Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.
Hoshi, Yutaka; Okabe, Kohki; Shibasaki, Koji; Funatsu, Takashi; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta
2018-06-20
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia. SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia. Copyright © 2018 the authors 0270-6474/18/385700-10$15.00/0.
Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.
Banerjee, Soumyabrata; Poddar, Mrinal K
2015-03-01
Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Zitting, A; Savolainen, H
1982-07-01
Rats were injected intraperitoneally (150 mg/kg) with a mixture of nitroglycerin and ethylene glycol dinitrate (1:3). Treatment caused a transient small increase in methemoglobin contents in blood and diminished contents of reduced glutathione in liver and brain. Hepatic cytochrome P-450 concentration and ethoxycoumarin deethylase activity decreased shortly after exposure but later the effect disappeared. Succinate dehydrogenase activity decreased in liver, kidney and brain. In brain, activity of creatine kinase increased significantly and slight increase in hepatic UDPglucuronosyltransferase and epoxide hydrolase activity was observed. Renal ethoxycoumarin activity increased transiently. The results point to interaction of hydrolytically released nitrite with hemoproteins.
Kurz, Jonathan E; Parsons, J Travis; Rana, Aniruddha; Gibson, Cynthia J; Hamm, Robert J; Churn, Severn B
2005-04-01
Calcineurin, a neuronally enriched, calcium-stimulated phosphatase, is an important modulator of many neuronal processes, including several that are physiologically related to the pathology of traumatic brain injury. This study examined the effects of moderate, central fluid percussion injury on the activity of this important neuronal enzyme. Animals were sacrificed at several time-points postinjury and cortical, hippocampal, and cerebellar homogenates were assayed for calcineurin activity by dephosphorylation of p-nitrophenol phosphate. A significant brain injury-dependent increase was observed in both hippocampal and cortical homogenates under both basal and maximally-stimulated reaction conditions. This increase persisted 2-3 weeks post-injury. Brain injury did not alter substrate affinity, but did induce a significant increase in the apparent maximal dephosphorylation rate. Unlike the other brain regions, no change in calcineurin activity was observed in the cerebellum following brain injury. No brain region tested displayed a significant change in calcineurin enzyme levels as determined by Western blot, demonstrating that increased enzyme synthesis was not responsible for the observed increase in activity. The data support the conclusion that fluid percussion injury results in increased calcineurin activity in the rat forebrain. This increased activity has broad physiological implications, possibly resulting in altered cellular excitability or a greater likelihood of neuronal cell death.
The Brain Circuitry Underlying the Temporal Evolution of Nausea in Humans
Sheehan, James D.; Kim, Jieun; LaCount, Lauren T.; Park, Kyungmo; Kaptchuk, Ted J.; Rosen, Bruce R.; Kuo, Braden
2013-01-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus–associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom. PMID:22473843
The brain circuitry underlying the temporal evolution of nausea in humans.
Napadow, Vitaly; Sheehan, James D; Kim, Jieun; Lacount, Lauren T; Park, Kyungmo; Kaptchuk, Ted J; Rosen, Bruce R; Kuo, Braden
2013-04-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus-associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom.
Enzyme markers of maternal malnutrition in fetal rat brain.
Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R
1987-01-01
The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.
More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S
2016-01-01
Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034
ERIC Educational Resources Information Center
Strelnikov, Kuzma
2010-01-01
There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A
2016-12-01
To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Obesity-Induced Hypertension: Brain Signaling Pathways
da Silva, Alexandre A.; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E. P.; Hall, John E.
2017-01-01
Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review high-lights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997
Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna
2017-08-01
To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5 mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain-Based Teaching/Learning and Implications for Religious Education.
ERIC Educational Resources Information Center
Weber, Jean Marie
2002-01-01
Argues that physical activity and water can increase brain activity, and hence, learning. Findings of neuroscientists regarding the brain can inform educators. Brain-based teaching emphasizes teamwork, cooperative learning, and global responsibility. Argues against gathering information without relevance. Connects brain-based learning concepts to…
Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells.
Tatsuta, T; Naito, M; Mikami, K; Tsuruo, T
1994-10-01
P-glycoprotein (PGP), an active efflux pump of antitumor agents in multidrug-resistant tumor cells, exists in brain capillary endothelium and could be functionally involved in the blood-brain barrier. To study the regulatory mechanism of PGP expression in brain capillary endothelium, various mouse tissue matrices were tested for their abilities to enhance the expression of PGP in mouse brain capillary endothelial cells (MBEC), which express relatively small amounts of PGP. Of the four tissue matrices we examined, PGP expression in MBEC cultured on the brain matrix increased 2.0-fold. The PGP-inducing activity was similarly detected in bovine brain matrix, and the activity was enriched in the fraction of pl 9.0 by isoelectric focusing. The fraction, named PIC-fraction (PGP-inducing component), increased the PGP expression in MBEC 3.5-fold. By Northern blot analysis, a 3.3-fold enhancement of mdr gene expression was observed in MBEC cultured on the PIC-fraction. The PGP-inducing activity of the PIC-fraction was reduced by the treatment with trypsin but not with collagenase, suggesting that a proteinaceous factor distinct from type I collagen might be responsible for the PGP-inducing activity of PIC-fraction. Although the PIC-fraction increased the PGP expression in other mouse brain capillary endothelial cells, the PIC-fraction did not increase PGP expression in mouse aortic endothelial cells and KB carcinoma cell lines expressing various amounts of PGP. These observations suggest that PGP expression in brain capillary endothelium is specifically regulated by a tissue-specific factor in the brain matrix.
Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons
Custer, T.W.; Ohlendorf, H.M.
1989-01-01
Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.
Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons
Custer, T.W.; Ohlendorf, H.M.
1989-01-01
Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.
Increased resting-state brain entropy in Alzheimer's disease.
Xue, Shao-Wei; Guo, Yonghu
2018-03-07
Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.
Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun
2016-02-23
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Kempuraj, Duraisamy; Selvakumar, Govindhasamy P.; Thangavel, Ramasamy; Ahmed, Mohammad E.; Zaheer, Smita; Raikwar, Sudhanshu P.; Iyer, Shankar S.; Bhagavan, Sachin M.; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar
2017-01-01
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD. PMID:29302258
Functional magnetic resonance imaging reflects changes in brain functioning with sedation.
Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A
2000-12-01
Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd.
Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam
2011-01-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666
Amri, Zahra; Ghorbel, Asma; Turki, Mouna; Akrout, Férièle Messadi; Ayadi, Fatma; Elfeki, Abdelfateh; Hammami, Mohamed
2017-06-27
To investigate beneficial effects of Pomegranate seeds oil (PSO), leaves (PL), juice (PJ) and (PP) on brain cholinesterase activity, brain oxidative stress and lipid profile in high-fat-high fructose diet (HFD) induced-obese rat. In vitro and in vivo cholinesterase activity, brain oxidative status, body and brain weight and plasma lipid profile were measured in control rats, HFD-fed rats and HFD-fed rats treated by PSO, PL, PJ and PP. In vitro study showed that PSO, PL, PP, PJ inhibited cholinesterase activity in dose dependant manner. PL extract displayed the highest inhibitory activity by IC50 of 151.85 mg/ml. For in vivo study, HFD regime induced a significant increase of cholinesterase activity in brain by 17.4% as compared to normal rats. However, the administration of PSO, PL, PJ and PP to HDF-rats decreased cholinesterase activity in brain respectively by 15.48%, 6.4%, 20% and 18.7% as compared to untreated HFD-rats. Moreover, HFD regime caused significant increase in brain stress, brain and body weight, and lipid profile disorders in blood. Furthermore, PSO, PL, PJ and PP modulated lipid profile in blood and prevented accumulation of lipid in brain and body evidenced by the decrease of their weights as compared to untreated HFD-rats. In addition administration of these extract protected brain from stress oxidant, evidenced by the decrease of malondialdehyde (MDA) and Protein carbonylation (PC) levels and the increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. These findings highlight the neuroprotective effects of pomegranate extracts and one of mechanisms is the inhibition of cholinesterase and the stimulation of antioxidant capacity.
Linking brains and brawn: exercise and the evolution of human neurobiology.
Raichlen, David A; Polk, John D
2013-01-07
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest.
Li, Duan; Mabrouk, Omar S; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J; Mathur, Abhay; Crooks, Charles P; Kennedy, Robert T; Wang, Michael M; Ghanbari, Hamid; Borjigin, Jimo
2015-04-21
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain-heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain's autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato
2011-01-01
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209
Dopaminergic contributions to working memory-related brain activation in postmenopausal women.
Dumas, Julie A; Filippi, Christopher G; Newhouse, Paul A; Naylor, Magdalena R
2017-02-01
The current study examined the effects of pharmacologic dopaminergic manipulations on working memory-related brain activation in postmenopausal women to further understand the neurochemistry underlying cognition after menopause. Eighteen healthy postmenopausal women, mean age 55.21 years, completed three study days with dopaminergic drug challenges during which they performed a functional magnetic resonance imaging visual verbal N-back test of working memory. Acute stimulation with 1.25 mg oral D2 agonist bromocriptine, acute blockade with 1.5 mg oral haloperidol, and matching placebo were administered randomly and blindly on three study days. We found that dopaminergic stimulation increased activation primarily in the posterior regions of the working memory network compared with dopaminergic blockade using a whole brain cluster-level corrected analysis. The dopaminergic medications did not affect working memory performance. Patterns of increased blood-oxygen-level dependent signal activation after dopaminergic stimulation were found in this study in posterior brain regions with no effect on working memory performance. Further studies should examine specific dopaminergic contributions to brain functioning in healthy postmenopausal women to determine the effects of the increased brain activation on cognition and behavior.
Harasawa, Masamitsu; Shioiri, Satoshi
2011-04-01
The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.
Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.
Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria
2015-01-01
Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870
Peers Increase Adolescent Risk Taking by Enhancing Activity in the Brain's Reward Circuitry
ERIC Educational Resources Information Center
Chein, Jason; Albert, Dustin; O'Brien, Lia; Uckert, Kaitlyn; Steinberg, Laurence
2011-01-01
The presence of peers increases risk taking among adolescents but not adults. We posited that the presence of peers may promote adolescent risk taking by sensitizing brain regions associated with the anticipation of potential rewards. Using fMRI, we measured brain activity in adolescents, young adults, and adults as they made decisions in a…
Sharma, Suresh D.; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R.; Kumar, Ganesh K.
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O2 for 15 s followed by 21% O2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases Vmax but has no effect on Km. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem. PMID:18818385
Sharma, Suresh D; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R; Kumar, Ganesh K
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.
Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S
2009-09-01
Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.
Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.
Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D
2016-12-01
The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.
Invisible Brain: Knowledge in Research Works and Neuron Activity.
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.
Buchweitz, Augusto; Keller, Timothy A; Meyler, Ann; Just, Marcel Adam
2012-08-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared with comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. Copyright © 2011 Wiley Periodicals, Inc.
Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G; Kahn, C Ron; Braun, Ursula; Leitges, Michael; Park, Collin R; Diamond, David M; Farese, Robert V
2018-01-01
Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ 1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ 1-40/42 , β-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), β-secretase, and Aβ 1-40/42 , and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase β-secretase and Aβ 1-40/42 . Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain β-secretase, Aβ 1-40/42 , and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease. Published by Elsevier Inc.
Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.
Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy
2015-01-01
It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.
Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task
Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy
2015-01-01
Objective It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. PMID:26139105
New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.
Tozzi, Arturo; Zare, Marzieh; Benasich, April A
2016-01-01
Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational free-energy", a theoretical construct pertaining to probability and information theory which allows explanation of unexplored features of spontaneous brain activity.
Genain, C P; Van Loon, G R; Kotchen, T A
1985-01-01
The purpose of this study was to investigate the biochemistry and the regulation of the brain renin-angiotensin system in the Sprague-Dawley rat. Renin activity and angiotensinogen concentrations (direct and indirect radioimmunoassays) were measured in several brain areas and in neuroendocrine glands. Regional renin activities were measured in separate groups of rats on high and low NaCl diets. Mean tissue renin activities ranged from 2.2 +/- 0.6 to 54.4 +/- 19.7 fmol/mg protein per h (mean of 7 +/- SD), with the highest amounts in pineal, pituitary, and pons-medulla. NaCl depletion increased renin activity in selected regions; based on estimates of residual plasma contamination (despite perfusion of brains with saline), increased renin activity of pineal gland and posterior pituitary was attributed to higher plasma renin. To eliminate contamination by plasma renin, 16-h-nephrectomized rats were also studied. In anephric rats, NaCl depletion increased renin activity by 92% in olfactory bulbs and by 97% in anterior pituitary compared with NaCl-replete state. These elevations could not be accounted for by hyperreninemia. Brain renin activity was low and was unaffected by dietary NaCl in amygdala, hypothalamus, striatum, frontal cortex, and cerebellum. In contrast to renin, highest angiotensinogen concentrations were measured in hypothalamus and cerebellum. Overall, angiotensinogen measurements with the direct and the indirect assays were highly correlated (n = 56, r = 0.96, P less than 0.001). We conclude that (a) NaCl deprivation increases renin in olfactory bulbs and anterior pituitary of the rat, unrelated to contamination by plasma renin; and (b) the existence of angiotensinogen, the precursor of angiotensins, is demonstrated by direct radioimmunoassay throughout the brain and in neuroendocrine glands. PMID:3902894
Winning and losing: differences in reward and punishment sensitivity between smokers and nonsmokers.
Martin, Laura E; Cox, Lisa S; Brooks, William M; Savage, Cary R
2014-01-01
Smokers show increased brain activation in reward processing regions in response to smoking-related cues, yet few studies have examined secondary rewards not associated with smoking (i.e., money). Inconsistencies exist in the studies that do examine secondary rewards with some studies showing increased brain activation in reward processing brain regions, while others show decreased activation or no difference in activation between smokers and nonsmokers. The goal of the current study is to see if smokers process the evaluation and delivery of equally salient real world rewards similarly or differently than nonsmokers. The current study employed functional magnetic resonance imaging (fMRI) to examine brain responses in smokers and nonsmokers during the evaluation and delivery of monetary gains and losses. In comparison to nonsmokers, smokers showed increased activation in the ventromedial prefrontal cortex to the evaluation of anticipated monetary losses and the brain response. Moreover, smokers compared to nonsmokers showed decreased activation in the inferior frontal gyrus to the delivery of expected monetary gains. Brain activations to both the evaluation of anticipated monetary losses and the delivery of expected monetary gains correlated with increased self-reported smoking craving to relieve negative withdrawal symptoms and craving related to positive aspects of smoking, respectively. Together these results indicate that smokers are hyperresponsive to the evaluation of anticipated punishment and hyporesponsive to the delivery of expected rewards. Although further research is needed, this hypersensitivity to punishments coupled with increased craving may negatively impact quit attempts as smokers anticipate the negative withdrawal symptoms associated with quitting.
Brain hyperthermia and temperature fluctuations during sexual interaction in female rats.
Mitchum, Robert D; Kiyatkin, Eugene A
2004-03-12
Since the metabolic activity of neural cells is accompanied by heat release, brain temperature monitoring provides insight into behavior-associated changes in neural activity. In the present study, local temperatures were continuously recorded in several brain structures (nucleus accumbens, medial-preoptic hypothalamus and hippocampus) and a non-locomotor head muscle (musculus temporalis) in a receptive female rat during sexually arousing stimulation and subsequent copulatory behavior with an experienced male. Placement of the male into a neighboring compartment increased the female's temperature (approximately 0.8 degrees C) and additional, transient increases (approximately 0.2 degrees C) occurred when the rats were allowed to see and smell each other through a transparent barrier. Temperatures gradually increased further as the male repeatedly mounted and achieved intromissions, peaked 2-3 min after male's ejaculation (0.2-0.4 degrees C), and abruptly dropped until the male initiated a new copulatory cycle. Similar biphasic fluctuations accompanied subsequent copulatory cycles. Although both arousal-related temperature increases and biphasic fluctuations associated with copulatory cycles were evident in each recording location, brain sites showed consistently faster and stronger increases than the muscle, suggesting metabolic brain activation as the primary source of brain temperature fluctuations and a force behind associated changes in brain temperature. Robust brain hyperthermia and the generally similar pattern of phasic temperature fluctuations associated with individual events of sexual interaction found in males and females suggest widespread neural activation (motivational arousal) as a driving force underlying this cooperative motivated behavior in animals of both sexes. Females, however, showed different temperature changes in association with the initial (first mount or intromission) and final (ejaculation) events of each copulatory cycle, suggesting sex-specific differences in neural activity associated with the initiation and regulation of sexual behavior.
THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.
1961-11-01
In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less
Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu
2014-08-15
Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.
Dopaminergic contributions to working memory-related brain activation in postmenopausal women
Dumas, Julie A.; Filippi, Christopher G.; Newhouse, Paul A.; Naylor, Magdalena R.
2016-01-01
Objective The current study examined the effects of pharmacologic dopaminergic manipulations on working memory-related brain activation in postmenopausal women to further understand the neurochemistry underlying cognition after menopause. Method Eighteen healthy postmenopausal women, mean age 55.21 years, completed three study days with dopaminergic drug challenges during which they performed an fMRI visual verbal N-back test of working memory. Acute stimulation with 1.25 mg oral D2 agonist bromocriptine, acute blockade with 1.5 mg oral haloperidol, and matching placebo were administered randomly and blindly on three study days. Results We found that dopaminergic stimulation increased activation primarily in the posterior regions of the working memory network compared to dopaminergic blockade using a whole brain cluster-level corrected analysis. The dopaminergic medications did not affect working memory performance. Conclusions Patterns of increased BOLD signal activation after dopaminergic stimulation were found in this study in posterior brain regions with no effect on working memory performance. Further studies should examine specific dopaminergic contributions to brain functioning in healthy postmenopausal women in order to determine the effects of the increased brain activation on cognition and behavior. PMID:27676634
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302
Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua
2015-01-01
Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309
Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen
2015-08-01
To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P < 0.05 uncorrected). This study found that, at 1 month after LT, spontaneous brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.
Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric
2014-01-01
Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058
Vascular signaling abnormalities in Alzheimer disease.
Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph
2011-08-01
Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.
Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy.
Rempe, Ralf G; Hartz, Anika M S; Soldner, Emma L B; Sokola, Brent S; Alluri, Satya R; Abner, Erin L; Kryscio, Richard J; Pekcec, Anton; Schlichtiger, Juli; Bauer, Björn
2018-05-02
The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo / ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A 2 Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage. SIGNIFICANCE STATEMENT The mechanism leading to seizure-mediated blood-brain barrier dysfunction in epilepsy is poorly understood. In the present study, we focused on defining this mechanism in the brain capillary endothelium. We demonstrate that seizures trigger a pathway that involves glutamate signaling through cytosolic phospholipase A 2 , which increases MMP levels and decreases tight junction protein expression levels, resulting in barrier leakage. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit barrier dysfunction in epilepsy and decrease seizure burden. Copyright © 2018 the authors 0270-6474/18/384301-15$15.00/0.
Effect of α-alkylated tryptamine derivatives on 5-hydroxytryptamine metabolism in vivo
Gey, K. F.; Pletscher, A.
1962-01-01
In rats, three α-alkylated tryptamine derivatives (α-methyl, α-ethyl, and αα-dimethyltryptamine) caused alterations of 5-hydroxytryptamine metabolism typical of monoamine-oxidase inhibitors with short duration of action, viz., an increase of endogenous 5-hydroxytryptamine in brain, enhancement of the increase of 5-hydroxytryptamine in brain and heart after 5-hydroxytryptophan administration, an inhibition of the decrease in 5-hydroxytryptamine in brain induced by a benzoquinolizine derivative and of the increase induced by iproniazid. The increase after iproniazid was antagonized to the same extent by all the tryptamine derivatives and by harmaline, whereas dexamphetamine showed less effect. In the other experiments with brain, the tryptamine derivatives were less potent than harmaline, but somewhat more active than dexamphetamine. α-Methyltryptamine and α-ethyltryptamine were relatively more effective in the heart than in the brain. Among the tryptamine derivatives αα-dimethyltryptamine had the weakest activity in brain and in heart. PMID:13898151
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Zhou, Li; Wei, Chunsheng; Huang, Wei; Bennett, David A; Dickson, Dennis W; Wang, Rui; Wang, Dengshun
2013-01-01
We investigated the subcellular distribution of NEP protein and activity in brains of human individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD dementia, as well as double transgenic mice and human neuronal cell line treated with Aβ and 4-hydroxy-2-nonenal (HNE). Total cortical neuronal-related NEP was significantly increased in MCI compared to NCI brains. NeuN was decreased in both MCI and AD, consistent with neuronal loss occurring in MCI and AD. Negative relationship between NEP protein and NeuN in MCI brains, and positive correlation between NEP and pan-cadherin in NCI and MCI brains, suggesting the increased NEP expression in NCI and MCI might be due to membrane associated NEP in non-neuronal cells. In subcellular extracts, NEP protein decreased in cytoplasmic fractions in MCI and AD, but increased in membrane fractions, with a significant increase in the membrane/cytoplasmic ratio of NEP protein in AD brains. By contrast, NEP activity was decreased in AD. Similar results were observed in AD-mimic transgenic mice. Studies of SH-SY5Y neuroblastoma showed an up-regulation of NEP protein in the cytoplasmic compartment induced by HNE and Aβ; however, NEP activity decreased in cytoplasmic fractions. Activity of NEP in membrane fractions increased at 48 hours and then significantly decreased after treatment with HNE and Aβ. The cytoplasmic/membrane ratio of NEP protein increased at 24 hours and then decreased in both HNE and Aβ treated cells. Both HNE and Aβ up-regulate NEP expression, but NEP enzyme activity did not show the same increase, possibly indicating immature cytoplasmic NEP is less active than membrane associated NEP. These observations indicate that modulation of NEP protein levels and its subcellular location influence the net proteolytic activity and this complex association might participate in deficiency of Aβ degradation that is associated with amyloid deposition in AD. PMID:24093058
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian
2012-01-01
Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600
Alonso, Maria I; Lamus, Francisco; Carnicero, Estela; Moro, Jose A; de la Mano, Anibal; Fernández, Jose M F; Desmond, Mary E; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.
Alonso, Maria I.; Lamus, Francisco; Carnicero, Estela; Moro, Jose A.; de la Mano, Anibal; Fernández, Jose M. F.; Desmond, Mary E.; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies. PMID:29311854
3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarcz, R.; Okuno, E.; White, R.J.
1988-06-01
An excess of the tryptophan metabolite quinolinic acid in the brain has been hypothetically related to the pathogenesis of Huntington disease. Quinolinate's immediate biosynthetic enzyme, 3-hydroxyanthranilate oxygenase, has now been detected in human brain tissue. The activity of 3-hydroxyanthranilate oxygenase is increased in Huntington disease brains as compared to control brains. The increment is particularly pronounced in the striatum, which is known to exhibit the most prominent nerve-cell loss in Huntington disease. Thus, the Huntington disease brain has a disproportionately high capability to produce the endogenous excitotoxin quinolinic acid. This finding may be of relevance for clinical, neuropathologic, and biochemicalmore » features associated with Huntington disease.« less
Rivastigmine is Associated with Restoration of Left Frontal Brain Activity in Parkinson’s Disease
Possin, Katherine L.; Kang, Gail A.; Guo, Christine; Fine, Eric M.; Trujillo, Andrew J.; Racine, Caroline A.; Wilheim, Reva; Johnson, Erica T.; Witt, Jennifer L.; Seeley, William W.; Miller, Bruce L.; Kramer, Joel H.
2013-01-01
Objective To investigate how acetylcholinesterase inhibitor (ChEI) treatment impacts brain function in Parkinson’s disease (PD). Methods Twelve patients with PD and either dementia or mild cognitive impairment underwent task-free functional magnetic resonance imaging before and after three months of ChEI treatment and were compared to 15 age and sex matched neurologically healthy controls. Regional spontaneous brain activity was measured using the fractional amplitude of low frequency fluctuations. Results At baseline, patients showed reduced spontaneous brain activity in regions important for motor control (e.g., caudate, supplementary motor area, precentral gyrus, thalamus), attention and executive functions (e.g., lateral prefrontal cortex), and episodic memory (e.g., precuneus, angular gyrus, hippocampus). After treatment, the patients showed a similar but less extensive pattern of reduced spontaneous brain activity relative to controls. Spontaneous brain activity deficits in the left premotor cortex, inferior frontal gyrus, and supplementary motor area were restored such that the activity was increased post-treatment compared to baseline and was no longer different from controls. Treatment-related increases in left premotor and inferior frontal cortex spontaneous brain activity correlated with parallel reaction time improvement on a test of controlled attention. Conclusions PD patients with cognitive impairment show numerous regions of decreased spontaneous brain function compared to controls, and rivastigmine is associated with performance-related normalization in left frontal cortex function. PMID:23847120
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Neural decoding of collective wisdom with multi-brain computing.
Eckstein, Miguel P; Das, Koel; Pham, Binh T; Peterson, Matthew F; Abbey, Craig K; Sy, Jocelyn L; Giesbrecht, Barry
2012-01-02
Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally, our methods highlight the potential of multi-brain computing as a technique to rapidly and in parallel gather increased information about the environment as well as to access collective perceptual/cognitive choices and mental states. Copyright © 2011 Elsevier Inc. All rights reserved.
Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł
2017-01-01
Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103
Brain lactate metabolism: the discoveries and the controversies
Dienel, Gerald A
2012-01-01
Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an ‘opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain. PMID:22186669
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Junaid, M A; Pullarkat, R K
1999-04-02
A recent study has shown mutations in CLN2 gene, that encodes a novel lysosomal pepstatin-insensitive proteinase (LPIP), in the pathophysiology of late-infantile neuronal ceroid lipofuscinosis (LINCL). We have measured the LPIP activities in brains from various forms of human neuronal ceroid lipofuscinoses (NCL), canine ceroid lipofuscinosis and other neurodegenerative disorders with a highly sensitive assay using a tetrapeptide Gly-Phe-Phe-Leu-amino-trifluoromethyl coumarin (AFC) as substrate. Brain LPIP has a pH optimum of 3.5 and an apparent km of 100 microM for the crude enzyme. The enzyme activity is totally absent in LINCL patients. Pronounced increase in the LPIP activity was seen in patients suffering from infantile (INCL), juvenile (JNCL) and adult (ANCL) forms of neuronal ceroid lipofuscinoses. LPIP activity was also found to be increased about two-fold in Alzheimer's disease when compared with normal or age-matched controls, while in globoidal-cell leukodystrophy (Krabbe's disease) it was similar to the normal controls. Although mannose-6-phosphorylated LPIP is increased 13-fold in brains of patients with JNCL, this form of LPIP did not have any enzyme activity. The mechanism by which LPIP activities are increased in a wide range of neurodegenerative diseases is unknown, although neuronal loss, followed by gliosis are common characteristics of these diseases.
Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi
2015-01-01
Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.
Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi
2015-01-01
Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI. PMID:25738156
Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.
Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas
2013-04-01
More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Parametric fMRI analysis of visual encoding in the human medial temporal lobe.
Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P
1999-01-01
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.
NASA Technical Reports Server (NTRS)
Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.;
2015-01-01
Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12 days after HDBR. The observed effect of bed rest on brain activation during a foot tapping task could be linked to HDBR related changes in brain structure that we have recently reported. The relationship between pre- and post- HDBR changes in brain activation and performance in a functional mobility test will also be presented.
Northoff, Georg
2016-01-15
Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Lei; de Kloet, Annette D.; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A.; Pioquinto, David J.; Ludin, Jacob A.; Oh, S. Paul; Katovich, Michael J.; Frazier, Charles J.; Raizada, Mohan K.; Krause, Eric G.
2016-01-01
Over-activation of brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme (ACE2) inhibits RAS activity by converting angiotensin II, the effector peptide of RAS, to angiotensin-(1-7), which activates Mas receptors (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ~62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA. PMID:26767952
Brain CYP2B induction can decrease nicotine levels in the brain.
Garcia, Kristine L P; Lê, Anh Dzung; Tyndale, Rachel F
2017-09-01
Nicotine can be metabolized by the enzyme CYP2B; brain CYP2B is higher in rats and monkeys treated with nicotine, and in human smokers. A 7-day nicotine treatment increased CYP2B expression in rat brain but not liver, and decreased the behavioral response and brain levels (ex vivo) to the CYP2B substrate propofol. However, the effect of CYP2B induction on the time course and levels of circulating brain nicotine in vivo has not been demonstrated. Using brain microdialysis, nicotine levels following a subcutaneous nicotine injection were measured on day one and after a 7-day nicotine treatment. There was a significant time x treatment interaction (p = 0.01); peak nicotine levels (15-45 minutes post-injection) were lower after treatment (p = 0.04) consistent with CYP2B induction. Following a two-week washout period, brain nicotine levels increased to day one levels (p = 0.02), consistent with brain CYP2B levels returning to baseline. Brain pretreatment of the CYP2B inhibitor, C8-xanthate, increased brain nicotine levels acutely and after 7-day nicotine treatment, indicating the alterations in brain nicotine levels were due to changes in brain CYP2B activity. Plasma nicotine levels were not altered for any time or treatment sampled, confirming no effect on peripheral nicotine metabolism. These results demonstrate that chronic nicotine, by increasing brain CYP2B activity, reduces brain nicotine levels, which could alter nicotine's reinforcing effects. Higher brain CYP2B levels in smokers could lower brain nicotine levels; as this induction would occur following continued nicotine exposure it could increase withdrawal symptoms and contribute to sustaining smoking behavior. © 2016 Society for the Study of Addiction.
Caspase 7: increased expression and activation after traumatic brain injury in rats.
Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K
2005-07-01
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-01-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase-3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase-3 activation in the 7-day–old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. PMID:22372857
Brain-computer interface for alertness estimation and improving
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina
2018-02-01
Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.
Rastogi, R B; Singhal, R L
1976-09-01
In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats. Whereas administration of l-triiodothyronine (10 mug/100 g/day) for 30 days to 120-day-old rats increased the levels of tyrosine by 23% and of tryptophan by 43%, no appreciable change was noted in tryptophan hydroxylase activity. In contrast to neonatal hyperthyroidism, excess of thyroid hormone in adult rats failed to produce any change in motor activity and tended to decrease striatal tyrosine hydroxylase activity only slightly. The concentration of dopamine remained unchanged in all regions of the brain except in midbrain where it rose by 19%. Whereas norepinephrine concentration was altered in hypothalamus, pons-medulla and midbrain, the levels of 5-hydroxytryptamine and its metabolite, 5-hydroxyindoleacetic acid, were significantly decreased in striatum and cerebellum. Since dopaminergic and noradrenergic neurons are the critical components of the motor system, the possibility exists that elevated behavioral activity in young L-triiodothyronine-treated animals might be associated with increased turnover of catecholamines in neuronal tissue.
Christakou, Anastasia; Halari, Rozmin; Smith, Anna B; Ifkovits, Eve; Brammer, Mick; Rubia, Katya
2009-10-15
Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.
Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation.
Solis, Ernesto; Bola, R Aaron; Fasulo, Bradley J; Kiyatkin, Eugene A
2017-02-15
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Dikker, Suzanne; Silbert, Lauren J; Hasson, Uri; Zevin, Jason D
2014-04-30
Recent research has shown that the degree to which speakers and listeners exhibit similar brain activity patterns during human linguistic interaction is correlated with communicative success. Here, we used an intersubject correlation approach in fMRI to test the hypothesis that a listener's ability to predict a speaker's utterance increases such neural coupling between speakers and listeners. Nine subjects listened to recordings of a speaker describing visual scenes that varied in the degree to which they permitted specific linguistic predictions. In line with our hypothesis, the temporal profile of listeners' brain activity was significantly more synchronous with the speaker's brain activity for highly predictive contexts in left posterior superior temporal gyrus (pSTG), an area previously associated with predictive auditory language processing. In this region, predictability differentially affected the temporal profiles of brain responses in the speaker and listeners respectively, in turn affecting correlated activity between the two: whereas pSTG activation increased with predictability in the speaker, listeners' pSTG activity instead decreased for more predictable sentences. Listeners additionally showed stronger BOLD responses for predictive images before sentence onset, suggesting that highly predictable contexts lead comprehenders to preactivate predicted words.
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies
Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi
2015-01-01
Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. SLEEP 2015;38(2):233–240. PMID:25409102
Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor
2018-01-05
In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.
2005-01-01
Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.
Ito, Koji; Hirooka, Yoshitaka; Matsukawa, Ryuichi; Nakano, Masatsugu; Sunagawa, Kenji
2012-01-01
Depression often coexists with cardiovascular disease, such as hypertension and heart failure, in which sympathetic hyperactivation is critically involved. Reduction in the brain sigma-1 receptor (S1R) functions in depression pathogenesis via neuronal activity modulation. We hypothesized that reduced brain S1R exacerbates heart failure, especially with pressure overload via sympathetic hyperactivation and worsening depression. Male Institute of Cancer Research mice were treated with aortic banding and, 4 weeks thereafter, fed a high-salt diet for an additional 4 weeks to accelerate cardiac dysfunction (AB-H). Compared with sham-operated controls (Sham), AB-H showed augmented sympathetic activity, decreased per cent fractional shortening, increased left ventricular dimensions, and significantly lower brain S1R expression. Intracerebroventricular (ICV) infusion of S1R agonist PRE084 increased brain S1R expression, lowered sympathetic activity, and improved cardiac function in AB-H. ICV infusion of S1R antagonist BD1063 increased sympathetic activity and decreased cardiac function in Sham. Tail suspension test was used to evaluate the index of depression-like behaviour, with immobility time and strain amplitude recorded as markers of struggle activity using a force transducer. Immobility time increased and strain amplitude decreased in AB-H compared with Sham, and these changes were attenuated by ICV infusion of PRE084. These results indicate that decreased brain S1R contributes to the relationship between heart failure and depression in a mouse model of pressure overload.
Neuroimaging explanations of age-related differences in task performance.
Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov
2014-01-01
Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.
Dinel, Anne-Laure; André, Caroline; Aubert, Agnès; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie
2014-02-01
Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 μg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1β, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dhanda, Saurabh; Sandhir, Rajat
2018-05-01
The present study was designed to investigate the mechanisms involved in blood-brain barrier (BBB) permeability in bile duct ligation (BDL) model of chronic hepatic encephalopathy (HE). Four weeks after BDL surgery, a significant increase was observed in serum bilirubin levels. Masson trichrome staining revealed severe hepatic fibrosis in the BDL rats. 99m Tc-mebrofenin retention was increased in the liver of BDL rats suggesting impaired hepatobiliary transport. An increase in permeability to sodium fluorescein, Evans blue, and fluorescein isothiocyanate (FITC)-dextran along with increase in water and electrolyte content was observed in brain regions of BDL rats suggesting disrupted BBB. Increased brain water content can be attributed to increase in aquaporin-4 mRNA and protein expression in BDL rats. Matrix metalloproteinase-9 (MMP-9) mRNA and protein expression was increased in brain regions of BDL rats. Additionally, mRNA and protein expression of tissue inhibitor of matrix metalloproteinases (TIMPs) was also increased in different regions of brain. A significant decrease in mRNA expression and protein levels of tight junction proteins, viz., occludin, claudin-5, and zona occluden-1 (ZO-1) was observed in different brain regions of BDL rats. VCAM-1 mRNA and protein expression was also found to be significantly upregulated in different brain regions of BDL animals. The findings from the study suggest that increased BBB permeability in HE involves activation of MMP-9 and loss of tight junction proteins.
Kumar, Hariom; Sharma, B M; Sharma, Bhupesh
2015-12-01
Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Network-dependent modulation of brain activity during sleep.
Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki
2014-09-01
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Fueling and imaging brain activation
Dienel, Gerald A
2012-01-01
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861
Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo
2017-10-01
Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.
How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.
Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi
2015-02-01
Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.
Jiang, Wei-Dan; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu
2014-10-01
The brain is the center of the nervous system in all vertebrates, and homeostasis of the brain is crucial for fish survival. Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Although Cu is indicated as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this study was to assess the effects and the potential mechanism of Cu toxicity by evaluating brain oxidative status, the enzymatic and mRNA levels of antioxidant genes, as well as the Nrf2/ARE signaling in the brain of fish after Cu exposure. The protective effects of myo-inositol (MI) against subsequent Cu exposure were also investigated. The results indicate that induction of oxidative stress by Cu is shown by increases in brain ROS production, lipid peroxidation and protein oxidation, which are accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), CuZnSOD, glutathione-S-transferase (GST) and glutathione reductase (GR) activities and glutathione (GSH) content. Cu exposure increased the catalase (CAT) and glutathione peroxidase (GPx) activities. Further molecular results showed that Cu exposure up-regulated CuZnSOD, GPx1a and GR mRNA levels, suggesting an adaptive mechanism against stress. Moreover, Cu exposure increased fish brain Nrf2 nuclear accumulation and increased its ability of binding to ARE (CuZnSOD), which supported the increased CuZnSOD mRNA levels. In addition, Cu exposure caused increases of the expression of the Nrf2, Maf G1 (rather than Maf G2 gene) and PKCd genes, suggesting that de novo synthesis of those factors is required for the protracted induction of such antioxidant genes. However, the modulation of Keap1a (rather than Keap1b) of fish brain under Cu exposure might be used to turn off of the signaling cascade and avoid harmful effects. Interestingly, pre-treatment of fish with MI prevented the fish brain from Cu-induced oxidative damages mainly by increasing the GSH content and CuZnSOD and GST activities. Summarily, this study indicates that although Cu stimulates adaptive increases in the expression of some antioxidant enzyme genes through Nrf2/ARE signaling, it also induces oxidation and the depletion of most of antioxidant enzyme activities and GSH content due to the increase of ROS production, and MI protects the fish brain against Cu toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-02-01
Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.
Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro
2010-04-01
Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos
2005-06-01
It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.
Invisible Brain: Knowledge in Research Works and Neuron Activity
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199
Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L
2017-12-15
Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
Diurnal alterations of brain electrical activity in healthy adults: a LORETA study.
Toth, Marton; Kiss, Attila; Kosztolanyi, Peter; Kondakor, Istvan
2007-01-01
EEG background activity was investigated by low resolution brain electromagnetic tomography (LORETA) to test the diurnal alterations of brain electrical activity in healthy adults. Fourteen right-handed healthy male postgraduate medical students were examined four times (8 a.m., 2 p.m., 8 p.m. and next day 2 p.m.). LORETA was computed to localize generators of EEG frequency components. Comparing the EEG activity between 2 p.m. and 8 a.m., increased activity was seen (1) in theta band (6.5-8 Hz) in the left prefrontal, bilateral mesial frontal and anterior cingulate cortex; (2) in alpha2 band (10.5-12 Hz) in the bilateral precuneus and posterior parietal cortex as well as in the right temporo-occipital cortex; (3) in beta1-2-3 band (12.5-30 Hz) in the right hippocampus and parieto-occipital cortex, left frontal and bilateral cingulate cortex. Comparing the brain activity between 8 p.m. and 8 a.m., (1) midline theta activity disappeared; (2) increased alpha2 band activity was seen in the left hemisphere (including the left hippocampus); and (3) increased beta bands activity was found over almost the whole cortex (including both of hippocampi) with the exception of left temporo-occipital region. There were no significant changes between the background activities of 2 p.m. and next day 2 p.m. Characteristic distribution of increased activity of cortex (no change in delta band, and massive changes in the upper frequency bands) may mirror increasing activation of reticular formation and thus evoked thalamocortical feedback mechanisms as a sign of maintenance of arousal.
Venuti, Paola; Caria, Andrea; Esposito, Gianluca; De Pisapia, Nicola; Bornstein, Marc H; de Falco, Simona
2012-01-01
This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo
2003-03-14
Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.
Liu, Zhian; Zhang, Ming; Xu, Gongcheng; Huo, Congcong; Tan, Qitao; Li, Zengyong; Yuan, Quan
2017-01-01
Driving a vehicle is a complex activity that requires high-level brain functions. This study aimed to assess the change in effective connectivity (EC) between the prefrontal cortex (PFC), motor-related areas (MA) and vision-related areas (VA) in the brain network among the resting, simple-driving and car-following states. Twelve young male right-handed adults were recruited to participate in an actual driving experiment. The brain delta [HbO2] signals were continuously recorded using functional near infrared spectroscopy (fNIRS) instruments. The conditional Granger causality (GC) analysis, which is a data-driven method that can explore the causal interactions among different brain areas, was performed to evaluate the EC. The results demonstrated that the hemodynamic activity level of the brain increased with an increase in the cognitive workload. The connection strength among PFC, MA and VA increased from the resting state to the simple-driving state, whereas the connection strength relatively decreased during the car-following task. The PFC in EC appeared as the causal target, while the MA and VA appeared as the causal sources. However, l-MA turned into causal targets with the subtask of car-following. These findings indicate that the hemodynamic activity level of the cerebral cortex increases linearly with increasing cognitive workload. The EC of the brain network can be strengthened by a cognitive workload, but also can be weakened by a superfluous cognitive workload such as driving with subtasks. PMID:29163083
Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?
Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C
2011-08-22
The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-05-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M
2006-01-01
The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.
MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J.
2006-01-01
The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5–8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to “inquiry-based” teaching versus “lecture-based teaching.” Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities. PMID:17012205
Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi
2018-06-01
The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.
Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas
2012-08-01
In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with error monitoring and behavioral control. Correcting for gray matter reductions, we found that, in these patients, alcohol-related cues elicited increased activation in brain areas associated with attentional bias toward these cues and that, in patients who remained abstinent, increased activation and connectivity were observed in brain areas associated with processing of salient or aversive stimuli.
Jahng, Jeong Won; Lee, Jong-Ho
2015-12-05
Intraperitoneal injections (ip) of lithium chloride at large doses induce c-Fos expression in the brain regions implicated in conditioned taste aversion (CTA) learning, and also activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the plasma corticosterone levels in rats. A pharmacologic treatment blunting the lithium-induced c-Fos expression in the brain regions, but not the HPA axis activation, induced CTA formation. Synthetic glucocorticoids at conditioning, but not glucocorticoid antagonist, attenuated the lithium-induced CTA acquisition. The CTA acquisition by ip lithium was not affected by adrenalectomy regardless of basal corticosterone supplement, but the extinction was delayed in the absence of basal corticosterone. Glucocorticoids overloading delayed the extinction memory formation of lithium-induced CTA. ip lithium consistently induced the brain c-Fos expression, the HPA activation and CTA formation regardless of the circadian activation of the HPA axis. Intracerebroventricular (icv) injections of lithium at day time also increased the brain c-Fos expression, activated the HPA axis and induced CTA acquisition. However, icv lithium at night, when the HPA axis shows its circadian activation, did not induce CTA acquisition nor activate the HPA axis, although it increased the brain c-Fos expression. These results suggest that the circadian activation of the HPA axis may affect central, but not peripheral, effect of lithium in CTA learning in rats, and the HPA axis activation may be necessary for the central effect of lithium in CTA formation. Also, glucocorticoids may be required for a better extinction; however, increased glucocorticoids hinder both the acquisition and the extinction of lithium-induced CTA. Copyright © 2015. Published by Elsevier B.V.
Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi
2015-02-01
Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of More Active Identification of Brain-Dead Cases in Increasing Organ Donation.
Sadegh Beigee, Farahnaz; Mohsenzadeh, Mojtaba; Shahryari, Shagin; Mojtabaee, Meysam
2017-02-01
Organ donor shortage is a worldwide problem, resulting in 10% to 30% mortality rates for patients on wait lists for organ transplant. For brain-dead patients in Iran, it is mandatory for intensive care unit patients with Glasgow Coma Scale below 5/15 to be reported to an organ procurement unit. However, this process has not been functioning effectively. Here, we present the effects of changing the strategies on detecting brain-dead cases on the organ donor pool. From March 2015 to March 2016, we changed our strategy in active detection of brain-dead cases. Since March 2015, our newly established protocol for active detection of brain-dead cases includes the following changes: (1) instead of calling high-volume intensive care units 3 times per week, we switched to calling every day in the morning; (2) instead of calling low-volume intensive care units 1 time per week, we switched to calling 3 times per week; (3) we included intensive care units (cardiac and general), neurosurgery, and emergency departments, as well as nursing supervisor offices, in our call and visit lists; and (4) we increased visits to wards by our trained staff as inspectors. From March 2015 to March 2016, the number of reported suspected brain-dead cases has increased from 224 to 460 per year, with proven brain death increasing from 180 to 306 cases. The actual number of donors has also increased, from 116 to 165 donations (53% increase) over 1 year. More proactive strategies have had significant effects on brain-dead detection, resulting in significantly increased donor pools and organ donations. In countries with low cooperation of hospital staff, more proactive engagement in detecting brain-dead cases is a good solution to prevent loss of potential organ donors, with a final result of decreasing wait list mortality.
Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats
Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488
Aronia melanocarpa treatment and antioxidant status in selected tissues in Wistar rats.
Francik, Renata; Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir
2014-01-01
Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed.
Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman
2014-03-01
The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into the brain. © 2013 International Society for Neurochemistry.
MK-801 increases locomotor activity in a context-dependent manner in zebrafish.
Tran, Steven; Muraleetharan, Arrujyan; Fulcher, Niveen; Chatterjee, Diptendu; Gerlai, Robert
2016-01-01
Zebrafish have become a popular animal model for behavioral neuroscience with an increasing number of studies examining the effects of pharmacological compounds targeting the brain. Exposure to MK-801, a non-competitive N-methyl-d-aspartate receptor antagonist has been shown to increase locomotor activity in zebrafish. However, others have failed to replicate this finding as several contradicting studies report no changes in locomotor activity following exposure to similar doses. In the current study we reconcile these behavioral reports by demonstrating that zebrafish do not exhibit changes in locomotor activity during exposure to non-sedative doses of MK-801. Interestingly, zebrafish do exhibit significant increases in locomotion if pre-treated with MK-801 followed by subsequent testing in a novel environment, which suggests the effects of MK-801 are context-dependent. In addition, we examine the potential role of the dopaminergic system in mediating MK-801's locomotor stimulant effect by quantifying the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the brains of zebrafish following a 30 min exposure to 10 μM of MK-801 (the dose found to induce the largest increase in locomotor activity). Our findings indicate that the MK-801-induced increase in locomotor activity is not accompanied by changes in whole-brain levels of dopamine or DOPAC. Overall, our results suggest that MK-801's context-dependent locomotor stimulant effect may be independent of whole-brain dopaminergic activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.
Nikonova, Elena V; Vijayasarathy, Camasamudram; Zhang, Lin; Cater, Jacqueline R; Galante, Raymond J; Ward, Stephen E; Avadhani, Narayan G; Pack, Allan I
2005-01-01
Increased mRNA level of subunit 1 cytochrome c oxidase (COXI) during wakefulness and after short-term sleep deprivation has been described in brain. We hypothesized that this might contribute to increased activity of cytochrome oxidase (COX) enzyme during wakefulness, as part of the mechanisms to provide sufficient amounts of adenosine triphosphate to meet increased neuronal energy demands. COX activity was measured in isolated mitochondria from different brain regions in groups of rats with 3 hours of spontaneous sleep, 3 hours of spontaneous wake, and 3 hours of sleep deprivation. The group with 3 hours of spontaneous wake was added to delineate the circadian component of changes in the enzyme activity. Northern blot analysis was performed to examine the mRNA levels of 2 subunits of the enzyme COXI and COXIV, encoded by mitochondrial and nuclear DNA, respectively. Laboratory of Biochemistry, Department of Animal Biology, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania. 2-month-old male Fischer rats (N = 21) implanted for polygraphic recording. For COX activity, there was a main effect by analysis of variance of experimental group (P < .0001) with significant increases in COX activity in wake and sleep-deprived groups as compared to the sleep group. A main effect of brain region was also significant (P < .001). There was no difference between brain regions in the degree of increase in enzyme activity in wakefulness. Both COXI and COXIV mRNA were increased with wakefulness as compared to sleep. There is an increase in COX activity after both 3 hours of spontaneous wake and 3 hours of sleep deprivation as compared with 3 hours of spontaneous sleep in diverse brain regions, which could be, in part, explained by the increased levels of bigenomic transcripts of the enzyme. This likely contributes to increased adenosine triphosphate production during wakefulness. ADP, adenosine diphosphate; ATP, adenosine triphosphate; COXI, cytochrome c oxidase subunit 1 mRNA; COX, cytochrome c oxidase (protein); CREB, cyclic AMP response element binding protein; DNA, deoxyribonucleic acid; EDTA, ethylenediaminetetraacetic acid; EEG, electroencephalography; EMG, electromyography; GABP, GA binding protein; HEPES, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid; mRNA, messenger ribonucleic acid; NADH, nicotinamid adenine dinucleotide, reduced; NDII, NADH dehydrogenase subunit 2 mRNA; NRF, nuclear respiratory factor.
Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration
2012-01-01
Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and naltrexone blocked microglial activation and neurodegeneration. Conclusions Chronic ethanol potentiates poly I:C blood and brain proinflammatory responses. Poly I:C neuroinflammation persists after systemic responses subside. Increases in blood TNFα, IL-1β, IL-6, and MCP-1 parallel brain responses consistent with blood cytokines contributing to the magnitude of neuroinflammation. Ethanol potentiation of TLR3 agonist responses is consistent with priming microglia-monocytes and increased NOX, ROS, HMGB1-TLR3 and markers of neurodegeneration. These studies indicate that TLR3 agonists increase blood cytokines that contribute to neurodegeneration and that ethanol binge drinking potentiates these responses. PMID:22709825
Manjarrez-Gutiérrez, G; Rocío Herrera-Márquez, J R; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J
2000-01-01
To investigate if the changes in the activity of the tryptophan-5-hydroxylase and in brain serotonin synthesis provoked by diabetes mellitus persist or return to normal in the diabetic rats submitted to treatment with insulin. Diabetes induced by the administration of streptozotocin in rats and their treatment with insulin was the paradigm used. At days 7, 14 and 21 of evolution, the brain serotonergic biosynthetic activity was evaluated. The diabetic rats showed a significant decrease of body weight. Also, they showed a low concentration of I-tryptophan, as well as a diminution in the activity of the key enzyme tryptophan-5-hydroxylase and its product serotonin in the cerebral cortex and brainstem. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The diabetic rats submitted to treatment with insulin showed a complete physical recovery and a return to normal of plasma and brain I-tryptophan. The activity of the enzyme not only normalized but was elevated and with an increase of serotonin in the brainstem and cerebral cortex. The present findings confirm that diabetes mellitus produced a chronic anabolic deficit and a decrease in some brain regions of serotonin synthesis. Also, demonstrate that the diabetic rats under specific treatment with insulin had a complete physical recovery and a return to normal of the serotonin precursor in the blood and brain. However, the activity of the limiting enzyme TrpOH case was elevated with an increase of the neurotransmitter in all regions studied. Since the diabetic animal, insulin treated, does recover metabolically, the mechanism of activation of the serotonin biosynthetic path in the brain may not be dependent on the decreased availability of its precursor the free plasma I-tryptophan. Instead, it might be due to a change in the kinetics of tryptophan-5-hydroxylase, since its activity remains significantly increased in spite of plasma and brain normalization of its substrate. Altogether these changes in the biosynthesis of an important brain neurotransmitter may be of relevance in the pathophysiology of the psychoneurological complications in diabetic patients.
Milnes, Matthew R; Roberts, Robert N; Guillette, Louis J
2002-01-01
During embryogenesis, incubation temperature and the hormonal environment influence gonadal differentiation of some reptiles, including all crocodilians. Current evidence suggests that aromatase, the enzyme that converts androgens to estrogens, has a role in sexual differentiation of species that exhibit temperature-dependent sex determination (TSD). During the temperature-sensitive period (TSP) of sex determination, we compared aromatase activity in the brain and gonads of putative male and female alligator embryos to determine if aromatase activity in the embryonic brain could provide the hormonal environment necessary for ovarian development in a TSD species. In addition, we assessed the pattern of aromatase activity in the brain and gonads of embryos treated with estradiol-17beta (E(2)) and incubated at male-producing temperatures to compare enzyme activity in E(2) sex-reversed females to control males and females. This has particular significance regarding wildlife species living in areas contaminated with suspected environmental estrogens. Gonadal aromatase activity remained low during the early stages of the TSP in both sexes and increased late in the TSP only in females. Aromatase activity in the brain increased prior to gonadal differentiation in both sexes. These results suggest that aromatase activity in the brain is not directly responsible for mediating differentiation of the gonad. E(2) exposure at male-producing temperatures resulted in sex-reversed females that had intermediate gonad function and masculinized brain activity. This study indicates the need to examine multiple end points and to determine the persistence of developmental alterations in contaminant-exposed wildlife populations. PMID:12060834
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Prospective Study of Brain Wave Changes Associated With Cranial Electrotherapy Stimulation.
Lande, R Gregory; Gragnani, Cynthia T
2018-01-18
To explore brain wave changes associated with cranial electrotherapy stimulation (CES) among subjects receiving psychiatric care. Quantitative electroencephalogram data were obtained before and after a 20-minute session of CES. The investigators recruited active-duty military subjects from Walter Reed National Military Medical Center's Psychiatry Continuity Service, Bethesda, Maryland. Fifty subjects participated in this prospective, convenience sample study from August 2016 through March 2017. The main outcome measures were changes in brain wave activity and the Subjective Units of Distress Scale. The typical subject was mildly depressed and had severe trauma-related symptoms and sleep problems. There was a significant increase (P = .000) in the higher beta frequencies (18-21 Hz, 21-33 Hz, and 33-48 Hz) and a strong effect (with the Cohen d around 1.5) immediately following the 20-minute CES. Ten minutes after CES, slower wave activity (4-8 Hz and 8-12 Hz) significantly decreased (P < .05), while higher beta wave activity (13-15 Hz, 18-21 Hz, and 21-33 Hz) increased. A strong effect (with the Cohen d around 1.5) persisted in the beta brain wave bands 18-21 Hz and 21-33 Hz. Brain wave measurements taken immediately after the 20-minute CES session showed a significant and strong effect in the beta region, suggesting an increase in mental alertness, focus, and concentration. Ten minutes after the CES session, an even more marked change in brain wave activity occurred. The significant and strong effect in the beta region persisted but was joined by a reduction in slower wave activity, indicating an increase in mental alertness. ClinicalTrials.gov identifier NCT03298308. © Copyright 2018 Physicians Postgraduate Press, Inc.
Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K
2015-10-22
We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. Published by Elsevier B.V.
Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F
2017-08-01
Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers.
Rosenthal, M J; Smith, D; Yaguez, L; Giampietro, V; Kerr, D; Bullmore, E; Brammer, M; Williams, S C R; Amiel, S A
2007-07-01
Caffeine enhances counterregulatory responses to acute hypoglycaemia. Our aim was to explore its effects on cortical function, which are not known at present. Regional brain activation during performance of the four-choice reaction time (4CRT) at different levels of complexity was measured using functional magnetic resonance imaging (fMRI) at euglycaemia (5 mmol/l) and hypoglycaemia (2.6 mmol/l) in the presence and absence of caffeine in six healthy right-handed men. During hypoglycaemia, caffeine enhanced adrenaline responses to hypoglycaemia (2.5 +/- 0.7 nmol/l to 4.0 +/- 1.0 nmol/l, P = 0.01) and restored the brain activation response to the non-cued 4CRT, the linear increases in regional brain activation associated with increased task complexity and the ability to respond to a cue that were lost in hypoglycaemia alone. Caffeine can sustain regional brain activation patterns lost in acute hypoglycaemia, with some restoration of cortical function and enhanced adrenaline responsiveness. A methodology has been established that may help in the development of therapies to protect against severe hypoglycaemia in insulin therapy for patients with diabetes and problematic hypoglycaemia.
Mangia, Anna L.; Pirini, Marco; Cappello, Angelo
2014-01-01
Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519
Howard, Steven J; Cook, Caylee J; Said-Mohamed, Rihlat; Norris, Shane A; Draper, Catherine E
2016-09-01
An area of growth in physical activity research has involved investigating effects of physical activity on children's executive functions. Many of these efforts seek to increase the energy expenditure of young children as a healthy and low-cost way to affect physical, health, and cognitive outcomes. We review theory and research from neuroscience and evolutionary biology, which suggest that interventions seeking to increase the energy expenditure of young children must also consider the energetic trade-offs that occur to accommodate changing metabolic costs of brain development. According to Life History Theory, and supported by recent evidence, the high relative energy-cost of early brain development requires that other energy-demanding functions of development (ie, physical growth, activity) be curtailed. This is important for interventions seeking to dramatically increase the energy expenditure of young children who have little excess energy available, with potentially negative cognitive consequences. Less energy-demanding physical activities, in contrast, may yield psychosocial and cognitive benefits while not overburdening an underweight child's already scarce energy supply. While further research is required to establish the extent to which increases in energy-demanding physical activities may compromise or displace energy available for brain development, we argue that action cannot await these findings.
Datta, Siddhartha; Chakrabarti, Nilkanta
2018-04-18
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cognitive and Neural Effects of Semantic Encoding Strategy Training in Older Adults
Anderson, B. A.; Barch, D. M.; Jacoby, L. L.
2012-01-01
Prior research suggests that older adults are less likely than young adults to use effective learning strategies during intentional encoding. This functional magnetic resonance imaging (fMRI) study investigated whether training older adults to use semantic encoding strategies can increase their self-initiated use of these strategies and improve their recognition memory. The effects of training on older adults' brain activity during intentional encoding were also examined. Training increased older adults' self-initiated semantic encoding strategy use and eliminated pretraining age differences in recognition memory following intentional encoding. Training also increased older adults' brain activity in the medial superior frontal gyrus, right precentral gyrus, and left caudate during intentional encoding. In addition, older adults' training-related changes in recognition memory were strongly correlated with training-related changes in brain activity in prefrontal and left lateral temporal regions associated with semantic processing and self-initiated verbal encoding strategy use in young adults. These neuroimaging results demonstrate that semantic encoding strategy training can alter older adults' brain activity patterns during intentional encoding and suggest that young and older adults may use the same network of brain regions to support self-initiated use of verbal encoding strategies. PMID:21709173
Brown, Angus M; Ransom, Bruce R
2015-02-01
Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.
New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain
Venkat, Poornima; Chopp, Michael; Chen, Jieli
2016-01-01
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823
New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.
Venkat, Poornima; Chopp, Michael; Chen, Jieli
2016-06-30
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.
Krivonogova, E V; Poskotinova, L V; Demin, D B
2015-01-01
A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.
Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan
2015-01-01
Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single-unit activity for the prediction of seizure onset and closed-loop seizure intervention, we show a need for monitoring brain state to interpret correctly whether changes in neural activity before seizure onset is pathological or normal. Moreover, we also find that the brain state preceding a seizure determines the success of therapeutic interventions to curtail seizure duration. Together, these findings suggest that seizure prediction and intervention will be more successful if tailored for the specific brain states from which seizures emerge. PMID:26609157
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
A preliminary study of the effects of working memory training on brain function.
Stevens, Michael C; Gaynor, Alexandra; Bessette, Katie L; Pearlson, Godfrey D
2016-06-01
Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (Cogmed™) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts.
NASA Astrophysics Data System (ADS)
Schnegg, Caroline Isabel
As a result of improvements in cancer therapy and health care, the population of long-term cancer survivors is growing. For these approximately 12 million long-term cancer survivors, brain metastases are a significant risk. Fractionated partial or whole-brain irradiation (fWBI) is often required to treat both primary and metastatic brain cancer. Radiation-induced normal tissue injury, including progressive cognitive impairment, however, can significantly affect the well-being of the approximately 200,000 patients who receive these treatments each year. Recent reports indicate that radiation-induced brain injury is associated with chronic inflammatory and oxidative stress responses, as well as increased microglial activation in the brain. Anti-inflammatory drugs may, therefore, be a beneficial therapy to mitigate radiation-induced brain injury. We hypothesized that activation of peroxisomal proliferator activated receptor delta (PPARō) would prevent or ameliorate radiation-induced brain injury, including cognitive impairment, in part, by alleviating inflammatory responses in microglia. For our
Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan
2015-03-01
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. © 2015 International Society for Neurochemistry.
Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A
2014-05-01
Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.
Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice
Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.
2014-01-01
Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072
Soni, Kapil; Parle, Milind
2017-05-01
The present study was designed to explore the beneficial effects of successive 10 days administration of Trachyspermum ammi seed's powder (TASP) along with diet (at the dose of 0.5%, 1.0% and 2.0% w/w) on learning and memory of mice. A total of 306 mice divided in 51 equal groups were employed in the study. Passive avoidance paradigm (PAP) and Object recognition Task (ORT) were employed as exteroceptive models. The brain acetylcholinesterase activity (AChE), serum cholesterol, brain monoaldehyde (MDA), brain reduced glutathione (GSH) and brain nitrite were estimated and Alprazolam, Scopolamine and Electroshock induced amnesia was employed to describe the actions. Treatment of TASP significantly increased step down latency of PAA and significantly increased discrimination index of ORT in groups with or without amnesia when compared to respective control groups. Furthermore, TASP administration resulted in significant fall in brain AChE activity, brain MDA level and brain nitrite level with simultaneous rise in brain GSH level, thereby decreased oxidative damage. A significant decrease in serum cholesterol was also observed. Ajowan supplementation may prove a remedy for the management of cognitive disorders owing to have pro-cholinergic, antioxidant and hypo-lipidemic activities.
Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo
2016-12-13
BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.
Wilkins, Heather M; Harris, Janna L; Carl, Steven M; E, Lezi; Lu, Jianghua; Eva Selfridge, J; Roy, Nairita; Hutfles, Lewis; Koppel, Scott; Morris, Jill; Burns, Jeffrey M; Michaelis, Mary L; Michaelis, Elias K; Brooks, William M; Swerdlow, Russell H
2014-12-15
Brain bioenergetic function declines in some neurodegenerative diseases, this may influence other pathologies and administering bioenergetic intermediates could have therapeutic value. To test how one intermediate, oxaloacetate (OAA) affects brain bioenergetics, insulin signaling, inflammation and neurogenesis, we administered intraperitoneal OAA, 1-2 g/kg once per day for 1-2 weeks, to C57Bl/6 mice. OAA altered levels, distributions or post-translational modifications of mRNA and proteins (proliferator-activated receptor-gamma coactivator 1α, PGC1 related co-activator, nuclear respiratory factor 1, transcription factor A of the mitochondria, cytochrome oxidase subunit 4 isoform 1, cAMP-response element binding, p38 MAPK and adenosine monophosphate-activated protein kinase) in ways that should promote mitochondrial biogenesis. OAA increased Akt, mammalian target of rapamycin and P70S6K phosphorylation. OAA lowered nuclear factor κB nucleus-to-cytoplasm ratios and CCL11 mRNA. Hippocampal vascular endothelial growth factor mRNA, doublecortin mRNA, doublecortin protein, doublecortin-positive neuron counts and neurite length increased in OAA-treated mice. (1)H-MRS showed OAA increased brain lactate, GABA and glutathione thereby demonstrating metabolic changes are detectable in vivo. In mice, OAA promotes brain mitochondrial biogenesis, activates the insulin signaling pathway, reduces neuroinflammation and activates hippocampal neurogenesis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R
2016-09-29
Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.
Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K
2013-12-01
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency.
McDonough, Ian M; Haber, Sara; Bischof, Gérard N; Park, Denise C
2015-01-01
Correlational and limited experimental evidence suggests that an engaged lifestyle is associated with the maintenance of cognitive vitality in old age. However, the mechanisms underlying these engagement effects are poorly understood. We hypothesized that mental effort underlies engagement effects and used fMRI to examine the impact of high-challenge activities (digital photography and quilting) compared with low-challenge activities (socializing or performing low-challenge cognitive tasks) on neural function at pretest, posttest, and one year after the engagement program. In the scanner, participants performed a semantic-classification task with two levels of difficulty to assess the modulation of brain activity in response to task demands. The High-Challenge group, but not the Low-Challenge group, showed increased modulation of brain activity in medial frontal, lateral temporal, and parietal cortex-regions associated with attention and semantic processing-some of which were maintained a year later. This increased modulation stemmed from decreases in brain activity during the easy condition for the High-Challenge group and was associated with time committed to the program, age, and cognition. Sustained engagement in cognitively demanding activities facilitated cognition by increasing neural efficiency. Mentally-challenging activities may be neuroprotective and an important element to maintaining a healthy brain into late adulthood.
Vieira, Juliano M; Carvalho, Fabiano B; Gutierres, Jessié M; Soares, Mayara S P; Oliveira, Pathise S; Rubin, Maribel A; Morsch, Vera M; Schetinger, Maria Rosa; Spanevello, Roselia M
2017-11-01
Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na + -K + -ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na + -K + -ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. HIIT-induced anxiolytic-like behaviour increased Na + -K + -ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na + -K + -ATPase activities.
The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency
McDonough, Ian M.; Haber, Sara; Bischof, Gérard N.; Park, Denise C.
2015-01-01
Purpose: Correlational and limited experimental evidence suggests that an engaged lifestyle is associated with the maintenance of cognitive vitality in old age. However, the mechanisms underlying these engagement effects are poorly understood. We hypothesized that mental effort underlies engagement effects and used fMRI to examine the impact of high-challenge activities (digital photography and quilting) compared with low-challenge activities (socializing or performing low-challenge cognitive tasks) on neural function at pretest, posttest, and one year after the engagement program. Methods: In the scanner, participants performed a semantic-classification task with two levels of difficulty to assess the modulation of brain activity in response to task demands. Results: The High-Challenge group, but not the Low-Challenge group, showed increased modulation of brain activity in medial frontal, lateral temporal, and parietal cortex—regions associated with attention and semantic processing—some of which were maintained a year later. This increased modulation stemmed from decreases in brain activity during the easy condition for the High-Challenge group and was associated with time committed to the program, age, and cognition. Conclusions: Sustained engagement in cognitively demanding activities facilitated cognition by increasing neural efficiency. Mentally-challenging activities may be neuroprotective and an important element to maintaining a healthy brain into late adulthood. PMID:26484698
Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety
Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.
2014-01-01
Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587
Liu, Chang; Xue, Zhimin; Palaniyappan, Lena; Zhou, Li; Liu, Haihong; Qi, Chang; Wu, Guowei; Mwansisya, Tumbwene E; Tao, Haojuan; Chen, Xudong; Huang, Xiaojun; Liu, Zhening; Pu, Weidan
2016-03-01
Several resting-state neuroimaging studies in schizophrenia indicate an excessive brain activity while others report an incoherent brain activity at rest. No direct evidence for the simultaneous presence of both excessive and incoherent brain activity has been established to date. Moreover, it is unclear whether unaffected siblings of schizophrenia patients who share half of the affected patient's genotype also exhibit the excessive and incoherent brain activity that may render them vulnerable to the development of schizophrenia. 27 pairs of schizophrenia patients and their unaffected siblings, as well as 27 healthy controls, were scanned using gradient-echo echo-planar imaging at rest. By using amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (Reho), we investigated the intensity and synchronization of local spontaneous neuronal activity in three groups. We observed that increased amplitude and reduced synchronization (coherence) of spontaneous neuronal activity were shared by patients and their unaffected siblings. The key brain regions with this abnormal neural pattern in both patients and siblings included the middle temporal, orbito-frontal, inferior occipital and fronto-insular gyrus. This abnormal neural pattern of excessive and incoherent neuronal activity shared by schizophrenia patients and their healthy siblings may improve our understanding of neuropathology and genetic predisposition in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.
Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L
2013-05-01
Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p < 0.05). During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.
Hagmann, Patric; Deco, Gustavo
2015-01-01
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432
Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing
Watkins, Tristan J.; Raj, Vidya; Lee, Junghee; Dietrich, Mary S.; Cao, Aize; Blackford, Jennifer U.; Salomon, Ronald M.; Park, Sohee; Benningfield, Margaret M.; Di Iorio, Christina R.; Cowan, Ronald L.
2012-01-01
Rationale Ecstasy (MDMA) polydrug users have verbal memory performance that is statistically significantly lower than comparison control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. Objectives The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. Methods 23 abstinent ecstasy polydrug users (age=24.57) and 11 controls (age=22.36) performed a two-part fMRI semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p<0.05). Results During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann Areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (rs=0.43, p=0.042). Behavioral performance did not differ between groups. Conclusions These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure. PMID:23241648
Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen
Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin
2013-01-01
Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O2 tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca2+ activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology. PMID:23211964
Kaur, Jaspreet; Tuor, Ursula I; Zhao, Zonghang; Barber, Philip A
2011-01-01
Great uncertainty exists as to whether aging enhances the detrimental effects of tissue plasminogen activator (tPA) on vascular integrity of the ischemic brain. We hypothesized that tPA treatment would augment ischemic injury by causing increased blood–brain barrier (BBB) breakdown as determined by quantitative serial T1 and T2 magnetic resonance imaging (MRI), and the transfer constant for gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) from blood to brain in aged (18 to 20 months) compared with young (3 to 4 months) Wistar rats after middle cerebral artery occlusion, mediated through the acute disassembly of claudin 5 and occludin. Increased T2 values over the first hour of postreperfusion were independently augmented following treatment with tPA (P<0.001) and aging (P<0.01), supporting a synergistic effect of tPA on the aged ischemic brain. Blood–brain barrier permeability for Gd-DTPA (KGd) was substantial following reperfusion in all animal groups and was exacerbated by tPA treatment in the elderly rat (P<0.001). The frequency of hematoma formation was proportionately increased in the elderly ischemic brain (P<0.05). Both tPA and age independently increased claudin 5 and occludin phosphorylation during ischemia. Early BBB permeability detected by quantitative MRI following ischemic stroke is enhanced by increased age and tPA and is related to claudin 5 and occludin phosphorylation. PMID:21610723
Decoding Pedophilia: Increased Anterior Insula Response to Infant Animal Pictures
Ponseti, Jorge; Bruhn, Daniel; Nolting, Julia; Gerwinn, Hannah; Pohl, Alexander; Stirn, Aglaja; Granert, Oliver; Laufs, Helmut; Deuschl, Günther; Wolff, Stephan; Jansen, Olav; Siebner, Hartwig; Briken, Peer; Mohnke, Sebastian; Amelung, Till; Kneer, Jonas; Schiffer, Boris; Walter, Henrik; Kruger, Tillmann H. C.
2018-01-01
Previous research found increased brain responses of men with sexual interest in children (i.e., pedophiles) not only to pictures of naked children but also to pictures of child faces. This opens the possibly that pedophilia is linked (in addition to or instead of an aberrant sexual system) to an over-active nurturing system. To test this hypothesis we exposed pedophiles and healthy controls to pictures of infant and adult animals during functional magnetic resonance imaging of the brain. By using pictures of infant animals (instead of human infants), we aimed to elicit nurturing processing without triggering sexual processing. We hypothesized that elevated brain responses to nurturing stimuli will be found – in addition to other brain areas – in the anterior insula of pedophiles because this area was repeatedly found to be activated when adults see pictures of babies. Behavioral ratings confirmed that pictures of infant or adult animals were not perceived as sexually arousing neither by the pedophilic participants nor by the heathy controls. Statistical analysis was applied to the whole brain as well as to the anterior insula as region of interest. Only in pedophiles did infants relative to adult animals increase brain activity in the anterior insula, supplementary motor cortex, and dorsolateral prefrontal areas. Within-group analysis revealed an increased brain response to infant animals in the left anterior insular cortex of the pedophilic participants. Currently, pedophilia is considered the consequence of disturbed sexual or executive brain processing, but details are far from known. The present findings raise the question whether there is also an over-responsive nurturing system in pedophilia. PMID:29403367
Decoding Pedophilia: Increased Anterior Insula Response to Infant Animal Pictures.
Ponseti, Jorge; Bruhn, Daniel; Nolting, Julia; Gerwinn, Hannah; Pohl, Alexander; Stirn, Aglaja; Granert, Oliver; Laufs, Helmut; Deuschl, Günther; Wolff, Stephan; Jansen, Olav; Siebner, Hartwig; Briken, Peer; Mohnke, Sebastian; Amelung, Till; Kneer, Jonas; Schiffer, Boris; Walter, Henrik; Kruger, Tillmann H C
2017-01-01
Previous research found increased brain responses of men with sexual interest in children (i.e., pedophiles) not only to pictures of naked children but also to pictures of child faces. This opens the possibly that pedophilia is linked (in addition to or instead of an aberrant sexual system) to an over-active nurturing system. To test this hypothesis we exposed pedophiles and healthy controls to pictures of infant and adult animals during functional magnetic resonance imaging of the brain. By using pictures of infant animals (instead of human infants), we aimed to elicit nurturing processing without triggering sexual processing. We hypothesized that elevated brain responses to nurturing stimuli will be found - in addition to other brain areas - in the anterior insula of pedophiles because this area was repeatedly found to be activated when adults see pictures of babies. Behavioral ratings confirmed that pictures of infant or adult animals were not perceived as sexually arousing neither by the pedophilic participants nor by the heathy controls. Statistical analysis was applied to the whole brain as well as to the anterior insula as region of interest. Only in pedophiles did infants relative to adult animals increase brain activity in the anterior insula, supplementary motor cortex, and dorsolateral prefrontal areas. Within-group analysis revealed an increased brain response to infant animals in the left anterior insular cortex of the pedophilic participants. Currently, pedophilia is considered the consequence of disturbed sexual or executive brain processing, but details are far from known. The present findings raise the question whether there is also an over-responsive nurturing system in pedophilia.
Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed
2017-05-01
The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pop-Jordanova, Nada; Zorcec, Tatjana; Demerdzieva, Aneta; Gucev, Zoran
2010-09-30
Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests.The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes.Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal.Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higherQEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities.Brain rate measured in CZ shows slow brain activity related to under arousal.Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements.
Murad, S; Strycharz, G D; Kishimoto, Y
1976-09-10
Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.
Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L
2014-08-01
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.
Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I
2014-01-01
Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C-C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory-evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation.
Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I
2011-06-01
Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Inflammation is detrimental for neurogenesis in adult brain
NASA Astrophysics Data System (ADS)
Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle
2003-11-01
New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.
Bola, R. Aaron; Kiyatkin, Eugene A.
2016-01-01
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008
Role of connexins in metastatic breast cancer and melanoma brain colonization
Stoletov, Konstantin; Strnadel, Jan; Zardouzian, Erin; Momiyama, Masashi; Park, Frederick D.; Kelber, Jonathan A.; Pizzo, Donald P.; Hoffman, Robert; VandenBerg, Scott R.; Klemke, Richard L.
2013-01-01
Summary Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain, specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell–cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication, leading to increased extravasation, blood vessel co-option and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of Cx26 and Cx43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together, our data indicate that Cx43 and Cx26 mediate cancer cell metastasis to the brain and suggest that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease. PMID:23321642
Maternal-fetal unit interactions and eutherian neocortical development and evolution
Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel
2013-01-01
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189
Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando
2016-11-11
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M
2016-10-01
Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial cardiolipin and decreased mitochondrial spare respiratory capacity. The reduced cardiolipin results in an increased activity of adenosine monophosphate kinase (pAMPK) and protein kinase B (pAKT) and decreased activity of glycogen synthase kinase 3 beta (pGSK3β) which results in elevated glucose transporter-1 (GLUT-1) expression and association with membranes. This in turn increases 2-dexoyglucose uptake from the apical medium into the cells with a resultant 2-deoxyglucose movement into the basolateral medium. © 2016 International Society for Neurochemistry.
Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S
2018-01-01
Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.
Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.
Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A
2016-12-14
Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron communication in the brain slice defined here as vasculo-neuronal coupling. We showed that, in response to increases in parenchymal arteriole tone, astrocyte intracellular Ca 2+ increased and cortical neuronal activity decreased. On the other hand, decreasing parenchymal arteriole tone increased resting cortical pyramidal neuron activity. Vasculo-neuronal coupling was partly mediated by TRPV4 channels as genetic ablation, or pharmacological blockade impaired increased flow/pressure-evoked neuronal inhibition. Increased flow/pressure-evoked neuronal inhibition was blocked in the presence of adenosine A1 receptor and GABA B receptor blockade. Results provide evidence for the concept of vasculo-neuronal coupling and highlight the importance of understanding the interplay between basal CBF and resting neuronal activity. Copyright © 2016 the authors 0270-6474/16/3612624-16$15.00/0.
Batukhtina, E I; Nevidimova, T I; Vetlugina, T P; Kokorina, N P; Bokhan, N A
2014-03-01
The correlation between search and creative behavior with parameters of bioelectric brain activity was observed in patients with addictive disorders. The prevalence of α- and θ-activities in the parietal-temporal-occipital areas of the cortex and increased θ-activity in the right hemisphere in addiction patients with high search and creative activities were associated with enhanced high-frequency activity in these brain areas. These changes can reflect the formation of a focus of pathologically increased excitation related to the pathogenic mechanisms of addictive disorders.
The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study
ERIC Educational Resources Information Center
Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.
2004-01-01
This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…
Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.
Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng
2015-01-01
The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.
Huang, Changsheng; Sakry, Dominik; Menzel, Lutz; Dangel, Larissa; Sebastiani, Anne; Krämer, Tobias; Karram, Khalad; Engelhard, Kristin; Trotter, Jacqueline; Schäfer, Michael K E
2016-04-01
Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2-knockout mice (NG2-KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2-KO compared to wild-type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin-2) were increased in the perilesional brain tissue of NG2-KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2-KO mice. While TBI-induced expression of pro-inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI-induced up-regulation of the C-X-C motif chemokine 13 gene Cxcl13 in NG2-KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2-KO mice still exhibited more pronounced neurological deficits than WT mice, up-regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba-1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI. © 2015 Wiley Periodicals, Inc.
Golukhova, Elena Z.; Polunina, Anna G.; Lefterova, Natalia P.; Begachev, Alexey V.
2011-01-01
Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations. PMID:21776370
Hasegawa, Atsuko; Yamada, Chikako; Tani, Miho; Hirano, Shun-ichiro; Tokumoto, Yasuhito; Miyake, Jun
2009-06-01
To match the demand of regenerative medicine for nerve system, collection of stem cells from the post-mortem body is one of the most practical ways. In this study, the storage condition of the post-mortem body was examined. We prepared neural stem/progenitor cells (NSPCs) from post-mortem rat brains stored at different temperatures. When brains were stored at 4 degrees C, for one week, we were able to obtain neurospheres (a spheroid body containing NSPCs) by stimulation of cells with epidermal growth factor (EGF). Incremental increases in storage temperature decreased the rate of appearance of neurospheres. Within 48 h at 15 degrees C, 24 h at 25 degrees C, in both condition, we were able to recover NSPCs from post-mortem rat brains. At 15 degrees C, 90% of neurosphere-forming activity was lost within 24 h. However, even after 24 h at 25 degrees C, 2% neurosphere-forming activity remained. After 6 h of death, there was very little difference between the rates of NSPC recovery at 4 degrees C and 25 degrees C. Addition of caspase inhibitors to both the rat brain storage solution and the NSPC culture medium increased the rate of neurosphere-forming activity. In particular, an inhibitor of caspase-8 activity increased the NSPC recovery rate approximately three-fold, with no accompanying detrimental effects on neural differentiation in vitro.
Akhter, Hasina; Huang, Wen-Tan; van Groen, Thomas; Kuo, Hui-Chien; Miyata, Toshio; Liu, Rui-Ming
2018-01-01
Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.
Törnbom, Karin; Sunnerhagen, Katharina S; Danielsson, Anna
2017-01-01
Physical activity has been established as being highly beneficial for health after stroke. There are considerable global efforts to find rehabilitation programs that encourage increased physical activity for persons with stroke. However, many persons with stroke or acquired brain injury do not reach recommended levels of physical activity and increased knowledge about why is needed. We aimed to explore views and experiences of physical activity and walking among persons with stroke or acquired brain injury. A qualitative study was conducted, among persons with stroke (n = 8) or acquired brain injury (n = 2) from a rehabilitation unit at Sahlgrenska University Hospital in Sweden. Semi-structured in-depth interviews were held about perceptions and experiences of walking and physical activity in general. Data were analyzed using qualitative content analysis, with categories that were determined inductively. Physical activity in general and walking ability more specifically were considered very important by the participants. However, physical activity was, regardless of exercising habits pre-injury, associated with different kinds of negative feelings and experiences. Commonly reported internal barriers in the current study were; fatigue, fear of falling or getting hurt in traffic, lack of motivation and depression. Reported external barriers were mostly related to walking, for example; bad weather, uneven ground, lack of company or noisy or too busy surroundings. Persons with stroke or acquired brain injury found it difficult to engage in and sustain an eligible level of physical activity. Understanding individual concerns about motivators and barriers surrounding physical activity may facilitate the work of forming tailor-made rehabilitation for these groups, so that the levels of physical activity and walking can increase.
Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A.; Zennig, Corinna; Benca, Ruth M.; Lutz, Antoine; Davidson, Richard J.; Tononi, Giulio
2013-01-01
Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function. PMID:24015304
Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L
2014-08-26
The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.
Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy
Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-02-28
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development.
Blessing, William; Mohammed, Mazher; Ootsuka, Youichirou
2013-09-10
Laboratory rats alternate between behaviorally active and inactive states every 1-2h throughout the 24hour day, the ultradian basic rest-activity cycle (BRAC). During the behaviorally active phases of the BRAC, brown adipose tissue (BAT) temperature, body and brain temperature, and arterial pressure and heart rate increase in an integrated manner. Since the BAT temperature increases are substantially greater than the corresponding body and brain temperature increases, BAT thermogenesis contributes to the body and brain temperature increases. When food is available ad libitum, eating commences approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. If no food is available, the rat still disturbs the empty food container approximately 15min after the onset of an episodic increase in BAT temperature, and not at other times. The increase in brain temperature that precedes eating may facilitate the cognitive processing that occurs during the search for food, when the rat engages with the external environment. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food, meal initiation normally occurs as part of the centrally-programmed ultradian BRAC. BRAC-associated BAT temperature increases occur in a thermoneutral environment and they are not preceded by falls in body or brain temperature, so they are not homeostatic thermoregulatory responses. The pattern of integrated behaviors and physiological functions associated with the BRAC presumably reflects Darwinian natural selection, and homeostatic thermoregulatory explanations of the BRAC-associated changes in temperature should be considered in this context. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of high-frequency oscillatory activity in reward processing and learning.
Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni
2015-02-01
Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
Stevens, Michael C.; Gaynor, Alexandra; Bessette, Katie L.; Pearlson, Godfrey D.
2015-01-01
Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (CogmedTM) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts. PMID:26138580
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
Simulated driving and brain imaging: combining behavior, brain activity, and virtual reality.
Carvalho, Kara N; Pearlson, Godfrey D; Astur, Robert S; Calhoun, Vince D
2006-01-01
Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving. We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center. Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA. Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined. In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.
Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B
2018-05-15
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.
Richlan, Fabio; Schubert, Juliane; Mayer, Rebecca; Hutzler, Florian; Kronbichler, Martin
2018-01-01
In this functional magnetic resonance imaging (fMRI) study, we compared task performance together with brain activation in a visuospatial task (VST) and a letter detection task (LDT) between longtime action video gamers ( N = 14) and nongamers ( N = 14) in order to investigate possible effects of gaming on cognitive and brain abilities. Based on previous research, we expected advantages in performance for experienced action video gamers accompanied by less activation (due to higher efficiency) as measured by fMRI in the frontoparietal attention network. Contrary to these expectations, we did not find differences in overall task performance, nor in brain activation during the VST. We identified, however, a significantly different increase in the BOLD signal from a baseline task to the LDT in action video gamers compared with nongamers. This increased activation was evident in a number of frontoparietal regions including the left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex. Furthermore, we found increased activation in the triangular part of the left inferior frontal gyrus in gamers relative to nongamers when activation during the LDT was compared with activation during the VST. In sum, the expected positive relation between action video game experience and cognitive performance could not be confirmed. Despite their comparable task performance, however, gamers and nongamers exhibited clear-cut differences in brain activation patterns presumably reflecting differences in neural engagement, especially during verbal cognitive tasks.
Sosnowski, Tytus; Rynkiewicz, Andrzej; Wordecha, Małgorzata; Kępkowicz, Anna; Majewska, Adrianna; Pstrągowska, Aleksandra; Oleksy, Tomasz; Wypych, Marek; Marchewka, Artur
2017-07-01
It is known that solving mental tasks leads to tonic increase in cardiovascular activity. Our previous research showed that tasks involving rule application (RA) caused greater tonic increase in cardiovascular activity than tasks requiring rule discovery (RD). However, it is not clear what brain mechanisms are responsible for this difference. The aim of two experimental studies was to compare the patterns of brain and cardiovascular activity while both RD and the RA numeric tasks were being solved. The fMRI study revealed greater brain activation while solving RD tasks than while solving RA tasks. In particular, RD tasks evoked greater activation of the left inferior frontal gyrus and selected areas in the parietal, and temporal cortices, including the precuneus, supramarginal gyrus, angular gyrus, inferior parietal lobule, and the superior temporal gyrus, and the cingulate cortex. In addition, RA tasks caused larger increases in HR than RD tasks. The second study, carried out in a cardiovascular laboratory, showed greater increases in heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) while solving RA tasks than while solving RD tasks. The results support the hypothesis that RD and RA tasks involve different modes of information processing, but the neuronal mechanism responsible for the observed greater cardiovascular response to RA tasks than to RD tasks is not completely clear. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallak, M.E.; Woodruff, E.; Giacobini, E.
1986-03-05
Physostigmine (Phy) concentrations (as radioactivity) were studied in various brain areas after /sup 3/H-Phy administration as a function of time. Five min after 500 ..mu..g/kg i.m., cortex (CX) and total brain showed similar concentrations (370 ng/g) which were 50-90% higher than those of other brain regions (striatum, hippocampus, and medulla oblongata). Soman did not affect Phy levels in whole brain after pretreatment with Phy (100 or 500 ..mu..g/kg), however, the regional distribution of Phy was altered by soman as was ChE inhibition. A significant increase in Phy concentration was seen in HC (22 and 45% at 5 and 30 min,more » respectively) and CX (21% at 30 min). ChE activity in total brain was 12, 30, and 24% (5, 15 and 30 min after soman administration) lower than after Phy alone. If the pretreatment dose of Phy was increased to 500 ..mu..g/kg /sup 3/H-Phy, ChE activity was further reduced to 4, 13 and 19%. This might indicate that higher doses of Phy provide more protection of the enzyme from soman than lower doses. The protective role of Phy seen in total brain was not consistent for all brain regions. Soman alone produced a 95% ChE inhibition and there were no differences in its effect between total brain or brain areas. Pretreatment of the rat with Phy produced a protective effect upon ChE activity up to 30 min. However, no protective effect on survival was observed.« less
A critical review of 5-HT brain microdialysis and behavior.
Rueter, L E; Fornal, C A; Jacobs, B L
1997-01-01
Serotonin (5-HT) has been implicated in many central nervous system-mediated functions including sleep, arousal, feeding, motor activity and the stress response. In order to help establish the precise role of 5-HT in physiology and behavior, in vivo microdialysis studies have sought to identify the conditions under which the release of 5-HT is altered. Extracellular 5-HT levels have been monitored in more than fifteen regions of the brain during a variety of spontaneous behaviors, and in response to several physiological, environmental, and behavioral manipulations. The vast majority of these studies found increases (30-100%) in 5-HT release in almost all brain regions studied. Since electrophysiological studies have shown that behavioral arousal is the primary determinant of brain serotonergic neuronal activity, we suggest that the increase in 5-HT release seen during a wide variety of experimental conditions is largely due to one factor, namely an increase in behavioral arousal/motor activity associated with the manipulation.
Ross, Jaime M; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J; Olson, Lars
2010-11-16
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.
Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder
Lasek, Amy W.
2016-01-01
The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, ethanol exposure generally increases perineuronal net (PN) components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. PMID:27581478
NASA Astrophysics Data System (ADS)
Pan, Boan; Fang, Xiang; Liu, Weichao; Li, Nanxi; Zhao, Ke; Li, Ting
2018-02-01
Near infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) has been used to measure brain activation, which are clinically important. Monte Carlo simulation has been applied to the near infrared light propagation model in biological tissue, and has the function of predicting diffusion and brain activation. However, previous studies have rarely considered hair and hair follicles as a contributing factor. Here, we attempt to use MCVM (Monte Carlo simulation based on 3D voxelized media) to examine light transmission, absorption, fluence, spatial sensitivity distribution (SSD) and brain activation judgement in the presence or absence of the hair follicles. The data in this study is a series of high-resolution cryosectional color photograph of a standing Chinse male adult. We found that the number of photons transmitted under the scalp decreases dramatically and the photons exported to detector is also decreasing, as the density of hair follicles increases. If there is no hair follicle, the above data increase and has the maximum value. Meanwhile, the light distribution and brain activation have a stable change along with the change of hair follicles density. The findings indicated hair follicles make influence of NIRS in light distribution and brain activation judgement.
Pruimboom, Leo; Raison, Charles L; Muskiet, Frits A J
2015-01-01
In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.
Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham
2009-01-01
AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812
Burke, Sarah M.; Kreukels, Baudewijntje P.C.; Cohen-Kettenis, Peggy T.; Veltman, Dick J.; Klink, Daniel T.; Bakker, Julie
2016-01-01
Background Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We investigated whether adolescent girls with gender dysphoria (GD), before and after 10 months of testosterone treatment, showed male-typical brain activity during a mental rotation task (MRT). Methods Girls with GD underwent fMRI while performing the MRT twice: when receiving medication to suppress their endogenous sex hormones before onset of testosterone treatment, and 10 months later during testosterone treatment. Two age-matched control groups participated twice as well. Results We included 21 girls with GD, 20 male controls and 21 female controls in our study. In the absence of any group differences in performance, control girls showed significantly increased activation in frontal brain areas compared with control boys (pFWE = 0.012). Girls with GD before testosterone treatment differed significantly in frontal brain activation from the control girls (pFWE = 0.034), suggesting a masculinization of brain structures associated with visuospatial cognitive functions. After 10 months of testosterone treatment, girls with GD, similar to the control boys, showed increases in brain activation in areas implicated in mental rotation. Limitations Since all girls with GD identified as gynephilic, their resemblance in spatial cognition with the control boys, who were also gynephilic, may have been related to their shared sexual orientation rather than their shared gender identity. We did not account for menstrual cycle phase or contraceptive use in our analyses. Conclusion Our findings suggest atypical sexual differentiation of the brain in natal girls with GD and provide new evidence for organizational and activational effects of testosterone on visuospatial cognitive functioning. PMID:27070350
Burke, Sarah M; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T; Veltman, Dick J; Klink, Daniel T; Bakker, Julie
2016-10-01
Sex differences in performance and regional brain activity during mental rotation have been reported repeatedly and reflect organizational and activational effects of sex hormones. We investigated whether adolescent girls with gender dysphoria (GD), before and after 10 months of testosterone treatment, showed male-typical brain activity during a mental rotation task (MRT). Girls with GD underwent fMRI while performing the MRT twice: when receiving medication to suppress their endogenous sex hormones before onset of testosterone treatment, and 10 months later during testosterone treatment. Two age-matched control groups participated twice as well. We included 21 girls with GD, 20 male controls and 21 female controls in our study. In the absence of any group differences in performance, control girls showed significantly increased activation in frontal brain areas compared with control boys ( p FWE = 0.012). Girls with GD before testosterone treatment differed significantly in frontal brain activation from the control girls ( p FWE = 0.034), suggesting a masculinization of brain structures associated with visuospatial cognitive functions. After 10 months of testosterone treatment, girls with GD, similar to the control boys, showed increases in brain activation in areas implicated in mental rotation. Since all girls with GD identified as gynephilic, their resemblance in spatial cognition with the control boys, who were also gynephilic, may have been related to their shared sexual orientation rather than their shared gender identity. We did not account for menstrual cycle phase or contraceptive use in our analyses. Our findings suggest atypical sexual differentiation of the brain in natal girls with GD and provide new evidence for organizational and activational effects of testosterone on visuospatial cognitive functioning.
Functional imaging studies in cannabis users.
Chang, Linda; Chronicle, Edward P
2007-10-01
Cannabis remains the most widely used illegal drug in the United States. This update examines the available literature on neuroimaging studies of the brains of cannabis users. The majority of studies examining the acute effects of delta-9-tetrahydrocannabinol (THC) administration used PET methods and concluded that administration of THC leads to increased activation in frontal and paralimbic regions and the cerebellum. These increases in activation are broadly consistent with the behavioral effects of the drug. Although there is only equivocal evidence that chronic cannabis use might result in structural brain changes, blood-oxygenation-level-dependent-fMRI studies in chronic users consistently show alterations, or neuroadaptation, in the activation of brain networks responsible for higher cognitive functions. It is not yet certain whether these changes are reversible with abstinence. Given the high prevalence of cannabis use among adolescents, studies are needed to evaluate whether cannabis use might affect the developing brain. Considerable further work, employing longitudinal designs, is also required to determine whether cannabis use causes permanent functional alterations in the brains of adults.
Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.
Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji
2014-10-01
The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment.
The impact of microglial activation on blood-brain barrier in brain diseases
da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza
2014-01-01
The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894
The Brain Melanocortin System, Sympathetic Control, and Obesity Hypertension
do Carmo, Jussara M.; Wang, Zhen; Hall, John E.
2014-01-01
Excess weight gain is the most significant, preventable cause of increased blood pressure (BP) in patients with primary (essential) hypertension and increases the risk for cardiovascular and renal diseases. In this review, we discuss the role of the brain melanocortin system in causing increased sympathetic activity in obesity and other forms of hypertension. In addition, we highlight potential mechanisms by which the brain melanocortin system modulates metabolic and cardiovascular functions. PMID:24789984
Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert
2013-01-01
There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.
Cross-entropy optimization for neuromodulation.
Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A
2016-08-01
This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.
Ding, Zhongxiang; Zhang, Han; Lv, Xiao-Fei; Xie, Fei; Liu, Lizhi; Qiu, Shijun; Li, Li; Shen, Dinggang
2018-01-01
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Goudriaan, Anna E; Veltman, Dick J; van den Brink, Wim; Dom, Geert; Schmaal, Lianne
2013-02-01
Enhanced reactivity to substance related cues is a central characteristic of addiction and has been associated with increased activity in motivation, attention, and memory related brain circuits and with a higher probability of relapse. Modafinil was promising in the first clinical trials in cocaine dependence, and was able to reduce craving in addictive disorders. However, its mechanism of action remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study therefore, cue reactivity in cocaine dependent patients was compared to cue reactivity in healthy controls (HCs) under modafinil and placebo conditions. An fMRI cue reactivity study, with a double-blind, placebo-controlled cross-over challenge with a single dose of modafinil (200mg) was employed in 13 treatment seeking cocaine dependent patients and 16 HCs. In the placebo condition, watching cocaine-related pictures (versus neutral pictures) resulted in higher brain activation in the medial frontal cortex, anterior cingulate cortex, angular gyrus, left orbitofrontal cortex, and ventral tegmental area (VTA) in the cocaine dependent group compared to HCs. However, in the modafinil condition, no differences in brain activation patterns were found between cocaine dependent patients and HCs. Group interactions revealed decreased activity in the VTA and increased activity in the right ACC and putamen in the modafinil condition relative to the placebo condition in cocaine dependent patients, whereas such changes were not present in healthy controls. Decreases in self-reported craving when watching cocaine-related cues after modafinil administration compared to the placebo condition were associated with modafinil-induced increases in ACC and putamen activation. Enhanced cue reactivity in the cocaine dependent group compared to healthy controls was found in brain circuitries related to reward, motivation, and autobiographical memory processes. In cocaine dependent patients, these enhanced brain responses were attenuated by modafinil, mainly due to decreases in cue- reactivity in reward-related brain areas (VTA) and increases in cue reactivity in cognitive control areas (ACC). These modafinil-induced changes in brain activation in response to cocaine-related visual stimuli were associated with diminished self-reported craving. These findings imply that in cocaine dependent patients, modafinil, although mainly known as a cognitive enhancer, acts on both the motivational and the cognitive brain circuitry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.
Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana
2018-05-15
The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.
Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David
2017-01-01
Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap
2015-08-30
Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
White, David J.; Congedo, Marco; Ciorciari, Joseph
2014-01-01
A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID:25374520
Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio; Radosavljevic, Tatjana
2015-04-01
Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. © 2014 by the Society for Experimental Biology and Medicine.
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest
Li, Duan; Mabrouk, Omar S.; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J.; Mathur, Abhay; Crooks, Charles P.; Kennedy, Robert T.; Wang, Michael M.; Ghanbari, Hamid; Borjigin, Jimo
2015-01-01
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain. PMID:25848007
Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats
2012-01-01
Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782
Wu, Junfang; Stoica, Bogdan A; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K; Foss, Catherine A; Pomper, Martin G; Faden, Alan I
2014-01-01
Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C–C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory—evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation. PMID:25483194
[Research of anti-aging mechanism of ginsenoside Rg1 on brain].
Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping
2014-11-01
Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus. Rats of Rg1 brain aging group had their spatial learning and memory capacities enhanced, SA-beta-Gal positive granules in section of brain tissue decreased, the activity of antioxidant enzyme SOD and the contents of GSH increased in hippocampus, the level of IL-1 and IL-6 in hippocampus decreased, the length contraction of telomere suppressed while the change of telomerase activity increased in hippocampus. Compared with that of normal group, the spatial learning and memory capacities were enhanced in Rg1 normal group, SA-beta-Gal positive granules in section of brain tissue decreased in Rg1 normal group, the level of IL-1 and IL-6 in hippocampus decreased in Rg1 normal group. The results indicated that improvement of antioxidant ability, regulating the level of proinflammatory cytokines and regulation of telomerase system may be the underlying anti-aging mechanism of Ginsenoside Rg1.
Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat
2015-01-01
Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497
Johnsen, Kasper Bendix; Burkhart, Annette; Melander, Fredrik; Kempen, Paul Joseph; Vejlebo, Jonas Bruun; Siupka, Piotr; Nielsen, Morten Schallburg; Andresen, Thomas Lars; Moos, Torben
2017-09-04
Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.
Rama Rao, Kakulavarapu V; Iring, Stephanie; Younger, Daniel; Kuriakose, Matthew; Skotak, Maciej; Alay, Eren; Gupta, Raj K; Chandra, Namas
2018-06-12
Blast-induced traumatic brain injury (bTBI) is a leading cause of morbidity in soldiers on the battlefield and in training sites with long-term neurological and psychological pathologies. Previous studies from our laboratory demonstrated activation of oxidative stress pathways after blast injury, but their distribution among different brain regions and their impact on the pathogenesis of bTBI have not been explored. The present study examined the protein expression of two isoforms: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 (NOX1, NOX2), corresponding superoxide production, a downstream event of NOX activation, and the extent of lipid peroxidation adducts of 4-hydroxynonenal (4HNE) to a range of proteins. Brain injury was evaluated 4 h after the shock-wave exposure, and immunofluorescence signal quantification was performed in different brain regions. Expression of NOX isoforms displayed a differential increase in various brain regions: in hippocampus and thalamus, there was the highest increase of NOX1, whereas in the frontal cortex, there was the highest increase of NOX2 expression. Cell-specific analysis of changes in NOX expression with respect to corresponding controls revealed that blast resulted in a higher increase of NOX1 and NOX 2 levels in neurons compared with astrocytes and microglia. Blast exposure also resulted in increased superoxide levels in different brain regions, and such changes were reflected in 4HNE protein adduct formation. Collectively, this study demonstrates that primary blast TBI induces upregulation of NADPH oxidase isoforms in different regions of the brain parenchyma and that neurons appear to be at higher risk for oxidative damage compared with other neural cells.
Alteration of Spontaneous Brain Activity After Hypoxia-Reoxygenation: A Resting-State fMRI Study.
Zhang, Jiaxing; Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Lin, Jianzhong; Yang, Tianhe; Fan, Ming
2017-03-01
Zhang, Jiaxing, Ji Chen, Cunxiu Fan, Jinqiang Li, Jianzhong Lin, Tianhe Yang, and Ming Fan. Alteration of spontaneous brain activity after hypoxia-reoxygenation: A resting-state fMRI study. High Alt Med Biol. 18:20-26, 2017.-The present study was designed to investigate the effect of hypoxia-reoxygenation on the spontaneous neuronal activity in brain. Sixteen sea-level (SL) soldiers (20.5 ± 0.7 years), who garrisoned the frontiers in high altitude (HA) (2300-4400 m) for two years and subsequently descended to sea level for one to seven days, were recruited. Control group consisted of 16 matched SL natives. The amplitude of low-frequency fluctuations (ALFF) of regional brain functional magnetic resonance imaging signal in resting state and functional connectivity (FC) between brain regions was analyzed. HA subjects showed significant increases of ALFF at several sites within the bilateral occipital cortices and significant decreases of ALFF in the right anterior insula and extending to the caudate, putamen, inferior frontal orbital cortex, temporal pole, and superior temporal gyrus; lower ALFF values in the right insula were positively correlated with low respiratory measurements. The right insula in HA subjects had increases of FC with the right superior temporal gyrus, postcentral gyrus, rolandic operculum, supramarginal gyrus, and inferior frontal triangular area. We thus demonstrated that hypoxia-reoxygenation had influence on the spontaneous neuronal activity in brain. The decrease of insular neuronal activity may be related to the reduction of ventilatory drive, while the increase of FC with insula may indicate a central compensation.
Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.
Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A
2014-09-01
Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of obesity in middle age.
Kumar, Hariom; Sharma, Bhupesh
2016-01-01
Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.
2010-01-01
Background Autistic spectrum disorders are a group of neurological and developmental disorders associated with social, communication, sensory, behavioral and cognitive impairments, as well as restricted, repetitive patterns of behavior, activities, or interests. The aim of this study was a) to analyze QEEG findings of autistic patients and to compare the results with data base; and b) to introduce the calculation of spectrum weighted frequency (brain rate) as an indicator of general mental arousal in these patients. Results Results for Q-EEG shows generally increased delta-theta activity in frontal region of the brain. Changes in QEEG pattern appeared to be in a non-linear correlation with maturational processes. Brain rate measured in CZ shows slow brain activity (5. 86) which is significantly lower than normal and corresponds to low general mental arousal. Recent research has shown that autistic disorders have as their basis disturbances of neural connectivity. Neurofeedback seems capable of remediating such disturbances when these data are considered as part of treatment planning. Conclusions Prognosis of this pervasive disorder depends on the intellectual abilities: the better intellectual functioning, the possibilities for life adaptation are higher QEEG shows generally increased delta-theta activity in frontal region of the brain which is related to poor cognitive abilities. Brain rate measured in CZ shows slow brain activity related to under arousal. Pharmacotherapy combined with behavior therapy, social support and especially neurofeedback technique promise slight improvements PMID:20920283
Paying attention to emotion: an fMRI investigation of cognitive and emotional stroop tasks.
Compton, Rebecca J; Banich, Marie T; Mohanty, Aprajita; Milham, Michael P; Herrington, John; Miller, Gregory A; Scalf, Paige E; Webb, Andrew; Heller, Wendy
2003-06-01
In this research, we investigated the degree to which brain systems involved in ignoring emotionally salient information differ from those involved in ignoring nonemotional information. The design allowed examination of regional brain activity, using fMRI during color-word and emotional Stroop tasks. Twelve participants indicated the color of words while ignoring word meaning in conditions in which neutral words were contrasted to emotionally negative, emotionally positive, and incongruent color words. Dorsolateral frontal lobe activity was increased by both negative and incongruent color words, indicating a common system for maintaining an attentional set in the presence of salient distractors. In posterior regions of the brain, activity depended on the nature of the information to be ignored. Ignoring color-incongruent words increased left parietal activity and decreased parahippocampal gyrus activity, whereas ignoring negative emotional words increased bilateral occipito-temporal activity and decreased amygdala activity. The results indicate that emotion and attention are intimately related via a network of regions that monitor for salient information, maintain attention on the task, suppress irrelevant information, and select appropriate responses.
Brain activity and connectivity changes in response to glucose ingestion.
van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J
2018-05-27
The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.
Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi
2010-07-01
Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.
Chazalviel, Laurent; Haelewyn, Benoit; Degoulet, Mickael; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H
2016-01-01
Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) in vitro , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis in vitro and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis in vitro to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema in vivo . In line with the facilitating effect of NBO on cerebral blood flow, our findings suggest that 5-minute HBO could have provided neuroprotection by promoting thrombolysis. The lack of effect of HBO exposure of longer duration is discussed.
Hfaiedh, Najla; Murat, Jean-Claude; Elfeki, Abdelfettah
2012-10-01
The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of supplementation with ascorbic acid (Vit C) and α-tocopherol (Vit E) or with Mg and Zn upon lindane-induced damages in liver and brain. Under our experimental conditions, lindane poisoning (5mg/kg body weight per day for 3 days) resulted in (1) an increased level of plasma glucose, cholesterol and triglycerides, (2) an increased activity of LDH, ALP, AST, ALT, (3) an oxidative stress in liver and brain as revealed by an increased level of lipids peroxidation (TBARS) and a decrease of glutathione-peroxidase, superoxide dismutase and catalase activities in liver and brain. In conclusion, both Vit C+E or Mg+Zn treatments display beneficial effects upon oxidative stress induced by lindane treatment in liver and brain. Copyright © 2012 Elsevier GmbH. All rights reserved.
Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Pérez-Rial, Sandra; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo
2017-11-01
The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFβ reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFβ pathway in a non-invasive way. The activation of the TGFβ pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFβ activation in mice treated with LPS and TUDCA correlated with both an increase in TGFβ3 transcript in mouse brain and an increase in TGFβ3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFβ receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFβ3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFβ pathway in mouse brain and increased the expression of TGFβ3. Therefore, the induction of TGFβ3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFβ pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFβ contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.
Kirschen, Gregory W.; Shen, Jia; Wang, Jia; Man, Guoming; Wu, Song
2017-01-01
The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs. SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition. PMID:28373391
The selfish brain: competition for energy resources.
Fehm, H L; Kern, W; Peters, A
2006-01-01
Although the brain constitutes only 2% of the body mass, its metabolism accounts for 50% of total body glucose utilization. This delicate situation is aggravated by the fact that the brain depends on glucose as energy substrate. Thus, the contour of a major problem becomes evident: how can the brain maintain constant fluxes of large amounts of glucose to itself in the presence of powerful competitors as fat and muscle tissue. Activity of cortical neurons generates an "energy on demand" signal which eventually mediates the uptake of glucose from brain capillaries. Because energy stores in the circulation (equivalent to ca. 5 g glucose) are also limited, a second signal is required termed "energy on request"; this signal is responsible for the activation of allocation processes. The term "allocation" refers to the activation of the "behavior control column" by an input from the hippocampus-amygdala system. As far as eating behavior is concerned the behavior control column consists of the ventral medial hypothalamus (VMH) and periventricular nucleus (PVN). The PVN represents the central nucleus of the brain's stress systems, the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Activation of the sympatico-adrenal system inhibits glucose uptake by peripheral tissues by inhibiting insulin release and inducing insulin resistance and increases hepatic glucose production. With an inadequate "energy on request" signal neuroglucopenia would be the consequence. A decrease in brain glucose can activate glucose-sensitive neurons in the lateral hypothalamus (LH) with the release of orexigenic peptides which stimulate food intake. If the energy supply of the brain depends on activation of the LH rather than on increased allocation to the brain, an increase in body weight is evitable. An increase in fat mass will generate feedback signals as leptin and insulin, which activate the arcuate nucleus. Activation of arcuate nucleus in turn will stimulate the activity of the PVN in a way similar to the activation by the hippocampus-amydala system. The activity of PVN is influenced by the hippocampal outflow which in turn is the consequence of a balance of low-affinity and high-affinity glucocorticoid receptors. This set-point can permanently be displaced by extreme stress situations, by starvation, exercise, hormones, drugs or by endocrine-disrupting chemicals. Disorders in the "energy on request" process will influence the allocation of energy and in so doing alter the body mass of the organism. In this "selfish brain theory" the neocortex and the limbic system play a central role in the pathogenesis of diseases, such as anorexia nervosa, obesity and diabetes mellitus type II. From these considerations it appears that the primary disturbance in obesity is a displacement of the hippocampal set-point of the system. The resulting permanent activation of the feedback system must result in a likewise permanent activation of the sympatico-adrenal system, which induces insulin resistance, hypertension and the other components of the metabolic syndrome. Available therapies for treatment of the metabolic syndrome (blockade of alpha- and beta-adrenergic receptors, insulin and insulin secretagogues) interfere with mechanisms, which must be considered compensatory. This explains why these therapies are disappointing in the long run. New therapeutic strategies based on the "selfish brain theory" will be discussed.
Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R.; Olah, Marta; Mantingh-Otter, Ietje J.; Van Dam, Debby; De Deyn, Peter P.; den Dunnen, Wilfred; Eggen, Bart J. L.; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration. PMID:28713239
Selenium Administration Alleviates Toxicity of Chromium(VI) in the Chicken Brain.
Hao, Pan; Zhu, Yiran; Wang, Shenghua; Wan, Huiyu; Chen, Peng; Wang, Yang; Cheng, Ziqiang; Liu, Yongxia; Liu, Jianzhu
2017-07-01
Selenium (Se) can play a protective role against heavy metal toxicity. This experiment aims to evaluate the effect of Se supplementation at different doses on the chicken brains. Oxidative stress was induced in the chicken brains by chromium(VI). A total of 105 Hyland brown male chickens were randomly divided into seven groups, including the control group, poisoned group [6%LD 50 K 2 Cr 2 O 7 body weight (B.W.)], and detoxification groups K 2 Cr 2 O 7 (6%LD 50 ) + Se (0.31, 0.63, 1.25, 2.50, and 5.00 Na 2 SeO 3 mg/kg B.W.) orally in water for 42 days. The chickens were detected by the activities of mitochondrial membrane potential, 2'-benzoyloxycinnamaldehyde, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and Ca 2+ -ATPase. Cr(VI) administration caused histopathological damage. In addition, changes in oxidative stress indicators were observed in the chicken's brains. Se supplement increased the levels of GSH, mitochondrial membrane potential (MMP), and Ca 2+ -ATPase and reduced MDA activity in the detoxification groups. However, the high-dose Se supplementation groups of 2.50 and 5.00 mg/kg reduced the activities of GSH, MMP, and Ca 2+ -ATPase; increased the brain-body ratio; and increased SOD activity. In conclusion, Cr(VI) exposure caused oxidative stress. Se exerted a remission effect on toxic responses in the chicken brains. However, a high Se concentration was synergistic to the toxic effect of Cr(VI).
Biancardi, Vinicia Campana; Son, Sook Jin; Ahmadi, Sahra; Filosa, Jessica A; Stern, Javier E
2014-03-01
Angiotensin II-mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood-brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II-mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Qingfeng; Shao Xiayan; Chen Jie
Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain weremore » measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-{alpha} level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.« less
Alterations of brain activity in fibromyalgia patients.
Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-04-01
Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiuwen, Yang; Hongchen, Liu; Ke, Li; Zhen, Jin; Gang, Liu
2014-12-01
We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 °C) and no- xious cold (4 °C) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. The activated cortical areas were as follows: left pre-/post-central gyrus, insula/operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex S I. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Results suggested that a similar network of regions was activated common to the perception of pain and no-pain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.
van Bloemendaal, L; Veltman, D J; Ten Kulve, J S; Groot, P F C; Ruhé, H G; Barkhof, F; Sloan, J H; Diamant, M; Ijzerman, R G
2015-09-01
To test the hypothesis that food intake reduction after glucagon-like peptide-1 (GLP-1) receptor activation is mediated through brain areas regulating anticipatory and consummatory food reward. As part of a larger study, we determined the effects of GLP-1 receptor activation on brain responses to anticipation and receipt of chocolate milk versus a tasteless solution, using functional MRI (fMRI). Obese subjects with type 2 diabetes, and obese and lean subjects with normoglycaemia (n = 48) underwent three fMRI sessions at separate visits with intravenous infusion of the GLP-1 receptor agonist exenatide, exenatide with prior GLP-1 receptor blockade by exendin-9-39 or placebo, during somatostatin pituitary-pancreatic clamps. Body mass index negatively correlated with brain responses to receipt of chocolate milk and positively correlated with anticipation of receipt of chocolate milk in brain areas regulating reward, appetite and motivation. Exenatide increased brain responses to receipt of chocolate milk and decreased anticipation of receipt of chocolate milk compared with placebo, paralleled by reductions in food intake. Exendin-9-39 largely prevented these effects. Our findings show that GLP-1 receptor activation decreases anticipatory food reward, which may reduce cravings for food and increases consummatory food reward, which may prevent overeating. © 2015 John Wiley & Sons Ltd.
Gimbel, Sarah I.; Brewer, James B.; Maril, Anat
2018-01-01
This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. PMID:28073651
Smit, Dirk J A; Anokhin, Andrey P
2017-05-01
The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increasingly complex cognition. These processes may, however, also result in the appearance or disappearance of specific neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed during adolescence, how genetics shape this change, and how these changes were related to attention problems, we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and 18years of age). Attention problems were assessed with the SWAN at waves 12, 14, and 16. To characterize functional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording time of 5min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter periods. Increased TS may reflect the brain's tendency to maintain stability, achieve focused attention, and thus reduce "mind wandering" and attention problems. The results indicate that brain TS is increased across the scalp from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations) was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain TS at each wave were positively correlated with attention problems but not significantly. High and low attention problems subjects showed different developmental trajectories in TS, which was significant in a cluster of frontal leads. These results indicate that trajectories in brain TS development are a biomarker for the developing brain. TS in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These results suggest that high and low attention problems subjects are at different stages of brain development. Copyright © 2016. Published by Elsevier B.V.
Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel
2012-01-01
There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.
Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels
NASA Astrophysics Data System (ADS)
Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari
2010-10-01
A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.
MacPherson, Kathryn P; Sompol, Pradoldej; Kannarkat, George T; Chang, Jianjun; Sniffen, Lindsey; Wildner, Mary E; Norris, Christopher M; Tansey, Malú G
2017-06-01
Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer's disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII + , CD45 high , and Ly6C high ) myeloid-derived CD11b + immune cells are decreased while CD3 + T cells are increased as a function of age relative to non-Tg mice. These immunological changes along with evidence of increased mRNA levels for several cytokines suggest that immune regulation and trafficking patterns are altered in Tg mice. Levels of soluble Tumor Necrosis Factor (sTNF) modulate blood-brain barrier (BBB) permeability and are increased in CSF and brain parenchyma post-mortem in AD subjects and Tg mice. We report here that in vivo peripheral administration of XPro1595, a novel biologic that sequesters sTNF into inactive heterotrimers, reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, XPro1595 treatment in vivo rescued impaired long-term potentiation (LTP) measured in brain slices in association with decreased Aβ plaques in the subiculum. Selective targeting of sTNF may modulate brain immune cell infiltration, and prevent or delay neuronal dysfunction in AD. Immune cells and cytokines perform specialized functions inside and outside the brain to maintain optimal brain health; but the extent to which their activities change in response to neuronal dysfunction and degeneration is not well understood. Our findings indicate that neutralization of sTNF reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4 + T cells. In addition, impaired long-term potentiation (LTP) was rescued by XPro1595 in association with decreased hippocampal Aβ plaques. Selective targeting of sTNF holds translational potential to modulate brain immune cell infiltration, dampen neuroinflammation, and prevent or delay neuronal dysfunction in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of yoga on brain waves and structural activation: A review.
Desai, Radhika; Tailor, Anisha; Bhatt, Tanvi
2015-05-01
Previous research has shown the vast mental and physical health benefits associated with yoga. Yoga practice can be divided into subcategories that include posture-holding exercise (asana), breathing (pranayama, Kriya), and meditation (Sahaj) practice. Studies measuring mental health outcomes have shown decreases in anxiety, and increases in cognitive performance after yoga interventions. Similar studies have also shown cognitive advantages amongst yoga practitioners versus non-practitioners. The mental health and cognitive benefits of yoga are evident, but the physiological and structural changes in the brain that lead to this remain a topic that lacks consensus. Therefore, the purpose of this study was to examine and review existing literature on the effects of yoga on brain waves and structural changes and activation. After a narrowed search through a set of specific inclusion and exclusion criteria, 15 articles were used in this review. It was concluded that breathing, meditation, and posture-based yoga increased overall brain wave activity. Increases in graygray matter along with increases in amygdala and frontal cortex activation were evident after a yoga intervention. Yoga practice may be an effective adjunctive treatment for a clinical and healthy aging population. Further research can examine the effects of specific branches of yoga on a designated clinical population. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sundaram, Thirunavukkarasu; Jeong, Gwang-Woo; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun
2010-01-01
To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.
Sundaram, Thirunavukkarasu; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun
2010-01-01
Objective To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Materials and Methods Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. Results For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Conclusion Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal. PMID:20461181
Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J
2016-01-01
With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.
Modulation of brain glutamate dehydrogenase as a tool for controlling seizures.
Rasgado, Lourdes A Vega; Reyes, Guillermo Ceballos; Díaz, Fernando Vega
2015-12-01
Glutamate (Glu) is a major excitatory neurotransmitter involved in epilepsy. Glu is synthesized by glutamate dehydrogenase (GDH, E.C. 1.4.1.3) and dysfunction of the enzymatic activity of GDH is associated with brain pathologies. The main goal of this work is to establish the role of GDH in the effects of antiepileptic drugs (AEDs) such as valproate (VALP), diazepam (DIAZ) and diphenylhydantoin (DPH) and its repercussions on oxygen consumption. Oxidative deamination of Glu and reductive amination of αketoglutarate (αK) in mice brain were investigated. Our results show that AEDs decrease GDH activity and oxygen consumption in vitro. In ex vivo experiments, AEDs increased GDH activity but decreased oxygen consumption during Glu oxidative deamination. VALP and DPH reversed the increase in reductive amination of αK caused by the chemoconvulsant pentylenetetrazol. These results suggest that AEDs act by modulating brain GDH activity, which in turn decreased oxygen consumption. GDH represents an important regulation point of neuronal excitability, and modulation of its activity represents a potential target for metabolic treatment of epilepsy and for the development of new AEDs.
PET imaging and quantitation of Internet-addicted patients and normal controls
NASA Astrophysics Data System (ADS)
Jeong, Ha-Kyu; Kim, Hee-Joung; Jung, Haijo; Son, Hye-Kyung; Kim, Dong-Hyeon; Yun, Mijin; Shin, Yee-Jin; Lee, Jong-Doo
2002-04-01
Internet addicted patients (IAPs) have widely been increased, as Internet games are becoming very popular in daily life. The purpose of this study was to investigate regional brain activation patterns associated with excessive use of Internet games in adolescents. Six normal controls (NCs) and eight IAPs who were classified as addiction group by adapted version of DSM-IV for pathologic gambling were participated. 18F-FDG PET studies were performed for all adolescents at their rest and activated condition after 20 minutes of each subject's favorite Internet game. To investigate quantitative metabolic differences in both groups, all possible combinations of group comparison were carried out using Statistical Parametric Mapping (SPM 99). Regional brain activation foci were identified on Talairach coordinate. SPM results showed increased metabolic activation in occipital lobes for both groups. Higher metabolisms were seen at resting condition in IAPs than that of in NCs. In comparison to both groups, IAPs showed different patterns of regional brain metabolic activation compared with that of NCs. It suggests that addictive use of Internet games may result in functional alteration of developing brain in adolescents.
Ross, Jaime M.; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J.; Olson, Lars
2010-01-01
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes. PMID:21041631
Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia
2015-06-01
Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.
Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A
2017-01-01
Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.
ERIC Educational Resources Information Center
MacEachren, Zabe
2012-01-01
The way technology influences a person's cognition is seldom recognized, but is of increasing interest among brain researchers. Outdoor educators tend to pay attention to the way different activities offer different perceptions of an environment. When natural spaces can no longer be accessed, they adapt and simulate natural activities in available…
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos
2007-08-01
The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.
Pleuvry, Barbara J.; Tobias, M. A.
1971-01-01
1. Morphine, oxotremorine and physostigmine showed antinociceptive activity in mice using the hot plate reaction time test. 2. The action of morphine, but not that of oxotremorine, was antagonized by naloxone and by nalorphine, whereas the effect of physostigmine was unaffected by naloxone and increased by nalorphine. 3. The antinociceptive effects of morphine and of physostigmine were increased by procedures reported to increase the ratio of 5-hydroxytryptamine to dopamine in the brain. It was decreased by procedures reported to cause a fall in brain 5-hydroxytryptamine or a rise in dopamine relative to 5-hydroxytryptamine. 4. The antinociceptive effect of oxotremorine was potentiated by procedures reported to decrease brain noradrenaline and was unaffected by procedures altering brain 5-hydroxytryptamine. 5. The results suggest differences in the mode of action of morphine and physostigmine on the one hand and of oxotremorine on the other. PMID:4261560
Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann
2012-01-01
Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221
Kozberg, Mariel G; Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Hillman, Elizabeth M C
2016-06-22
In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain. Copyright © 2016 the authors 0270-6474/16/366704-14$15.00/0.
The physics of functional magnetic resonance imaging (fMRI)
NASA Astrophysics Data System (ADS)
Buxton, Richard B.
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
The physics of functional magnetic resonance imaging (fMRI)
Buxton, Richard B
2015-01-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360
The physics of functional magnetic resonance imaging (fMRI).
Buxton, Richard B
2013-09-01
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Manaenko, Anatol; Lekic, Tim; Ma, Qingyi; Zhang, John H; Tang, Jiping
2013-05-01
Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to antioxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. One hundred seventy-one 8-week-old male CD-1 mice were used. Collagenase-induced intracerebral hemorrhage model in 8-week-old male CD-1 mice was used. Hydrogen was administrated via spontaneous inhalation. The blood-brain barrier permeability and neurologic deficits were investigated at 24 and 72 hours after intracerebral hemorrhage. Mast cell activation was evaluated by Western blot and immuno-staining. The effects of hydrogen inhalation on mast cell activation were confirmed in an autologous blood injection model intracerebral hemorrhage. At 24 and 72 hours post intracerebral hemorrhage, animals showed blood-brain barrier disruption, brain edema, and neurologic deficits, accompanied with phosphorylation of Lyn kinase and release of tryptase, indicating mast cell activation. Hydrogen treatment diminished phosphorylation of Lyn kinase and release of tryptase, decreased accumulation and degranulation of mast cells, attenuated blood-brain barrier disruption, and improved neurobehavioral function. Activation of mast cells following intracerebral hemorrhage contributed to increase of blood-brain barrier permeability and brain edema. Hydrogen inhalation preserved blood-brain barrier disruption by prevention of mast cell activation after intracerebral hemorrhage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubkova, S.R.; Chernavskaya, N.M.
1959-06-11
It was found that a single lethal dose (1000 r) changes the cholinesterase activity in the brain, liver, and blood serum. After 5 hr and 45 min the cholinesterase activity in tissues drops from the normal level (15.9% in blood serum, 20.6% in the brain, and 18.4% in the liver). After three days the activity changes in various tissues: in the liver it continues to drop, in the brain it rises but does not reach the standard level, and it increases sharply in the blood serum. (R.V.J.)
Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda
2015-01-01
Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832
Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus
2014-01-01
Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.
Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus
2014-01-01
Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2015-12-05
Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel
Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.« less
MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinchun; Kong, Delian; Wang, Jun
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less
Cerebral blood flow and metabolism during exercise: implications for fatigue.
Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J
2008-01-01
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.
Brain signal complexity rises with repetition suppression in visual learning.
Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah
2016-06-21
Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Haorah, James; Floreani, Nicholas A; Knipe, Bryan; Persidsky, Yuri
2011-10-15
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain vascular tone and vasodilation. Published by Elsevier Inc.
Okello, Edward J; Abadi, Awatf M; Abadi, Saad A
2016-06-01
Tea has been associated with many mental benefits, such as attention enhancement, clarity of mind, and relaxation. These psychosomatic states can be measured in terms of brain activity using an electroencephalogram (EEG). Brain activity can be assessed either during a state of passive activity or when performing attention tasks and it can provide useful information about the brain's state. This study investigated the effects of green and black consumption on brain activity as measured by a simplified EEG, during passive activity. Eight healthy volunteers participated in the study. The EEG measurements were performed using a two channel EEG brain mapping instrument - HeadCoach™. Fast Fourier transform algorithm and EEGLAB toolbox using the Matlab software were used for data processing and analysis. Alpha, theta, and beta wave activities were all found to increase after 1 hour of green and black tea consumption, albeit, with very considerable inter-individual variations. Our findings provide further evidence for the putative beneficial effects of tea. The highly significant increase in theta waves (P < 0.004) between 30 minutes and 1 hour post-consumption of green tea may be an indication of its putative role in cognitive function, specifically alertness and attention. There were considerable inter-individual variations in response to the two teas which may be due genetic polymorphisms in metabolism and/or influence of variety/blend, dose and content of the selected products whose chemistry and therefore efficacy will have been influenced by 'from field to shelf practices'.
Datko, Michael; Pineda, Jaime A; Müller, Ralph-Axel
2018-03-01
Autism has been characterized by atypical task-related brain activation and functional connections, coinciding with deficits in sociocommunicative abilities. However, evidence of the brain's experience-dependent plasticity suggests that abnormal activity patterns may be reversed with treatment. In particular, neurofeedback training (NFT), an intervention based on operant conditioning resulting in self-regulation of brain electrical oscillations, has shown increasing promise in addressing abnormalities in brain function and behavior. We examined the effects of ≥ 20 h of sensorimotor mu-rhythm-based NFT in children with high-functioning autism spectrum disorders (ASD) and a matched control group of typically developing children (ages 8-17). During a functional magnetic resonance imaging imitation and observation task, the ASD group showed increased activation in regions of the human mirror neuron system following the NFT, as part of a significant interaction between group (ASD vs. controls) and training (pre- vs. post-training). These changes were positively correlated with behavioral improvements in the ASD participants, indicating that mu-rhythm NFT may be beneficial to individuals with ASD. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder.
Lasek, Amy W
2016-10-01
The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol (EtOH) exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, EtOH exposure generally increases perineuronal net components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. Copyright © 2016 by the Research Society on Alcoholism.
Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E
2008-11-15
We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.
Özkan-Yilmaz, Ferbal; Özlüer-Hunt, Arzu; Gündüz, Suna Gül; Berköz, Mehmet; Yalin, Serap
2014-04-01
In this study was evaluated potential protective effect of organic selenium (Se) on heavy metal stress induced by lead (Pb) in Cyprinus carpio. For this reason, C. carpio was exposed to sublethal concentration of Pb (1.5 mg/L Pb(NO3)2) for 14 days. The fish were fed a basal (control; measured 0.55 mg/kg Se) diet or a basal diet supplemented with 2.50 mg/kg (measured 2.92 mg/kg Se) organic Se (Sel-Plex(®)) during the experiment period. The variations in glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities, and levels of reduced glutathione (GSH) with malondialdehyde (MDA) in liver and brain tissues of C. carpio were investigated in experimental groups. GSH levels in liver and brain tissues were significantly decreased by exposure to Pb. GST activity was significantly increased (p < 0.05) in liver tissue, but decreased in brain of treated fish by exposure to Pb. Also, GSH-Px activity was significantly increased in liver tissue, but decreased in brain of Pb-treated fish. Levels of MDA were increased in liver and brain of Pb-treated fish. The organic Se treatment for Pb-intoxicated animals improved activities of GSH-Px, GST and levels of MDA within normal limits. Supplemented Se could be able to improve Pb-induced oxidative stress by decreasing lipid peroxidation and regulating antioxidant defense system in tissues.
77 FR 59106 - Glufosinate Ammonium; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... to conclude that the changes in brain glutamine synthetase activity are of significant concern for... technical material. In chronic studies in the rat, inhibition of brain glutamine synthetase, increased.... Changes in glutamine synthetase levels were observed in liver, kidney, and brain in rats. The altered...
Burton, Michael D; Johnson, Rodney W
2012-07-01
Excessive production of pro-inflammatory cytokines in the senescent brain in response to peripheral immune stimulation is thought to induce behavioral pathology, however, few studies have examined if the increase in pro-inflammatory cytokines is accompanied by an increase in cytokine signaling. Here, we focused on IL-6 as a prototypic pro-inflammatory cytokine and used phosphorylated STAT3 as a marker of IL-6 signaling. In an initial study, IL-6 mRNA and the magnitude and duration of STAT3 activation were increased in the hippocampus of senescent mice compared to adults after i.p. injection of LPS. The LPS-induced increase in STAT3 activity was ablated in aged IL-6(-/-) mice, suggesting IL-6 is a key driver of STAT3 activity in the aged brain. To determine if IL-6 activated the classical or trans-signaling pathway, before receiving LPS i.p., aged mice were injected ICV with sgp130, an antagonist of the trans-signaling pathway. Importantly, the LPS-induced increases in both IL-6 and STAT3 activity in the hippocampus were inhibited by sgp130. To assess hippocampal function, aged mice were injected ICV with sgp130 and i.p. with LPS immediately after the acquisition phase of contextual fear conditioning, and immobility was assessed in the retention phase 48h later. LPS reduced immobility in aged mice, indicating immune activation interfered with memory consolidation. However, sgp130 blocked the deficits in contextual fear conditioning caused by LPS. Taken together, the results suggest IL-6 trans-signaling is increased in the senescent brain following peripheral LPS challenge and that sgp130 may protect against infection-related neuroinflammation and cognitive dysfunction in the aged. Copyright © 2011 Elsevier Inc. All rights reserved.
Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.
2015-01-01
In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674
Effect of chlorpyrifos and enrofloxacin on selected enzymes in rats.
Barski, D; Spodniewska, A
2018-03-01
This study examined the effect of chlorpyrifos and/or enrofloxacin on the activity of acetylcholinesterase (AChE) in the blood and brain, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum. The experiment was conducted on Wistar strain rats. Chlorpyrifos was administered with a stomach tube at a dose of 0.04 LD50 for 28 days and enrofloxacin at a dose of 5 mg/kg bw for 5 consecutive days. The experiment found that enrofloxacin changed the activity of the enzymes under study only to a small extent. At the dose applied in the experiment, chlorpyrifos decreased the activity of AChE significantly, both in blood and in the brain, and increased the activity of ALT and AST in rat serum. The administration of chlorpyrifos in combination with enrofloxacin changed the activity of the enzymes under study only slightly. A weaker, but longer, inhibition of AChE activity in both blood and the brain was observed in this group compared to the animals exposed only to chlorpyrifos. However, although enrofloxacin, like chlorpyrifos, increases the activity of ALT and AST in serum, their combined administration did not increase the hepatotoxic effect. Copyright© by the Polish Academy of Sciences.
Immunomodulatory effect of Hawthorn extract in an experimental stroke model.
Elango, Chinnasamy; Devaraj, Sivasithambaram Niranjali
2010-12-30
Recently, we reported a neuroprotective effect for Hawthorn (Crataegus oxyacantha) ethanolic extract in middle cerebral artery occlusion-(MCAO) induced stroke in rats. The present study sheds more light on the extract's mechanism of neuroprotection, especially its immunomodulatory effect. After 15 days of treatment with Hawthorn extract [100 mg/kg, pretreatment (oral)], male Sprague Dawley rats underwent transient MCAO for 75 mins followed by reperfusion (either 3 or 24 hrs). We measured pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), ICAM-1, IL-10 and pSTAT-3 expression in the brain by appropriate methods. We also looked at the cytotoxic T cell sub-population among leukocytes (FACS) and inflammatory cell activation and recruitment in brain (using a myeloperoxidase activity assay) after ischemia and reperfusion (I/R). Apoptosis (TUNEL), and Bcl-xL- and Foxp3- (T(reg) marker) positive cells in the ipsilateral hemisphere of the brain were analyzed separately using immunofluorescence. Our results indicate that occlusion followed by 3 hrs of reperfusion increased pro-inflammatory cytokine and ICAM-1 gene expressions in the ipsilateral hemisphere, and that Hawthorn pre-treatment significantly (p ≤ 0.01) lowered these levels. Furthermore, such pre-treatment was able to increase IL-10 levels and Foxp3-positive cells in brain after 24 hrs of reperfusion. The increase in cytotoxic T cell population in vehicle rats after 24 hrs of reperfusion was decreased by at least 40% with Hawthorn pretreatment. In addition, there was a decrease in inflammatory cell activation and infiltration in pretreated brain. Hawthorn pretreatment elevated pSTAT-3 levels in brain after I/R. We also observed an increase in Bcl-xL-positive cells, which in turn may have influenced the reduction in TUNEL-positive cells compared to vehicle-treated brain. In summary, Hawthorn extract helped alleviate pro-inflammatory immune responses associated with I/R-induced injury, boosted IL-10 levels, and increased Foxp3-positive T(regs) in the brain, which may have aided in suppression of activated inflammatory cells. Such treatment also minimizes apoptotic cell death by influencing STAT-3 phosphorylation and Bcl-xL expression in the brain. Taken together, the immunomodulatory effect of Hawthorn extract may play a critical role in the neuroprotection observed in this MCAO-induced stroke model.
Immunomodulatory effect of Hawthorn extract in an experimental stroke model
2010-01-01
Background Recently, we reported a neuroprotective effect for Hawthorn (Crataegus oxyacantha) ethanolic extract in middle cerebral artery occlusion-(MCAO) induced stroke in rats. The present study sheds more light on the extract's mechanism of neuroprotection, especially its immunomodulatory effect. Methods After 15 days of treatment with Hawthorn extract [100 mg/kg, pretreatment (oral)], male Sprague Dawley rats underwent transient MCAO for 75 mins followed by reperfusion (either 3 or 24 hrs). We measured pro-inflammatory cytokines (IL-1β, TNF-α, IL-6), ICAM-1, IL-10 and pSTAT-3 expression in the brain by appropriate methods. We also looked at the cytotoxic T cell sub-population among leukocytes (FACS) and inflammatory cell activation and recruitment in brain (using a myeloperoxidase activity assay) after ischemia and reperfusion (I/R). Apoptosis (TUNEL), and Bcl-xL- and Foxp3- (Treg marker) positive cells in the ipsilateral hemisphere of the brain were analyzed separately using immunofluorescence. Results Our results indicate that occlusion followed by 3 hrs of reperfusion increased pro-inflammatory cytokine and ICAM-1 gene expressions in the ipsilateral hemisphere, and that Hawthorn pre-treatment significantly (p ≤ 0.01) lowered these levels. Furthermore, such pre-treatment was able to increase IL-10 levels and Foxp3-positive cells in brain after 24 hrs of reperfusion. The increase in cytotoxic T cell population in vehicle rats after 24 hrs of reperfusion was decreased by at least 40% with Hawthorn pretreatment. In addition, there was a decrease in inflammatory cell activation and infiltration in pretreated brain. Hawthorn pretreatment elevated pSTAT-3 levels in brain after I/R. We also observed an increase in Bcl-xL-positive cells, which in turn may have influenced the reduction in TUNEL-positive cells compared to vehicle-treated brain. Conclusions In summary, Hawthorn extract helped alleviate pro-inflammatory immune responses associated with I/R-induced injury, boosted IL-10 levels, and increased Foxp3-positive Tregs in the brain, which may have aided in suppression of activated inflammatory cells. Such treatment also minimizes apoptotic cell death by influencing STAT-3 phosphorylation and Bcl-xL expression in the brain. Taken together, the immunomodulatory effect of Hawthorn extract may play a critical role in the neuroprotection observed in this MCAO-induced stroke model. PMID:21192826
Functional neuroimaging insights into the physiology of human sleep.
Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre
2010-12-01
Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.
Oscillatory Correlates of Visual Consciousness
Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.
2017-01-01
Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543
The endocannabinoid system in brain reward processes.
Solinas, M; Goldberg, S R; Piomelli, D
2008-05-01
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.
CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.
Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo
2003-01-01
CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID:12403647
Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior
ERIC Educational Resources Information Center
Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard
2005-01-01
Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…
Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David
2016-01-01
Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.
Uemura, Takeshi; Watanabe, Kenta; Ishibashi, Misaki; Saiki, Ryotaro; Kuni, Kyoshiro; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2016-04-29
We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12 month-old female C57BL/6 mice. The size of brain infarction in the mouse PIT model increased with aging. The volume of brain infarction in 12 month-old mice was approximately 2-fold larger than that in 2 month-old mice. The larger brain infarction in 12 month-old mice was due to an increase in acrolein based on an increase in the activity of spermine oxidase, together with a decrease in glutathione (GSH), a major acrolein-detoxifying compound in cells, based on the decrease in one of the subunits of glutathione biosynthesizing enzymes, γ-glutamylcysteine ligase modifier subunit, with aging. The results indicate that aggravation of brain infarction with aging was mainly due to the increase in acrolein production and the decrease in GSH in brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation
Norden, Diana M.; Godbout, Jonathan P.
2012-01-01
Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the coordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioral response following peripheral infection. With normal aging, however, microglia develop a more inflammatory phenotype. For instance, in several models of aging there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with aging is referred to as primed, reactive, or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in aging has behavioral and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared to adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behavior, depressive-like behavior and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits. PMID:23039106
Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.
Kumar, Hariom; Sharma, Bhupesh
2016-06-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic benefits in autism. Copyright © 2016 Elsevier Inc. All rights reserved.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Pessoa, Daniella Tavares; da Silva, Eva Luana Almeida; Costa, Edbhergue Ventura Lola; Nogueira, Romildo Albuquerque
2017-11-01
Western diets are high in saturated fat and low in omega-3. Certain animals cannot produce omega-3 from their own lipids, making it necessary for it to be acquired from the diet. However, omega-3s are important components of the plasma membrane, and altering their proportions can promote physical and chemical alterations in the membranes, which may modify neuronal excitability. These alterations occur in healthy individuals, as well as in patients with epilepsy who are more sensitive to changes in brain electrical activity. This study evaluated the effect of a diet supplemented with omega-3 on the basal brain electrical activity both before and during status epilepticus in rats. To evaluate the brain electrical activity, we recorded electrocorticograms (ECoG) of animals both with and without omega-3 supplementation before and during status epilepticus induced by pilocarpine. Calculation of the average brain wave power by a power spectrum revealed that omega-3 supplementation reduced the average power of the delta wave by 20% and increased the average power of the beta wave by 45%. These effects were exacerbated when status epilepticus was induced in the animals supplemented with omega-3. The animals with and without omega-3 supplementation exhibited increases in basal brain electrical activities during status epilepticus. The two groups showed hyperactivity, but no significant difference between them was noted. Even though the brain activity levels observed during status epilepticus were similar between the two groups, neuron damage to the animals supplemented with omega-3 was more slight, revealing the neuroprotective effect of the omega-3. Copyright © 2017 Elsevier B.V. All rights reserved.
Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz
2017-02-01
Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
On how high performers keep cool brains in situations of cognitive overload.
Jaeggi, Susanne M; Buschkuehl, Martin; Etienne, Alex; Ozdoba, Christoph; Perrig, Walter J; Nirkko, Arto C
2007-06-01
What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.
Theoharides, Theoharis C.; Stewart, Julia M.; Hatziagelaki, Erifili; Kolaitis, Gerasimos
2015-01-01
Brain “fog” is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain “fog” characterizes patients with autism spectrum disorders (ASDs), celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis, and postural tachycardia syndrome (POTS), as well as “minimal cognitive impairment,” an early clinical presentation of Alzheimer's disease (AD), and other neuropsychiatric disorders. Brain “fog” may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs) further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain “fog” in mastocytosis patients. Methylated luteolin analogs with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain “fog.” PMID:26190965
Neurovascular regulation in the ischemic brain.
Jackman, Katherine; Iadecola, Costantino
2015-01-10
The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.
Spatial Frequency Domain Imaging: Applications in Preclinical Models of Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Lin, Alexander Justin
A clinical challenge in Alzheimer's disease (AD) is diagnosing and treating patients earlier, before symptoms of cognitive dysfunction occur. A good screening test would be sensitive to the AD brain pathology, safe, and cost-effective. Diffuse optical imaging, which measures how non-ionizing light is absorbed and scattered in tissue, may fulfill these three parameters. We imaged the brains of transgenic AD mouse models in vivo with a quantitative, camera-based, diffuse optical imaging technology called spatial frequency domain imaging (SFDI) to characterize near-infrared (650-970nm) optical biomarkers of AD. Compared to age-matched control mice, we found a decrease in light absorption --- due to lower oxygenated and total hemoglobin concentrations in the brain --- correlating to decreased blood vessel volume and density in histology. Light scattering also increased in AD mice, correlating to brain structural changes caused by neuron loss and activation of inflammatory cells. Furthermore, inhaled gas challenges revealed brain vascular function was diminished. To investigate how AD affects the small changes in blood perfusion caused by increased brain activity, we built a new SFDI system from a commercial light-emitting diode microprojector and off-the-shelf optical components and cameras to measure optical properties in the visible range (460-632nm). Our measurements showed a reduced amplitude and duration of blood vessel dilation to increased brain activity in the AD mice. Altogether, this work increased our understanding of AD pathogenesis, explored optical biomarkers of AD, and improved technology access to other research labs. These results and technologies can further be used to facilitate longitudinal drug therapy trials in mice and provide a roadmap to diffuse optical spectroscopy studies in humans.
Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F
2014-12-01
In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.
Lack of thyroid hormone effect on activation energy of NaK-ATPase.
Rahimifar, M; Ismail-Beigi
1977-02-01
In order to differentiate whether activation of NaK-ATPase in thyroid thermogenesis is due to increased numbers of active 'sodium pump' units or due to a change in the kinetics of the enzyme, the effect of T3 on activation energy (Ea) of NaK-ATPase was determined in rat liver, kidney and brain. Injection of T3 produced significant increases in the specific activity of NaK-ATPase in liver and kidney but not in brain homogenates. T3 injections produced no significant change in the Ea of NaK-ATPase in any of the three tissues. The data are compatible with the hypothesis that thyroid stimulation of the sodium pump is brought about by an increase in the number of active pump units.
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-01-01
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene–brain–behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ∼6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development. PMID:22832821
Effect of satiety on brain activation during chocolate tasting in men and women.
Smeets, Paul A M; de Graaf, Cees; Stafleu, Annette; van Osch, Matthias J P; Nievelstein, Rutger A J; van der Grond, Jeroen
2006-06-01
The brain plays a crucial role in the decision to eat, integrating multiple hormonal and neural signals. A key factor controlling food intake is selective satiety, ie, the phenomenon that the motivation to eat more of a food decreases more than does the motivation to eat foods not eaten. We investigated the effect of satiation with chocolate on the brain activation associated with chocolate taste in men and women. Twelve men and 12 women participated. Subjects fasted overnight and were scanned by use of functional magnetic resonance imaging while tasting chocolate milk, before and after eating chocolate until they were satiated. In men, chocolate satiation was associated with increased taste activation in the ventral striatum, insula, and orbitofrontal and medial orbitofrontal cortex and with decreased taste activation in somatosensory areas. Women showed increased taste activation in the precentral gyrus, superior temporal gyrus, and putamen and decreased taste activation in the hypothalamus and amygdala. Sex differences in the effect of chocolate satiation were found in the hypothalamus, ventral striatum, and medial prefrontal cortex (all P < 0.005). Our results indicate that men and women differ in their response to satiation and suggest that the regulation of food intake by the brain may vary between the sexes. Therefore, sex differences are a covariate of interest in studies of the brain's responses to food.
Illness Denial in Schizophrenia Spectrum Disorders: A Function of Left Hemisphere Dominance
Gerretsen, Philip; Menon, Mahesh; Chakravarty, M. Mallar; Lerch, Jason P; Mamo, David C.; Remington, Gary; Pollock, Bruce G; Graff-Guerrero, Ariel
2014-01-01
Impaired illness awareness or anosognosia is a common, but poorly understood feature of schizophrenia that contributes to medication nonadherence and poor treatment outcomes. Here we present a functional imaging study to measure brain activity at the moment of illness denial. To accomplish this, participants with schizophrenia (n = 18) with varying degrees of illness awareness were confronted with their illness beliefs while undergoing functional MRI. To link structure with function, we explored the relationships among impaired illness awareness and brain activity during the illness denial task with cortical thickness (CT). Impaired illness awareness was associated with increased brain activity in the left temporoparietooccipital junction (TPO) and left medial prefrontal cortex (mPFC) at the moment of illness denial. Brain activity in the left mPFC appeared to be a function of participants’ degree of self-reflectiveness, while the activity in the left TPO was associated with cortical thinning in this region and more specific to illness denial. Participants with impaired illness awareness had slower response times to illness related stimuli than those with good illness awareness. Increased left hemisphere brain activity in association with illness denial is consistent with the literature in other neuropsychiatric conditions attributing anosognosia or impaired illness awareness to left hemisphere dominance. The TPO and mPFC may represent putative targets for non-invasive treatment interventions, such as transcranial magnetic or direct current stimulation. PMID:25209949
Müller, Jürgen L; Sommer, Monika; Wagner, Verena; Lange, Kirsten; Taschler, Heidrun; Röder, Christian H; Schuierer, Gerhardt; Klein, Helmfried E; Hajak, Göran
2003-07-15
Neurobiology of psychopathy is important for our understanding of current neuropsychiatric questions. Despite a growing interest in biological research in psychopathy, its neural underpinning remains obscure. We used functional magnetic resonance imaging to study the influence of affective contents on brain activation in psychopaths. Series containing positive and negative pictures from the International Affective Picture System were shown to six male psychopaths and six male control subjects while 100 whole-brain echo-planar-imaging measurements were acquired. Differences in brain activation were evaluated using BrainVoyager software 4.6. In psychopaths, increased activation through negative contents was found right-sided in prefrontal regions and amygdala. Activation was reduced right-sided in the subgenual cingulate and the temporal gyrus, and left-sided in the dorsal cingulate and the parahippocampal gyrus. Increased activation through positive contents was found left-sided in the orbitofrontal regions. Activation was reduced in right medial frontal and medial temporal regions. These findings underline the hypotheses that psychopathy is neurobiologically reflected by dysregulation and disturbed functional connectivity of emotion-related brain regions. These findings may be interpreted within a framework including prefrontal regions that provide top-down control to and regulate bottom-up signals from limbic areas. Because of the small sample size, the results of this study have to be regarded as preliminary.
A brain-region-based meta-analysis method utilizing the Apriori algorithm.
Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao
2016-05-18
Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.
Dynamic correlations between heart and brain rhythm during Autogenic meditation
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165
Dynamic correlations between heart and brain rhythm during Autogenic meditation.
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Bachelot, Thomas; Le Rhun, Emilie; Labidi-Gally, Intidar; Heudel, Pierre; Gilabert, Marine; Bonneterre, Jacques; Pierga, Jean-Yves; Gonçalves, Anthony
2013-01-01
Prevalence of brain metastases is increasing in breast cancer. Brain metastases represent a poor-prognosis disease for which local treatments continue to play a major role. In spite of the presence of a physiological blood-brain barrier limiting their activity, some systemic treatments may display a significant antitumor activity at the central nervous system level. In HER2-positive metastatic breast cancer with brain metastases not previously treated with whole brain radiotherapy, capecitabine and lapatinib combination obtains a volumetric reponse in two thirds of patients (LANDSCAPE study). If confirmed, these results could modify in selected patients the layout of therapeutic strategies. Promoting novel targeted approaches and innovative therapeutic combinations is a critical need to improve survival of breast cancer patients with brain metastases.
Regional brain activity that determines successful and unsuccessful working memory formation.
Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie
2016-08-01
Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.
Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.
He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming
2018-06-04
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
Contributions of glycogen to astrocytic energetics during brain activation.
Dienel, Gerald A; Cruz, Nancy F
2015-02-01
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Contributions of Glycogen to Astrocytic Energetics during Brain Activation
Dienel, Gerald A.; Cruz, Nancy F.
2014-01-01
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302
Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.
2015-01-01
Objectives It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Methods Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. Results In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. Conclusions This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system. PMID:25965336
Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng
2015-01-01
In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.
Brain Responses during the Anticipation of Dyspnea
Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian
2016-01-01
Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309
Brain Responses during the Anticipation of Dyspnea.
Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas
2016-01-01
Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.
The oxygen paradox of neurovascular coupling
Leithner, Christoph; Royl, Georg
2014-01-01
The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931
Barone, Eugenio; Di Domenico, Fabio; Sultana, Rukhsana; Coccia, Raffaella; Mancuso, Cesare; Perluigi, Marzia; Butterfield, D Allan
Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Oxidative and nitrosative stress plays a principal role in the pathogenesis of AD. The induction of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system in the brain represents one of the earliest mechanisms activated by cells to counteract the noxious effects of increased reactive oxygen species and reactive nitrogen species. Although initially proposed as a neuroprotective system in AD brain, the HO-1/BVR-A pathophysiological features are under debate. We previously reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative posttranslational modifications in the brain of subjects with AD and those with mild cognitive impairment (MCI). Furthermore, other groups proposed the observed increase in HO-1 in AD brain as a possible neurotoxic mechanism. Here we provide new insights about HO-1 in the brain of subjects with AD and MCI, the latter condition being the transitional phase between normal aging and early AD. HO-1 protein levels were significantly increased in the hippocampus of AD subjects, whereas HO-2 protein levels were significantly decreased in both AD and MCI hippocampi. In addition, significant increases in Ser-residue phosphorylation together with increased oxidative posttranslational modifications were found in the hippocampus of AD subjects. Interestingly, despite the lack of oxidative stress-induced AD neuropathology in cerebellum, HO-1 demonstrated increased Ser-residue phosphorylation and oxidative posttranslational modifications in this brain area, suggesting HO-1 as a target of oxidative damage even in the cerebellum. The significance of these findings is profound and opens new avenues into the comprehension of the role of HO-1 in the pathogenesis of AD. Copyright © 2012 Elsevier Inc. All rights reserved.
Maddock, Richard J; Buonocore, Michael H; Lavoie, Shawn P; Copeland, Linda E; Kile, Shawn J; Richards, Anne L; Ryan, John M
2006-11-22
Proton magnetic resonance spectroscopy ((1)H-MRS) studies showing increased lactate during neural activation support a broader role for lactate in brain energy metabolism than was traditionally recognized. Proton MRS measures of brain lactate responses have been used to study regional brain metabolism in clinical populations. This study examined whether variations in blood glucose influence the lactate response to visual stimulation in the visual cortex. Six subjects were scanned twice, receiving either saline or 21% glucose intravenously. Using (1)H-MRS at 1.5 Tesla with a long echo time (TE=288 ms), the lactate doublet was visible at 1.32 ppm in the visual cortex of all subjects. Lactate increased significantly from resting to visual stimulation. Hyperglycemia had no effect on this increase. The order of the slice-selective gradients for defining the spectroscopy voxel had a pronounced effect on the extent of contamination by signal originating outside the voxel. The results of this preliminary study demonstrate a method for observing a consistent activity-stimulated increase in brain lactate at 1.5 T and show that variations in blood glucose across the normal range have little effect on this response.
Lepage, M; Sergerie, K; Benoit, A; Czechowska, Y; Dickie, E; Armony, J L
2011-09-01
There is a general consensus in the literature that schizophrenia causes difficulties with facial emotion perception and discrimination. Functional brain imaging studies have observed reduced limbic activity during facial emotion perception but few studies have examined the relation to flat affect severity. A total of 26 people with schizophrenia and 26 healthy controls took part in this event-related functional magnetic resonance imaging study. Sad, happy and neutral faces were presented in a pseudo-random order and participants indicated the gender of the face presented. Manual segmentation of the amygdala was performed on a structural T1 image. Both the schizophrenia group and the healthy control group rated the emotional valence of facial expressions similarly. Both groups exhibited increased brain activity during the perception of emotional faces relative to neutral ones in multiple brain regions, including multiple prefrontal regions bilaterally, the right amygdala, right cingulate cortex and cuneus. Group comparisons, however, revealed increased activity in the healthy group in the anterior cingulate, right parahippocampal gyrus and multiple visual areas. In schizophrenia, the severity of flat affect correlated significantly with neural activity in several brain areas including the amygdala and parahippocampal region bilaterally. These results suggest that many of the brain regions involved in emotional face perception, including the amygdala, are equally recruited in both schizophrenia and controls, but flat affect can also moderate activity in some other brain regions, notably in the left amygdala and parahippocampal gyrus bilaterally. There were no significant group differences in the volume of the amygdala.
Gimbel, Sarah I; Brewer, James B; Maril, Anat
2017-03-01
This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. Copyright © 2017 Elsevier B.V. All rights reserved.
Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.
Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W
2018-03-01
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nakagomi, Takayuki; Kubo, Shuji; Nakano-Doi, Akiko; Sakuma, Rika; Lu, Shan; Narita, Aya; Kawahara, Maiko; Taguchi, Akihiko; Matsuyama, Tomohiro
2015-06-01
Brain vascular pericytes (PCs) are a key component of the blood-brain barrier (BBB)/neurovascular unit, along with neural and endothelial cells. Besides their crucial role in maintaining the BBB, increasing evidence shows that PCs have multipotential stem cell activity. However, their multipotency has not been considered in the pathological brain, such as after an ischemic stroke. Here, we examined whether brain vascular PCs following ischemia (iPCs) have multipotential stem cell activity and differentiate into neural and vascular lineage cells to reconstruct the BBB/neurovascular unit. Using PCs extracted from ischemic regions (iPCs) from mouse brains and human brain PCs cultured under oxygen/glucose deprivation, we show that PCs developed stemness presumably through reprogramming. The iPCs revealed a complex phenotype of angioblasts, in addition to their original mesenchymal properties, and multidifferentiated into cells from both a neural and vascular lineage. These data indicate that under ischemic/hypoxic conditions, PCs can acquire multipotential stem cell activity and can differentiate into major components of the BBB/neurovascular unit. Thus, these findings support the novel concept that iPCs can contribute to both neurogenesis and vasculogenesis at the site of brain injuries. © 2015 AlphaMed Press.
A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke
Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.
2015-01-01
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789
Gupta, Arpana; Mayer, Emeran A; Labus, Jennifer S; Bhatt, Ravi R; Ju, Tiffany; Love, Aubrey; Bal, Amanat; Tillisch, Kirsten; Naliboff, Bruce; Sanmiguel, Claudia P; Kilpatrick, Lisa A
2018-02-01
This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual. © 2017 The Obesity Society.
Durk, Matthew R; Fan, Jianghong; Sun, Huadong; Yang, Yingbo; Pang, Henrianna; Pang, K Sandy; de Lannoy, Inés A M
2015-03-01
Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a. We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day × 4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat. The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved. We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.
Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen
2014-01-01
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Genetic mouse models of brain ageing and Alzheimer's disease.
Bilkei-Gorzo, Andras
2014-05-01
Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.
Bezdek, Matthew A; Wenzel, William G; Schumacher, Eric H
2017-10-01
We tested the hypothesis that, during naturalistic viewing, moments of increasing narrative suspense narrow the scope of attentional focus. We also tested how changes in the emotional congruency of the music would affect brain responses to suspense, as well as subsequent memory for narrative events. In our study, participants viewed suspenseful film excerpts while brain activation was measured with functional magnetic resonance imaging. Results indicated that suspense produced a pattern of activation consistent with the attention-narrowing hypothesis. For example, we observed decreased activation in the anterior calcarine sulcus, which processes the visual periphery, and increased activity in nodes of the ventral attention network and decreased activity in nodes of the default mode network. Memory recall was more accurate for high suspense than low suspense moments, but did not differ by soundtrack congruency. These findings provide neural evidence that perceptual, attentional, and memory processes respond to suspense on a moment-by-moment basis. Copyright © 2017 Elsevier B.V. All rights reserved.
Two hands, one brain, and aging.
Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P
2017-04-01
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aho-Özhan, Helena E A; Keller, Jürgen; Heimrath, Johanna; Uttner, Ingo; Kassubek, Jan; Birbaumer, Niels; Ludolph, Albert C; Lulé, Dorothée
2016-01-01
Amyotrophic lateral sclerosis (ALS) primarily impairs motor abilities but also affects cognition and emotional processing. We hypothesise that subjective ratings of emotional stimuli depicting social interactions and facial expressions is changed in ALS. It was found that recognition of negative emotions and ability to mentalize other's intentions is reduced. Processing of emotions in faces was investigated. A behavioural test of Ekman faces expressing six basic emotions was presented to 30 ALS patients and 29 age-, gender and education matched healthy controls. Additionally, a subgroup of 15 ALS patients that were able to lie supine in the scanner and 14 matched healthy controls viewed the Ekman faces during functional magnetic resonance imaging (fMRI). Affective state and a number of daily social contacts were measured. ALS patients recognized disgust and fear less accurately than healthy controls. In fMRI, reduced brain activity was seen in areas involved in processing of negative emotions replicating our previous results. During processing of sad faces, increased brain activity was seen in areas associated with social emotions in right inferior frontal gyrus and reduced activity in hippocampus bilaterally. No differences in brain activity were seen for any of the other emotional expressions. Inferior frontal gyrus activity for sad faces was associated with increased amount of social contacts of ALS patients. ALS patients showed decreased brain and behavioural responses in processing of disgust and fear and an altered brain response pattern for sadness. The negative consequences of neurodegenerative processes in the course of ALS might be counteracted by positive emotional activity and positive social interactions.
Brain mapping after prolonged cycling and during recovery in the heat.
De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain
2013-11-01
The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.
Functional characteristics of the brain in college students with internet gaming disorder.
Liu, Jun; Li, Weihui; Zhou, Shunke; Zhang, Li; Wang, Zhiyuan; Zhang, Yan; Jiang, Yebin; Li, Lingjiang
2016-03-01
Internet gaming disorder (IGD) is a subtype of internet addiction disorder (IAD), but its pathogenesis remains unclear. This study investigated brain function in IGD individuals using task-state functional magnetic resonance imaging (fMRI). It is a prospective study in 19 IGD individuals and 19 matched healthy controls. They all received internet videogame stimuli while a 3.0 T fMRI was used to assess echo planar imaging. Brain activity was analyzed using the Brain Voyager software package. Functional data were spatially smoothed using Gaussian kernel. The threshold level was positioned at 10 pixels, and the activation range threshold was set to 10 voxels. Activated brain regions were compared between the two groups, as well as the amount of activated voxels. The internet videogame stimuli activated brain regions in both groups. Compared with controls, the IGD group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, right superior temporal gyrus, and left brainstem. There was a significant difference in the number of activated voxels between the two groups. An average of 1078 voxels was activated in the IGD group compared with only 232 in the control group. Internet videogame play activates the vision, space, attention, and execution centers located in the occipital, temporal, parietal, and frontal gyri. Abnormal brain function was noted in IGD subjects, with hypofunction of the frontal cortex. IGD subjects showed laterality activation of the right cerebral hemisphere.
Sowndhararajan, Kandhasamy; Kim, Songmun
2016-01-01
The influence of fragrances such as perfumes and room fresheners on the psychophysiological activities of humans has been known for a long time, and its significance is gradually increasing in the medicinal and cosmetic industries. A fragrance consists of volatile chemicals with a molecular weight of less than 300 Da that humans perceive through the olfactory system. In humans, about 300 active olfactory receptor genes are devoted to detecting thousands of different fragrance molecules through a large family of olfactory receptors of a diverse protein sequence. The sense of smell plays an important role in the physiological effects of mood, stress, and working capacity. Electrophysiological studies have revealed that various fragrances affected spontaneous brain activities and cognitive functions, which are measured by an electroencephalograph (EEG). The EEG is a good temporal measure of responses in the central nervous system and it provides information about the physiological state of the brain both in health and disease. The EEG power spectrum is classified into different frequency bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz), and each band is correlated with different features of brain states. A quantitative EEG uses computer software to provide the topographic mapping of the brain activity in frontal, temporal, parietal and occipital brain regions. It is well known that decreases of alpha and beta activities and increases of delta and theta activities are associated with brain pathology and general cognitive decline. In the last few decades, many scientific studies were conducted to investigate the effect of inhalation of aroma on human brain functions. The studies have suggested a significant role for olfactory stimulation in the alteration of cognition, mood, and social behavior. This review aims to evaluate the available literature regarding the influence of fragrances on the psychophysiological activities of humans with special reference to EEG changes. PMID:27916830
Brain regions essential for improved lexical access in an aged aphasic patient: a case report.
Meinzer, Marcus; Flaisch, Tobias; Obleser, Jonas; Assadollahi, Ramin; Djundja, Daniela; Barthel, Gabriela; Rockstroh, Brigitte
2006-08-17
The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation.
NASA Astrophysics Data System (ADS)
Shimomura, S.; Ijiri, K.
The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.
NASA Astrophysics Data System (ADS)
Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.
2017-06-01
Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.
Effects of lithium on brain glucose metabolism in healthy men.
Kohno, Tomoya; Shiga, Tohru; Toyomaki, Atsuhito; Kusumi, Ichiro; Matsuyama, Tetsuaki; Inoue, Tetsuya; Katoh, Chietsugu; Koyama, Tsukasa; Tamaki, Nagara
2007-12-01
Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.
Hu, Y; Wilson, G S
1997-10-01
A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10-12 s, by massive, acute neuronal use after stimulation and can be replenished in approximately 20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Zhang, Yingying; Zhang, Mengshu; Li, Lingjun; Wei, Bin; He, Axin; Lu, Likui; Li, Xiang; Zhang, Lubo; Xu, Zhice; Sun, Miao
2018-05-28
Prenatal hypoxia (PH) is a common pregnancy complication, harmful to brain development. This study investigated whether and how PH affected Wnt pathway in the brain. Pregnant rats were exposed to hypoxia (10.5% O 2 ) or normoxia (21% O 2 ; Control). Foetal brain weight and body weight were decreased in the PH group, the ratio of brain weight to body weight was increased significantly. Prenatal hypoxia increased mRNA expression of Wnt3a, Wnt7a, Wnt7b and Fzd4, but not Lrp6. Activated β-catenin protein and Fosl1 expression were also significantly up-regulated. Increased Hif1a expression was found in the PH group associated with the higher Wnt signalling. Among 5 members of the Sfrp family, Sfrp4 was down-regulated. In the methylation-regulating genes, higher mRNA expressions of Dnmt1 and Dnmt3b were found in the PH group. Sodium bisulphite and sequencing revealed hyper-methylation in the promoter region of Sfrp4 gene in the foetal brain, accounting for its decreased expression and contributing to the activation of the Wnt-Catenin signalling. The study of PC12 cells treated with 5-aza further approved that decreased methylation could result in the higher Sfrp4 expression. In the offspring hippocampus, protein levels of Hif1a and mRNA expression of Sfrp4 were unchanged, whereas Wnt signal pathway was inhibited. The data demonstrated that PH activated the Wnt pathway in the foetal brain, related to the hyper-methylation of Sfrp4 as well as Hif1a signalling. Activated Wnt signalling might play acute protective roles to the foetal brain in response to hypoxia, also would result in disadvantageous influence on the offspring in long-term. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.
Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A
2004-11-01
Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.
P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.
Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern
2017-04-03
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.
Genzer, Yoni; Chapnik, Nava; Froy, Oren
2017-07-01
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Implications for Middle Schools from Adolescent Brain Research
ERIC Educational Resources Information Center
Robinson, Rebecca
2017-01-01
Neuroscience research has discovered that during adolescence the brain establishes stronger connections between brain regions, prunes out unused synapses, and increases activity in the emotional and social centers. This research supports many concepts that have been part of the concept of middle schools for over 50 years, including integrated…
Hashmi, Javeria A; Baliki, Marwan N; Huang, Lejian; Baria, Alex T; Torbey, Souraya; Hermann, Kristina M; Schnitzer, Thomas J; Apkarian, A Vania
2013-09-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.
Hashmi, Javeria A.; Baliki, Marwan N.; Huang, Lejian; Baria, Alex T.; Torbey, Souraya; Hermann, Kristina M.; Schnitzer, Thomas J.; Apkarian, A. Vania
2013-01-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain. PMID:23983029
Cameron-Burr, Keaton T.; Shaham, Yavin
2017-01-01
Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100–200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity. PMID:28593192
George, M S; Anton, R F; Bloomer, C; Teneback, C; Drobes, D J; Lorberbaum, J P; Nahas, Z; Vincent, D J
2001-04-01
Functional imaging studies have recently demonstrated that specific brain regions become active in cocaine addicts when they are exposed to cocaine stimuli. To test whether there are regional brain activity differences during alcohol cue exposure between alcoholic subjects and social drinkers, we designed a functional magnetic resonance imaging (fMRI) protocol involving alcohol-specific cues. Ten non-treatment-seeking adult alcoholic subjects (2 women) (mean [SD] age, 29.9 [9.9] years) as well as 10 healthy social drinking controls of similar age (2 women) (mean [SD] age, 29.4 [8.9] years) were recruited, screened, and scanned. In the 1.5-T magnetic resonance imaging scanner, subjects were serially rated for alcohol craving before and after a sip of alcohol, and after a 9-minute randomized presentation of pictures of alcoholic beverages, control nonalcoholic beverages, and 2 different visual control tasks. During picture presentation, changes in regional brain activity were measured with the blood oxygen level-dependent technique. Alcoholic subjects, compared with the social drinking subjects, reported higher overall craving ratings for alcohol. After a sip of alcohol, while viewing alcohol cues compared with viewing other beverage cues, only the alcoholic subjects had increased activity in the left dorsolateral prefrontal cortex and the anterior thalamus. The social drinkers exhibited specific activation only while viewing the control beverage pictures. When exposed to alcohol cues, alcoholic subjects have increased brain activity in the prefrontal cortex and anterior thalamus-brain regions associated with emotion regulation, attention, and appetitive behavior.
Madani, Zohra; Malaisse, Willy J; Ait-Yahia, Dalila
2015-09-01
The present study explored the potential of fish proteins to counteract high glucose levels and oxidative stress induced by fructose in the brain. A total of 24 male Wistar rats consumed sardine protein or casein with or without high fructose (64%). After 2 months, brain tissue was used for analyses. The fructose rats exhibited an increase in body mass index (BMI), body weight, absolute and relative brain weights and brain glucose; however, there was a decrease in food and water intake. Fructose disrupts membrane homeostasis, as evidenced by an increase in the brain hydroperoxides and a decrease in catalase (CAT) and glutathione peroxidase (GSH-Px) compared to the control. The exposure to the sardine protein reduced BMI, food intake, glucose and hydroperoxides, and increased CAT and GSH-Px in the brain. In conclusion, the metabolic dysfunctions associated with the fructose treatment were ameliorated by the presence of sardine protein in the diet by decreasing BMI, brain glucose and lipid peroxidation, and increasing CAT and GSH-Px activities.
Multiscale energy reallocation during low-frequency steady-state brain response.
Wang, Yifeng; Chen, Wang; Ye, Liangkai; Biswal, Bharat B; Yang, Xuezhi; Zou, Qijun; Yang, Pu; Yang, Qi; Wang, Xinqi; Cui, Qian; Duan, Xujun; Liao, Wei; Chen, Huafu
2018-05-01
Traditional task-evoked brain activations are based on detection and estimation of signal change from the mean signal. By contrast, the low-frequency steady-state brain response (lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presentation and its harmonics. Compared to the activity at these resonant frequencies, brain responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is defined by power change, we hypothesize using Parseval's theorem that the power change reflects brain signal variability rather than the change of mean signal. Using a face recognition task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics (0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band (<0.1 Hz), suggesting a multifrequency energy reallocation. The consistency of power and variability was demonstrated by the high correlation (r > .955) of their spatial distribution and brain-behavior relationship at all frequency bands. Additionally, the reallocation of finite energy was observed across various brain regions and frequency bands, forming a particular spatiotemporal pattern. Overall, results from this study strongly suggest that frequency-specific power and variability may measure the same underlying brain activity and that these results may shed light on different mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of energy reallocation induced by cognitive tasks. © 2018 Wiley Periodicals, Inc.
The hidden side of drug action: Brain temperature changes induced by neuroactive drugs
Kiyatkin, Eugene A.
2013-01-01
Rationale Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. Objectives Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. Results By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. Conclusions The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity PMID:23274506
2013-01-01
Background In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. Case presentation We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Conclusion Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding. PMID:23648137
Berle, Jan Øystein; Løberg, Else-Marie; Fasmer, Ole Bernt
2013-05-06
In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding.
Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T
2018-03-01
Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.
Intrinsic Brain Activity in Altered States of Consciousness
Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.
2010-01-01
Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474
Teaching Both Sides of the Brain: Book II: Reading.
ERIC Educational Resources Information Center
Dombrower, Jule; And Others
Part of a program to increase the academic growth of preschool and primary grade students through the utilization of brain hemisphere research, this volume contains lessons designed to improve basic reading skills. Material is divided into two sections. Section 1 contains 17 activities to develop letter and word recognition. In activities 1-12,…
The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice
ERIC Educational Resources Information Center
Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert
2015-01-01
"Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…
Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong
2011-07-29
Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury. Copyright © 2011 Elsevier Inc. All rights reserved.
Gao, Zhonghong; Xu, Huibi; Huang, Kaixun
2002-09-01
The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.
Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration
Herrera, María I.; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco
2016-01-01
Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733
Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration.
Herrera, María I; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco
2016-01-01
Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.
NASA Astrophysics Data System (ADS)
Yuan, Yi; Chen, Yudong; Li, Xiaoli
2016-02-01
A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.
Social reinforcement can regulate localized brain activity.
Mathiak, Krystyna A; Koush, Yury; Dyck, Miriam; Gaber, Tilman J; Alawi, Eliza; Zepf, Florian D; Zvyagintsev, Mikhail; Mathiak, Klaus
2010-11-01
Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a computer-generated face provided a positive feedback (smiling) when activity in the anterior cingulate cortex (ACC) increased and gradually returned to a neutral expression when the activity dropped. One female volunteer without previous experience in fMRI underwent training based on a social reinforcer. Directly before and after the neurofeedback runs, neural responses to a cognitive interference task (Simon task) were recorded. We observed a significant increase in activity within ACC during the neurofeedback blocks, correspondent with the a-priori defined anatomical region of interest. In the course of the neurofeedback training, the subject learned to regulate ACC activity and could maintain the control even without direct feedback. Moreover, ACC was activated significantly stronger during Simon task after the neurofeedback training when compared to before. Localized brain activity can be controlled by social reward. The increased ACC activity transferred to a cognitive task with the potential to reduce cognitive interference. Systematic studies are required to explore long-term effects on social behavior and clinical applications.
Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients
Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun
2015-01-01
Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269
Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J
2017-12-01
Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Huang, Shucai; Zhang, Zhixue; Dai, Yuanyuan; Zhang, Changcun; Yang, Cheng; Fan, Lidan; Liu, Jun; Hao, Wei; Chen, Hongxian
2018-01-01
Studies utilizing functional magnetic resonance imaging (fMRI) cue-reactivity paradigms have demonstrated that short-term abstinent or current methamphetamine (MA) users have increased brain activity in the ventral striatum, caudate nucleus and medial frontal cortex, when exposed to MA-related visual cues. However, patterns of brain activity following cue-reactivity in subjects with long-term MA abstinence, especially long-term compulsory drug rehabilitation, have not been well studied. To enrich knowledge in this field, functional brain imaging was conducted during a cue-reactivity paradigm task in 28 individuals with MA use disorder following long-term compulsory drug rehabilitation, and 27 healthy control subjects. The results showed that, when compared with controls, individuals with MA use disorder displayed elevated activity in the bilateral medial prefrontal cortex (mPFC) and right lateral posterior cingulate cortex in response to MA-related images. Additionally, the anterior cingulate region of mPFC activation during the MA-related cue-reactivity paradigm was positively correlated with craving alterations and previous frequency of drug use. No significant differences in brain activity in response to pornographic images were found between the two groups. Compared to MA cues, individuals with MA use disorder had increased activation in the occipital lobe when exposed to pornographic cues. In conclusion, the present study indicates that, even after long-term drug rehabilitation, individuals with MA use disorder have unique brain activity when exposed to MA-related cues. Additionally, our results illustrate that the libido brain response might be restored, and that sexual demand might be more robust than drug demand, in individuals with MA use disorder following long-term drug rehabilitation. PMID:29725310
Huang, Shucai; Zhang, Zhixue; Dai, Yuanyuan; Zhang, Changcun; Yang, Cheng; Fan, Lidan; Liu, Jun; Hao, Wei; Chen, Hongxian
2018-01-01
Studies utilizing functional magnetic resonance imaging (fMRI) cue-reactivity paradigms have demonstrated that short-term abstinent or current methamphetamine (MA) users have increased brain activity in the ventral striatum, caudate nucleus and medial frontal cortex, when exposed to MA-related visual cues. However, patterns of brain activity following cue-reactivity in subjects with long-term MA abstinence, especially long-term compulsory drug rehabilitation, have not been well studied. To enrich knowledge in this field, functional brain imaging was conducted during a cue-reactivity paradigm task in 28 individuals with MA use disorder following long-term compulsory drug rehabilitation, and 27 healthy control subjects. The results showed that, when compared with controls, individuals with MA use disorder displayed elevated activity in the bilateral medial prefrontal cortex (mPFC) and right lateral posterior cingulate cortex in response to MA-related images. Additionally, the anterior cingulate region of mPFC activation during the MA-related cue-reactivity paradigm was positively correlated with craving alterations and previous frequency of drug use. No significant differences in brain activity in response to pornographic images were found between the two groups. Compared to MA cues, individuals with MA use disorder had increased activation in the occipital lobe when exposed to pornographic cues. In conclusion, the present study indicates that, even after long-term drug rehabilitation, individuals with MA use disorder have unique brain activity when exposed to MA-related cues. Additionally, our results illustrate that the libido brain response might be restored, and that sexual demand might be more robust than drug demand, in individuals with MA use disorder following long-term drug rehabilitation.
Baumgartner, Thomas; Valko, Lilian; Esslen, Michaela; Jäncke, Lutz
2006-02-01
Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.
Linking neuronal brain activity to the glucose metabolism.
Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias
2013-08-29
Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.
Linking neuronal brain activity to the glucose metabolism
2013-01-01
Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084
Dietzmann, K; von Bossanyi, P; Krause, D; Wittig, H; Mawrin, C; Kirches, E
2000-01-01
Plasminogen activators as inducible extracellular serine proteases are involved in a variety of processes, such as the degradation of brain structures. In regions of brain degradation, an increase in the expression of genes encoding cytokines and proteinases has recently been demonstrated. We tested the hypothesis, whether the plasminogen activator system as well as the plasminogen activator inhibitors are expressed and possibly involved in a proteolytic cascade that breaks down the extracellular matrix as a result of ischemic or posttraumatic brain destructions. To study this supposition, we investigated immunohistochemically the expression of tPA, uPA and its receptor, the plasminogen activator inhibitors PAI-1 and PAI-2, tetranectin as well as the laminin breakdown as an event of secondary brain injury. Brain tissue from 21 autopsy cases with severe brain injuries, material from 14 ischemic infarcts and 11 controls with acute hypoxia were used. All components of the plasminogen activator system studied were over-expressed immunohistochemically in reactive astrocytes, microglia and endothelial cells around the lesion zone. Tetranectin showed an analogous distribution to the plasminogen activator system. A reduced immunoreactivity of laminin within the identical region of destruction was detected concomitant with laminin remnants in perivascular macrophages, so that a remarkable role of the plasmin cascade in the degradation of extracellular matrix proteins in the brain is taken into consideration.
Zhang, Haoyun; Eppes, Anna; Beatty-Martínez, Anne; Navarro-Torres, Christian; Diaz, Michele T
2018-06-19
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.
Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings
Hoffman, D.J.; Spalding, M.G.; Frederick, P.C.
2005-01-01
In recent years, high concentrations of mercury have been found in wading birds in Florida, USA. Great egret (Ardea alba) chicks (2 weeks old) were dosed orally daily with the equivalent of 0, 0.5, or 5 ug/g Hg as methylmercury chloride in the diet for up to 12 weeks. Weakness of the legs or paralysis occurred in all high-dosed birds. Geometric mean blood Hg concentrations were 0.17, 10.3, and 78.5 ug/g (wet wt), respectively. Mercury concentrations for organs (ug/g wet wt), including brain (0.22, 3.4, and 35, respectively), liver (0.34, 15.1, 138, respectively), and kidney (0.28, 8.1, and 120, respectively), increased in a dose-dependent manner. Total glutathione (GSH) peroxidase activity was significantly lower in the plasma, brain, liver, and kidney of the high-dosed group. Plasma aspartate aminotransferase activity increased with mercury treatment, whereas lactate dehydrogenase activity decreased. Four other plasma chemistries were decreased significantly in the high-dosed group and included uric acid, total protein, albumin, and inorganic phosphorus. Lipid peroxidation increased in liver (low and high dose) and brain (high dose). Tissue changes in concentrations of reduced thiols included decreased total thiols and protein-bound thiols in liver, decreased protein-bound thiols in kidney, and increased GSH in kidney and brain. Activities of GSH S-transferase and oxidized glutathione reductase increased in liver. In kidney, GSH S-transferase and glucose-6-phosphate dehydrogenase activities increased with mercury dose. These findings, including apparent compensatory changes, are compared to other Hg studies where oxidative stress was reported in egrets, herons, and diving ducks in the field and mallards in the laboratory.
Wiebking, Christine; Northoff, Georg
2015-01-01
Objective: Alexithymia relates to difficulties recognizing and describing emotions. It has been linked to subjectively increased interoceptive awareness (IA) and to psychiatric illnesses such as major depressive disorder (MDD) and somatization. MDD in turn is characterized by aberrant emotion processing and IA on the subjective as well as on the neural level. However, a link between neural activity in response to IA and alexithymic traits in health and depression remains unclear. Methods: A well-established fMRI task was used to investigate neural activity during IA (heartbeat counting) and exteroceptive awareness (tone counting) in non-psychiatric controls (NC) and MDD. Firstly, comparing MDD and NC, a linear relationship between IA-related activity and scores of the Toronto Alexithymia Scale (TAS) was investigated through whole-brain regression. Secondly, NC were divided by median-split of TAS scores into groups showing low (NC-low) or high (NC-high) alexithymia. MDD and NC-high showed equally high TAS scores. Subsequently, IA-related neural activity was compared on a whole-brain level between the three independent samples (MDD, NC-low, NC-high). Results: Whole-brain regressions between MDD and NC revealed neural differences during IA as a function of TAS-DD (subscale difficulty describing feelings) in the supragenual anterior cingulate cortex (sACC; BA 24/32), which were due to negative associations between TAS-DD and IA-related activity in NC. Contrasting NC subgroups after median-split on a whole-brain level, high TAS scores were associated with decreased neural activity during IA in the sACC and increased insula activity. Though having equally high alexithymia scores, NC-high showed increased insula activity during IA compared to MDD, whilst both groups showed decreased activity in the sACC. Conclusions: Within the context of decreased sACC activity during IA in alexithymia (NC-high and MDD), increased insula activity might mirror a compensatory mechanism in NC-high, which is disrupted in MDD. PMID:26074827
Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.
Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong
2016-01-01
Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of the Educational Boost Your Brain and Memory Program Among Senior Living Residents.
Nicholson, Roscoe; O'Brien, Catherine
2017-12-01
This random assignment waitlist control intervention study examined an implementation of the educational Boost Your Brain and Memory cognitive fitness intervention in 12 senior living organizations. Older adult participants ( n = 166) completed measures of brain health knowledge, use of memory techniques, physical and intellectual activity, and mindfulness, at baseline and after the intervention group's completion of the course. Changes in knowledge scores and in self-reported physical and intellectual activity increased significantly more for intervention participants than for waitlist controls at the conclusion of the course. There were no significant changes between the groups in mindfulness or use of memory techniques. This suggests that in senior living settings Boost Your Brain and Memory is effective in educating participants about brain healthy behaviors and in motivating behavioral change in the areas of physical and intellectual activity.
Phillips, Cristy
2017-01-01
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.
2017-01-01
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging. PMID:28695017
Dynamic Filtering Improves Attentional State Prediction with fNIRS
NASA Technical Reports Server (NTRS)
Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.
2016-01-01
Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).
Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M
2017-03-01
The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.
Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya
2017-11-01
People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Percik, Ruth; Cina, Jenny; Even, Batel; Gitler, Asaf; Geva, Diklah; Seluk, Lior; Livny, Abigail
2018-02-07
Despite the thorough mapping of brain pathways involved in eating behavior, no treatment aimed at modulating eating dysregulation from its neurocognitive root has been established yet. We aimed to evaluate the effect of N.I.R. H.E.G. (Near Infra-Red Hemoencephalography) neurofeedback training on appetite control, weight and food-related brain activity. Six healthy male participants with overweight or mild obesity went through 10 N.I.R. H.E.G. neurofeedback sessions designed to practice voluntary activation of the prefrontal cortex. Weight, eating behavior, appetite control and brain activity related to food and self-inhibition based on fMRI were evaluated before and after neurofeedback training. Our study group demonstrated a positive trend of increased self-control and inhibition related to food behavior, reduced weight and increased activation during an fMRI response-inhibition task (Go-No-Go - GNG) in the predefined region of interest (ROI): superior orbitofrontal cortex (sOFC). N.I.R. H.E.G. holds a promising potential as a feasible neurofeedback platform for modulation of cortical brain circuits involved in self-control and eating behavior and should be further evaluated and developed as a brain modifying device for the treatment and prevention of obesity. Copyright © 2018. Published by Elsevier Ltd.
Red Brain, Blue Brain: Evaluative Processes Differ in Democrats and Republicans
Schreiber, Darren; Fonzo, Greg; Simmons, Alan N.; Dawes, Christopher T.; Flagan, Taru; Fowler, James H.; Paulus, Martin P.
2013-01-01
Liberals and conservatives exhibit different cognitive styles and converging lines of evidence suggest that biology influences differences in their political attitudes and beliefs. In particular, a recent study of young adults suggests that liberals and conservatives have significantly different brain structure, with liberals showing increased gray matter volume in the anterior cingulate cortex, and conservatives showing increased gray matter volume in the in the amygdala. Here, we explore differences in brain function in liberals and conservatives by matching publicly-available voter records to 82 subjects who performed a risk-taking task during functional imaging. Although the risk-taking behavior of Democrats (liberals) and Republicans (conservatives) did not differ, their brain activity did. Democrats showed significantly greater activity in the left insula, while Republicans showed significantly greater activity in the right amygdala. In fact, a two parameter model of partisanship based on amygdala and insula activations yields a better fitting model of partisanship than a well-established model based on parental socialization of party identification long thought to be one of the core findings of political science. These results suggest that liberals and conservatives engage different cognitive processes when they think about risk, and they support recent evidence that conservatives show greater sensitivity to threatening stimuli. PMID:23418419
Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain
Giannini, Carolin; Kloß, Alexander; Gohlke, Sabrina; Mishto, Michele; Nicholson, Thomas P.; Sheppard, Paul W.; Kloetzel, Peter-Michael; Dahlmann, Burkhardt
2013-01-01
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process. PMID:23667697
Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.
2018-01-01
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171
Altered prefrontal brain activity in persons at risk for Alzheimer's disease: an fMRI study.
Elgh, Eva; Larsson, Anne; Eriksson, Sture; Nyberg, Lars
2003-06-01
Early diagnosis of Alzheimer's disease (AD) is critical for adequate treatment and care. Recently it has been shown that functional magnetic resonance imaging (fMRI) can be important in preclinical detection of AD. The purpose of this study was to examine possible differences in memory-related brain activation between persons with high versus low risk for AD. This was achieved by combining a validated neurocognitive screening battery (the 7-minutes test) with memory assessment and fMRI. One hundred two healthy community-living persons with subjective memory complaints were recruited through advertisement and tested with the 7-minutes test. Based on their test performance they were classified as having either high (n = 8) or low risk (n = 94) for AD. Six high-risk individuals and six age-, sex-, and education-matched low-risk individuals were investigated with fMRI while engaged in episodic memory tasks. The high-risk individuals performed worse than low-risk individuals on tests of episodic memory. Patterns of brain activity during episodic encoding and retrieval showed significant group differences (p < .05 corrected). During both encoding and retrieval, the low-risk persons showed increased activity relative to a baseline condition in prefrontal brain regions that previously have been implicated in episodic memory. By contrast, the high-risk persons did not significantly activate any prefrontal regions, but instead showed increased activity in visual occipito-temporal regions. Patterns of prefrontal brain activity related to episodic memory differ between persons with high versus low risk for AD, and lowered prefrontal activity may predict subsequent disease.
[Brain imaging in autism spectrum disorders. A review].
Dziobek, I; Köhne, S
2011-05-01
In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.
Malkova, Natalia V.; Gallagher, Joseph J.; Yu, Collin Z.; Jacobs, Russell E.; Patterson, Paul H.
2014-01-01
Maternal infection during pregnancy increases the risk for schizophrenia in offspring. In rodent models, maternal immune activation (MIA) yields offspring with schizophrenia-like behaviors. None of these behaviors are, however, specific to schizophrenia. The presence of hallucinations is a key diagnostic symptom of schizophrenia. In mice, this symptom can be defined as brain activation in the absence of external stimuli, which can be mimicked by administration of hallucinogens. We find that, compared with controls, adult MIA offspring display an increased stereotypical behavioral response to the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), an agonist for serotonin receptor 2A (5-HT2AR). This may be explained by increased levels of 5-HT2AR and downstream signaling molecules in unstimulated MIA prefrontal cortex (PFC). Using manganese-enhanced magnetic resonance imaging to identify neuronal activation elicited by DOI administration, we find that, compared with controls, MIA offspring exhibit a greater manganese (Mn2+) accumulation in several brain areas, including the PFC, thalamus, and striatum. The parafascicular thalamic nucleus, which plays the role in the pathogenesis of hallucinations, is activated by DOI in MIA offspring only. Additionally, compared with controls, MIA offspring demonstrate higher DOI-induced expression of early growth response protein 1, cyclooxygenase-2, and brain-derived neurotrophic factor in the PFC. Chronic treatment with the 5-HT2AR antagonist ketanserin reduces DOI-induced head twitching in MIA offspring. Thus, the MIA mouse model can be successfully used to investigate activity induced by DOI in awake, behaving mice. Moreover, manganese-enhanced magnetic resonance imaging is a useful, noninvasive method for accurately measuring this type of activity. PMID:24889602
Malkova, Natalia V; Gallagher, Joseph J; Yu, Collin Z; Jacobs, Russell E; Patterson, Paul H
2014-06-17
Maternal infection during pregnancy increases the risk for schizophrenia in offspring. In rodent models, maternal immune activation (MIA) yields offspring with schizophrenia-like behaviors. None of these behaviors are, however, specific to schizophrenia. The presence of hallucinations is a key diagnostic symptom of schizophrenia. In mice, this symptom can be defined as brain activation in the absence of external stimuli, which can be mimicked by administration of hallucinogens. We find that, compared with controls, adult MIA offspring display an increased stereotypical behavioral response to the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), an agonist for serotonin receptor 2A (5-HT2AR). This may be explained by increased levels of 5-HT2AR and downstream signaling molecules in unstimulated MIA prefrontal cortex (PFC). Using manganese-enhanced magnetic resonance imaging to identify neuronal activation elicited by DOI administration, we find that, compared with controls, MIA offspring exhibit a greater manganese (Mn(2+)) accumulation in several brain areas, including the PFC, thalamus, and striatum. The parafascicular thalamic nucleus, which plays the role in the pathogenesis of hallucinations, is activated by DOI in MIA offspring only. Additionally, compared with controls, MIA offspring demonstrate higher DOI-induced expression of early growth response protein 1, cyclooxygenase-2, and brain-derived neurotrophic factor in the PFC. Chronic treatment with the 5-HT2AR antagonist ketanserin reduces DOI-induced head twitching in MIA offspring. Thus, the MIA mouse model can be successfully used to investigate activity induced by DOI in awake, behaving mice. Moreover, manganese-enhanced magnetic resonance imaging is a useful, noninvasive method for accurately measuring this type of activity.
Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L
2010-05-31
Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Williams, Anthony J; Zhou, Chen; Sun, Qian-Quan
2016-01-01
Focal cortical dysplasias (FCDs) are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs) to the right cortical hemisphere (near S1). Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5-13 months old) followed by 24 h cortical electroencephalogram (EEG) recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs), predominately during sleep (EEG), and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5%-3.0% isoflurane). Brief periods of burst activity in the local field potential (LFP) typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4-12 Hz) on a background of low-amplitude delta activity (1-4 Hz), were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0) with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of -0.1 to +0.5, P < 0.05 between groups). In particular, a marked reduction in the level of synchronous burst activity was observed, the closer the recording electrodes were to the malformation (Pearson's Correlation = 0.525, P < 0.05). In a subset of FL animals (3/9), burst activity also included a spike or spike-wave pattern similar to the SWDs observed in unanesthetized animals. In summary, neonatal FLs increased the hyperexcitable pattern of burst activity induced by anesthesia and disrupted field potential synchrony between cortical and subcortical brain regions near the site of the cortical malformation. Monitoring the altered electrophysiology of burst activity under general anesthesia with multi-dimensional micro-electrode arrays may serve to define distinct neurophysiological biomarkers of epileptogenesis in human brain and improve techniques for surgical resection of epileptogenic malformed brain tissue.
Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ronald; Emsell, Louise; Smeets, Ann; Christiaens, Marie-Rose; Amant, Frederic; Sunaert, Stefan
2014-07-01
To examine whether cognitive complaints after treatment for breast cancer are associated with detectable changes in brain activity during multitasking. Eighteen patients who were scheduled to receive chemotherapy performed a functional magnetic resonance imaging multitasking task in the scanner before the start of treatment (t1) and 4 to 6 months after finishing treatment (t2). Sixteen patients who were not scheduled to receive chemotherapy and 17 matched healthy controls performed the same task at matched intervals. Task difficulty level was adjusted individually to match performance across participants. Statistical Parametric Mapping 8 (SPM8) software was used for within-group, between-group, and group-by-time interaction image analyses. Voxel-based paired t tests revealed significantly decreased activation (P < .05) from t1 to t2 at matched performance in the multitasking network of chemotherapy-treated patients, whereas no changes were noted in either of the control groups. At baseline, there were no differences between the groups. Furthermore, in contrast to controls, the chemotherapy-treated patients reported a significant increase in cognitive complaints (P < .05) at t2. Significant (P < .05) correlations were found between these increases and decreases in multitasking-related brain activation. Moreover, a significant group-by-time interaction (P < .05) was found whereby chemotherapy-treated patients showed decreased activation and healthy controls did not. These results suggest that changes in brain activity may underlie chemotherapy-induced cognitive complaints. The observed changes might be related to chemotherapy-induced damage to the brain or reduced connectivity between brain regions rather than to changes in effort or changes in functional strategy. To the best of our knowledge, this is the first longitudinal study providing evidence for a relationship between longitudinal changes in cognitive complaints and changes in brain activation after chemotherapy. © 2014 by American Society of Clinical Oncology.
Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies.
Tang, D W; Fellows, L K; Small, D M; Dagher, A
2012-06-06
In healthy individuals, food cues can trigger hunger and feeding behavior. Likewise, smoking cues can trigger craving and relapse in smokers. Brain imaging studies report that structures involved in appetitive behaviors and reward, notably the insula, striatum, amygdala and orbital frontal cortex, tend to be activated by both visual food and smoking cues. Here, by carrying out a meta-analysis of human neuro-imaging studies, we investigate the neural network activated by: 1) food versus neutral cues (14 studies, 142 foci) 2) smoking versus neutral cues (15 studies, 176 foci) 3) smoking versus neutral cues when correlated with craving scores (7 studies, 108 foci). PubMed was used to identify cue-reactivity imaging studies that compared brain response to visual food or smoking cues to neutral cues. Fourteen articles were identified for the food meta-analysis and fifteen articles were identified for the smoking meta-analysis. Six articles were identified for the smoking cue correlated with craving analysis. Meta-analyses were carried out using activation likelihood estimation. Food cues were associated with increased blood oxygen level dependent (BOLD) response in the left amygdala, bilateral insula, bilateral orbital frontal cortex, and striatum. Smoking cues were associated with increased BOLD signal in the same areas, with the exception of the insula. However, the smoking meta-analysis of brain maps correlating cue-reactivity with subjective craving did identify the insula, suggesting that insula activation is only found when craving levels are high. The brain areas identified here are involved in learning, memory and motivation, and their cue-induced activity is an index of the incentive salience of the cues. Using meta-analytic techniques to combine a series of studies, we found that food and smoking cues activate comparable brain networks. There is significant overlap in brain regions responding to conditioned cues associated with natural and drug rewards. Copyright © 2012 Elsevier Inc. All rights reserved.
How the brain attunes to sentence processing: Relating behavior, structure, and function
Fengler, Anja; Meyer, Lars; Friederici, Angela D.
2016-01-01
Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477
Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.
Betz, A L; Goldstein, G W
1981-03-01
1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.
Spectral Variability in the Aged Brain during Fine Motor Control
Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.
2016-01-01
Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231
Functional brain connectivity when cooperation fails.
Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura
2018-06-01
Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.
NF-κB in The Mechanism of Brain Edema in Acute Liver Failure: Studies in Transgenic Mice
Jayakumar, A.R.; Bethea, J.R.; Tong, X.Y.; Gomez, J.; Norenberg, M.D.
2014-01-01
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-kappaB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24 h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in inducible nitric oxide synthase and NADPH oxidase activity (both are also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF. PMID:21087666
Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects
Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco
2018-01-01
We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β-caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8–13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5–30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4–8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5–4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety. PMID:29576792
Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects.
Gulluni, Nadia; Re, Tania; Loiacono, Idalba; Lanzo, Giovanni; Gori, Luigi; Macchi, Claudio; Epifani, Francesco; Bragazzi, Nicola; Firenzuoli, Fabio
2018-01-01
We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β -caryophyllene. The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature. The subjects described themselves as more energetic, relaxed, and calm. The analysis EEG showed a significant increase in the mean frequency of alpha (8-13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5-30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4-8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5-4 Hz) power and relative power was recorded in the posterior region of the brain. These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety.
Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance
Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai
2017-01-01
Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance. PMID:29021747
Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.
Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai
2017-01-01
Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.
2008-04-01
Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although theremore » was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.« less
Cerebral control of the bladder in normal and urge-incontinent women
Griffiths, Derek; Tadic, Stasa D.; Schaefer, Werner; Resnick, Neil M.
2007-01-01
Aim: To identify age-related changes in the normal brain/bladder control system, and differences between urge incontinence in younger and older women, as shown by brain responses to bladder filling; and to use age, bladder volume, urge incontinence and detrusor overactivity (DO) as probes to reveal control-system function. Functional MRI was used to examine regional brain responses to bladder infusion in 21 females (26 – 85 years): 11 “cases” with urge incontinence and DO (proven previously) and 10 normal “controls”. Responses and their age dependence were determined at small and large bladder volumes, in whole brain and in regions of interest representing right insula and anterior cingulate (ACG). In “controls”, increasing bladder volume/sensation led to increasing insular responses; with increasing age, insular responses became weaker. In younger “cases”, ACG responded abnormally strongly at large bladder volumes/strong sensation. Elderly “cases” showed strong ACG responses even at small bladder volume, but more moderate responses at larger volumes; if DO occurred, pontine micturition center (PMC) activation did not increase. Conclusion: Among normal “controls”, increasing age leads to decreased responses in brain regions involved in bladder control, including right insula, consistent with its role in mapping normal bladder sensations. Strong ACG activation occurs in urge-incontinent “cases” and may be a sign of urgency, indicating recruitment of alternative pathways when loss of bladder control is feared. Easier ACG provocation in older “cases” reflects lack of physiological reserve or different etiology. ACG responses seem associated with PMC inhibition: reduced ACG activity accompanies failure of inhibition (DO). PMID:17574871
Perivascular Spaces--MRI Marker of Inflammatory Activity in the Brain?
ERIC Educational Resources Information Center
Wuerfel, Jens; Haertle, Mareile; Waiczies, Helmar; Tysiak, Eva; Bechmann, Ingo; Wernecke, Klaus D.; Zipp, Frauke; Paul, Friedemann
2008-01-01
The Virchow-Robin spaces (VRS), perivascular compartments surrounding small blood vessels as they penetrate the brain parenchyma, are increasingly recognized for their role in leucocyte trafficking as well as for their potential to modulate immune responses. In the present study, we investigated VRS numbers and volumes in different brain regions…
USDA-ARS?s Scientific Manuscript database
Dysfunctional autophagy, where accumulation of damaged or complex cellular components in neurons in response to sublethal cell stress has been implicated in an array of brain disorders. This phenomenon plays a pivotal role in aging, because of the increased vulnerability of the aging brain to incre...
Oscillatory brain activity in spontaneous and induced sleep stages in flies.
Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno
2017-11-28
Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.
Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice.
Pachauri, Shakti D; Verma, Priya Ranjan P; Dwivedi, Anil K; Tota, Santoshkumar; Khandelwal, Kiran; Saxena, Jitendra K; Nath, Chandishwar
2013-08-01
This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.
Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach
2016-01-01
Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255
Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N
2016-01-01
In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.
Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells
Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.
2015-01-01
Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670
Reduced brain response to a sweet taste in Hispanic young adults.
Szajer, Jacquelyn; Jacobson, Aaron; Green, Erin; Murphy, Claire
2017-11-01
Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations. Copyright © 2017. Published by Elsevier B.V.
Song, Y; Zhong, M; Cai, F-C
2018-01-01
Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (p<0.05). OXC administration causes histological changes of neurocytes. OXC 281.25 mg/kg or more concentration significantly decreased neurocytes counts and increased TUNEL-staining positive neurocytes compared to Control group (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased caspase 3 activity compared to Control group in P5 rats (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased Bax, Bax/Bcl-2 ratio and cytochrome C release in frontal lobes compared to Control group in P5 rats (p<0.05). Oxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.
Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel
2014-08-01
The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.
Modelling psychiatric and cultural possession phenomena with suggestion and fMRI.
Deeley, Quinton; Oakley, David A; Walsh, Eamonn; Bell, Vaughan; Mehta, Mitul A; Halligan, Peter W
2014-04-01
Involuntary movements occur in a variety of neuropsychiatric disorders and culturally influenced dissociative states (e.g., delusions of alien control and attributions of spirit possession). However, the underlying brain processes are poorly understood. We combined suggestion and fMRI in 15 highly hypnotically susceptible volunteers to investigate changes in brain activity accompanying different experiences of loss of self-control of movement. Suggestions of external personal control and internal personal control over involuntary movements modelled delusions of control and spirit possession respectively. A suggestion of impersonal control by a malfunctioning machine modelled technical delusions of control, where involuntary movements are attributed to the influence of machines. We found that (i) brain activity and/or connectivity significantly varied with different experiences and attributions of loss of agency; (ii) compared to the impersonal control condition, both external and internal personal alien control were associated with increased connectivity between primary motor cortex (M1) and brain regions involved in attribution of mental states and representing the self in relation to others; (iii) compared to both personal alien control conditions, impersonal control of movement was associated with increased activity in brain regions involved in error detection and object imagery; (iv) there were no significant differences in brain activity, and minor differences in M1 connectivity, between the external and internal personal alien control conditions. Brain networks supporting error detection and object imagery, together with representation of self and others, are differentially recruited to support experiences of impersonal and personal control of involuntary movements. However, similar brain systems underpin attributions and experiences of external and internal alien control of movement. Loss of self-agency for movement can therefore accompany different kinds of experience of alien control supported by distinct brain mechanisms. These findings caution against generalization about single cognitive processes or brain systems underpinning different experiences of loss of self-control of movement. Copyright © 2014 Elsevier Ltd. All rights reserved.
The increase of the functional entropy of the human brain with age.
Yao, Y; Lu, W L; Xu, B; Li, C B; Lin, C P; Waxman, D; Feng, J F
2013-10-09
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy.
The Increase of the Functional Entropy of the Human Brain with Age
Yao, Y.; Lu, W. L.; Xu, B.; Li, C. B.; Lin, C. P.; Waxman, D.; Feng, J. F.
2013-01-01
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy. PMID:24103922
Contreras, Laura; Satrústegui, Jorgina
2009-03-13
Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.
Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.
Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu
2015-05-01
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.
Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo
2017-09-12
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Choy, Cecilia; Raytis, John L; Smith, David D; Duenas, Matthew; Neman, Josh; Jandial, Rahul; Lew, Michael W
2016-06-01
In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23-0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases.
CHOY, CECILIA; RAYTIS, JOHN L.; SMITH, DAVID D.; DUENAS, MATTHEW; NEMAN, JOSH; JANDIAL, RAHUL; LEW, MICHAEL W.
2016-01-01
In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23–0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases. PMID:27035124
Glucose metabolism in the developing brain.
Vannucci, R C; Vannucci, S J
2000-04-01
As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.
Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain.
Wang, Li-Ming; Wu, Qi; Kirk, Ryan A; Horn, Kevin P; Ebada Salem, Ahmed H; Hoffman, John M; Yap, Jeffrey T; Sonnen, Joshua A; Towner, Rheal A; Bozza, Fernando A; Rodrigues, Rosana S; Morton, Kathryn A
2018-01-01
Amyloid beta (Aβ) plaques are not specific to Alzheimer's disease and occur with aging and neurodegenerative disorders. Soluble brain Aβ may be neuroprotective and increases in response to neuroinflammation. Sepsis is associated with neurocognitive compromise. The objective was to determine, in a rat endotoxemia model of sepsis, whether neuroinflammation and soluble Aβ production are associated with Aβ plaque and hyperphosphorylated tau deposition in the brain. Male Sprague Dawley rats received a single intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin (LPS). Brain and blood levels of IL-1β, IL-6, and TNFα and cortical microglial density were measured in LPS-injected and control animals. Soluble brain Aβ and p-tau were compared and Aβ plaques were quantified and characterized. Brain uptake of [ 18 F]flutemetamol was measured by phosphor imaging. LPS endotoxemia resulted in elevations of cytokines in blood and brain. Microglial density was increased in LPS-treated rats relative to controls. LPS resulted in increased soluble Aβ and in p-tau levels in whole brain. Progressive increases in morphologically-diffuse Aβ plaques occurred throughout the interval of observation (to 7-9 days post LPS). LPS endotoxemia resulted in increased [ 18 F]flutemetamol in the cortex and increased cortex: white matter ratios of activity. In conclusion, LPS endotoxemia causes neuroinflammation, increased soluble Aβ and Aβ diffuse plaques in the brain. Aβ PET tracers may inform this neuropathology. Increased p-tau in the brain of LPS treated animals suggests that downstream consequences of Aβ plaque formation may occur. Further mechanistic and neurocognitive studies to understand the causes and consequences of LPS-induced neuropathology are warranted.
Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat.
Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hassine, Fethy Ben; Aouani, Ezzedine
2012-09-01
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
Computing Arm Movements with a Monkey Brainet.
Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L
2015-07-09
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.
Computing Arm Movements with a Monkey Brainet
Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.
2015-01-01
Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523
Cho, Seung-Yeon; Shin, Ae-Sook; Na, Byung-Jo; Jahng, Geon-Ho; Park, Seong-Uk; Jung, Woo-Sang; Moon, Sang-Kwan; Park, Jung-Mi
2013-06-01
To determine whether jaw-tapping movement, a classically described as an indication of personal well-being and mental health, stimulates the memory and the cognitive regions of the brain and is associated with improved brain performance. Twelve healthy right-handed female subjects completed the study. Each patient performed a jaw-tapping task and an n-back task during functional magnetic resonance imaging (fMRI). The subjects were trained to carry out the jaw-tapping movement at home twice a day for 4 weeks. The fMRI was repeated when they returned. During the first and second jaw-tapping session, both sides of precentral gyrus and the right middle frontal gyrus (BA 6) were activated. And during the second session of the jaw-tapping task, parts of frontal lobe and temporal lobe related to memory function were more activated. In addition, the total percent task accuracy in n-back task significantly increased after 4 weeks of jawtapping movement. After jaw-tapping training for 4 weeks, brain areas related to memory showed significantly increased blood oxygen level dependent signals. Jaw-tapping movement might be a useful exercise for stimulating the memory and cognitive regions of the brain.
Raub, Thomas J; Wishart, Graham N; Kulanthaivel, Palaniappan; Staton, Brian A; Ajamie, Rose T; Sawada, Geri A; Gelbert, Lawrence M; Shannon, Harlan E; Sanchez-Martinez, Concepcion; De Dios, Alfonso
2015-09-01
Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however, abemaciclib brain levels are reached more efficiently at presumably lower doses than palbociclib and are potentially on target for a longer period of time. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Smith, Mark D; Bhatt, Dhaval P; Geiger, Jonathan D; Rosenberger, Thad A
2014-06-04
Acetate supplementation reduces neuroglia activation and pro-inflammatory cytokine expression in rat models of neuroinflammation and Lyme neuroborreliosis. Because single-dose glyceryl triacetate (GTA) treatment increases brain phosphocreatine and reduces brain AMP levels, we postulate that GTA modulates adenosine metabolizing enzymes and receptors, which may be a possible mechanism to reduce neuroinflammation. To test this hypothesis, we quantified the ability of GTA to alter brain levels of ecto-5'-nucleotidase (CD73), adenosine kinase (AK), and adenosine A2A receptor using western blot analysis and CD73 activity by measuring the rate of AMP hydrolysis. Neuroinflammation was induced by continuous bacterial lipopolysaccharide (LPS) infusion in the fourth ventricle of the brain for 14 and 28 days. Three treatment strategies were employed, one and two where rats received prophylactic GTA through oral gavage with LPS infusion for 14 or 28 days. In the third treatment regimen, an interventional strategy was used where rats were subjected to 28 days of neuroinflammation, and GTA treatment was started on day 14 following the start of the LPS infusion. We found that rats subjected to neuroinflammation for 28 days had a 28% reduction in CD73 levels and a 43% increase in AK levels that was reversed with prophylactic acetate supplementation. CD73 activity in these rats was increased by 46% with the 28-day GTA treatment compared to the water-treated rats. Rats subjected to neuroinflammation for 14 days showed a 50% increase in levels of the adenosine A2A receptor, which was prevented with prophylactic acetate supplementation. Interventional GTA therapy, beginning on day 14 following the induction of neuroinflammation, resulted in a 67% increase in CD73 levels and a 155% increase in adenosine A2A receptor levels. These results support the hypothesis that acetate supplementation can modulate brain CD73, AK and adenosine A2A receptor levels, and possibly influence purinergic signaling.
Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A
2014-01-01
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421
Neural Control of the Cardiovascular System in Space
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Pawelczyk, James A.; Zuckerman, Julie; Zhang, Rong; Fu, Qi; Iwasaki, Kenichi; Ray, Chet; Blomqvist, C. Gunnar; Lane, Lynda D.; Giller, Cole A.
2003-01-01
During the acute transition from lying supine to standing upright, a large volume of blood suddenly moves from the chest into the legs. To prevent fainting, the blood pressure control system senses this change immediately, and rapidly adjusts flow (by increasing heart rate) and resistance to flow (by constricting the blood vessels) to restore blood pressure and maintain brain blood flow. If this system is inadequate, the brain has a backup plan. Blood vessels in the brain can adjust their diameter to keep blood flow constant. If blood pressure drops, the brain blood vessels dilate; if blood pressure increases, the brain blood vessels constrict. This process, which is called autoregulation, allows the brain to maintain a steady stream of oxygen, even when blood pressure changes. We examined what changes in the blood pressure control system or cerebral autoregulation contribute to the blood pressure control problems seen after spaceflight. We asked: (1) does the adaptation to spaceflight cause an adaptation in the blood pressure control system that impairs the ability of the system to constrict blood vessels on return to Earth?; (2) if such a defect exists, could we pinpoint the neural pathways involved?; and (3) does cerebral autoregulation become abnormal during spaceflight, impairing the body s ability to maintain constant brain blood flow when standing upright on Earth? We stressed the blood pressure control system using lower body negative pressure, upright tilt, handgrip exercise, and cold stimulation of the hand. Standard cardiovascular parameters were measured along with sympathetic nerve activity (the nerve activity causing blood vessels to constrict) and brain blood flow. We confirmed that the primary cardiovascular effect of spaceflight was a postflight reduction in upright stroke volume (the amount of blood the heart pumps per beat). Heart rate increased appropriately for the reduction in stroke volume, thereby showing that changes in heart rate regulation alone cannot be responsible for orthostatic hypotension after spaceflight. All of the astronauts in our study had an increase in sympathetic nerve activity during upright tilting on Earth postflight. This increase was well calibrated for the reduction in stroke volume induced by the upright posture. The results obtained from stimulating the sympathetic nervous system using handgrip exercise or cold stress were also entirely normal during and after spaceflight. No astronaut had reduced cerebral blood flow during upright tilt, and cerebral autoregulation was normal or even enhanced inflight. These experiments show that the cardiovascular adaptation to spaceflight does not lead to a defect in the regulation of blood vessel constriction via sympathetic nerve activity. In addition, cerebral autoregulation is well-maintained. It is possible that despite the increased sympathetic nerve activity, blood vessels did not respond with a greater degree of constriction than occurred preflight, possibly uncovering a limit of vasoconstrictor reserve.
Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B
2016-11-01
In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.
Aho-Özhan, Helena E. A.; Keller, Jürgen; Heimrath, Johanna; Uttner, Ingo; Kassubek, Jan; Birbaumer, Niels; Ludolph, Albert C.; Lulé, Dorothée
2016-01-01
Introduction Amyotrophic lateral sclerosis (ALS) primarily impairs motor abilities but also affects cognition and emotional processing. We hypothesise that subjective ratings of emotional stimuli depicting social interactions and facial expressions is changed in ALS. It was found that recognition of negative emotions and ability to mentalize other’s intentions is reduced. Methods Processing of emotions in faces was investigated. A behavioural test of Ekman faces expressing six basic emotions was presented to 30 ALS patients and 29 age-, gender and education matched healthy controls. Additionally, a subgroup of 15 ALS patients that were able to lie supine in the scanner and 14 matched healthy controls viewed the Ekman faces during functional magnetic resonance imaging (fMRI). Affective state and a number of daily social contacts were measured. Results ALS patients recognized disgust and fear less accurately than healthy controls. In fMRI, reduced brain activity was seen in areas involved in processing of negative emotions replicating our previous results. During processing of sad faces, increased brain activity was seen in areas associated with social emotions in right inferior frontal gyrus and reduced activity in hippocampus bilaterally. No differences in brain activity were seen for any of the other emotional expressions. Inferior frontal gyrus activity for sad faces was associated with increased amount of social contacts of ALS patients. Conclusion ALS patients showed decreased brain and behavioural responses in processing of disgust and fear and an altered brain response pattern for sadness. The negative consequences of neurodegenerative processes in the course of ALS might be counteracted by positive emotional activity and positive social interactions. PMID:27741285
Neurosteroids in hepatic encephalopathy: Novel insights and new therapeutic opportunities.
Butterworth, Roger F
2016-06-01
Hepatic encephalopathy (HE) is a serious neuropsychiatric disorder resulting from liver failure. Symptoms of HE include mild cognitive impairment, stupor and coma. Morphological changes to neuroglia (both astrocytes and microglia) occur in HE consisting of cytotoxic brain edema (astrocyte swelling) in acute liver failure and Alzheimer type-2 astrocytosis in cirrhosis. Visual-evoked responses in animals with liver failure and HE manifest striking similarities to those in animals treated with agonists of the GABA-A receptor complex. Neurosteroids are synthesized in brain following activation of translocator protein (TSPO), a mitochondrial neuroglial cholesterol-transporter protein. TSPO sites are activated in both animal models of HE as well as in autopsied brain tissue from HE patients. Activation of TSPO sites results in increased cholesterol transport into the mitochondrion followed by stimulation of a metabolic pathway culminating in the synthesis of allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC), neurosteroids with potent positive allosteric modulatory action on the GABA-A receptor complex. Concentrations of ALLO and THDOC in brain tissue from mice with HE resulting from toxic liver injury are sufficient to induce sedation in animals of the same species and significant increases in concentrations of ALLO have been reported in autopsied brain tissue from cirrhotic patients with HE leading to the proposal that "increased GABAergic tone" in HE results from that increased brain concentrations of this neurosteroid. Agents with the potential to decrease neurosteroid synthesis and/or prevent their modulatory actions on the GABA-A receptor complex may provide novel approaches to the management and treatment of HE. Such agents include indomethacin, benzodiazepine receptor inverse agonists and a novel series of compounds known as GABA-A receptor-modulating steroid antagonists (GAMSA). Copyright © 2015 Elsevier Ltd. All rights reserved.
Gamdzyk, Marcin; Makarewicz, Dorota; Słomka, Marta; Ziembowicz, Apolonia; Salinska, Elzbieta
2014-01-01
Perinatal brain insult mostly resulting from hypoxia-ischemia (H-I) often brings lifelong permanent disability, which has a major impact on the life of individuals and their families. The lack of progress in clinically-applicable neuroprotective strategies for birth asphyxia has led to an increasing interest in alternative methods of therapy, including induction of brain tolerance by pre- and particularly postconditioning. Hypoxic postconditioning represents a promising strategy for preventing ischemic brain damage. The aim of this study was to investigate the potential neuroprotective effect of hypobaric hypoxia (HH) postconditioning applied to 7-day old rats after H-I insult. The mild hypobaric conditions (0.47 atm) used in this study imitate an altitude of 5,000 m. We show that application of mild hypobaric hypoxia at relatively short time intervals (1-6 h) after H-I, repeated for two following days leads to significant neuroprotection, manifested by a reduction in weight loss of the ipsilateral hemisphere observed 14 days after H-I. HH postconditioning results in decrease in reactive oxygen species level observed in all experimental groups. The increase in superoxide dismutase activity observed after H-I is additionally enhanced by HH postconditioning applied 1 h after H-I. The increase observed 3 and 6 h after H-I was not statistically significant. Postconditioning with HH suppresses the glutathione concentration decrease evoked by H-I and increased glutathione peroxidase activity and this effect is not dependent on the time of postconditioning initiation. HH postconditioning had no effect on catalase activity. We show for the first time that HH postconditioning reduces brain damage resulting from H-I in immature rats and that the mechanism potentially involved in this effect is related to antioxidant defense mechanisms of immature brain.
Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human
Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren
2013-01-01
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa
2017-12-01
Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.
Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain
NASA Astrophysics Data System (ADS)
Meena, Ramovatar; Kumar, Sumit; Paulraj, R.
2015-01-01
The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO2 (TiO2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO2, oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO2 in the brain increased with increasing the doses of nano-TiO2. Oxidative stress and injury of the brain occurred as nano-TiO2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis.
Pregnant serum induces neuroinflammation and seizure activity via TNFα.
Cipolla, Marilyn J; Pusic, Aya D; Grinberg, Yelena Y; Chapman, Abbie C; Poynter, Matthew E; Kraig, Richard P
2012-04-01
Preeclampsia is a hypertensive disorder of pregnancy that affects many organs including the brain. Neurological complications occur during preeclampsia, the most serious of which is seizure known as eclampsia. Although preeclampsia can precede the eclamptic seizure, it often occurs during normal pregnancy, suggesting that processes associated with normal pregnancy can promote neuronal excitability. Here we investigated whether circulating inflammatory mediators that are elevated late in gestation when seizure also occurs are hyperexcitable to neuronal tissue. Evoked field potentials were measured in hippocampal slices in which control horse serum that slices are normally grown in, was replaced with serum from nonpregnant or late-pregnant Wistar rats for 48 h. We found that serum from pregnant, but not nonpregnant rats, caused hyperexcitability to hippocampal neurons and seizure activity that was abrogated by inhibition of tumor necrosis factor alpha (TNFα) signaling. Additionally, application of TNFα mimicked this increased excitability. Pregnant serum also caused morphological changes in microglia characteristic of activation, and increased TNFα mRNA expression that was not seen with exposure to nonpregnant serum. However, TNFα protein was not found to be elevated in pregnant serum itself, suggesting that other circulating factors during pregnancy caused activation of hippocampal slice cells to produce a TNFα-mediated increase in neuronal excitability. Lastly, although pregnant serum caused neuroinflammation and hyperexcitability of hippocampal slices, it did not increase blood-brain barrier permeability, nor were pregnant rats from which the serum was taken undergoing seizure. Thus, the BBB has an important role in protecting the brain from circulating neuroinflammatory mediators that are hyperexcitable to the brain during pregnancy. These studies provide novel insight into the underlying cause of eclampsia without elevated blood pressure and the protective role of the BBB that prevents exposure of the brain to hyperexcitable factors. Copyright © 2012 Elsevier Inc. All rights reserved.
Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.
2015-01-01
Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126
Herbert, Cornelia; Herbert, Beate M; Pauli, Paul
2011-08-01
The present functional magnetic resonance imaging study investigated the role of emotion-related (e.g., amygdala) and self-related brain structures (MPFC in particular) in the processing of emotional words varying in stimulus reference. Healthy subjects (N=22) were presented with emotional (pleasant or unpleasant) or neutral words in three different conditions: (1) self (e.g., my fear), (2) other (e.g., his fear) and (3) no reference (e.g., the fear). Processing of unpleasant words was associated with increased amygdala and also insula activation across all conditions. Pleasant stimuli were specifically associated with increased activation of amygdala and insula when related to the self (vs. other and no reference). Activity in the MPFC (vMPFC in particular) and anterior cingulate cortex (ACC) was preferentially increased during processing of self-related emotional words (vs. other and no reference). These results demonstrate that amygdala activation in response to emotional stimuli is modulated by stimulus reference and that brain structures implicated in emotional and self-related processing might be important for the subjective experience of one's own emotions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lin, Chia-Wei; Sim, Shuyin; Ainsworth, Alice; Okada, Masayoshi; Kelsch, Wolfgang; Lois, Carlos
2009-01-01
New neurons are added to the adult brain throughout life, but only half ultimately integrate into existing circuits. Sensory experience is an important regulator of the selection of new neurons but it remains unknown whether experience provides specific patterns of synaptic input, or simply a minimum level of overall membrane depolarization critical for integration. To investigate this issue, we genetically modified intrinsic electrical properties of adult-generated neurons in the mammalian olfactory bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via expression of NaChBac sodium channels increases survival of new neurons. Neither of these modulations affects synaptic formation. Furthermore, even when neurons are induced to fire dramatically altered patterns of action potentials, increased levels of cell-intrinsic activity completely blocks cell death triggered by NMDA receptor deletion. These findings demonstrate that overall levels of cell-intrinsic activity govern survival of new neurons and precise firing patterns are not essential for neuronal integration into existing brain circuits. PMID:20152111
Effects of analogues of substance P fragments on the MAO activity in rat brain.
Turska, E; Lachowicz, L; Koziołkiewicz, W; Wasiak, T
1985-01-01
The influence in vitro of analogues of Sp5-11 and SP6-11 substance P fragments on the activity of monoamine oxidase (MAO) in homogenates and crude mitochondrial fractions of rat brain was examined. The rat brain was divided into: I--cerebral cortex, II--hippocampus, III--midbrain, IV--thalamus with hypothalamus, V--cerebellum and VI--medulla oblongata. The obtained results proved that the analogues of SP fragments inhibit selectively the activity of the enzyme in the homogenates of cerebral cortex, hippocampus, midbrain and cerebellum. In the crude mitochondrial fractions the applied analogues of SP fragments caused a slight increase of the enzyme activity. The most significant changes in the activity of MAO were observed in hippocampus homogenate fraction.
[Functional magnetic resonance imaging of brain of college students with internet addiction].
DU, Wanping; Liu, Jun; Gao, Xunping; Li, Lingjiang; Li, Weihui; Li, Xin; Zhang, Yan; Zhou, Shunke
2011-08-01
To explore the functional locations of brain regions related to internet addiction (IA)with task-functional magnetic resonance imaging (fMRI). Nineteen college students who had internet game addition and 19 controls accepted the stimuli of videos via computer. The 3.0 Tesla MRI was used to record the Results of echo plannar imaging. The block design method was used. Intragroup and intergroup analysis Results in the 2 groups were obtained. The differences between the 2 groups were analyzed. The internet game videos markedly activated the brain regions of the college students who had or had no internet game addiction. Compared with the control group, the IA group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, and right superior temporal gyrus. Internet game tasks can activate the vision, space, attention and execution center which are composed of temporal occipital gyrus and frontal parietal gyrus. Abnormal brain function and lateral activation of the right brain may exist in IA.
fMRI brain activation in patients with insomnia disorder during a working memory task.
Son, Young-Don; Kang, Jae Myeong; Cho, Seong-Jin; Lee, Jung-Sun; Hwang, Hee Young; Kang, Seung-Gul
2018-05-01
This study used functional magnetic resonance imaging (fMRI) to investigate differences in the functional brain activation of patients with insomnia disorder (n = 21, mean age = 36.6) and of good sleepers (n = 26, mean age = 33.2) without other comorbidities or structural brain abnormalities during a working memory task. All participants completed a clinical questionnaire, were subjected to portable polysomnography (PSG), and performed the working memory task during an fMRI scan. The subjects who were suspected of major sleep disorder and comorbid psychiatric disorders except insomnia disorder were excluded. To compare the brain activation on working memory from the insomnia group with those from the good-sleeper group, a two-sample t test was performed. Statistical significance was determined using 3DClustSim with the updated algorithm to obtain a reasonable cluster size and p value for each analysis. We observed higher levels of brain activation in the right lateral inferior frontal cortex and the right superior temporal pole in the insomnia group compared to good sleepers (cluster-based multiple comparison correction, p < 0.001, k = 34 @ α = 0.01). Thus, patients with insomnia disorder showed increased brain activation during working memory relative to good sleepers, and this may be indicative of compensatory brain activation to maintain cognitive performance in patients with insomnia disorder without other comorbidities.
2010-01-01
Background The Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening; Methods The BBB was disrupted in two four-spot lines (1-1.5 mm spacing) along the right hemisphere of rat brain with ultrasound beams (0.3 MPa, 120 s, 10 ms bursts, repetition frequency = 1 Hz) in the presence Definity microbubbles. Contrast-enhanced MRI images were acquired to assess the extent of BBB opening upon which the animals were sacrificed and the brains removed and processed for biochemical and immunohistochemical analyses; Results Immunoblotting of sonicated brain lysates resolved by SDS-PAGE demonstrated an increase in phosphorylation of Akt and its downstream signaling molecule, GSK3β, while the phosphorylation of MAPK remained unchanged. The elevated levels of pAkt and pGSK3β are still evident after 24 hours post-sonication, a time point where the integrity of the BBB is known to be re-established. Furthermore, immunofluoresence staining localized this increase in pAkt and pGSK3β levels to neuronal cells flanking the region of the disrupted BBB; Conclusions Our data demonstrates that ultrasound-mediated BBB disruption causes an activation of the Akt signaling pathway in neuronal cells surrounding the disrupted BBB. PMID:21078165
Hoffman, David J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, Terrence L.; Stebbins, Katherine R.
2011-01-01
Bioindicators of oxidative stress were examined in prebreeding and breeding adult and chick Forster's terns (Sterna forsteri) and in prebreeding adult Caspian terns (Hydroprogne caspia) in San Francisco Bay, California. Highest total mercury (THg) concentrations (mean±standard error;μg/g dry wt) in liver (17.7±1.7), kidney (20.5±1.9), and brain (3.0±0.3) occurred in breeding adult Forster's terns. The THg concentrations in liver were significantly correlated with hepatic depletion of reduced glutathione (GSH), increased oxidized glutathione (GSSG):GSH ratio, and decreased hepatic gamma-glutamyl transferase (GGT) activity in adults of both tern species. Prefledging Forster's tern chicks with one-fourth the hepatic THg concentration of breeding adults exhibited effects similar to adults. Total mercury-related renal GSSG increased in adults and chicks. In brains of prebreeding adults, THg was correlated with a small increase in glucose-6-phosphate dehydrogenase (G-6-PDH) activity, suggestive of a compensatory response. Brain THg concentrations were highest in breeding adult Forster's terns and brain tissue exhibited increased lipid peroxidation as thiobarbituric acid-reactive substances, loss of protein bound thiols (PBSH), and decreased activity of antioxidant enzymes, GSSG reductase (GSSGrd), and G-6-PDH. In brains of Forster's tern chicks there was a decrease in total reduced thiols and PBSH. Multiple indicator responses also pointed to greater oxidative stress in breeding Forster's terns relative to prebreeding terns, attributable to the physiological stress of reproduction. Some biondicators also were related to age and species, including thiol concentrations. Enzymes GGT, G-6-PDH, and GSSGred activities were related to species. Our results indicate that THg concentrations induced oxidative stress in terns, and suggest that histopathological, immunological, and behavioral effects may occur in terns as reported in other species.
O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F
2013-01-01
Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590
Nieradko-Iwanicka, Barbara; Borzęcki, Andrzej
2016-04-01
Fenpropathrin (Fen) is a pyrethroid (Pyr) insecticide. Pyrs are used in veterinary medicine, in agriculture and for domestic purposes. As their use increases, new questions about their side effects and mode of action in non-target organisms arise. The objective of this work was to characterize dose-response relationship for in vivo motor function and memory in mice exposed to Fen for 28 days and to assess its influence on activity of antioxidant enzymes in mice brains. The experiment was performed using 64 female mice. Fen at the dose of 11.9mg/kg of body mass, 5.95mg/kg or 2.38mg/kg was administered ip to the mice for 28 consecutive days. Motor function and spatial working memory were tested on days 7, 14 and 28. On day 29, the animals were sacrificed and brains were used to determine activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Fen significantly decreased locomotor activity in mice receiving the highest dose at every stage of the experiment. Lower doses reduced locomotion on days 7 and 14. Fen did not produce memory impairment. A decrease in activities of SOD and GPx was recorded in mice brains. The decrease of SOD activity in mice brains results from direct inhibition of the enzyme by Fen and/or increased utilization due to excessive free radical formation in conditions of Fen-induced oxidative stress. The reduction in GPx activity is probably due to limited glutathione availability. The reduced locomotor activity is a behavioral demonstration of Fen-induced damage in the dopaminergic system. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A
2010-11-01
The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.
Meta-analysis of functional brain imaging in specific phobia.
Ipser, Jonathan C; Singh, Leesha; Stein, Dan J
2013-07-01
Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian
2015-10-01
Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sex differences in the neural representation of pain unpleasantness.
Girard-Tremblay, Lydia; Auclair, Vincent; Daigle, Kathya; Léonard, Guillaume; Whittingstall, Kevin; Goffaux, Philippe
2014-08-01
Sex differences in pain perception are still poorly understood, but they may be related to the way the brains of men and women respond to the affective dimensions of pain. Using a matched pain intensity paradigm, where pain intensity was kept constant across participants but pain unpleasantness was left free to vary among participants, we studied the relationship between pain unpleasantness and pain-evoked brain activity in healthy men and women separately. Experimental pain was provoked using transcutaneous electrical stimulation of the sural nerve while pain-related brain activity was measured using somatosensory-evoked brain potentials with source localization. Cardiac responses to pain were also measured using electrocardiac recordings. Results revealed that subjective pain unpleasantness was strongly associated with increased perigenual anterior cingulate cortex activity in women, whereas it was strongly associated with decreased ventromedial prefrontal cortex activity in men. Only ventromedial prefrontal cortex deactivations in men were additionally associated with increased autonomic cardiac arousal. These results suggest that in order to deal with pain's objectionable properties, men preferentially deactivate prefrontal suppression regions, leading to the mobilization of threat-control circuits, whereas women recruit well-known emotion-processing areas of the brain. This article presents neuroimaging findings demonstrating that subjective pain unpleasantness ratings are associated with different pain-evoked brain responses in men and women, which has potentially important implications regarding sex differences in the risk of developing chronic pain. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.
Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua
2016-03-01
Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.
Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang
2015-01-05
Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Vora, Shreya R; Patil, Rahul B; Pillai, Meena M
2009-05-01
With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.
Benefits from dietary polyphenols for brain aging and Alzheimer's disease.
Rossi, L; Mazzitelli, S; Arciello, M; Capo, C R; Rotilio, G
2008-12-01
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.
A comparison of functional brain changes associated with surgical versus behavioral weight loss
Bruce, Amanda S.; Bruce, Jared M.; Ness, Abigail R.; Lepping, Rebecca J.; Malley, Stephen; Hancock, Laura; Powell, Josh; Patrician, Trisha M.; Breslin, Florence J.; Martin, Laura E.; Donnelly, Joseph E.; Brooks, William M.; Savage, Cary R.
2013-01-01
Objective Few studies have examined brain changes in response to effective weight loss; none have compared different methods of weight-loss intervention. We compared functional brain changes associated with a behavioral weight loss intervention to those associated with bariatric surgery. Methods 15 obese participants were recruited prior to adjustable gastric banding surgery and 16 obese participants were recruited prior to a behavioral diet intervention. Groups were matched for demographics and amount of weight lost. fMRI scans (visual food motivation paradigm while hungry and following a meal) were conducted before, and 12 weeks after surgery/behavioral intervention. Results When compared to bariatric patients in the pre-meal analyses, behavioral dieters showed increased activation to food images in right medial PFC and left precuneus following weight loss. When compared to behavioral dieters, bariatric patients showed increased activation in in bilateral temporal cortex following the weight loss. Conclusions Behavioral dieters showed increased responses to food cues in medial PFC – a region associated with valuation and processing of self-referent information – when compared to bariatric patients. Bariatric patients showed increased responses to food cues in brain regions associated with higher level perception—when compared to behavioral dieters. The method of weight loss determines unique changes in brain function. PMID:24115765
ERIC Educational Resources Information Center
Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.
2010-01-01
Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…
Running is rewarding and antidepressive.
Brené, Stefan; Bjørnebekk, Astrid; Aberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin
2007-09-10
Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent in activating the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus.
Running is rewarding and antidepressive
Brené, Stefan; Bjørnebekk, Astrid; Åberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin
2007-01-01
Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent to activate the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus. PMID:17561174
Krishna, Gokul; Muralidhara
2018-05-25
Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong
2017-12-01
Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart Association, Inc.
Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.
Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A
2014-02-04
To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.
Change in brain and lesion volumes after CEE therapies
Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.
2014-01-01
Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646
Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A
2014-07-01
The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional Neuroimaging Insights into the Physiology of Human Sleep
Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre
2010-01-01
Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep. Citation: Dang-Vu TT; Schabus M; Desseilles M; Sterpenich V; Bonjean M; Maquet P. Functional neuroimaging insights into the physiology of human sleep. SLEEP 2010;33(12):1589-1603. PMID:21120121
Aggarwal, Aanchal; Khera, Alka; Singh, Inderjit; Sandhir, Rajat
2015-03-01
Hyperglycemia is known to induce microvascular complications, thereby altering blood-brain barrier (BBB) permeability. This study investigated the role of matrix metalloproteinases (MMPs) and their endogenous inhibitors in increased BBB permeability and evaluated the protective effect of S-nitrosoglutathione (GSNO) in diabetes. Diabetes was induced in mice by intraperitoneal injection of streptozotocin (40 mg/kg body weight) for 5 days and GSNO was administered orally (100 μg/kg body weight) daily for 8 weeks after the induction of diabetes. A significant decline in cognitive functions was observed in diabetic mice assessed by Morris water maze test. Increased permeability to different molecular size tracers accompanied by edema and ion imbalance was observed in cortex and hippocampus of diabetic mice. Furthermore, activity of both pro and active MMP-9 was found to be significantly elevated in diabetic animals. Increased in situ gelatinase activity was observed in tissue sections and isolated microvessels from diabetic mice brain. The increase in activity of MMP-9 was attributed to increased mRNA and protein expression in diabetic mice. In addition, a significant decrease in mRNA and protein expression of tissue inhibitor of matrix metalloproteinase-1 was also observed in diabetic animals. However, GSNO supplementation to diabetic animals was able to abridge MMP-9 activation as well as tissue inhibitor of matrix metalloproteinase-1 levels, restoring BBB integrity and also improving learning and memory. Our findings clearly suggest that GSNO could prevent hyperglycemia-induced disruption of BBB by suppressing MMP-9 activity. © 2014 International Society for Neurochemistry.
A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats☆
Jin, Minghua; Song, Peilin; Li, Na; Li, Xuejun; Chen, Jiajun
2012-01-01
Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride. In this study, experimental rats were intragastrically administered 5, 10, or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning. After exposure, our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue, while the malondialdehyde and nitric oxide content, as well as nitric oxide synthase activity in rat brain tissue increased. The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased. DNA damage was aggravated in the cerebral cortex, and the ultrastructure of the right parietal cortex tissues was altered. The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate. Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues, and demonstrated that the poisoning was dose-dependent. PMID:25538742
How atypical is atypical language dominance?
Knecht, S; Jansen, A; Frank, A; van Randenborgh, J; Sommer, J; Kanowski, M; Heinze, H J
2003-04-01
Atypical, right-hemisphere language dominance is poorly understood. It is often observed in patients with brain reorganization due to lesions early in life. It can also be encountered in seemingly normal individuals. We compared the patterns of neural language activation in 7 individuals with left- and 7 with right-hemisphere language dominance, none of whom had any evidence of brain lesions. We speculated that incongruencies in the activation patterns in atypical, right-hemisphere language dominance could indicate a reorganized neural language system after undetected early brain damage. Functional magnetic resonance imaging analysis of brain activation during phonetic word generation demonstrated (1). no increased activation in the subdominant hemisphere in right compared to left language dominance, (2). a similar variability in the pattern of activation in both groups, and (3). a mirror reverse pattern of activation in right- compared to left-hemisphere dominant subjects. These findings support the view that in individuals with an unrevealing medical history right-hemispheric dominance constitutes a natural rather than an abortive variant of language lateralization.
Buchweitz, Augusto; Mason, Robert A; Hasegawa, Mihoko; Just, Marcel A
2009-01-28
Functional magnetic resonance imaging (fMRI) was used to compare brain activation from Japanese readers reading hiragana (syllabic) and kanji (logographic) sentences, and English as a second language (L2). Kanji showed more activation than hiragana in right-hemisphere occipito-temporal lobe areas associated with visuospatial processing; hiragana, in turn, showed more activation than kanji in areas of the brain associated with phonological processing. L1 results underscore the difference in visuospatial and phonological processing demands between the systems. Reading in English as compared to either of the Japanese systems showed more activation in inferior frontal gyrus, medial frontal gyrus, and angular gyrus. The additional activation in English in these areas may have been associated with an increased cognitive demand for phonological processing and verbal working memory. More generally, L2 results suggest more effortful reading comprehension processes. The study contributes to the understanding of differential brain responses to different writing systems and to reading comprehension in a second language.
Fraser, Thomas William Kenneth; Vindas, Marco Antonio; Fjelldal, Per Gunnar; Winberg, Svante; Thörnqvist, Per-Ove; Øverli, Øyvind; Skjæraasen, Jon-Egil; Hansen, Tom Jonny; Mayer, Ian
2015-07-01
Artificial triploid salmonids are sterile and therefore commercially bred to prevent genetic interactions between wild and domestic fish strains. The full biological effects of having an extra chromosome set are largely unknown, but triploids are considered to be more sensitive to sub-optimal environmental conditions and to be stressed by the presence of diploid conspecifics. Brain serotonergic and dopaminergic activity are known to regulate the stress response in vertebrates, but monoamine systems in diploid and triploid fish have yet to be compared. Here we study monoamine neurochemistry in the telencephalon and brain stem of juvenile diploid and triploid Atlantic salmon (Salmo salar) in response to stress (unstressed vs stressed individuals) and holding (separate- vs mixed-ploidy) conditions. Both diploids and triploids showed an increase in serotonergic activity following stress, but the increase was significantly greater in the telencephalon of triploids compared to diploids. Furthermore, while telencephalic dopaminergic activity was significantly increased in diploids following stress, there was no response in triploids. Holding conditions had a significant effect on dopaminergic activity in the brain stem of diploids only, with lower values in mixed- compared to separate-ploidy conditions. These results suggest artificially produced triploids experience increased reactivity and monoaminergic dysregulation following stress that may impede their welfare and performance. Copyright © 2015 Elsevier Inc. All rights reserved.
Pisu, Maria Giuseppina; Floris, Ivan; Maciocco, Elisabetta; Serra, Mariangela; Biggio, Giovanni
2006-09-01
Stressful stimuli and anxiogenic drugs increase the plasma and brain concentrations of neuroactive steroids. Moreover, in rats trained to consume their daily meal during a fixed period, the anticipation of food is associated with changes in the function of various neurotransmitter systems. We have now evaluated the effects of anticipation and consumption of food in such trained rats on the plasma and brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH DOC), two potent endogenous positive modulators of type A receptors for gamma-aminobutyric acid (GABA). The abundance of these neuroactive steroids was increased in both the cerebral cortex and plasma of the rats during both food anticipation and consumption. In contrast, the concentration of their precursor, progesterone, was increased in the brain only during food consumption, whereas it was increased in plasma only during food anticipation. Intraperitoneal administration of the selective agonist abecarnil (0.1 mg/kg) 40 min before food presentation prevented the increase in the brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC during food anticipation but not that associated with consumption. The change in emotional state associated with food anticipation may thus result in an increase in the plasma and brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC in a manner sensitive to the activation of GABA(A) receptor-mediated neurotransmission. A different mechanism, insensitive to activation of such transmission, may underlie the changes in the concentrations of these neuroactive steroids during food consumption.
Rotllant, David; Nadal, Roser; Armario, Antonio
2007-05-01
Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.
Tang, Jeremy; Kiyatkin, Eugene A.
2011-01-01
Nicotine (NIC) is a highly addictive substance that interacts with different subtypes of nicotinic acetylcholine receptors widely distributed in the central and peripheral nervous systems. While the direct action of NIC on central neurons appears to be essential for its reinforcing properties, the role of peripheral actions of this drug remains a matter of controversy. In this study, we examined changes in locomotor activity and temperature fluctuations in the brain (nucleus accumbens and ventral tegmental area), temporal muscle, and skin induced by intravenous (iv) NIC at low human-relevant doses (10 and 30 μg/kg) in freely moving rats. These effects were compared to those induced by social interaction, an arousing procedure that induces behavioral activation and temperature responses via pure neural mechanism procedure, and iv injections of a peripherally acting NIC analogue, NIC pyrrolidine methiodide (NIC-PM) used at equimolar doses. We found that NIC at 30 μg/kg induces a modest locomotor activation, rapid and strong decrease in skin temperature, and weak increases in brain and muscle temperature. While these effects were qualitatively similar to those induced by social interaction, they were much weaker and showed a tendency to increase with repeated drug administrations. In contrast, NIC-PM did not affect locomotion and induced much weaker than NIC increases in brain and muscle temperatures and decreases in skin temperature; these effects showed a tendency to be weaker with repeated drug administrations. Our data indicate that NIC's actions in the brain are essential to induce locomotor activation and brain and body hyperthermic responses. However, rapid peripheral action of NIC on sensory afferents could be an important factor in triggering its central effects, contributing to neural and physiological activation following repeated drug use. PMID:21295014
Electro-physiological changes in the brain induced by caffeine or glucose nasal spray.
De Pauw, K; Roelands, B; Van Cutsem, J; Marusic, U; Torbeyns, T; Meeusen, R
2017-01-01
A direct link between the mouth cavity and the brain for glucose (GLUC) and caffeine (CAF) has been established. The aim of this study is to determine whether a direct link for both substrates also exist between the nasal cavity and the brain. Ten healthy male subjects (age 22 ± 1 years) performed three experimental trials, separated by at least 2 days. Each trial included a 20-s nasal spray (NAS) period in which solutions placebo (PLAC), GLUC, or CAF were provided in a double-blind, randomized order. During each trial, four cognitive Stroop tasks were performed: two familiarization trials and one pre- and one post-NAS trial. Reaction times and accuracy for different stimuli (neutral, NEUTR; congruent, CON; incongruent INCON) were determined. Electroencephalography was continuously measured throughout the trials. During the Stroop tasks pre- and post-NAS, the P300 was assessed and during NAS, source localization was performed using standardized low-resolution brain electromagnetic tomography (sLORETA). NAS activated the anterior cingulate cortex (ACC). CAF-NAS also increased θ and β activity in frontal cortices. Furthermore, GLUC-NAS increased the β activity within the insula. GLUC-NAS also increased the P300 amplitude with INCON (P = 0.046) and reduced P300 amplitude at F3-F4 and P300 latency at CP1-CP2-Cz with NEUTR (P = 0.001 and P = 0.016, respectively). The existence of nasal bitter and sweet taste receptors possibly induce these brain responses. Greater cognitive efficiency was observed with GLUC-NAS. CAF-NAS activated cingulate, insular, and sensorymotor cortices, whereas GLUC-NAS activated sensory, cingulate, and insular cortices. However, no effect on the Stroop task was found.
Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio
2018-04-01
Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.
Triheptanoin improves brain energy metabolism in patients with Huntington disease
Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra
2015-01-01
Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297
2010-01-01
Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613
Liu, Zhenquan; Li, Pengtao; Zhao, Dan; Tang, Huiling; Guo, Jianyou
2010-10-19
Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis.
Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E
2008-12-01
An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.
Doyle, Kristian P; Cekanaviciute, Egle; Mamer, Lauren E; Buckwalter, Marion S
2010-10-11
TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging. We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia. TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes. We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial scar formation and the immune response to stroke.