal. Western-blot analyses showed significant increases in Ngal and cleaved caspase-3 and decreases in α-smooth muscle actin, hypoxia-inducible factor 1-α, pro-caspase 3, proliferating cell nuclear antigen, Akt, mammalian target of rapamycin, and S6 Kinase in the transgenic mice as compared with the other 2 strains of PKD mice. Thus, overexpression of exogenous kidney-specific Ngal reduced cystic progression and prolonged the lifespan in PKD mice, was associated with reductions in interstitial fibrosis and proliferation, and augmented apoptosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.

    PubMed

    Sigal, S L; Duff, G W; Atkins, E

    1985-01-01

    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.

  15. Central mediators involved in the febrile response: effects of antipyretic drugs

    PubMed Central

    Zampronio, Aleksander R; Soares, Denis M; Souza, Glória E P

    2015-01-01

    Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions. PMID:27227071

  16. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress.

    PubMed

    Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan

    2018-05-31

    Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.

  17. IN VITRO EFFECTS OF X-RADIATION ON WHITE BLOOD CELLS AND BLOOD PLATELETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.; Meyerriecks, N.; Berman, C.Z.

    Alkaline phosphatase activity of leukocytes is enhanced by radiation with 50000 r. This disturbance accentuates the inherent aging process of white blood cells and may be explained by changes in the cell envelope. X radiation dimin ishes the endogenous oxygen uptake of leukocyte-platelet suspensions by approximately 20%. This response to radiation is demonstrable at exposures of as little as 5000 r. The decreasing effect is dimirished when substrates such as sodium succinate or alpha -glycerophosphate are added, within a wide range of their concentration. With increasing substrate concentration the decrease due to radiation approaches that of the endogenous respiration andmore » even exceeds it in some of the experiments. In pure blood platelets a similar decreasing x radiation effect occurs for endogenous respiration as well as succinic dehydrogenase activity; alpha -glycerophosphate dehydrogenase activity, on the other hand is enhanced. The oxygen uptake in leukocyteplatelet suspensions due only to leukocytes can be calculated. While the percentage radiation decrease of pure leukocytes is unchanged for endogenous and succirate activity, the decrease for alpha -glycerophosphate as substrate reaches considerably higher levels (68% compared with 8.2% in leukocyte-platelet suspensions). Thus alpha glycerophosphate dehydrogenase activity seems to be most sensitive to x radiation. It was shown in a previous study that alpha -glycerophosphate dehydrogenase is one of the most importart respiratory enzymes in leukocytes. The glycolytic system in leukocytes remains intact following exposure to radiation with 50000 r. (auth)« less

  18. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    PubMed

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers

    PubMed Central

    Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers. PMID:28323908

  20. Measurement of endogenous versus exogenous formaldehyde-induced DNA-protein crosslinks in animal tissues by stable isotope labeling and ultrasensitive mass spectrometry

    PubMed Central

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J.; Moeller, Benjamin C.; Bodnar, Wanda M.; Swenberg, James A.

    2016-01-01

    DNA-protein crosslinks (DPCs) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Due to their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally-specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([13CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous (13CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues, but were absent in tissues distant to the site of contact. This observation together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde, and may inform improved disease prevention and treatment strategies. PMID:26984759

  1. Elevated Endomyocardial Biopsy Macrophage-Related Markers in Intractable Myocardial Diseases.

    PubMed

    Hayashi, Yuka; Hanawa, Haruo; Jiao, Shuang; Hasegawa, Go; Ohno, Yukako; Yoshida, Kaori; Suzuki, Tomoyasu; Kashimura, Takeshi; Obata, Hiroaki; Tanaka, Komei; Watanabe, Tohru; Minamino, Tohru

    2015-12-01

    Tissue macrophages can be activated by endogenous danger signals released from cells that are stressed or injured, leading to infiltration of inflammatory macrophages and neutrophils. We postulated that macrophage-related markers might be closely associated with the existence of endogenous danger signals, reflecting ongoing tissue injury in the absence of foreign substances. This study was designed to assess the ability of macrophage-related markers in endomyocardial biopsies to predict ongoing cardiac injury in non-inflammatory myocardial diseases. We examined levels of macrophage-related markers (CD68, CD163, CD45) in endomyocardial biopsies from patients (n = 86) with various myocardial diseases by quantitative reverse transcription-polymerase chain reaction (n = 78) and immunohistochemistry (n = 56). Thirty-three patients without inflammatory cardiac disease such as myocarditis and sarcoidosis were classified as "improved" or "non-improved" defined as a 10% increase in left ventricular ejection fraction by echocardiograph and a value greater than 30% at the time of follow-up. All macrophage-related (MacR) markers levels were not higher in non-improved dilated cardiomyopathy (DCM) patients than improved patients. However, patients with cardiac amyloidosis, cardiac Fabry disease, mitochondrial cardiomyopathy, and biventricular arrhythmogenic right ventricular cardiomyopathy (ARVC), which were categorized as "non-improvement diseases," had elevated macrophage-related markers compared to improved patients. Macrophage-related markers levels were increased in endomyocardial biopsy samples of patients with intractable myocardial diseases such as amyloidosis, mitochondrial disease, Fabry disease, and biventricular ARVC.

  2. Can we prevent BRCA1-associated breast cancer by RANKL inhibition?

    PubMed

    Kotsopoulos, Joanne; Singer, Christian; Narod, Steven A

    2017-01-01

    BRCA1 mutation carriers face a high lifetime risk of breast cancer, estimated at 60 % compared to 10 % in the general population. BRCA1 breast cancers typically have an aggressive course (i.e., high-grade, triple-negative) and are associated with a poor prognosis. At present, primary prevention is limited to prophylactic removal of the unaffected breasts. Effective chemopreventive strategies are not yet available. Emerging evidence suggests that BRCA1 mutation carriers have high circulating levels of progesterone which may play a role in their susceptibility to breast cancer. Recently, the RANK/RANKL system was found to be dysregulated in women with a BRCA1 mutation. Mutation carriers had significantly lower endogenous levels of osteoprotegerin (OPG) than women without a BRCA1 mutation. OPG is an endogenous decoy receptor for RANKL and inhibits RANKL-mediated signaling. RANKL binds to RANK on mammary epithelial cells and stimulates their proliferation and maturation. Low OPG levels may contribute to mammary tumorigenesis through increased proliferation and may explain in part the increased breast cancer risk in BRCA1 mutation carriers. Denosumab is an anti-RANKL monoclonal antibody which is approved to treat osteoporosis and to prevent skeletal damage caused by bone metastases. The emerging role of aberrant RANK-signaling in BRCA1 tumorigenesis suggests that targeting of RANKL may prevent breast cancer among women with germline BRCA1 mutations. Clinical investigations of denosumab are warranted and may lead to a novel chemopreventive approach for breast cancer for high-risk women.

  3. Changes in steroid profiles of the blue mussel Mytilus trossulus as a function of season, stage of gametogenesis, sex, tissue and mussel bed depth.

    PubMed

    Smolarz, Katarzyna; Zabrzańska, Sandra; Konieczna, Lucyna; Hallmann, Anna

    2018-04-01

    This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases.

    PubMed

    Arru, G; Mameli, G; Deiana, G A; Rassu, A L; Piredda, R; Sechi, E; Caggiu, E; Bo, M; Nako, E; Urso, D; Mariotto, S; Ferrari, S; Zanusso, G; Monaco, S; Sechi, G; Sechi, L A

    2018-03-31

    Human endogenous retroviruses (HERV) K/W seem to play a role in fostering and exacerbation of some neurological diseases, including amyotrophic lateral sclerosis (ALS). Given these findings, the immunity response against HERV-K and HERV-W envelope surface (env-su) glycoprotein antigens in serum and cerebrospinal fluid (CSF) was investigated for ALS, multiple sclerosis (MS) and Alzheimer's disease patients and in healthy controls. Four antigenic peptides derived respectively from HERV-K and HERV-W env-su proteins were studied in 21 definite or probable ALS patients, 26 possible or definite relapsing-remitting MS patients, 18 patients with Alzheimer's disease and 39 healthy controls. An indirect enzyme-linked immunosorbent assay was set up to detect specific antibodies (Abs) against env-su peptides. Amongst the measured levels of Abs against the four different HERV-K peptide fragments, only HERV-K env-su 19-37 was significantly elevated in ALS compared to other groups, both in serum and CSF. Instead, amongst the Abs levels directed against the four different HERV-W peptide fragments, only HERV-W env-su 93-108 and HERV-W env-su 248-262 were significantly elevated, in the serum and CSF of the MS group compared to other groups. In ALS patients, the HERV-K env-su 19-37 Abs levels were significantly correlated with clinical measures of disease severity, both in serum and CSF. Increased circulating levels of Abs directed against the HERV-W env-su 93-108 and HERV-W env-su 248-262 peptide fragments could serve as possible biomarkers in patients with MS. Similarly, increased circulating levels of Abs directed against the HERV-K env-su 19-37 peptide fragment could serve as a possible early novel biomarker in patients with ALS. © 2018 EAN.

  5. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    USDA-ARS?s Scientific Manuscript database

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  6. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  7. Disulfiram treatment increases plasma and red blood cell acetaldehyde in abstinent alcoholics.

    PubMed

    Rosman, A S; Waraich, A; Baraona, E; Lieber, C S

    2000-07-01

    Much of alcohol's toxicity is due to its product, acetaldehyde. The role of acetaldehyde derived from endogenous sources was assessed in alcoholic patients administered disulfiram, an inhibitor of aldehyde dehydrogenase. The first part of the study included 23 subjects without biochemical or clinical evidence of chronic liver disease who were abstinent for 2 weeks; 11 patients were started on disulfiram (250 mg/day), whereas the other 12 were not given disulfiram and served as controls. The second part of the study included 13 alcoholic patients with clinical or pathological evidence of cirrhosis who also were administered disulfiram for 2 weeks. Plasma and red blood cell (RBC) acetaldehyde as well as serum transaminases were measured at baseline and after 1 and 2 weeks of treatment. In the disulfiram-treated group of alcoholics without known cirrhosis, RBC acetaldehyde levels increased from the pretreatment value of 2.98+/-0.18 microM to 4.14+/-0.33 microM after 1 week and to 4.14+/-0.26 microM after 2 weeks of treatment (p < 0.001). Compared with the pretreatment values (2.07+/-0.24 microM), plasma acetaldehyde levels also increased after 1 week (3.18+/-0.32 microM) and 2 weeks (3.15+/-0.26 microM) of disulfiram treatment (p < 0.001). There were no significant differences in sequential levels measured in either plasma or RBC acetaldehyde levels in patients who were not administered disulfiram. In the group of cirrhotic patients, the mean baseline RBC acetaldehyde value (3.60+/-0.22 microM) was significantly higher than in noncirrhotics. Disulfiram therapy increased the RBC acetaldehyde after 1 week (4.63+/-0.27 microM, p < 0.001) and 2 weeks of treatment (4.06+/-0.28 microM, p < 0.05). Compared with baseline values, plasma acetaldehyde levels were significantly higher after 1 week but not after 2 weeks of disulfiram. There were no significant differences among serum transaminases in alcoholics administered disulfiram, although three cirrhotic patients did have clinically significant elevations. In abstaining subjects given disulfiram, acetaldehyde concentrations increase, possibly due to diminished catabolism of endogenously generated acetaldehyde. Disulfiram should be given cautiously, especially in patients with cirrhosis.

  8. Peri-OVLT E-series prostaglandins and core temperature do not increase after intravenous IL-1beta in pregnant rats.

    PubMed

    Fewell, James E; Eliason, Heather L; Auer, Roland N

    2002-08-01

    Rats have an attenuated febrile response to endogenous pyrogen near the term of pregnancy. Given the fundamental role of E-series prostaglandins (PGEs) in mediating the febrile response to blood-borne endogenous pyrogen, the present experiments were carried out to determine whether PGEs increase in the area surrounding the organum vasculosum laminae terminalis (peri-OVLT) of near-term pregnant (P) rats as in nonpregnant (NP) rats after intravenous (iv) administration of recombinant rat interleukin-1beta (rrIL-1beta). Core temperature was measured by telemetry and peri-OVLT interstitial fluid was sampled in 12 NP and 12 P chronically instrumented, Sprague-Dawley rats by microdialysis for determination of total PGEs by radioimmunoassay. Basal core temperatures were higher in NP compared with P rats (NP 37.9 degrees C +/- 0.5, P 36.9 degrees C +/- 0.4; P < 0.05), but basal peri-OVLT PGEs were similar in both groups (NP 260 +/- 153 pg/ml, P 278 +/- 177 pg/ml; P =not significant). Intravenous administration of rrIL-1beta to NP rats produced a significant increase in core temperature with a latency, magnitude, and duration of 10 min, 0.87 degrees C, and at least 170 min, respectively; peri-OVLT PGEs were increased significantly by 30 min and averaged 270% above basal levels throughout the experiment. In P rats, however, neither core temperature nor peri-OVLT PGEs increased significantly after iv administration of rrIL-1beta. Intravenous administration of vehicle did not significantly alter core temperature or peri-OVLT PGEs in either group of rats. Thus peri-OVLT PGEs do not increase in P rats as they do in NP rats after iv administration of rrIL-1beta. The mechanism of this interesting component of the maternal adaptation to pregnancy, which likely plays a major role in mediating the attenuated febrile response to endogenous pyrogen near the term of pregnancy, warrants further investigation.

  9. Development, Validation, and Interlaboratory Evaluation of a Quantitative Multiplexing Method To Assess Levels of Ten Endogenous Allergens in Soybean Seed and Its Application to Field Trials Spanning Three Growing Seasons.

    PubMed

    Hill, Ryan C; Oman, Trent J; Wang, Xiujuan; Shan, Guomin; Schafer, Barry; Herman, Rod A; Tobias, Rowel; Shippar, Jeff; Malayappan, Bhaskar; Sheng, Li; Xu, Austin; Bradshaw, Jason

    2017-07-12

    As part of the regulatory approval process in Europe, comparison of endogenous soybean allergen levels between genetically engineered (GE) and non-GE plants has been requested. A quantitative multiplex analytical method using tandem mass spectrometry was developed and validated to measure 10 potential soybean allergens from soybean seed. The analytical method was implemented at six laboratories to demonstrate the robustness of the method and further applied to three soybean field studies across multiple growing seasons (including 21 non-GE soybean varieties) to assess the natural variation of allergen levels. The results show environmental factors contribute more than genetic factors to the large variation in allergen abundance (2- to 50-fold between environmental replicates) as well as a large contribution of Gly m 5 and Gly m 6 to the total allergen profile, calling into question the scientific rational for measurement of endogenous allergen levels between GE and non-GE varieties in the safety assessment.

  10. Olive Oil Phenolics Prevent Oxysterol‐Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways

    PubMed Central

    Deiana, Monica; Spencer, Jeremy P. E.; Corona, Giulia

    2017-01-01

    Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes. PMID:28815947

  11. Update on subclinical hyperthyroidism.

    PubMed

    Donangelo, Ines; Braunstein, Glenn D

    2011-04-15

    Subclinical hyperthyroidism is defined by low or undetectable serum thyroid-stimulating hormone levels, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (as in Graves disease or toxic nodular goiter), administration of thyroid hormone for treatment of malignant thyroid disease, or unintentional excessive thyroid hormone therapy. The rate of progression to overt hyperthyroidism is higher in persons who have suppressed thyroid-stimulating hormone levels compared with those who have low but detectable levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation in older adults, and with decreased bone mineral density in postmenopausal women; however, the effectiveness of treatment in preventing these conditions is unknown. There is lesser-quality evidence suggesting an association between subclinical hyperthyroidism and other cardiovascular effects, including increased heart rate and left ventricular mass, and increased bone turnover markers. Possible associations between subclinical hyperthyroidism and quality of life parameters, cognition, and increased mortality rates are controversial. Prospective randomized controlled trials are needed to address the effects of early treatment on potential morbidities to help determine whether screening should be recommended in the asymptomatic general population.

  12. The Role of Endocannabinoid Signaling in Cortical Inhibitory Neuron Dysfunction in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2015-01-01

    Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol (2-AG) is 1) synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary cannabinoid receptor CB1R; 3) binds to CB1R which inhibits GABA release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase. Investigations of the endogenous cannabinoid system in the prefrontal cortex of subjects with schizophrenia have found evidence of higher metabolism of 2-AG, as well as both greater CB1R receptor binding and lower levels of CB1R mRNA and protein. Current views on the potential pathogenesis of these alterations, including disturbances in the development of the endogenous cannabinoid system, are discussed. In addition, how interactions between these alterations in the endocannabinoid system and those in other inhibitory neurons in the prefrontal cortex in subjects with schizophrenia might increase the liability to adverse outcomes with cannabis use is considered. PMID:26210060

  13. Identification of melatonin in Trichoderma spp. and detection of melatonin content under controlled-stress growth conditions from T. asperellum.

    PubMed

    Liu, Tong; Zhao, Fengzhou; Liu, Zhen; Zuo, Yuhu; Hou, Jumei; Wang, Yanjie

    2016-07-01

    T. koningii, T. harzianum, T. asperellum, T. longibrachiatum, and T. viride were analyzed using liquid chromatography-tandem mass spectrometry to determine whether melatonin is present. Results showed that there were abundant amounts of endogenous melatonin in five Trichoderma species, but no melatonin was found in any of the culture filtrates. T. asperellum had the highest amount of melatonin (27.588 ± 0.326 μg g(-1) dry mass), followed by T. koningii, T. harzianum, T. longibrachiatum, and T. viride. The endogenous melatonin content of T. asperellum in controlled-stress growth conditions was also detected. The data showed that chemical stressors (CdCl2 , CuSO4 , and H2 O2 ) provoked an increase in endogenous melatonin levels. CdCl2 had the highest stimulatory effect on melatonin production, as the product reached reaching up to three times the melatonin content of the control. NaCl stimulated a decrease of melatonin. Acidic conditions (pH 3 and pH 5) as well as slightly alkaline conditions (pH 9) resulted in an increase in the melatonin content, whereas pH11 resulted in a significant decrease in the melatonin content, only 12.276 ± 0.205 μg g(-1) dry mass. The current study is first to report melatonin content and the change of melatonin content under different stress situations in Trichoderma spp. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modulators of Nucleoside Metabolism in the Therapy of Brain Diseases

    PubMed Central

    Boison, Detlev

    2010-01-01

    Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the “soft and smart” therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed. PMID:21401494

  15. PeTMbase: A Database of Plant Endogenous Target Mimics (eTMs).

    PubMed

    Karakülah, Gökhan; Yücebilgili Kurtoğlu, Kuaybe; Unver, Turgay

    2016-01-01

    MicroRNAs (miRNA) are small endogenous RNA molecules, which regulate target gene expression at post-transcriptional level. Besides, miRNA activity can be controlled by a newly discovered regulatory mechanism called endogenous target mimicry (eTM). In target mimicry, eTMs bind to the corresponding miRNAs to block the binding of specific transcript leading to increase mRNA expression. Thus, miRNA-eTM-target-mRNA regulation modules involving a wide range of biological processes; an increasing need for a comprehensive eTM database arose. Except miRSponge with limited number of Arabidopsis eTM data no available database and/or repository was developed and released for plant eTMs yet. Here, we present an online plant eTM database, called PeTMbase (http://petmbase.org), with a highly efficient search tool. To establish the repository a number of identified eTMs was obtained utilizing from high-throughput RNA-sequencing data of 11 plant species. Each transcriptome libraries is first mapped to corresponding plant genome, then long non-coding RNA (lncRNA) transcripts are characterized. Furthermore, additional lncRNAs retrieved from GREENC and PNRD were incorporated into the lncRNA catalog. Then, utilizing the lncRNA and miRNA sources a total of 2,728 eTMs were successfully predicted. Our regularly updated database, PeTMbase, provides high quality information regarding miRNA:eTM modules and will aid functional genomics studies particularly, on miRNA regulatory networks.

  16. Effects of opioid peptides on thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate thatmore » stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.« less

  17. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  18. Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator.

    PubMed Central

    Hsieh, L. L.; Shinozuka, H.; Weinstein, I. B.

    1991-01-01

    Previous studies have demonstrated that BR-931, a hepatic peroxisome proliferator, can induce liver tumours in mice and rats. Since alterations in gene expression may play a critical role in multistage hepatocarcinogenesis, the present studies examined the expression of the c-myc, c-H-ras, epidermal growth factor (EGF) receptor and ODC (ornithine decarboxylase) genes, as well as endogenous retrovirus-like sequences, in F344 rat liver during the first 8 weeks of feeding a 0.16% Br931 diet and in liver tumours induced by chronic feeding of this diet. Northern blot analysis of poly A + liver RNA samples showed an increase in the level of RNAs homologous to rat leukaemia virus (RaLV) but no significant change in the level of 30S-retrovirus related RNAs in the liver RNA samples obtained from rats during the first 8 weeks of feeding the diet containing BR931. An increase in the levels of c-myc, c-H-ras and ODC transcripts was also seen in the liver RNA samples from the treated rats. Of particular interest was a decrease in the abundance of EGF receptor transcripts in the liver RNA samples from rats fed the BR931 diet. Increased levels of RaLV, c-myc, and ODC RNAs were also seen in the tumours induced by BR931, but this was not the case for 30S and c-H-ras. The liver tumour samples also showed a decrease in EGF receptor RNA. These changes in cellular levels of specific RNAs resemble, in several respect, those we previously described in rodent liver during regeneration and tumour promotion, and also those seen in rodent hepatomas induced by other agents. Therefore, they may reflect a common profile of gene expression relevant to liver proliferation and carcinogenesis. Images Figure 1 Figure 2 PMID:1931600

  19. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation.

    PubMed

    Hsueh, P-T; Lin, H-H; Wang, H-H; Liu, C-L; Ni, W-F; Liu, J-K; Chang, H-H; Sun, D-S; Chen, Y-S; Chen, Y-L

    2018-04-15

    The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. The usefulness of cytogenetic parameters, level of p53 protein and endogenous glutathione as intermediate end-points in raw betel-nut genotoxicity.

    PubMed

    Kumpawat, K; Chatterjee, A

    2003-07-01

    Betel-nut (BN) chewing related oral mucosal lesions are potential hazards to a large population worldwide. Genotoxicity of betel alkaloids, polyphenol and tannin fractions have been reported. It has been shown earlier that BN ingredients altered the level of endogenous glutathione (GSH) which could modulate the host susceptibility to the action of other chemical carcinogens. The north-east Indian variety of BN, locally known as 'kwai', is raw, wet and consumed unprocessed with betel-leaf and slaked lime and contains higher alkaloids, polyphenol and tannins as compared to the dried one. Therefore, the purpose of this study was to investigate the extent of DNA damage, pattern of cell kinetics, the level of p53-protein and endogenous GSH in kwai chewers in the tribal population of Meghalaya state in the northeastern region of India with an aim to see whether these end-points could serve as biomarkers of genetic damage of relevance for genotoxic/carcinogenic process. The present data show higher DNA damage, delay in cell kinetics, p53 expression and lower GSH-level in heavy chewers (HC) than nonchewers (NC). The influence of bleomycin (BLM) on chromatid break induction in G2-phase of peripheral blood lymphocytes in NC and HC has been analysed to determine individual susceptibility to carcinogenic assaults. HC showed higher induction of chromatid breaks than NC. Risk assessment in this study suggests an interaction between carcinogen exposure and mutagen sensitivity measures, risk estimates being higher in those individuals who both consume kwai and express sensitivity to free radical oxygen damage in vitro. From this study it seems that besides cytogenetical parameters, the level of endogenous GSH and the level of p53 protein could act as effective biomarkers for kwai chewers.

  1. Development of an LC-MS/MS method for the determination of endogenous cortisol in hair using (13)C3-labeled cortisol as surrogate analyte.

    PubMed

    Binz, Tina M; Braun, Ueli; Baumgartner, Markus R; Kraemer, Thomas

    2016-10-15

    Hair cortisol levels are increasingly applied as a measure for stress in humans and mammals. Cortisol is an endogenous compound and is always present within the hair matrix. Therefore, "cortisol-free hair matrix" is a critical point for any analytical method to accurately quantify especially low cortisol levels. The aim of this project was to modify current methods used for hair cortisol analysis to more accurately determine low endogenous cortisol concentrations in hair. For that purpose, (13)C3-labeled cortisol, which is not naturally present in hair (above 13C natural abundance levels), was used for calibration and comparative validation applying cortisol versus (13)C3-labeled cortisol. Cortisol was extracted from 20mg hair (standard sample amount) applying an optimized single step extraction protocol. An LC-MS/MS method was developed for the quantitative analysis of cortisol using either cortisol or (13)C3-cortisol as calibrators and D7-cortisone as internal standard (IS). The two methods (cortisol/(13)C3-labeled cortisol) were validated in a concentration range up to 500pg/mg and showed good linearity for both analytes (cortisol: R(2)=0.9995; (13)C3-cortisol R(2)=0.9992). Slight differences were observed for limit of detection (LOD) (0.2pg/mg/0.1pg/mg) and limit of quantification (LOQ) (1pg/mg/0.5pg/mg). Precision was good with a maximum deviation of 8.8% and 10% for cortisol and (13)C3-cortisol respectively. Accuracy and matrix effects were good for both analytes except for the quality control (QC) low cortisol. QC low (2.5pg/mg) showed matrix effects (126.5%, RSD 35.5%) and accuracy showed a deviation of 26% when using cortisol to spike. These effects are likely to be caused by the unknown amount of endogenous cortisol in the different hair samples used to determine validation parameters like matrix effect, LOQ and accuracy. No matrix effects were observed for the high QC (400pg/mg) samples. Recovery was good with 92.7%/87.3% (RSD 9.9%/6.2%) for QC low and 102.3%/82.1% (RSD 5.8%/11.4%) for QC high. After successful validation the applicability of the method could be proven. The study shows that the method is especially useful for determining low endogenous cortisol concentrations as they occur in cow hair for example. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Age-related changes in functional NANC innervation with VIP and substance P in the jejunum of Lewis rats.

    PubMed

    Kasparek, Michael S; Fatima, Javairiah; Iqbal, Corey W; Duenes, Judith A; Sarr, Michael G

    2009-12-03

    Age-related changes in non-adrenergic, non-cholinergic (NANC) neurotransmission might contribute to differences in gastrointestinal motility. Our aim was to determine age-related changes in functional innervation with vasoactive intestinal polypeptide (VIP) and substance P (Sub P) in rat jejunum. We hypothesized that maturation causes changes in neurotransmission with these two neuropeptides. Longitudinal and circular jejunal muscle strips from young (3 months) and middle-aged (15 months) rats (total: 24 rats) were studied; the response to exogenous VIP and Sub P and the effect of their endogenous release from the enteric nervous system during electrical field stimulation (EFS) were evaluated. In longitudinal muscle, response to exogenous VIP and endogenously released VIP during EFS were increased in middle-aged rats, while the effect of endogenously released Sub P was decreased. In the circular muscle, the response to endogenously released VIP was increased in middle-aged rats, while the effects of exogenous VIP and endogenously released Sub P were unchanged. Response to exogenous Sub P was unaffected by maturation in both muscle layers. Spontaneous contractile activity was increased in the longitudinal and circular muscle of the older rats. In the jejunum of middle-aged rats, participation of VIP in functional NANC innervation was increased, while functional innervation with Sub P was decreased. These changes in the balance of inhibitory and excitatory neurotransmission occur during the year of maturation in rats and demonstrate an age-dependant plasticity of neuromuscular bowel function.

  3. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    PubMed

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Determinants of Carboxyhemoglobin Levels and Relationship with Sepsis in a Retrospective Cohort of Preterm Neonates

    PubMed Central

    Sim, Kathleen; Parrish, Graham; Hoggart, Clive; Wang, Yifei; Kroll, J. Simon; Godambe, Sunit

    2016-01-01

    Carboxyhemoglobin levels in blood reflect endogenous carbon monoxide production and are often measured during routine blood gas analysis. Endogenous carbon monoxide production has been reported to be increased during sepsis, but carboxyhemoglobin levels have not been thoroughly evaluated as a biomarker of sepsis. We sought to determine whether carboxyhemoglobin levels were elevated during sepsis in a high risk population of premature neonates. We conducted a retrospective cohort study of 30 infants in two neonatal intensive care units using electronic medical and laboratory records. The majority of infants were extremely premature and extremely low birth weight, and 25 had at least one episode of sepsis. We collected all carboxyhemoglobin measurements during their in-patient stay and examined the relationship between carboxyhemoglobin and a variety of clinical and laboratory parameters, in addition to the presence or absence of sepsis, using linear mixed-effect models. We found that postnatal age had the most significant effect on carboxyhemoglobin levels, and other significant associations were identified with gestational age, hemoglobin concentration, oxyhemoglobin saturation, and blood pH. Accounting for these covariates, there was no significant relationship between the onset of sepsis and carboxyhemoglobin levels. Our results show that carboxyhemoglobin is unlikely to be a clinically useful biomarker of sepsis in premature infants, and raise a note of caution about factors which may confound the use of carbon monoxide as a clinical biomarker for other disease processes such as hemolysis. PMID:27552216

  5. Determinants of Carboxyhemoglobin Levels and Relationship with Sepsis in a Retrospective Cohort of Preterm Neonates.

    PubMed

    McArdle, Andrew J; Webbe, James; Sim, Kathleen; Parrish, Graham; Hoggart, Clive; Wang, Yifei; Kroll, J Simon; Godambe, Sunit; Cunnington, Aubrey J

    2016-01-01

    Carboxyhemoglobin levels in blood reflect endogenous carbon monoxide production and are often measured during routine blood gas analysis. Endogenous carbon monoxide production has been reported to be increased during sepsis, but carboxyhemoglobin levels have not been thoroughly evaluated as a biomarker of sepsis. We sought to determine whether carboxyhemoglobin levels were elevated during sepsis in a high risk population of premature neonates. We conducted a retrospective cohort study of 30 infants in two neonatal intensive care units using electronic medical and laboratory records. The majority of infants were extremely premature and extremely low birth weight, and 25 had at least one episode of sepsis. We collected all carboxyhemoglobin measurements during their in-patient stay and examined the relationship between carboxyhemoglobin and a variety of clinical and laboratory parameters, in addition to the presence or absence of sepsis, using linear mixed-effect models. We found that postnatal age had the most significant effect on carboxyhemoglobin levels, and other significant associations were identified with gestational age, hemoglobin concentration, oxyhemoglobin saturation, and blood pH. Accounting for these covariates, there was no significant relationship between the onset of sepsis and carboxyhemoglobin levels. Our results show that carboxyhemoglobin is unlikely to be a clinically useful biomarker of sepsis in premature infants, and raise a note of caution about factors which may confound the use of carbon monoxide as a clinical biomarker for other disease processes such as hemolysis.

  6. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    PubMed

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This indicate that variations of some endogenous AA and protein losses due to dietary nutrients almost eliminates the effects of RID, and thus the EL coming from the body should be utilized to adjust the AA requirement instead of changing the true digestible nutrients of ingredients. The present data suggest that 5 days' feeding labeled AA was enough to reach the isotopic steady state and AA requirements should be adjusted when additional dietary protein, fat or fiber is fed.

  7. Effect of potent endomorphin degradation blockers on analgesic and antidepressant-like responses in mice.

    PubMed

    Cravezic, Aurore; Fichna, Jakub; Gach, Katarzyna; Wyrebska, Anna; Perlikowska, Renata; Costentin, Jean; Bonnet, Jean-Jacques; Janecka, Anna; do Rego, Jean-Claude

    2011-12-01

    The biological effects of endomorphins (EMs) are short-lasting due to their rapid degradation by endogenous enzymes. Competing enzymatic degradation is an approach to prolong EM bioavailability. In the present study, a series of tetra- and tripeptides of similar to EMs structure was synthesized and tested in vitro and in vivo for their ability to inhibit degradation of EMs. The obtained results indicated that, among the series of analogs, the tetrapeptide Tyr-Pro-d-ClPhe-Phe-NH(2) and the tripeptide Tyr-Pro-Ala-NH(2), which did not bind to the μ-opioid receptors, were potent inhibitors of EM catabolism in rat brain homogenate. In vivo, these two peptides significantly prolonged the analgesic and antidepressant-like effects, induced by exogenous EMs, by blocking EM degrading enzymes. These new potent inhibitors may therefore increase the level and the half life of endogenous EMs and could be used in a new therapeutic strategy against pain and mood disorders, based on increasing of EM bioavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Nature of the endogenous pyrogen (EP) induced by influenza viruses: lack of correlation between EP levels and content of the known pyrogenic cytokines, interleukin 1, interleukin 6 and tumour necrosis factor.

    PubMed

    Jakeman, K J; Bird, C R; Thorpe, R; Smith, H; Sweet, C

    1991-03-01

    Fever in influenza results from the release of endogenous pyrogen (EP) following virus-phagocyte interaction and its level correlates with the differing virulence of virus strains. However, the different levels of fever produced in ferrets by intracardial inoculation of EP obtained from the interaction of different virus strains with ferret of human phagocytes did not correlate with the levels of interleukin 1 (IL-1), IL-6 or tumour necrosis factor in the same samples as assayed by conventional in vitro methods. Hence, the EP produced by influenza virus appears to be different to these cytokines.

  9. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.

    PubMed

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-12-01

    Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose-starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences.

  10. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    PubMed

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 International Union of Biochemistry and Molecular Biology.

  11. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population.

    PubMed

    Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  12. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

    PubMed Central

    Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.

    2018-01-01

    Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328

  13. Cellulase applied to the leaves of sweet pepper (Capsicum annuum L. var. grossum) upregulates the production of salicylic and azelaic acids.

    PubMed

    Sato, Chizuru; Oka, Norikuni; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-01-01

    Treating the leaves of sweet pepper (Capsicum annuum L. var. grossum) with an aqueous solution of cellulase resulted in a four-fold increase in the salicylic acid level compared to a control plant. The level of endogenous azelaic acid was also elevated by the cellulase treatment. Azelaic acid has recently been reported to act as a mobile "priming" agent to arm plants against pathogenic attack. Our results are consistent with this and that the cellulase treatment enhanced the ability of sweet pepper to withstand viral attack.

  14. True ileal amino acid digestibility and endogenous ileal amino acid losses in growing pigs fed wheat shorts- or casein-based diets.

    PubMed

    Libao-Mercado, A J; Yin, Y; van Eys, J; de Lange, C F M

    2006-06-01

    Use of dietary AA in growing pigs reflects digestion and use of digested AA for various body functions. Before evaluating dietary effects on use of digestible AA intake for body protein deposition, a digestibility study was conducted to investigate true ileal AA digestibility and endogenous ileal AA losses in growing pigs fed graded levels of wheat shorts (WS) or casein (CS; control). A casein-based basal diet (basal) was formulated to contain 0.27 g of standardized ileal digestible (SID) Lys per MJ of DE, to which extra Lys was added from WS (WS2, +0.10 g of SID Lys per MJ of DE; WS3, +0.20 g of SID Lys per MJ of DE) or casein (CS3, +0.20 g of SID Lys per MJ of DE). A fifth diet was formulated to be similar in CP level and source as CS3 but in which 6% pectin, a source of soluble non-starch polysaccharides (NSP), was included at the expense of cornstarch (CS3 + pectin). Five Yorkshire barrows (17.5 +/- 1.5 kg of BW) were fitted with a T-cannula at the distal ileum and randomly assigned to 1 of the 5 experimental diets in a 5 x 5 Latin Square design. Apparent ileal digestibility (AID), true ileal digestibility (TID), and endogenous ileal protein losses (EPL) were determined using the homoarginine method. Diet CS level did not influence (P > or = 0.10) TID of most essential AA or EPL (10.4 g/kg of DM intake). Including pectin in the diet did not influence TID of AA (P > or = 0.10) but increased EPL (15.6 g/kg of DM intake; P > or = 0.01). Inclusion of WS in the diet reduced TID of most essential AA (P < 0.01). The TID values for most essential AA, however, were the same (P > or = 0.10) for both dietary WS levels, except for Lys and Met, which were further reduced at the greatest dietary WS level. Increased EPL (P < 0.01) was only observed for WS3 (16 g/kg of DMI). We concluded that (1) the effects of dietary protein source on AID of AA can be attributed both to reduced TID of AA and increased EPL, (2) the impact of dietary WS level on TID of AA and EPL does not seem to be linear, (3) soluble NSP from pectin or WS exerts a greater effect on EPL than insoluble NSP, and (4) because of the metabolic cost associated with EPL and the impacts of feed composition on microbial fermentation in the gut lumen, the effects of feed ingredients on the use of ileal digestible AA for protein deposition should be investigated further.

  15. Pathophysiology of medication overuse headache: Insights and hypotheses from preclinical studies

    PubMed Central

    Meng, Ian D; Dodick, David; Ossipov, Michael H; Porreca, Frank

    2017-01-01

    Introduction Medication overuse headache (MOH) is a clinical concern in the management of migraine headache. MOH arises from the frequent use of medications used for the treatment of a primary headache. Medications that can cause MOH include opioid analgesics as well as formulations designed for the treatment of migraine, such as triptans, ergot alkaloids, or drug combinations that include caffeine and barbiturates. Literature review Gathering evidence indicates that migraine patients are more susceptible to development of MOH, and that prolonged use of these medications increases the prognosis for development of chronic migraine, leading to the suggestion that similar underlying mechanisms may drive both migraine headache and MOH. In this review, we examine the link between several mechanisms that have been linked to migraine headache and a potential role in MOH. For example, cortical spreading depression (CSD), associated with migraine development, is increased in frequency with prolonged use of topiramate or paracetamol. Conclusions Increased CGRP levels in the blood have been linked to migraine and elevated CGRP can be casued by prolonged sumatriptan exposure. Possible mechanisms that may be common to both migraine and MOH include increased endogenous facilitation of pain and/or diminished diminished endogenous pain inhibition. Neuroanatomical pathways mediating these effects are examined. PMID:21444643

  16. Increased levels of palmitoylethanolamide and other bioactive lipid mediators and enhanced local mast cell proliferation in canine atopic dermatitis

    PubMed Central

    2014-01-01

    Background Despite the precise pathogenesis of atopic dermatitis (AD) is unknown, an immune dysregulation that causes Th2-predominant inflammation and an intrinsic defect in skin barrier function are currently the two major hypotheses, according to the so-called outside-inside-outside model. Mast cells (MCs) are involved in AD both by releasing Th2 polarizing cytokines and generating pruritus symptoms through release of histamine and tryptase. A link between MCs and skin barrier defects was recently uncovered, with histamine being found to profoundly contribute to the skin barrier defects. Palmitoylethanolamide and related lipid mediators are endogenous bioactive compounds, considered to play a protective homeostatic role in many tissues: evidence collected so far shows that the anti-inflammatory effect of palmitoylethanolamide depends on the down-modulation of MC degranulation. Based on this background, the purpose of the present study was twofold: (a) to determine if the endogenous levels of palmitoylethanolamide and other bioactive lipid mediators are changed in the skin of AD dogs compared to healthy animals; (b) to examine if MC number is increased in the skin of AD dogs and, if so, whether it depends on MC in-situ proliferation. Results The amount of lipid extract expressed as percent of biopsy tissue weight was significantly reduced in AD skin while the levels of all analyzed bioactive lipid mediators were significantly elevated, with palmitoylethanolamide showing the highest increase. In dogs with AD, the number of MCs was significantly increased in both the subepidermal and the perifollicular compartments and their granule content was significantly decreased in the latter. Also, in situ proliferation of MCs was documented. Conclusions The levels of palmitoylethanolamide and other bioactive lipid mediators were shown to increase in AD skin compared to healthy samples, leading to the hypothesis that they may be part of the body’s innate mechanisms to maintain cellular homeostasis when faced with AD-related inflammation. In particular, the increase may be considered a temptative response to down-regulating the observed elevation in the number, functionality and proliferative state of MCs in the skin of AD dogs. Further studies are warranted to confirm the hypothesis. PMID:24423192

  17. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  18. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.

    PubMed

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria

    2016-08-12

    To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.

  19. Central exogenous nitric oxide decreases cardiac sympathetic drive and improves baroreflex control of heart rate in ovine heart failure.

    PubMed

    Ramchandra, Rohit; Hood, Sally G; May, Clive N

    2014-08-01

    Heart failure (HF) is associated with increased cardiac and renal sympathetic drive, which are both independent predictors of poor prognosis. A candidate mechanism for the centrally mediated sympathoexcitation in HF is reduced synthesis of the inhibitory neuromodulator nitric oxide (NO), resulting from downregulation of neuronal NO synthase (nNOS). Therefore, we investigated the effects of increasing the levels of NO in the brain, or selectively in the paraventricular nucleus of the hypothalamus (PVN), on cardiac sympathetic nerve activity (CSNA) and baroreflex control of CSNA and heart rate in ovine pacing-induced HF. The resting level of CSNA was significantly higher in the HF than in the normal group, but the resting level of RSNA was unchanged. Intracerebroventricular infusion of the NO donor sodium nitroprusside (SNP; 500 μg · ml(-1)· h(-1)) in conscious normal sheep and sheep in HF inhibited CSNA and restored baroreflex control of heart rate, but there was no change in RSNA. Microinjection of SNP into the PVN did not cause a similar cardiac sympathoinhibition in either group, although the number of nNOS-positive cells was decreased in the PVN of sheep in HF. Reduction of endogenous NO with intracerebroventricular infusion of N(ω)-nitro-l-arginine methyl ester decreased CSNA in normal but not in HF sheep and caused no change in RSNA in either group. These findings indicate that endogenous NO in the brain provides tonic excitatory drive to increase resting CSNA in the normal state, but not in HF. In contrast, exogenously administered NO inhibited CSNA in both the normal and HF groups via an action on sites other than the PVN. Copyright © 2014 the American Physiological Society.

  20. Changes in peroxisome proliferator-activated receptor-gamma activity in children with septic shock.

    PubMed

    Kaplan, Jennifer M; Denenberg, Alvin; Monaco, Marie; Nowell, Marchele; Wong, Hector; Zingarelli, Basilia

    2010-01-01

    To assess changes in peroxisome proliferator-activated receptor-gamma (PPARgamma) in peripheral blood mononuclear cells (PBMC) from critically ill children with sepsis. Additionally, to investigate the effects of sepsis on the endogenous activator of PPARgamma, 15-deoxy-(12,14)-PGJ(2) (15d-PGJ(2)), and the downstream targets of PPARgamma activity, adiponectin and resistin. Single-center, prospective case-control study in critically ill children with systemic inflammatory response syndrome, sepsis or septic shock. PPARgamma nuclear protein expression was decreased but PPARgamma activity was increased in PBMC from children with septic shock compared with controls. PPARgamma activity on day 1 was significantly higher in patients with higher pediatric risk of mortality (PRISM) score compared with controls [mean 0.22 optical density (OD) +/- standard error of the mean (SEM) 0.03 versus 0.12 OD +/- 0.02; p < 0.001]. Patients with resolved sepsis had increased levels of the endogenous PPARgamma ligand, 15d-PGJ(2), compared with patients with systemic inflammatory response syndrome (SIRS) and septic shock (77.7 +/- 21.7 versus 58 +/- 16.5 pg/ml; p = 0.03). Plasma high-molecular-weight adiponectin (HMWA) and resistin levels were increased in patients with septic shock on day 1 and were significantly higher in patients with higher PRISM scores. Nonsurvivors from sepsis had higher resistin levels on the first day of hospitalization compared with survivors from septic shock [660 ng/ml, interquartile range (IQR) 585-833 ng/ml versus 143 ng/ml, IQR 66-342 ng/ml; p < 0.05]. Sepsis is associated with altered PPARgamma expression and activity in PBMC. Plasma adipokines correlate with risk of mortality scores in sepsis and may be useful biomarkers. Further studies are needed to understand the mechanisms underlying changes in PPARgamma in sepsis.

  1. The evolution and functional characterization of lined seahorse (Hippocampus erectus) CCKs involved in fasting and thermal stress response.

    PubMed

    Zhang, Huixian; Qin, Geng; Sun, Jinhui; Zhang, Bo; Lin, Qiang

    2018-01-01

    The peptide cholecystokinin (CCK) plays an important role in the regulation of vertebrate appetite and feeding behaviour. In the present study, the full-length cDNA and genomic DNA sequences of two CCK precursors were cloned and analysed in the Syngnathidae fish, the lined seahorse (Hippocampus erectus). Both CCK1 and CCK2 in the seahorse consist of four exons. The sequence of the octapeptide of seahorse CCK1 (DYMGWMDF) was the same as that of the chicken and human, while the octapeptide of seahorse CCK2 (DYEGWMDF) was unique among vertebrates. According to the phylogenetic analysis, two types of CCKs were produced by teleost-specific genome duplication (TGD). Both CCK1 and CCK2 were highly expressed in the brain, while detectable amounts of CCK1 mRNA in the brood pouch and CCK2 mRNA in the intestine were also found. Both CCK1 and CCK2 mRNA levels significantly increased during the transition from endogenous to exogenous nutrition. Additionally, fasting induced a significant increase in the CCK1 mRNA expression in the brain of juvenile seahorses but had no effect on CCK2 transcript levels. In addition, the CCK1 and CCK2 mRNA levels in the seahorse brain significantly increased after a high-temperature treatment. Thus, the mRNA expression of CCK had obvious tissue specificities and this preliminary study opens new avenues for further functional studies on the endocrine regulations of CCK in the transition from endogenous to exogenous nutrition, food intake regulation and metabolism in the seahorse. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds

    PubMed Central

    Cherry, Jonathan J; Osman, Erkan Y; Evans, Matthew C; Choi, Sungwoon; Xing, Xuechao; Cuny, Gregory D; Glicksman, Marcie A; Lorson, Christian L; Androphy, Elliot J

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease that causes progressive muscle weakness, which primarily targets proximal muscles. About 95% of SMA cases are caused by the loss of both copies of the SMN1 gene. SMN2 is a nearly identical copy of SMN1, which expresses much less functional SMN protein. SMN2 is unable to fully compensate for the loss of SMN1 in motor neurons but does provide an excellent target for therapeutic intervention. Increased expression of functional full-length SMN protein from the endogenous SMN2 gene should lessen disease severity. We have developed and implemented a new high-throughput screening assay to identify small molecules that increase the expression of full-length SMN from a SMN2 reporter gene. Here, we characterize two novel compounds that increased SMN protein levels in both reporter cells and SMA fibroblasts and show that one increases lifespan, motor function, and SMN protein levels in a severe mouse model of SMA. PMID:23740718

  3. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    PubMed

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area.

    PubMed

    Elliott, P J; Alpert, J E; Bannon, M J; Iversen, S D

    1986-01-15

    Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.

  5. Role of endogenous opioid peptides in the pathogenesis of motion sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasnetsov, V.V.; Il'ina, S.L.; Karsanova, S.K.

    1986-01-01

    This paper examines the pathogenesis of motion sickness and the role of the various neurochemical systems of the body in the genesis of the condition. It has been shown that the endogenous opioid system participates in the genesis of several pathological processes; this was the motivation for the study. The plasma beta-endorphin level was determined in samples from 19 clinically healthy males. Considering the positive prophylactic and therapeutic effect of naloxone against motion sickness it can be postulated that endogenous opioid peptides participate in the genesis of the vestibulo-autonomic disorders in motion sickness.

  6. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E⁻/⁻mice.

    PubMed

    Li, H; Huang, S; Wang, S; Zhao, J; Su, L; Zhao, B; Zhang, Y; Zhang, S; Miao, J

    2013-09-19

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E⁻/⁻ (apoE⁻/⁻) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE⁻/⁻ mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE⁻/⁻ mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE⁻/⁻ mice.

  7. The Kinetics of G2 and M Transitions Regulated by B Cyclins

    PubMed Central

    Huang, Yehong; Sramkoski, R. Michael; Jacobberger, James W.

    2013-01-01

    B cyclins regulate G2-M transition. Because human somatic cells continue to cycle after reduction of cyclin B1 (cycB1) or cyclin B2 (cycB2) by RNA interference (RNAi), and because cycB2 knockout mice are viable, the existence of two genes should be an optimization. To explore this idea, we generated HeLa BD™ Tet-Off cell lines with inducible cyclin B1- or B2-EGFP that were RNAi resistant. Cultures were treated with RNAi and/or doxycycline (Dox) and bromodeoxyuridine. We measured G2 and M transit times and 4C cell accumulation. In the absence of ectopic B cyclin expression, knockdown (kd) of either cyclin increased G2 transit. M transit was increased by cycB1 kd but decreased by cycB2 depletion. This novel difference was further supported by time-lapse microscopy. This suggests that cycB2 tunes mitotic timing, and we speculate that this is through regulation of a Golgi checkpoint. In the presence of endogenous cyclins, expression of active B cyclin-EGFPs did not affect G2 or M phase times. As previously shown, B cyclin co-depletion induced G2 arrest. Expression of either B cyclin-EGFP completely rescued knockdown of the respective endogenous cyclin in single kd experiments, and either cyclin-EGFP completely rescued endogenous cyclin co-depletion. Most of the rescue occurred at relatively low levels of exogenous cyclin expression. Therefore, cycB1 and cycB2 are interchangeable for ability to promote G2 and M transition in this experimental setting. Cyclin B1 is thought to be required for the mammalian somatic cell cycle, while cyclin B2 is thought to be dispensable. However, residual levels of cyclin B1 or cyclin B2 in double knockdown experiments are not sufficient to promote successful mitosis, yet residual levels are sufficient to promote mitosis in the presence of the dispensible cyclin B2. We discuss a simple model that would explain most data if cyclin B1 is necessary. PMID:24324638

  8. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  9. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds.

    PubMed

    Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel

    2007-01-01

    Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.

  10. Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research

    PubMed Central

    Sypniewski, Daniel; Gałka, Sabina; Sołtysik, Dagna; Loch, Tomasz; Nowak, Ewa; Smorąg, Zdzisław; Bednarek, Ilona

    2018-01-01

    Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety. PMID:29366300

  11. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-01-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. SCG shows antitumor activity and also enhances the hematopoietic response in cyclophosphamide (CY)-treated mice. In the present study, the molecular mechanism of the enhancement of the hematopoietic response was investigated. The levels of interferon-(IFN-)gamma, tumor necrosis factor-(TNF-)alpha, granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-(IL-) 6 and IL-12p70 were significantly increased by SCG in CY-treated mice. GM-CSF production in the splenocytes from the CY-treated mice was higher than that in normal mice regardless of SCG stimulation. Neutralizing GM-CSF significantly inhibited the induction of IFN-gamma, TNF-alpha and IL-12p70 by SCG. The level of cytokine induction by SCG was regulated by the amount of endogenous GM-CSF produced in response to CY treatment in a dose-dependent manner. The expression of beta-glucan receptors, such as CR3 and dectin-1, was up-regulated by CY treatment. Blocking dectin-1 significantly inhibited the induction of TNF-alpha and IL-12p70 production by SCG. Taken together, these results suggest that the key factors in the cytokine induction in CY-treated mice were the enhanced levels of both endogenous GM-CSF production and dectin-1 expression.

  12. Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.

    PubMed

    Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle

    2017-07-07

    Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.

  13. Recombinant probes for visualizing endogenous synaptic proteins in living neurons

    PubMed Central

    Gross, Garrett G.; Junge, Jason A.; Mora, Rudy J.; Kwon, Hyung-Bae; Olson, C. Anders; Takahashi, Terry T.; Liman, Emily R.; Ellis-Davies, Graham C.R.; McGee, Aaron W.; Sabatini, Bernardo L.; Roberts, Richard W.; Arnold, Don B.

    2013-01-01

    Summary The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed FingRs (Fibronectin intrabodies generated with mRNA display), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and which, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a novel transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo. PMID:23791193

  14. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of, abscisic acid.

    PubMed

    Fellner, M; Zhang, R; Pharis, R P; Sawhney, V K

    2001-04-01

    A recessive single gene mutant, 7B-1, in tomato was originally selected for its photoperiod-dependent male sterility. The 7B-1 mutant also has some pleiotropic effects including reduced light-induced inhibition, i.e. de-etiolation, of the hypocotyl in long days (LD), increased seed size and weight, and reduced transpiration rate. These traits led us to investigate the sensitivity of 7B-1 to exogenous hormones and the interaction of these responses with daylength. In LD, but not in short days (SD), 7B-1 was more sensitive than wild-type (WT) to exogenous abscisic acid (ABA) for inhibition of seed germination, root elongation and transpiration rate. 7B-1 mutant also exhibited reduced responses to exogenous gibberellin (GA(3)) for hypocotyl elongation, and to inhibitors of GA biosynthesis for seed germination and root and hypocotyl elongation. 7B-1 hypocotyls contained a higher level of endogenous ABA than WT in both photoperiods, although ABA levels were higher in LD than in SD. In contrast, growth-active GAs, i.e. GA(1), GA(3) and GA(4), and IAA were low in the mutant hypocotyls. The 7B-1 mutant appears to be an ABA-overproducer, and the photoperiod-regulated ABA levels may be responsible for the hypersensitivity of the mutant to exogenous ABA.

  15. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice.

    PubMed

    Wang, Li; Wang, Zhen; Xu, Yunyuan; Joo, Se-Hwan; Kim, Seong-Ki; Xue, Zhen; Xu, Zhihong; Wang, Zhiyong; Chong, Kang

    2009-02-01

    Gibberellins (GAs) and brassinosteroids (BRs), two growth-promoting phytohormones, regulate many common physiological processes. Their interactions at the molecular level remain unclear. Here, we demonstrate that OsGSR1, a member of the GAST (GA-stimulated transcript) gene family, is induced by GA and repressed by BR. RNA interference (RNAi) transgenic rice plants with reduced OsGSR1 expression show phenotypes similar to plants deficient in BR, including short primary roots, erect leaves and reduced fertility. The OsGSR1 RNAi transgenic rice shows a reduced level of endogenous BR, and the dwarf phenotype could be rescued by the application of brassinolide. The yeast two-hybrid assay revealed that OsGSR1 interacts with DIM/DWF1, an enzyme that catalyzes the conversion from 24-methylenecholesterol to campesterol in BR biosynthesis. These results suggest that OsGSR1 activates BR synthesis by directly regulating a BR biosynthetic enzyme at the post-translational level. Furthermore, OsGSR1 RNAi plants show a reduced sensitivity to GA treatment, an increased expression of the GA biosynthetic gene OsGA20ox2, which is feedback inhibited by GA signaling, and an elevated level of endogenous GA: together, these suggest that OsGSR1 is a positive regulator of GA signaling. These results demonstrate that OsGSR1 plays important roles in both BR and GA pathways, and also mediates an interaction between the two signaling pathways.

  16. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells.

    PubMed

    Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V; Greene, Warner C

    2011-10-21

    Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.

  17. Systemic Inflammatory Response Elicited by Superantigen Destabilizes T Regulatory Cells Rendering them Ineffective during Toxic Shock Syndrome 1

    PubMed Central

    Tilahun, Ashenafi Y.; Chowdhary, Vaidehi R.; David, Chella S.; Rajagopalan, Govindarajan

    2014-01-01

    Life-threatening infections caused by Staphylococcus aureus, particularly the community-acquired methicillin-resistant strains of S. aureus (CA-MRSA), continue to pose serious problems. Greater virulence and increased pathogenicity of certain S. aureus strains are attributed to higher prevalence of exotoxins. Of these exotoxins, the superantigens (SAg) are likely most pathogenic because of their ability to rapidly and robustly activate the T cells even in extremely small quantities. Therefore, countering SAg-mediated T cell activation using T regulatory cells (Tregs) might be beneficial in diseases such as toxic shock syndrome (TSS). As the normal numbers of endogenous Tregs in a typical host are insufficient, we hypothesized that increasing the Treg numbers by administration of IL2-anti-IL2 antibody complexes (IL2C) or by adoptive transfer of ex vivo expanded Tregs might be more effective in countering SAg-mediated immune activation. HLA-DR3 transgenic mice that closely recapitulate human TSS, were treated with IL2C to increase endogenous Tregs or received ex vivo expanded Tregs. Subsequently, they were challenged with SAg to induce TSS. Analyses of various parameters reflective of TSS (serum cytokine/chemokine levels, multiple organ pathology and SAg-induced peripheral T cell expansion) indicated that increasing the Tregs failed to mitigate TSS. On the contrary, serum IFN-γ levels were increased in IL2C treated mice. Exploration into the reasons behind the lack of protective effect of Tregs revealed IL-17 and IFN-γ-dependent loss of Tregs during TSS. In addition, significant upregulation of GITR on conventional T cells during TSS could render them resistant to Treg mediated suppression, contributing to failure of Treg-mediated immune regulation. PMID:25092888

  18. Restoration of Long-Term Potentiation in Middle-Aged Hippocampus After Induction of Brain-Derived Neurotrophic Factor

    PubMed Central

    Rex, Christopher S.; Lauterborn, Julie C.; Lin, Ching-Yi; Kramár, Eniko A.; Rogers, Gary A.; Gall, Christine M.; Lynch, Gary

    2006-01-01

    Rex, Christopher S., Julie C. Lauterborn, Ching-Yi Lin, Eniko A. Kramár, Gary A. Rogers, Christine M. Gall, and Gary Lynch. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96: 677-685, 2006. First published May 17, 2006; doi:10.1152/jn.00336.2006. Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP. PMID:16707719

  19. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study.

    PubMed

    Dellavalle, Curt T; Xiao, Qian; Yang, Gong; Shu, Xiao-Ou; Aschebrook-Kilfoy, Briseis; Zheng, Wei; Lan Li, Hong; Ji, Bu-Tian; Rothman, Nathaniel; Chow, Wong-Ho; Gao, Yu-Tang; Ward, Mary H

    2014-06-15

    Nitrate and nitrite are precursors of endogenously formed N-nitroso compounds (NOC), known animal carcinogens. Nitrosation reactions forming NOCs can be inhibited by vitamin C and other antioxidants. We prospectively investigated the association between dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study, a cohort of 73,118 women ages 40-70 residing in Shanghai. We evaluated effect modification by factors that affect endogenous formation of NOCs: vitamin C (at or above/below median) and red meat intake (at or above/below median). Nitrate, nitrite and other dietary intakes were estimated from a 77-item food frequency questionnaire administered at baseline. Over a mean of 11 years of follow-up, we identified 619 colorectal cancer cases (n = 383, colon; n = 236, rectum). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regression. Overall, nitrate intake was not associated with colorectal cancer risk (HR = 1.08; 95% CI: 0.73-1.59). However, among women with vitamin C intake below the median (83.9 mg day(-1) ) and hence higher potential exposure to NOCs, risk of colorectal cancer increased with increasing quintiles of nitrate intake (highest vs. lowest quintile HR = 2.45; 95% CI: 1.15-5.18; p trend = 0.02). There was no association among women with higher vitamin C intake. We found no association between nitrite intake and risk of colorectal cancer overall or by intake level of vitamin C. Our findings suggest that high dietary nitrate intake among subgroups expected to have higher exposure to endogenously formed NOCs increases risk of colorectal cancer. © 2013 UICC.

  20. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study

    PubMed Central

    DellaValle, Curt T.; Xiao, Qian; Yang, Gong; Shu, Xiao Ou; Aschebrook-Kilfoy, Briseis; Zheng, Wei; Li, Hong Lan; Ji, Bu-Tian; Rothman, Nathaniel; Chow, Wong-Ho; Gao, Yu-Tang; Ward, Mary H.

    2014-01-01

    Nitrate and nitrite are precursors of endogenously formed N-nitroso compounds (NOC), known animal carcinogens. Nitrosation reactions forming NOCs can be inhibited by vitamin C and other antioxidants. We prospectively investigated the association between dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study, a cohort of 73,118 women ages 40 to 70 residing in Shanghai. We evaluated effect modification by factors that affect endogenous formation of NOCs: vitamin C (at or above/below median) and red meat intake (at or above/below median). Nitrate, nitrite and other dietary intakes were estimated from a 77-item food frequency questionnaire administered at baseline. Over a mean of 11 years of follow-up, we identified 619 colorectal cancer cases (n=383, colon; n=236, rectum). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regression. Overall, nitrate intake was not associated with colorectal cancer risk (HR = 1.08; 95% CI: 0.73–1.59). However, among women with vitamin C intake below the median (83.9 mg/day) and hence higher potential exposure to NOCs, risk of colorectal cancer increased with increasing quintiles of nitrate intake (highest vs. lowest quintile HR = 2.45; 95% CI: 1.15–5.18; p-trend = 0.02). There was no association among women with higher vitamin C intake. We found no association between nitrite intake and risk of colorectal cancer overall or by intake level of vitamin C. Our findings suggest that high dietary nitrate intake among subgroups expected to have higher exposure to endogenously-formed NOCs increases risk of colorectal cancer. PMID:24242755

  1. Lack of endogenous pain inhibition during exercise in people with chronic whiplash associated disorders: an experimental study.

    PubMed

    Van Oosterwijck, Jessica; Nijs, Jo; Meeus, Mira; Van Loo, Michel; Paul, Lorna

    2012-03-01

    A controlled experimental study was performed to examine the efficacy of the endogenous pain inhibitory systems and whether this (mal)functioning is associated with symptom increases following exercise in patients with chronic whiplash-associated disorders (WAD). In addition, 2 types of exercise were compared. Twenty-two women with chronic WAD and 22 healthy controls performed a submaximal and a self-paced, physiologically limited exercise test on a cycle ergometer with cardiorespiratory monitoring on 2 separate occasions. Pain pressure thresholds (PPT), health status, and activity levels were assessed in response to the 2 exercise bouts. In chronic WAD, PPT decreased following submaximal exercise, whereas they increased in healthy subjects. The same effect was established in response to the self-paced, physiologically limited exercise, with exception of the PPT at the calf which increased. A worsening of the chronic WAD symptom complex was reported post-exercise. Fewer symptoms were reported in response to the self-paced, physiologically limited exercise. These observations suggest abnormal central pain processing during exercise in patients with chronic WAD. Submaximal exercise triggers post-exertional malaise, while a self-paced and physiologically limited exercise will trigger less severe symptoms, and therefore seems more appropriate for chronic WAD patients. The results from this exercise study suggest impaired endogenous pain inhibition during exercise in people with chronic WAD. This finding highlights the fact that one should be cautious when evaluating and recommending exercise in people with chronic WAD, and that the use of more individual, targeted exercise therapies is recommended. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Endogenous fluorescence emission of the ovary

    NASA Astrophysics Data System (ADS)

    Utzinger, Urs; Kirkpatrick, Nathaniel D.; Drezek, Rebekah A.; Brewer, Molly A.

    2005-03-01

    Epithelial ovarian cancer has the highest mortality rate among the gynecologic cancers. Early detection would significantly improve survival and quality of life of women at increased risk to develop ovarian cancer. We have constructed a device to investigate endogenous signals of the ovarian tissue surface in the UV C to visible range and describe our initial investigation of the use of optical spectroscopy to characterize the condition of the ovary. We have acquired data from more than 33 patients. A table top spectroscopy system was used to collect endogenous fluorescence with a fiberoptic probe that is compatible with endoscopic techniques. Samples were broken into five groups: Normal-Low Risk (for developing ovarian cancer) Normal-High Risk, Benign, and Cancer. Rigorous statistical analysis was applied to the data using variance tests for direct intensity versus diagnostic group comparisons and principal component analysis (PCA) to study the variance of the whole data set. We conclude that the diagnostically most useful excitation wavelengths are located in the UV. Furthermore, our results indicate that UV B and C are most useful. A safety analysis indicates that UV-C imaging can be conducted at exposure levels below safety thresholds. We found that fluorescence excited in the UV-C and UV-B range increases from benign to normal to cancerous tissues. This is in contrast to the emission created with UV-A excitation which decreased in the same order. We hypothesize that an increase of protein production and a decrease of fluorescence contributions of the extracellular matrix could explain this behavior. Variance analysis also identified fluctuation of fluorescence at 320/380 which is associated with collagen cross link residues. Small differences were observed between the group at high risk and normal risk for ovarian cancer. High risk samples deviated towards the cancer group and low risk samples towards benign group.

  3. Quantitative analysis of the endogenous GHB level in the hair of the Chinese population using GC/MS/MS.

    PubMed

    Shi, Yan; Cui, Xiaopei; Shen, Min; Xiang, Ping

    2016-04-01

    Endogenous production complicates interpretation when gamma-hydroxybutyrate (GHB) is measured in hair for forensic purposes. A method capable of quantifying the endogenous concentration of GHB in human head hair was developed and validated using GC/MS/MS. Hair was digested under alkaline conditions (1 mol/L NaOH, 90 °C 10 min), and GHB-d6 was used as an internal standard. Before derivatization with BSTFA and ethyl acetate, a liquid-liquid extraction with ethyl acetate under acidic conditions was performed. GHB-TMS derivatives were detected using GC/MS/MS in the multiple-reaction monitoring mode. This method exhibited good linearity (y = 0.018x + 0.038, R(2) = 0.9998), and the limit of detection was 0.02 ng/mg. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied for the analysis of the endogenous GHB in hair samples from 66 drug-free Chinese donors. The mean measured concentration for 0-3 cm hair was 1.93 ± 1.40 ng/mg (n = 66), and extreme values were in the range of 0.28-4.91 ng/mg. The mean male endogenous GHB level was 2.95 ng/mg (0.92-4.91 ng/mg, n = 35), while the mean female level was 0.77 ng/mg (0.28-1.95 ng/mg, n = 31). This method was applied to a forensic case for the determination of GHB in hair samples but it is hard to make a reasonable "cut off" in hair. The solution is to use each subject as his own control. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Dietary Acid, Age, and Serum Bicarbonate Levels among Adults in the United States

    PubMed Central

    Amodu, Afolarin

    2013-01-01

    Summary Background and objectives Greater dietary acid has been associated with lower serum bicarbonate levels in patients with CKD. Whether this association extends to the general population and if it is modified by age are unknown. Design, setting, participants, & measurements This study examined the association of the dietary acid load, estimated by net endogenous acid production, with serum bicarbonate levels in adult participants in the National Health and Nutrition Examination Survey 1999–2004. Results The mean serum bicarbonate was 24.9 mEq/L (SEM=0.1), and the mean estimated net endogenous acid production was 57.4 mEq/d (SEM=0.4). Serum bicarbonate was linearly associated with age, such that the oldest participants had the highest serum bicarbonate levels. After multivariable adjustment, participants in the highest quartile of net endogenous acid production had 0.40 mEq/L (95% confidence interval, −0.55 to −0.26) lower serum bicarbonate and a 33% (95% confidence interval, 3 to 72) higher likelihood of acidosis compared with those participants in the lowest quartile. There was a significant interaction by age of the association of net endogenous acid production with serum bicarbonate (P=0.005). Among participants 20–39, 40–59, and ≥60 years old, those participants in the highest net endogenous acid production quartile had 0.26 (95% confidence interval, −0.49 to −0.03), 0.60 (95% confidence interval, −0.92 to −0.29), and 0.49 (95% confidence interval, −0.84 to −0.14) mEq/L lower serum bicarbonate, respectively, compared with participants in the lowest quartile. Conclusion Greater dietary acid is associated with lower serum bicarbonate in the general US population, and the magnitude of this association is greater among middle-aged and elderly persons than younger adults. PMID:24052219

  5. Endogenous peripheral neuromodulators of the mammalian taste bud.

    PubMed

    Dando, Robin

    2010-10-01

    The sensitivity of the mammalian taste system displays a degree of plasticity based on short-term nutritional requirements. Deficiency in a particular substance may lead to a perceived increase in palatability of this substance, providing an additional drive to redress this nutritional imbalance through modification of intake. This alteration occurs not only in the brain but also, before any higher level processing has occurred, in the taste buds themselves. A brief review of recent advances is offered.

  6. Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in preweaned lambs.

    PubMed

    Sun, Daming; Li, Hongwei; Mao, Shengyong; Zhu, Weiyun; Liu, Junhua

    2018-02-15

    The objective of this study was to investigate the effects of different sources of starch in starter feed on small intestinal growth and endogenous glucagon-like peptide 2 (GLP-2) secretion in preweaned lambs. Twenty-four 10-d-old lambs were divided into three groups that were treated with different iso-starch diets containing purified cassava starch (CS, n = 8), maize starch (MS, n = 8), and pea starch (PS, n = 8). At 56 d old, there was no significant difference in final body weight (BW) of lambs among the three groups. However, different starch source in starter significantly affected the average daily feed intake (ADFI) and average daily gain (ADG) of lambs among three groups. Compared with the CS and MS diets, the PS diet significantly increased the GLP-2 concentration in blood plasma (P < 0.001), the crypt depth of the jejunum (P = 0.006), and the villus height of the ileum (P = 0.039). Meanwhile, PS diet significantly increased the mRNA expression of proglucagon and the glucagon-like peptide 2 receptor (GLP-2R) in the jejunum and ileum (P < 0.001). Furthermore, the PS diet significantly upregulated the mRNA expression of cyclin D1 (P < 0.001), cyclin E (P = 0.006), and cyclin-dependent kinases 6 (CDK6) (P = 0.048) in the jejunum and cyclin A (P < 0.001), cyclin D1 (P < 0.001), and CDK6 (P = 0.002) in the ileum. Correlation analysis showed that endogenous GLP-2 secretion was positively related to the mRNA levels of cell cycle proteins in small intestinal mucosa. In summary, all results showed that PS in starter feed promoted small intestinal growth that may, in part, be related to cell cycle acceleration and endogenous GLP-2 secretion in preweaned lambs. These findings provide new insights into nutritional interventions that promote the development of small intestines in young ruminants.

  7. Cervical Intraepithelial Neoplasia Is Associated With Genital Tract Mucosal Inflammation

    PubMed Central

    Mhatre, Mohak; McAndrew, Thomas; Carpenter, Colleen; Burk, Robert D.; Einstein, Mark H.; Herold, Betsy C.

    2013-01-01

    Background Clinical studies demonstrate increased prevalence of human papillomavirus (HPV)-associated disease in HIV-infected individuals and an increased risk of HIV acquisition in HPV-infected individuals. The mechanisms underlying this synergy are not defined. We hypothesize that women with cervical intraepithelial neoplasia (CIN) will exhibit changes in soluble mucosal immunity that may promote HPV persistence and facilitate HIV infection. Methods The concentrations of immune mediators and endogenous anti-Escherichia coli activity in genital tract secretions collected by cervicovaginal lavage were compared in HIV-negative women with high-risk HPV-positive (HRHPV+) CIN-3 (n = 37), HRHPV+ CIN-1 (n = 12), or PAP-negative control subjects (n = 57). Results Compared with control subjects, women with CIN-3 or CIN-1 displayed significantly higher levels of proinflammatory cytokines including interleukin (IL)-1α, IL-1β, and IL-8 (P < 0.002) and significantly lower levels of anti-inflammatory mediators and antimicrobial peptides, including IL-1 receptor antagonist, secretory leukocyte protease inhibitor (P < 0.01), and human β defensins 2 and 3 (P < 0.02). There was no significant difference in endogenous anti-E. coli activity after controlling for age and sample storage time. Conclusion HRHPV+ CIN is characterized by changes in soluble mucosal immunity that could contribute to HPV persistence. The observed mucosal inflammation suggests a mechanism that may also contribute to the epidemiologic link between persistent HPV and HIV. PMID:22801340

  8. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.

    PubMed

    Grove, Kerri J; Lareau, Nichole M; Voziyan, Paul A; Zeng, Fenghua; Harris, Raymond C; Hudson, Billy G; Caprioli, Richard M

    2018-05-17

    Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS -/- db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload.

    PubMed

    Yeo, Jongchan; Dippel, Andrew B; Wang, Xin C; Hammond, Ming C

    2018-01-09

    Intracellular signaling enzymes drive critical changes in cellular physiology and gene expression, but their endogenous activities in vivo remain highly challenging to study in real time and for individual cells. Here we show that flow cytometry can be performed in complex media to monitor single-cell population distributions and dynamics of cyclic di-GMP signaling, which controls the bacterial colonization program. These in vivo biochemistry experiments are enabled by our second-generation RNA-based fluorescent (RBF) biosensors, which exhibit high fluorescence turn-on in response to cyclic di-GMP. Specifically, we demonstrate that intracellular levels of cyclic di-GMP in Escherichia coli are repressed with excess zinc, but not with other divalent metals. Furthermore, in both flow cytometry and fluorescence microscopy setups, we monitor the dynamic increase in cellular cyclic di-GMP levels upon zinc depletion and show that this response is due to de-repression of the endogenous diguanylate cyclase DgcZ. In the presence of zinc, cells exhibit enhanced cell motility and increased sensitivity to antibiotics due to inhibited biofilm formation. Taken together, these results showcase the application of RBF biosensors in visualizing single-cell dynamic changes in cyclic di-GMP signaling in direct response to environmental cues such as zinc and highlight our ability to assess whether observed phenotypes are related to specific signaling enzymes and pathways.

  10. Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.).

    PubMed

    Xu, Ling; Islam, Faisal; Ali, Basharat; Pei, Zengfei; Li, Juanjuan; Ghani, Muhammad Awais; Zhou, Weijun

    2017-08-01

    Plants combat drought stress by coordinating various metabolic enzymes, and endogenous phytohormones, such as indole acetic acid (IAA) and abscisic acid (ABA). In the present study, 37-day-old wheat seedlings were subjected to the Hoagland solution with 20% PEG for 7 days (to create the artificial osmotic stress environment) in the greenhouse, and were supplemented with an optimized concentration (1.0 mM) of silicon (Si) to alleviate the negative effects of former stress on physiological, biochemical and phytohormones contents. Exogenous Si significantly improved plant growth parameters under osmotic stress compared to PEG treatment alone (the increase was up to 6 and 9% for shoot and root fresh weight, 4 and 12% for shoot and root dry weight, respectively). Moreover, Si significantly decreased the H 2 O 2 , MDA contents, electrolyte leakage, antioxidant enzyme activity (POD), and mineral contents (K and Ca) under osmotic stress but markedly increased the ascorbic acid(AsA), soluble sugar and mineral (Mg and Si) contents. Interestingly, Si application under water-deficit stress differently modulated the endogenous levels of ABA, IAA and JA in wheat plants compared to PEG treatment alone. This study suggests that exogenous Si improves the plant growth by modulating the nutrient (Na, Mg and Si) uptake and phytohormone levels in wheat under water-deficit stress.

  11. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells.

    PubMed

    Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A

    2015-10-01

    The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.

  12. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    PubMed

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  13. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method. PMID:20445002

  14. Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses.

    PubMed

    Knych, H K; Steinmetz, S J; McKemie, D S

    2015-04-01

    The anti-anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA-containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC-MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half-life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative-like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent. © 2014 John Wiley & Sons Ltd.

  15. Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function

    PubMed Central

    Sultan, Iyad; Senkal, Can E.; Ponnusamy, Suriyan; Bielawski, Jacek; Szulc, Zdzislaw; Bielawska, Alicja; Hannun, Yusuf A.; Ogretmen, Besim

    2005-01-01

    In the present study, the regulation of the sphingosine-recycling pathway in A549 human lung adenocarcinoma cells by oxidative stress was investigated. The generation of endogenous long-chain ceramide in response to exogenous C6-cer (C6-ceramide), which is FB1 (fumonisin B1)-sensitive, was employed to probe the sphingosine-recycling pathway. The data showed that ceramide formation via this pathway was significantly blocked by GSH and NAC (N-acetylcysteine) whereas it was enhanced by H2O2, as detected by both palmitate labelling and HPLC/MS. Similar data were also obtained using a novel approach that measures the incorporation of 17Sph (sphingosine containing 17 carbons) of 17C6-cer (C6-cer containing a 17Sph backbone) into long-chain 17C16-cer in cells by HPLC/MS, which was significantly decreased and increased in response to GSH and H2O2 respectively. TNF (tumour necrosis factor)-α, which decreases the levels of endogenous GSH, increased the generation of C16-cer in response to C6-cer, and this was blocked by exogenous GSH or NAC, or by the overexpression of TPx I (thioredoxin peroxidase I), an enzyme that reduces the generation of intracellular ROS (reactive oxygen species). Additional data showed that ROS regulated both the deacylation and reacylation steps of C6-cer. At a functional level, C6-cer inhibited the DNA-binding function of the c-Myc/Max oncogene. Inhibition of the generation of longchain ceramide in response to C6-cer by FB1 or NAC significantly blocked the modulation of the c-Myc/Max function. These data demonstrate that the sphingosine-recycling pathway for the generation of endogenous long-chain ceramide in response to exogenous C6-cer is regulated by ROS, and plays an important biological role in controlling c-Myc function. PMID:16201965

  16. Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins.

    PubMed

    Fortin, Dale A; Tillo, Shane E; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V; Guo, Caiying; Mao, Tianyi; Zhong, Haining

    2014-12-10

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. Copyright © 2014 the authors 0270-6474/14/3416698-15$15.00/0.

  17. Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety

    PubMed Central

    Li, Qin; Bartley, Aundrea F.

    2017-01-01

    Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027

  18. Cancer Theory from Systems Biology Point of View

    NASA Astrophysics Data System (ADS)

    Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping

    In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.

  19. The 2015 European Thyroid Association Guidelines on Diagnosis and Treatment of Endogenous Subclinical Hyperthyroidism

    PubMed Central

    Biondi, Bernadette; Bartalena, Luigi; Cooper, David S.; Hegedüs, Laszlo; Laurberg, Peter; Kahaly, George J.

    2015-01-01

    Endogenous subclinical hyperthyroidism (SHyper) is caused by Graves' disease, autonomously functioning thyroid nodules and multinodular goitre. Its diagnosis is based on a persistently subnormal serum thyroid-stimulating hormone (TSH) level with free thyroid hormone levels within their respective reference intervals. In 2014 the European Thyroid Association Executive Committee, given the controversies regarding the treatment of Endo SHyper, formed a task force to develop clinical practice guidelines based on the principles of evidence-based medicine. The task force recognized that recent meta-analyses, including those based on large prospective cohort studies, indicate that SHyper is associated with increased risk of coronary heart disease mortality, incident atrial fibrillation, heart failure, fractures and excess mortality in patients with serum TSH levels <0.1 mIU/l (grade 2 SHyper). Therefore, despite the absence of randomized prospective trials, there is evidence that treatment is indicated in patients older than 65 years with grade 2 SHyper to potentially avoid these serious cardiovascular events, fractures and the risk of progression to overt hyperthyroidism. Treatment could be considered in patients older than 65 years with TSH levels 0.1-0.39 mIU/l (grade 1 SHyper) because of their increased risk of atrial fibrillation, and might also be reasonable in younger (<65 years) symptomatic patients with grade 2 SHyper because of the risk of progression, especially in the presence of symptoms and/or underlying risk factors or co-morbidity. Finally, the task force concluded that there are no data to support treating SHyper in younger asymptomatic patients with grade 1 SHyper. These patients should be followed without treatment due to the low risk of progression to overt hyperthyroidism and the weaker evidence for adverse health outcomes. PMID:26558232

  20. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan; Lin, Tsu-Kung

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism.more » We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.« less

Top