Science.gov

Sample records for increased cdk4 activity

  1. Inactivation of TGF-beta signaling in lung cancer results in increased CDK4 activity that can be rescued by ELF.

    PubMed

    Baek, Hye Jung; Kim, Sang Soo; da Silva, Fabio May; Volpe, Eugene A; Evans, Stephen; Mishra, Bibhuti; Mishra, Lopa; Marshall, M Blair

    2006-08-11

    Escape from TGF-beta inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-beta adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf-/- mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-beta signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-beta adaptor protein in suppressing early lung cancer.

  2. Inactivation of TGF-{beta} signaling in lung cancer results in increased CDK4 activity that can be rescued by ELF

    SciTech Connect

    Baek, Hye Jung; Kim, Sang Soo; Silva, Fabio May da; Volpe, Eugene A.; Evans, Stephen; Mishra, Bibhuti; Mishra, Lopa . E-mail: lopamishra@yahoo.com; Blair Marshall, M. . E-mail: mbm5@gunet.georgetown.edu

    2006-08-11

    Escape from TGF-{beta} inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-{beta} adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf {sup -/-} mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-{beta} signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-{beta} adaptor protein in suppressing early lung cancer.

  3. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  4. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1.

    PubMed

    Liu, Tongzheng; Yu, Jia; Deng, Min; Yin, Yujiao; Zhang, Haoxing; Luo, Kuntian; Qin, Bo; Li, Yunhui; Wu, Chenming; Ren, Tao; Han, Yang; Yin, Peng; Kim, JungJin; Lee, SeungBaek; Lin, Jing; Zhang, Lizhi; Zhang, Jun; Nowsheen, Somaira; Wang, Liewei; Boughey, Judy; Goetz, Matthew P; Yuan, Jian; Lou, Zhenkun

    2017-01-09

    Tumour metastasis, the spread of cancer cells from the original tumour site followed by growth of secondary tumours at distant organs, is the primary cause of cancer-related deaths and remains poorly understood. Here we demonstrate that inhibition of CDK4/6 blocks breast tumour metastasis in the triple-negative breast cancer model, without affecting tumour growth. Mechanistically, we identify a deubiquitinase, DUB3, as a target of CDK4/6; CDK4/6-mediated activation of DUB3 is essential to deubiquitinate and stabilize SNAIL1, a key factor promoting epithelial-mesenchymal transition and breast cancer metastasis. Overall, our study establishes the CDK4/6-DUB3 axis as an important regulatory mechanism of breast cancer metastasis and provides a rationale for potential therapeutic interventions in the treatment of breast cancer metastasis.

  5. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1

    PubMed Central

    Liu, Tongzheng; Yu, Jia; Deng, Min; Yin, Yujiao; Zhang, Haoxing; Luo, Kuntian; Qin, Bo; Li, Yunhui; Wu, Chenming; Ren, Tao; Han, Yang; Yin, Peng; Kim, JungJin; Lee, SeungBaek; Lin, Jing; Zhang, Lizhi; Zhang, Jun; Nowsheen, Somaira; Wang, Liewei; Boughey, Judy; Goetz, Matthew P.; Yuan, Jian; Lou, Zhenkun

    2017-01-01

    Tumour metastasis, the spread of cancer cells from the original tumour site followed by growth of secondary tumours at distant organs, is the primary cause of cancer-related deaths and remains poorly understood. Here we demonstrate that inhibition of CDK4/6 blocks breast tumour metastasis in the triple-negative breast cancer model, without affecting tumour growth. Mechanistically, we identify a deubiquitinase, DUB3, as a target of CDK4/6; CDK4/6-mediated activation of DUB3 is essential to deubiquitinate and stabilize SNAIL1, a key factor promoting epithelial–mesenchymal transition and breast cancer metastasis. Overall, our study establishes the CDK4/6–DUB3 axis as an important regulatory mechanism of breast cancer metastasis and provides a rationale for potential therapeutic interventions in the treatment of breast cancer metastasis. PMID:28067227

  6. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection

    PubMed Central

    Jin, Cuihong; Qin, Lili; Shi, Yan; Candas, Demet; Fan, Ming; Lu, Chung-Ling; Vaughan, Andrew T. M.; Shen, Rulong; Wu, Larry S.; Liu, Rui; Li, Robert F.; Murley, Jeffrey S.; Gayle, Woloschak; Grdina, David J.; Li, Jian Jian

    2015-01-01

    Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low dose ionizing radiation (LDIR) present naturally on earth surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. MnSOD, a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in the radioadaptive protection through detoxifying O2·- generated by mitochondrial oxidative phosphorylation. Contrasted to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying post-translational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that Cyclin D1-cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR adaptive radioprotection. Cyclin D1/CDK4 is found to relocate to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes of total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at Serine 106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106A mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis via enhancing phosphorylation and activation of MnSOD. PMID:25578653

  7. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection.

    PubMed

    Jin, Cuihong; Qin, Lili; Shi, Yan; Candas, Demet; Fan, Ming; Lu, Chung-Ling; Vaughan, Andrew T M; Shen, Rulong; Wu, Larry S; Liu, Rui; Li, Robert F; Murley, Jeffrey S; Woloschak, Gayle; Grdina, David J; Li, Jian Jian

    2015-04-01

    Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.

  8. Enhanced malignant tumorigenesis in Cdk4 transgenic mice.

    PubMed

    Miliani de Marval, Paula L; Macias, Everardo; Conti, Claudio J; Rodriguez-Puebla, Marcelo L

    2004-03-11

    In a previous study, we reported that overexpression of cyclin-dependent kinase-4 (CDK4) in mouse epidermis results in epidermal hyperplasia, hypertrophy and severe dermal fibrosis. In this study, we have investigated the susceptibility to skin tumor formation by forced expression of CDK4. Skin tumors from transgenic mice showed a dramatic increase in the rate of malignant progression to squamous cell carcinomas (SCC) in an initiation-promotion protocol. Histopathological analysis of papillomas from transgenic mice showed an elevated number of premalignant lesions characterized by dysplasia and marked atypia. Interestingly, transgenic mice also developed tumors in initiated but not promoted skin, demonstrating that CDK4 replaced the action of tumor promoters. These results suggest that expression of cyclin D1 upon ras activation synergizes with CDK4 overexpression. However, cyclin D1 transgenic mice and double transgenic mice for cyclin D1 and CDK4 did not show increased malignant progression in comparison to CDK4 transgenic mice. Biochemical analysis of tumors showed that CDK4 sequesters the CDK2 inhibitors p27Kip1 and p21Cip1, suggesting that indirect activation of CDK2 plays an important role in tumor development. These results indicate that, contrary to the general assumption, the catalytic subunit, CDK4, has higher oncogenic activity than cyclin D1, revealing a potential use of CDK4 as therapeutic target.

  9. CDK4 is an essential insulin effector in adipocytes

    PubMed Central

    Lagarrigue, Sylviane; Lopez-Mejia, Isabel C.; Denechaud, Pierre-Damien; Escoté, Xavier; Castillo-Armengol, Judit; Jimenez, Veronica; Chavey, Carine; Giralt, Albert; Lai, Qiuwen; Zhang, Lianjun; Martinez-Carreres, Laia; Delacuisine, Brigitte; Annicotte, Jean-Sébastien; Blanchet, Emilie; Huré, Sébastien; Abella, Anna; Tinahones, Francisco J.; Vendrell, Joan; Dubus, Pierre; Bosch, Fatima; Kahn, C. Ronald; Fajas, Lluis

    2015-01-01

    Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4R24C). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT. PMID:26657864

  10. Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4

    PubMed Central

    Gallagher, Joseph M.; Yamak, Abir; Kirilenko, Pavel; Black, Sarah; Bochtler, Matthias; Lefebvre, Chantal; Nemer, Mona; Latinkić, Branko V.

    2014-01-01

    GATA4-6 transcription factors regulate numerous aspects of development and homeostasis in multiple tissues of mesodermal and endodermal origin. In the heart, the best studied of these factors, GATA4, has multiple distinct roles in cardiac specification, differentiation, morphogenesis, hypertrophy and survival. To improve understanding of how GATA4 achieves its numerous roles in the heart, here we have focused on the carboxy-terminal domain and the residues required for interaction with cofactors FOG2 and Tbx5. We present evidence that the carboxy terminal region composed of amino acids 362–400 is essential for mediating cardiogenesis in Xenopus pluripotent explants and embryos. In contrast, the same region is not required for endoderm-inducing activity of GATA4. Further evidence is presented that the carboxy terminal cardiogenic region of GATA4 does not operate as a generic transcriptional activator. Potential mechanism of action of the carboxy terminal end of GATA4 is provided by the results showing physical and functional interaction with CDK4, including the enhancement of cardiogenic activity of GATA4 by CDK4. These results establish CDK4 as a GATA4 partner in cardiogenesis. The interactions of GATA4 with its other well described cofactors Tbx5 and FOG2 are known to be involved in heart morphogenesis, but their requirement for cardiac differentiation is unknown. We report that the mutations that disrupt interactions of GATA4 with Tbx5 and FOG2, G295S and V217G, respectively, do not impair cardiogenic activity of GATA4. These findings add support to the view that distinct roles of GATA4 in the heart are mediated by different determinants of the protein. Finally, we show that the rat GATA4 likely induces cardiogenesis cell autonomously or directly as it does not require activity of endodermal transcription factor Sox17, a GATA4 target gene that induces cardiogenesis non-cell autonomously. PMID:25241353

  11. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA

    PubMed Central

    Perez, Marco; Muñoz-Galván, Sandra; Jiménez-García, Manuel P.; Marín, Juan J.; Carnero, Amancio

    2015-01-01

    Sarcomas are malignant tumors accounting for a high percentage of cancer morbidity and mortality in children and young adults. Surgery and radiation therapy are the accepted treatments for most sarcomas; however, patients with metastatic disease are treated with systemic chemotherapy. Many tumors display marginal levels of chemoresponsiveness and new treatment approaches are needed. Deregulation of the G1 checkpoint is crucial for various oncogenic transformation processes, suggesting that many cancer cell types depend on CDK4/6 activity. Thus, CDK4/6 activity appears to represent a promising therapeutic target for cancer treatment. In the present work, we explore the efficacy of CDK4 inhibition using palbociclib (PD0332991), a highly selective inhibitor of CDK4/6, in a panel of sarcoma cell lines and sarcoma tumor xenografts (PDXs). Palbociclib induces senescence in these cell lines and the responsiveness of these cell lines correlated with their levels of CDK4 mRNA. Palbociclib is also active in vivo against sarcomas displaying high levels of CDK4 but not against sarcomas displaying low levels of CDK4 and high levels of p16ink4a. The analysis of tumors growing after palbociclib showed a clear decrease in the CDK4 levels, indicating that clonal selection occurred in these treated tumors. In summary, our data support the efficacy of CDK4 inhibitors against sarcomas displaying increased CDK4 levels, particularly fibrosarcomas and MPNST. Our results also suggest that high levels of p16ink4a may indicate poor efficacy of CDK4 inhibitors. PMID:26528855

  12. Cooperativity of Cdk4R24C and Ras in melanoma development.

    PubMed

    Chawla, Rachna; Procknow, Judith A; Tantravahi, Ramana V; Khurana, Jasvir S; Litvin, Judith; Reddy, E Premkumar

    2010-08-15

    The importance of the CDK4 protein in human cancer first became evident following the identification of a germ line mutation in the Cdk4 locus that predisposes humans to melanoma. This mutation results in substitution of arginine with cysteine at position 24 (R24C). In an earlier study, we introduced the R24C mutation into the Cdk4 locus of mice using Cre-loxP-mediated "knock-in" technology and observed a very low incidence of spontaneous melanomas in Cdk4(R24C/R24C) mice. This suggested that additional oncogenic mutations might be required for development of melanomas. Here we report an increased incidence of spontaneous cutaneous melanoma in mice expressing the oncogene HRAS(G12V) in melanocytes on a Cdk4(R24C) background. Treatment of Tyr-HRas:Cdk4(R24C/R24C) mice with the carcinogen, DMBA/TPA resulted in a further increase in the number of nevi and melanomas developed when compared with Tyr-HRas:Cdk4(+/+) mice. In summary, in Tyr-HRas:Cdk4(R24C/R24C) mice, we observed that activated CDK4 cooperates with the oncogenic HRAS(G12V) protein to increase the susceptibility of melanoma development in vivo.

  13. Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation.

    PubMed

    Rodriguez-Puebla, Marcelo L; Miliani de Marval, Paula L; LaCava, Margaret; Moons, David S; Kiyokawa, Hiroaki; Conti, Claudio J

    2002-08-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue.

  14. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis

    PubMed Central

    Lu, Yuanzhi; Wu, Yongsheng; Feng, Xiaoling; Shen, Rulong; Wang, Jing H.; Fallahi, Mohammad; Li, Weimin; Yang, Chunying; Hankey, William; Zhao, Weiqiang; Ganju, Ramesh K.; Li, Ming O.; Cleveland, John L.; Zou, Xianghong

    2014-01-01

    The G1 kinase CDK4 is amplified or overexpressed in some human tumors and promotes tumorigenesis by inhibiting known tumor suppressors. Here, we report that CDK4 deficiency markedly accelerated lymphoma development in the Eμ-Myc transgenic mouse model of B lymphoma and that silencing or loss of CDK4 augmented the tumorigenic potential of Myc-driven mouse and human B cell lymphoma in transplant models. Accelerated disease in CDK4-deficient Eμ-Myc transgenic mice was associated with rampant genomic instability that was provoked by dysregulation of a FOXO1/RAG1/RAG2 pathway. Specifically, CDK4 phosphorylated and inactivated FOXO1, which prevented FOXO1-dependent induction of Rag1 and Rag2 transcription. CDK4-deficient Eμ-Myc B cells had high levels of the active form of FOXO1 and elevated RAG1 and RAG2. Furthermore, overexpression of RAG1 and RAG2 accelerated lymphoma development in a transplant model, with RAG1/2-expressing tumors exhibiting hallmarks of genomic instability. Evaluation of human tumor samples revealed that CDK4 expression was markedly suppressed, while FOXO1 expression was elevated, in several subtypes of human non-Hodgkin B cell lymphoma. Collectively, these findings establish a context-specific tumor suppressor function for CDK4 that prevents genomic instability, which contributes to B cell lymphoma. Furthermore, our data suggest that targeting CDK4 may increase the risk for the development and/or progression of lymphoma. PMID:24614102

  15. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence.

    PubMed

    Rane, Sushil G; Cosenza, Stephen C; Mettus, Richard V; Reddy, E Premkumar

    2002-01-01

    Mutations in CDK4 and its key kinase inhibitor p16(INK4a) have been implicated in the genesis and progression of familial human melanoma. The importance of the CDK4 locus in human cancer first became evident following the identification of a germ line CDK4-Arg24Cys (R24C) mutation, which abolishes the ability of CDK4 to bind to p16(INK4a). To determine the role of the Cdk4(R24C) germ line mutation in the genesis of other cancer types, we introduced the R24C mutation in the Cdk4 locus of mice by using Cre-loxP-mediated "knock-in" technology. Cdk4(R24C/R24C) mouse embryo fibroblasts (MEFs) displayed increased Cdk4 kinase activity resulting in hyperphosphorylation of all three members of the Rb family, pRb, p107, and p130. MEFs derived from Cdk4(R24C/R24C) mice displayed decreased doubling times, escape from replicative senescence, and escape sensitivity to contact-induced growth arrest. These MEFs also exhibited a high degree of susceptibility to oncogene-induced transformation, suggesting that the Cdk4(R24C) mutation can serve as a primary event in the progression towards a fully transformed phenotype. In agreement with the in vitro data, homozygous Cdk4(R24C/R24C) mice developed tumors of various etiology within 8 to 10 months of their life span. The majority of these tumors were found in the pancreas, pituitary, brain, mammary tissue, and skin. In addition, Cdk4(R24C/R24C) mice showed extraordinary susceptibility to carcinogens and developed papillomas within the first 8 to 10 weeks following cutaneous application of the carcinogens 9,10-di-methyl-1,2-benz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). This report formally establishes that the activation of Cdk4 is sufficient to promote cancer in many tissues. The observation that a wide variety of tumors develop in mice harboring the Cdk4(R24C) mutation offers a genetic proof that Cdk4 activation may constitute a central event in the genesis of many types of cancers in addition to melanoma.

  16. Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis.

    PubMed

    Macias, Everardo; Kim, Yongbaek; Miliani de Marval, Paula L; Klein-Szanto, Andres; Rodriguez-Puebla, Marcelo L

    2007-10-15

    We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorigenesis (K5Myc mice) depends on CDK4 expression. Biochemical analysis of K5CDK4 and K5Myc epidermis as well as skin tumors showed that keratinocyte proliferation is mediated by CDK4 sequestration of p27Kip1 and p21Cip1, and activation of CDK2. Here, we studied the role of CDK2 in epithelial tumorigenesis. In normal skin, loss of CDK2 rescues CDK4-induced, but not myc-induced epidermal hyperproliferation. Ablation of CDK2 in K5CDK4 mice results in decreased incidences and multiplicity of skin tumors as well as malignant progression to SCC. Histopathologic analysis showed that K5CDK4 tumors are drastically more aggressive than K5CDK4/CDK2-/- tumors. On the other hand, we show that CDK2 is dispensable for myc-induced tumorigenesis. In contrast to our previous report of K5Myc/CDK4-/-, K5Myc/CDK2-/- mice developed oral tumors with the same frequency as K5Myc mice. Overall, we have established that ras-induced tumors are more susceptible to CDK2 ablation than myc-induced tumors, suggesting that the efficacy of targeting CDK2 in tumor development and malignant progression is dependent on the oncogenic pathway involved.

  17. Loss of nuclear receptor RXRα in epidermal keratinocytes promotes the formation of Cdk4-activated invasive melanomas.

    PubMed

    Hyter, Stephen; Bajaj, Gaurav; Liang, Xiaobo; Barbacid, Mariano; Ganguli-Indra, Gitali; Indra, Arup Kumar

    2010-10-01

    Keratinocytes contribute to melanocyte transformation by affecting their microenvironment, in part through the secretion of paracrine factors. Here we report a loss of expression of nuclear receptor RXRα in epidermal keratinocytes during human melanoma progression. In the absence of keratinocytic RXRα, in combination with mutant Cdk4, cutaneous melanoma was generated that metastasized to lymph nodes in a bigenic mouse model. Expression of several keratinocyte-derived mitogenic growth factors (Et-1, Hgf, Scf, α-MSH and Fgf 2 ) was elevated in skin of bigenic mice, whereas Fas, E-cadherin and Pten, implicated in apoptosis, cellular invasion and melanomagenesis, respectively, were downregulated within the microdissected melanocytic tumors. We demonstrated that RXRα is recruited on the proximal promoter of both Et-1 and Hgf, possibly directly regulating their transcription in keratinocytes. These studies demonstrate the contribution of keratinocytic paracrine signaling during the cellular transformation and malignant conversion of melanocytes.

  18. The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation

    PubMed Central

    Cui, Pei H; Petrovic, Nenad; Murray, Michael

    2011-01-01

    BACKGROUND AND PURPOSE Dietary intake of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) like eicosapentaenoic acid (EPA) decreases cancer risk, while arachidonic acid and other ω-6 PUFAs increase risk, but the underlying mechanisms are unclear. Cytochrome P450 (CYP)-derived epoxides contribute to enhanced tumourigenesis due to ω-6 PUFA intake. Thus, ω-6 arachidonic acid epoxides (EETs) inhibit apoptosis and stimulate proliferation by up-regulating cyclin D1 expression in cells. The present study evaluated the corresponding ω-3 PUFA epoxides and assessed their role in the regulation of cell proliferation. EXPERIMENTAL APPROACH Four chemically stable EPA epoxides (formed at the 8,9-, 11,12-, 14,15- and 17,18-olefinic bonds) were synthesized and tested against growth-related signalling pathways in brain microvascular endothelial bEND.3 cells. Cell cycle distribution was determined by flow cytometry and cyclin gene expression by immunoblotting and real-time PCR. The role of the p38 mitogen-activated protein (MAP) kinase in cyclin D1 dysregulation was assessed using specific inhibitors and dominant-negative expression plasmids. KEY RESULTS The ω-3 17,18-epoxide of EPA decreased cell proliferation, interrupted the cell cycle in S-phase and down-regulated the cyclin D1/cyclin-dependent kinase (CDK)-4 complex, whereas the 8,9-, 11,12- and 14,15-epoxides were either inactive or enhanced proliferation. Cyclin D1 down-regulation by 17,18-epoxy-EPA was mediated by activation of the growth-suppressing p38 MAP kinase, but the alternate EPA-epoxides were inactive. CONCLUSIONS AND IMPLICATIONS The present findings suggest that the epoxide formed by CYP enzymes at the ω-3 olefinic bond may contribute to the beneficial effects of ω-3 PUFA by down-regulating cyclin D1 and suppressing cell proliferation. PMID:21077851

  19. Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma.

    PubMed

    Perumal, Deepak; Kuo, Pei-Yu; Leshchenko, Violetta V; Jiang, Zewei; Divakar, Sai Krishna Athaluri; Cho, Hearn Jay; Chari, Ajai; Brody, Joshua; Reddy, M V Ramana; Zhang, Weijia; Reddy, E Premkumar; Jagannath, Sundar; Parekh, Samir

    2016-03-01

    Multiple myeloma is a fatal plasma cell neoplasm accounting for over 10,000 deaths in the United States each year. Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. The response to selective CDK4/6 inhibitors has been modest in multiple myeloma, potentially because of incomplete targeting of other critical myeloma oncogenic kinases. As a substantial number of multiple myeloma cell lines and primary samples were found to express AMPK-related protein kinase 5(ARK5), a member of the AMPK family associated with tumor growth and invasion, we examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 results in a better therapeutic outcome. Treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. ON123300-mediated ARK5 inhibition or ARK5-specific siRNAs resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation resulted in increased SIRT1 levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays. In addition, multiple myeloma cells sensitive to ON123300 were found to have a unique genomic signature that can guide the clinical development of ON123300. Our study provides preclinical evidence that ON123300 is unique in simultaneously inhibiting key oncogenic pathways in multiple myeloma and supports further development of ARK5 inhibition as a therapeutic approach in multiple myeloma.

  20. Preclinical Activity of Simvastatin Induces Cell Cycle Arrest in G1 via Blockade of Cyclin D-Cdk4 Expression in Non-Small Cell Lung Cancer (NSCLC)

    PubMed Central

    Liang, Yu-Wei; Chang, Chi-Chang; Hung, Chao-Ming; Chen, Tzu-Yu; Huang, Tzuu-Yuan; Hsu, Yi-Chiang

    2013-01-01

    Lung cancer is the most common cause of cancer-related death. Nonetheless, a decrease in overall incidence and mortality has been observed in the last 30 years due to prevention strategies and improvements in the use of chemotherapeutic agents. In recent studies, Simvastatin (SIM) has demonstrated anti-tumor activity, as well as potent chemopreventive action. As an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA), SIM has been shown to stimulate apoptotic cell death. In this study, an MTT assay revealed the cytotoxic activity of SIM against human large cell lung cancer (Non-small cell lung cancer; NSCLC) cells (NCI-H460); however, induced apoptosis was not observed in NCI-H460 cells. Protein expression levels of cell cycle regulating proteins Cdk4, Cyclin D1, p16 and p27 were markedly altered by SIM. Collectively, our results indicate that SIM inhibits cell proliferation and arrests NCI-H460 cell cycle progression via inhibition of cyclin-dependent kinases and cyclins and the enhancement of CDK inhibitors p16 and p27. Our findings suggest that, in addition to the known effects on hypercholesterolemia therapy, SIM may also provide antitumor activity in established NSCLC. PMID:23481641

  1. Drosophila cyclin D/Cdk4 regulates mitochondrial biogenesis and aging and sensitizes animals to hypoxic stress

    PubMed Central

    Icreverzi, Amalia; Flor de la Cruz, Aida; Van Voorhies, Wayne A

    2012-01-01

    Drosophila cyclin D (CycD) is the single fly ortholog of the mammalian cyclin D1 and promotes both cell cycle progression and cellular growth. However, little is known about how CycD promotes cell growth. We show here that CycD/Cdk4 hyperactivity leads to increased mitochondrial biogenesis (mitobiogenesis), mitochondrial mass, NRF-1 activity (Tfam transcript levels) and metabolic activity in Drosophila, whereas loss of CycD/Cdk4 activity has the opposite effects. Surprisingly, both CycD/Cdk4 addition and loss of function increase mitochondrial superoxide production and decrease lifespan, indicating that an imbalance in mitobiogenesis may lead to oxidative stress and aging. In addition, we provide multiple lines of evidence indicating that CycD/Cdk4 activity affects the hypoxic status of cells and sensitizes animals to hypoxia. Both mitochondrial and hypoxia-related effects can be detected at global transcriptional level. We propose that mitobiogenesis and the hypoxic stress response have an antagonistic relationship, and that CycD/Cdk4 levels regulate mitobiogenesis contemporaneous to the cell cycle, such that only when cells are sufficiently oxygenated can they proliferate. PMID:22293404

  2. Do CDK4/6 inhibitors have potential as targeted therapeutics for squamous cell cancers?

    PubMed

    Kalu, Nene N; Johnson, Faye M

    2017-02-01

    Introduction Dysregulation of cell cycle progression has an established link to neoplasia and cancer progression. Components of the cyclin D-CDK4/6-INK4-Rb pathway are frequently altered in squamous cell carcinomas (SCCs) by diverse mechanisms, including viral oncogene-induced degradation, mutation, deletion, and amplification. Activation of the CDK4/6 pathway may predict response to CDK4/6 inhibitors and provide clinical biomarkers. Recently, the CDK4/6 inhibitor palbociclib showed clinical efficacy in combination with cetuximab in HNSCC patients. Areas covered This review focuses on the current research on the use of CDK4/6 inhibitors, comprising preclinical animal studies through phase II clinical trials across all SCCs. Expert opinion CDK4/6 inhibitors have a proven clinical benefit in breast cancer, but data on SCCs are sparse. Although frequent dysregulation of the cyclin D-CDK4/6-INK4-Rb pathway in SCCs suggests that targeting CDK4/6 may hold promise for improved clinical outcomes, single-agent activity has been modest in preclinical studies and absent in clinical studies. Combinations with immunotherapy or inhibitors of the PI3 K/mTOR or EGFR pathway may be effective. Given that SCCs caused by human papillomavirus have high levels of p16 and low levels of Rb, the CDK4/6 inhibitors are predicted to be ineffective in these cancers.

  3. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    SciTech Connect

    Li Chenchen Xing Tairan Tang Mingliang Yong Wu Yan Dan Deng Hongmin Wang Huili Wang Ming Chen Jutao Ruan Diyun

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.

  4. Oncogenic Functions of cdK4 and cdK6

    DTIC Science & Technology

    1998-07-01

    frequently leads to dysregulated cdk4/cdk6 activity in human tumors, as do mutations in cdk4 that prevent its association with p16INK4a ( Motokura et al...novel cyclin D partner. Mol. Cell. Biol. 14: 2077-2086. Morgan, D. 1995. Principals of CDK regulation. Nature 474: 131-134. Motokura , T., T. Bloom

  5. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho . E-mail: ykim@knu.ac.kr

    2007-07-15

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 {mu}M) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.

  6. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression.

    PubMed

    Piccinin, S; Doglioni, C; Maestro, R; Vukosavljevic, T; Gasparotto, D; D'Orazi, C; Boiocchi, M

    1997-02-20

    The p16/CDKN2(MTS1) gene encoding for the p16 inhibitor of cyclin D/CDK4 complexes is frequently mutated and deleted in a large fraction of melanoma cell lines, and p16 germline mutations have also been observed in familial melanomas. Moreover, a CDK4 gene mutation, responsible for a functional resistance of CDK4 kinase to p16 inhibitory activity, has been described to occur in some cases of familial melanoma. These data strongly support the idea that deregulation of the CDK4/cyclin D pathway, via CDKN2 or CDK4 mutations, is of biological significance in the development of melanoma. To shed light on the role of these alterations in the development and progression of sporadic melanoma, 12 primary melanomas and 9 corresponding metastases were analyzed for CDKN2 and CDK4 gene mutations. Of the 12 primary melanomas analyzed, 4 showed the presence of mutational inactivation of the p 16 protein and 2 carried silent mutations. No metastases showed the presence of CDKN2 mutations, indicating that mutations of this cyclin-dependent kinase inhibitor is not common in the progression of sporadic melanoma. On the other hand, the absence, in the metastases, of the CDKN2 mutation detected in the corresponding primary tumors suggests that 9p21 homozygous deletion may play a major role in the metastatic spreading of this type of tumor. None of the cases analyzed showed the presence of an Arg24Cys mutation, which functionally protects CDK4 from p16 inhibition. This indicates that CDK4 mutation plays a minor role in the development and progression of sporadic melanoma.

  7. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression.

    PubMed

    Willoughby, Jamin A; Sundar, Shyam N; Cheung, Mark; Tin, Antony S; Modiano, Jaime; Firestone, Gary L

    2009-01-23

    Artemisinin, a naturally occurring component of Artemisia annua, or sweet wormwood, is a potent anti-malaria compound that has recently been shown to have anti-proliferative effects on a number of human cancer cell types, although little is know about the molecular mechanisms of this response. We have observed that artemisinin treatment triggers a stringent G1 cell cycle arrest of LNCaP (lymph node carcinoma of the prostate) human prostate cancer cells that is accompanied by a rapid down-regulation of CDK2 and CDK4 protein and transcript levels. Transient transfection with promoter-linked luciferase reporter plasmids revealed that artemisinin strongly inhibits CDK2 and CDK4 promoter activity. Deletion analysis of the CDK4 promoter revealed a 231-bp artemisinin-responsive region between -1737 and -1506. Site-specific mutations revealed that the Sp1 site at -1531 was necessary for artemisinin responsiveness in the context of the CDK4 promoter. DNA binding assays as well as chromatin immunoprecipitation assays demonstrated that this Sp1-binding site in the CDK4 promoter forms a specific artemisinin-responsive DNA-protein complex that contains the Sp1 transcription factor. Artemisinin reduced phosphorylation of Sp1, and when dephosphorylation of Sp1 was inhibited by treatment of cells with the phosphatase inhibitor okadaic acid, the ability of artemisinin to down-regulate Sp1 interactions with the CDK4 promoter was ablated, rendering the CDK4 promoter unresponsive to artemisinin. Finally, overexpression of Sp1 mostly reversed the artemisinin down-regulation of CDK4 promoter activity and partially reversed the cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin anti-proliferative effects in prostate cancer cells is the transcriptional down-regulation of CDK4 expression by disruption of Sp1 interactions with the CDK4 promoter.

  8. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis.

    PubMed

    Lazarov, Mirella; Kubo, Yoshiaki; Cai, Ti; Dajee, Maya; Tarutani, Masahito; Lin, Qun; Fang, Min; Tao, Shiying; Green, Cheryl L; Khavari, Paul A

    2002-10-01

    Ras acts with other proteins to induce neoplasia. By itself, however, strong Ras signaling can suppress proliferation of normal cells. In primary epidermal cells, we found that oncogenic Ras transiently decreases cyclin-dependent kinase (CDK) 4 expression in association with cell cycle arrest in G1 phase. CDK4 co-expression circumvents Ras growth suppression and induces invasive human neoplasia resembling squamous cell carcinoma. Tumorigenesis is dependent on CDK4 kinase function, with cyclin D1 required but not sufficient for this process. In facilitating escape from G1 growth restraints, Ras and CDK4 alter the composition of cyclin D and cyclin E complexes and promote resistance to growth inhibition by INK4 cyclin-dependent kinase inhibitors. These data identify a new role for oncogenic Ras in CDK4 regulation and highlight the functional importance of CDK4 suppression in preventing uncontrolled growth.

  9. Role of CDK4 in Breast Development and Cancer

    DTIC Science & Technology

    2008-04-01

    induced DNA damage checkpoint responses. 15. SUBJECT TERMS CDK4 , Breast Development, Oncogenes, Cell Cycle, Breast Cancer 16. SECURITY...3A of appended publication) show that 97% of the Cdk4 (+/+):MMTV-neu mice develop breast cancer between 28 to 75 weeks of age. The rest of the mice...were found to develop salivary gland tumors. In sharp contrast, only 14% of the Cdk4 (neo/neo):MMTV-neu mice develop signs of breast cancer and this

  10. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-06

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  11. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells

    PubMed Central

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P.; Cristobal, Alba; Prinsen, Martine B. W.; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J. R.; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. PMID:25562820

  12. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    SciTech Connect

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young; Chun, Sung Hak; Han, Jeong Yun; Kim, Sung Dae; Lee, Janet; Lee, Chang-Woo; Yang, Kwangmo; Lee, Chang Geun

    2013-01-25

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24{sup −}/CD44{sup +}) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.

  13. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition.

    PubMed

    Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C

    2017-01-16

    Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.Oncogene advance online publication,16 January 2017; doi:10.1038/onc.2016.486.

  14. Rarity of CDK4 germline mutations in familial melanoma.

    PubMed

    Goldstein, A M; Chidambaram, A; Halpern, A; Holly, E A; Guerry IV, D; Sagebiel, R; Elder, D E; Tucker, M A

    2002-02-01

    To date, two genes have been implicated in melanoma pathogenesis. The first, CDKN2A, is a tumour suppressor gene with germline mutations detected in 20% of melanoma-prone families. The second, CDK4, is an oncogene with co-segregating germline mutations detected in only three kindreds worldwide. We examined 16 American melanoma-prone families for mutations in all coding exons of CDK4 and screened additional members of two previously reported families with the Arg24Cys germline CDK4 mutation to evaluate the penetrance of the mutation. No new CDK4 mutations were identified. In the two Arg24Cys families, the penetrance was estimated to be 63%. Overall, 12 out of 12 invasive melanoma patients, none out of one in situ melanoma patient, five out of 13 dysplastic naevi patients, two out of 15 unaffected family members, and none out of 10 spouses carried the Arg24Cys mutation. Dysplastic naevi did not strongly co-segregate with the Arg24Cys mutation. Thus the phenotype observed in melanoma-prone CDK4 families appears to be more complex than just the CDK4 mutation. Both genetic and environmental factors are likely to contribute to the occurrence of melanoma and dysplastic naevi in these families. In summary, although CDK4 is a melanoma susceptibility gene, it plays a minor role in hereditary melanoma.

  15. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

    PubMed Central

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-01-01

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657

  16. Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4

    PubMed Central

    Ladha, Mohamed H.; Lee, Kwang Y.; Upton, Todd M.; Reed, Michael F.; Ewen, Mark E.

    1998-01-01

    The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells. PMID:9774675

  17. TARGETING CDK4 AND CDK6: FROM DISCOVERY TO THERAPY

    PubMed Central

    Sherr, Charles J.; Beach, David; Shapiro, Geoffrey I.

    2015-01-01

    Biochemical and genetic characterization of D-type cyclins, their cyclin D-dependent kinases (CDK4 and CDK6), and the polypeptide CDK4/6 inhibitor p16INK4 over two decades ago revealed how mammalian cells regulate entry into the DNA synthetic (S) phase of the cell division cycle in a retinoblastoma protein (RB)-dependent manner. These investigations provided proof-of-principle that CDK4/6 inhibitors, particularly when combined with co-inhibition of allied mitogen-dependent signal transduction pathways, might prove valuable in cancer therapy. FDA-approval of the CDK4/6 inhibitor palbociclib used with the aromatase inhibitor letrozole for breast cancer treatment highlights long sought success. The newest findings herald clinical trials targeting other cancers. PMID:26658964

  18. CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer

    PubMed Central

    Dai, Meiou; Zhang, Chenjing; Ali, Ayad; Hong, Xinyuan; Tian, Jun; Lo, Chieh; Fils-Aimé, Nadège; Burgos, Sergio A.; Ali, Suhad; Lebrun, Jean-Jacques

    2016-01-01

    Triple negative breast cancers exhibit very aggressive features and poor patient outcomes. These tumors are enriched in cancer stem cells and exhibit resistance to most treatments and chemotherapy. In this study, we found the cyclin-dependent kinase (CDK4) to act as a cancer stem cell regulator and novel prognostic marker in triple negative breast cancers. We found CDK4 to be highly expressed in these tumors and its expression to correlate with poor overall and relapse free survival outcomes, high tumor grade and poor prognostic features of triple negative breast cancer patients. Moreover, we found that blocking CDK4 expression or kinase activity, using a pharmacological inhibitor prevented breast cancer stem cell self-renewal. Interestingly, suppression of CDK4 expression or kinase activity reversed the basal-B TNBC mesenchymal phenotype to an epithelial- and luminal-like phenotype which correlates with better clinical prognosis. Finally, blocking CDK4 activity efficiently eliminated both normal and chemotherapy-resistant cancer cells in triple negative breast cancers, highlighting CDK4 as a promising novel therapeutic target for these aggressive breast tumors. PMID:27759034

  19. MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition

    PubMed Central

    Dickson, Mark A.; Klein, Mary E.; O'Connor, Rachael; Wilder, Fatima O.; Socci, Nicholas D.; Tap, William D.; Schwartz, Gary K.; Singer, Samuel; Crago, Aimee M.; Koff, Andrew

    2015-01-01

    CDK4 inhibitors (CDK4i) earned Breakthrough Therapy Designation from the FDA last year and are entering phase III clinical trials in several cancers. However, not all tumors respond favorably to these drugs. CDK4 activity is critical for progression through G1 phase and into the mitotic cell cycle. Inhibiting this kinase induces Rb-positive cells to exit the cell cycle into either a quiescent or senescent state. In this report, using well-differentiated and dedifferentiated liposarcoma (WD/DDLS) cell lines, we show that the proteolytic turnover of MDM2 is required for CDK4i-induced senescence. Failure to reduce MDM2 does not prevent CDK4i-induced withdrawal from the cell cycle but the cells remain in a reversible quiescent state. Reducing MDM2 in these cells drives them into the more stable senescent state. CDK4i-induced senescence associated with loss of MDM2 is also observed in some breast cancer, lung cancer and glioma cell lines indicating that this is not limited to WD/DDLS cells in which MDM2 is overexpressed or in cells that contain wild type p53. MDM2 turnover depends on its E3 ligase activity and expression of ATRX. Interestingly, in seven patients the changes in MDM2 expression were correlated with outcome. These insights identify MDM2 and ATRX as new regulators controlling geroconversion, the process by which quiescent cells become senescent, and this insight may be exploited to improve the activity of CDK4i in cancer therapy. PMID:25803170

  20. First CDK 4/6 Inhibitor Heads to Market.

    PubMed

    2015-04-01

    The FDA granted accelerated approval to palbociclib for the treatment of estrogen receptor-positive, HER2-negative metastatic breast cancer in postmenopausal women who have not yet received endocrine-based therapy. Palbociclib is the first cell cycle-targeting CDK 4/6 inhibitor to reach the market.

  1. MDM2 and CDK4 expression in periosteal osteosarcoma.

    PubMed

    Righi, Alberto; Gambarotti, Marco; Benini, Stefania; Gamberi, Gabriella; Cocchi, Stefania; Picci, Piero; Bertoni, Franco

    2015-04-01

    Periosteal osteosarcoma is defined by the World Health Organization as an intermediate-grade, malignant, cartilaginous, and bone-forming neoplasm arising on the surface of bone. Unlike other subtypes of osteosarcoma, no data have been published about mouse double minute 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) expression. For this reason, we evaluated the molecular and immunohistochemical features of MDM2 and CDK4 in 27 cases relative to 20 patients with a diagnosis of periosteal osteosarcoma, surgically treated at the Rizzoli Institute between 1981 and 2014. When possible, these results were compared with the MDM2 amplification status as determined by fluorescence in situ hybridization (FISH). All but 1 case (26/27, 96.3%) were negative for MDM2 protein using immunohistochemistry both in primary and in recurrent periosteal osteosarcoma, whereas gene amplification of MDM2 was not detected in any tumor analyzed (10 cases). The positive immunohistochemical case shows a weak/moderate focal nuclear expression of MDM2 antibody in the prevalent cartilaginous component and in the spindle cells of peripheral fibroblastic areas associated with osteoid production in a primary periosteal osteosarcoma. CDK4 immunohistochemical expression was negative in all 27 cases. This retrospective analysis has demonstrated that MDM2 and CDK4 are very rarely expressed in primary and recurrent periosteal osteosarcomas and therefore do not appear to be molecules central to the control of cancer development, growth, and progression in periosteal osteosarcoma. Therefore, when compared with low-grade central and parosteal osteosarcomas, MDM2 and CDK4 markers cannot be used diagnostically to differentiate this subtype of osteosarcoma.

  2. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury

    PubMed Central

    DiRocco, Derek P.; Bisi, John; Roberts, Patrick; Strum, Jay; Wong, Kwok-Kin; Sharpless, Norman

    2013-01-01

    Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and epithelial proliferation is eventually required for renal repair. Here, we tested a well-tolerated, novel and specific small molecule inhibitor of CDK4 and CDK6, PD 0332991, to investigate the effects of transient cell cycle inhibition on epithelial survival in vitro and kidney injury in vivo. We report that CDK4/6 inhibition induced G0/G1 cycle arrest in cultured human renal proximal tubule cells (hRPTC) at baseline and after injury. Induction of transient G0/G1 cycle arrest through CDK4/6 inhibition protected hRPTC from DNA damage and caspase 3/7 activation following exposure to the nephrotoxins cisplatin, etoposide, and antimycin A. In vivo, mice treated with PD 0332991 before ischemia-reperfusion injury (IRI) exhibited dramatically reduced epithelial progression through S phase 24 h after IRI. Despite reduced epithelial proliferation, PD 0332991 ameliorated kidney injury as reflected by improved serum creatinine and blood urea nitrogen levels 24 h after injury. Inflammatory markers and macrophage infiltration were significantly decreased in injured kidneys 3 days following IRI. These results indicate that induction of proximal tubule cell cycle arrest with specific CDK4/6 inhibitors, or “pharmacological quiescence,” represents a novel strategy to prevent AKI. PMID:24338822

  3. Targeting the AKT/GSK3{beta}/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    SciTech Connect

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-06-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3{beta}-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3{beta}/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3{beta}/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor

  4. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer.

    PubMed

    Jansen, Valerie M; Bhola, Neil E; Bauer, Joshua A; Formisano, Luigi; Lee, Kyung-Min; Hutchinson, Katherine E; Witkiewicz, Agnieszka K; Moore, Preston D; Estrada, Monica Valeria; Sanchez, Violeta; Ericsson, Paula G; Sanders, Melinda; Pohlmann, Paula R; Pishvaian, Michael J; Riddle, David A; Wei, Wenyi; Dugger, Teresa C; Knudsen, Erik; Arteaga, Carlos L

    2017-03-01

    To discover mechanisms of resistance to CDK4/6 inhibitors, we used a kinome-wide siRNA screen to identify kinases that, when downregulated, promote sensitivity to ribociclib. We identified 3-phosphoinositide dependent protein kinase 1 (PDK1) as the top siRNA that sensitized ER+ MCF-7 cells to ribociclib. Pharmacological inhibition of PDK1 with GSK2334470 in combination with ribociclib or palbociclib, synergistically inhibited proliferation and increased apoptosis in a panel of ER+ breast cancer cell lines. Ribociclib-resistant MCF-7, T47D and HCC1428 cells, selected after chronic drug exposure, displayed increased levels of PDK1, P-RSK2, P-AKT and P-S6 compared to parental drug-sensitive cells. Cell cycle analysis revealed that CDK4/6 inhibition failed to induce G1 arrest, a reduction in S phase, and senescence in ribociclib-resistant cells, suggesting an upregulation of S-phase cyclins/CDKs. The resistant cells exhibited significantly higher levels of P-CDK2, cyclin A, cyclin D1, cyclin E and S477/T479 P-AKT, a CDK2-dependent phosphorylation site within AKT required for full kinase activity and limited to the S-phase of the cell cycle. Treatment with GSK2334470 or the CDK2 inhibitor dinaciclib re-sensitized ribociclib-resistant cells to CDK4/6 inhibitors; however, ribociclib/GSK2334470 inhibited the ribociclib-resistant cells more potently than ribociclib/dinaciclib. Ribociclib/GSK2334470 but not ribociclib/dinaciclib completely abrogated P-Rb, P-S6, P-RSK2, P-CDK2, cyclin A, cyclin D1 and cyclin E expression. Further, ribociclib in combination with GSK2334470 or the PI3Kα inhibitor alpelisib induced regression of MCF-7 xenografts. Finally, primary ER+ tumors displayed increased PDK1, P-S6 and cyclin D1 levels after short treatment with palbociclib. These data support a role for PI3K/PDK1 in mediating acquired resistance to CDK4/6 inhibitors.

  5. Differential diagnosis of atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma: utility of p16 in combination with MDM2 and CDK4 immunohistochemistry.

    PubMed

    Kammerer-Jacquet, Solène-Florence; Thierry, Sixte; Cabillic, Florian; Lannes, Morgane; Burtin, Florence; Henno, Sébastien; Dugay, Frédéric; Bouzillé, Guillaume; Rioux-Leclercq, Nathalie; Belaud-Rotureau, Marc-Antoine; Stock, Nathalie

    2017-01-01

    The differential diagnosis between atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDLPS) and dedifferentiated liposarcoma (DDLPS) from their morphologic counterparts is challenging. Currently, the diagnosis is guided by MDM2 and CDK4 immunohistochemistry (IHC) and is confirmed by the amplification of the corresponding genes. Recently, p16 IHC has been proposed as a useful diagnostic biomarker. The objective was to assess the utility of p16 IHC in the differential diagnosis of ALT/WDLPS and DDLPS. Our series included 101 tumors that were previously analyzed using fluorescence in situ hybridization for MDM2 and CDK4 amplification. We compared sensitivity and specificity of p16 IHC to MDM2 and CDK4 IHC in the differential diagnosis of ALT-WDLPS (n=19) versus benign adipocytic tumors (n=44) and DDLPS (n=18) versus mimicking sarcomas (n=20). In the differential diagnosis of ALT-WDLPS, p16 had a sensitivity of 89.5% but a specificity of 68.2%, which was impaired by false-positive lipomas with secondary changes, especially in biopsies. Likewise, in the differential diagnosis of DDLPS, p16 had a sensitivity of 94.4% and a specificity of 70%, which hampered its use as a single marker. However, adding p16 to MDM2 and/or CDK4 increased diagnostic specificity. Indeed, MDM2+/p16+ tumors were all ALT-WDLPS, and MDM2-/p16- tumors were all benign adipocytic tumors. Moreover, all MDM2+/CDK4+/p16+ tumors were DDLPS, and the MDM2-/CDK4-/p16- tumor was an undifferentiated sarcoma. Although the use of p16 as a single immunohistochemical marker is limited by its specificity, its combination with MDM2 and CDK4 IHC may help discriminate ALT-WDLPS/DDLPS.

  6. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice

    PubMed Central

    Wei, Liang; Leibowitz, Brian J.; Wang, Xinwei; Epperly, Michael; Greenberger, Joel; Zhang, Lin

    2016-01-01

    Radiotherapy causes dose-limiting toxicity and long-term complications in rapidly renewing tissues, including the gastrointestinal tract. Currently, there is no FDA-approved agent for the prevention or treatment of radiation-induced intestinal injury. In this study, we have shown that PD 0332991 (PD), an FDA-approved selective inhibitor of cyclin-dependent kinase 4/6 (CDK4/6), prevents radiation-induced lethal intestinal injury in mice. Treating mice with PD or a structurally distinct CDK4/6 inhibitor prior to radiation blocked proliferation and crypt apoptosis and improved crypt regeneration. PD treatment also enhanced LGR5+ stem cell survival and regeneration after radiation. PD was an on-target inhibitor of RB phosphorylation and blocked G1/S transition in the intestinal crypts. PD treatment strongly but reversibly inhibited radiation-induced p53 activation, which blocked p53-upregulated modulator of apoptosis–dependent (PUMA-dependent) apoptosis without affecting p21-dependent suppression of DNA damage accumulation, with a repair bias toward nonhomologous end joining. Further, deletion of PUMA synergized with PD treatment for even greater intestinal radioprotection. Our results demonstrate that the cell cycle critically regulates the DNA damage response and survival of intestinal stem cells and support the concept that pharmacological quiescence is a potentially highly effective and selective strategy for intestinal radioprotection. PMID:27701148

  7. Azolium analogues as CDK4 inhibitors: Pharmacophore modeling, 3D QSAR study and new lead drug discovery

    NASA Astrophysics Data System (ADS)

    Rondla, Rohini; Padma Rao, Lavanya Souda; Ramatenki, Vishwanath; Vadija, Rajender; Mukkera, Thirupathi; Potlapally, Sarita Rajender; Vuruputuri, Uma

    2017-04-01

    The cyclin-dependent kinase 4 (CDK4) enzyme is a key regulator in cell cycle G1 phase progression. It is often overexpressed in variety of cancer cells, which makes it an attractive therapeutic target for cancer treatment. A number of chemical scaffolds have been reported as CDK4 inhibitors in the literature, and in particular azolium scaffolds as potential inhibitors. Here, a ligand based pharmacophore modeling and an atom based 3D-QSAR analyses for a series of azolium based CDK4 inhibitors are presented. A five point pharmacophore hypothesis, i.e. APRRR with one H-bond acceptor (A), one positive cationic feature (P) and three ring aromatic sites (R) is developed, which yielded an atom based 3D-QSAR model that shows an excellent correlation coefficient value- R2 = 0.93, fisher ratio- F = 207, along with good predictive ability- Q2 = 0.79, and Pearson R value = 0.89. The visual inspection of the 3D-QSAR model, with the most active and the least active ligands, demonstrates the favorable and unfavorable structural regions for the activity towards CDK4. The roles of positively charged nitrogen, the steric effect, ligand flexibility, and the substituents on the activity are in good agreement with the previously reported experimental results. The generated 3D QSAR model is further applied as query for a 3D database screening, which identifies 23 lead drug candidates with good predicted activities and diverse scaffolds. The ADME analysis reveals that, the pharmacokinetic parameters of all the identified new leads are within the acceptable range.

  8. Chemoprevention utility of silibinin and Cdk4 pathway inhibition in Apc−/+ mice

    PubMed Central

    2013-01-01

    Background Colorectal cancer (CRC) is the second leading cause of death from cancer in the United States. Colorectal cancers have a prolonged latency following initiation that may span decades providing ample time for implementing a chemoprevention strategy that could block or reverse the progression to CRC. Cdk4 pathway alterations have been linked to a number of cancers including CRC. In these experiments we focused on the Cdk4 pathway and its role in intestinal tumorigenesis as a possible target in chemoprevention strategies. Methods We evaluated the effect of Cdk4 blockade on the prevention of intestinal tumor formation by crossing Cdk4−/− mice to Apc−/+ mice. In addition, we tested the effect of the dietary compound silibinin on the Cdk4 pathway in Apc−/+ mice and HT-29 colon cancer cells in culture. Results Cdk4−/− mice backcrossed to Apc−/+ mice reduced intestinal adenoma formation compared to Apc−/+ controls. Silibinin effectively targeted the Cdk4 pathway causing hypophosphorylation of the retinoblastoma protein, inhibited cell growth, and induced apoptosis. As a result silibinin blocked the development of intestinal adenomas by 52% in this genetic model (Apc−/+ mice) of early events in colorectal cancer formation. No toxic abnormalities were detected in mice which received silibinin. Conclusions Modification of the Cdk4 pathway using a natural plant-derived compound such as silibinin may be a useful chemopreventive strategy for colorectal carcinomas. PMID:23530816

  9. Evaluation of germline CDKN2A, ARF, CDK4, PTEN, and BRAF alterations in atypical mole syndrome.

    PubMed

    Celebi, J T; Ward, K M; Wanner, M; Polsky, D; Kopf, A W

    2005-01-01

    Atypical mole syndrome is a sporadic or an inherited condition with an increased risk of melanoma. Germline mutations in the CDKN2A, ARF, CDK4 and somatic mutations in the PTEN and BRAF genes have been associated with melanoma. In this study, we evaluated genes associated with familial and sporadic melanoma for mutations in 28 probands with the atypical mole syndrome. No sequence alterations in the coding regions or in the splice junctions of CDKN2A, ARF, CDK4, PTEN or BRAF were identified. These data suggest that genes evaluated in this study are unlikely to be candidate genes for atypical mole syndrome and support the notion that unknown susceptibility gene/s for this disease exist.

  10. Altered expression of cell cycle regulators Cyclin D1, p14, p16, CDK4 and Rb in nodular melanomas.

    PubMed

    Bachmann, Ingeborg M; Straume, Oddbjørn; Akslen, Lars A

    2004-12-01

    Cell cycle regulating proteins are important in tumour development. To investigate whether alterations in Cyclin D1, p14, CDK4 and Rb are associated with tumour cell proliferation, tumour progression and patient survival in malignant melanoma, we examined 202 vertical growth phase tumours and 68 corresponding metastases for expression of Cyclin D1, p14, CDK4 and Rb, and compared the results with Ki-67 expression, p16 and p53 expression, clinico-pathological variables, and survival data. Nuclear staining of Cyclin D1 was strong in 35% of cases, and correlated with high levels of Rb (p=0.05), but not with survival or other markers tested. Strong staining of p14 was found in 63% of nodular melanomas and was associated with strong p53 expression (p=0.014), and with high levels of CDK4 (p<0.0001). Low p14 expression was associated with increased tumour thickness (p=0.008) and increasing level of invasion (p=0.020). Strong nuclear staining for CDK4 was found in 81% of cases and was associated with tumour thickness below the median value of 3.7 mm and improved survival (log-rank test, p=0.024). Further, 56% of the tumours showed strong nuclear staining for Rb, and these cases were significantly associated with absent/low levels of p16 staining (p=0.030), high levels of p14 (p=0.010), as well as high Ki-67 expression (p=0.005). Our results seem to confirm that the p16-Rb pathway plays an important role in tumour progression and prognosis in vertical growth phase melanomas, whereas alterations in the p14-p53 pathway might be less important.

  11. Understanding and modulating cyclin-dependent kinase inhibitor specificity: molecular modeling and biochemical evaluation of pyrazolopyrimidinones as CDK2/cyclin A and CDK4/cyclin D1 inhibitors

    NASA Astrophysics Data System (ADS)

    Rossi, Karen A.; Markwalder, Jay A.; Seitz, Steven P.; Chang, Chong-Hwan; Cox, Sarah; Boisclair, Michael D.; Brizuela, Leonardo; Brenner, Stephen L.; Stouten, Pieter F. W.

    2005-02-01

    Cyclin-dependent kinases (CDKs) play a key role in regulating the cell cycle. The cyclins, their activating agents, and endogenous CDK inhibitors are frequently mutated in human cancers, making CDKs interesting targets for cancer chemotherapy. Our aim is the discovery of selective CDK4/cyclin D1 inhibitors. An ATP-competitive pyrazolopyrimidinone CDK inhibitor was identified by HTS and docked into a CDK4 homology model. The resulting binding model was consistent with available SAR and was validated by a subsequent CDK2/inhibitor crystal structure. An iterative cycle of chemistry and modeling led to a 70-fold improvement in potency. Small substituent changes resulted in large CDK4/CDK2 selectivity changes. The modeling revealed that selectivity is largely due to hydrogen-bonded interactions with only two kinase residues. This demonstrates that small differences between enzymes can efficiently be exploited in the design of selective inhibitors.

  12. Immunohistochemical detection of CDK4 and p16INK4 proteins in cutaneous malignant melanoma.

    PubMed

    Wang, Y L; Uhara, H; Yamazaki, Y; Nikaido, T; Saida, T

    1996-02-01

    p16INK4 gene, which encodes a specific inhibitor of cyclin-dependent kinase 4 (CDK4), has been recently reported as an important tumour suppressor gene. It is mapped to chromosome 9p21, which is frequently deleted or mutated in many tumour cell lines including malignant melanoma. Since the CDK4/cyclin D complex propels a cell to go through the G1 check point of the cell cycle, a critical phase of cell division, alteration of the p16INK4 gene could lead a cell to uncontrolled proliferation and malignant transformation. To clarify any role for p16INK4 and CDK4 proteins in the development of human malignant melanoma, we have examined, immunohistochemically, the expression of these two proteins in melanocytic neoplasms including 19 primary lesions of non-familial melanoma. Intense nuclear and/or cytoplasmic expression of the CDK4 protein was observed in 11 of 19 cases (58%) of melanoma. In contrast, virtually no nuclear or cytoplasmic staining for CDK4 protein was detected in 28 benign melanocytic naevi, including six Spitz naevi. Expression of p16INK4 protein was observed in three of 19 melanomas (16%) and in 17 of 28 benign naevi (61%). Inverse expression of CDK4 and p16INK4, at individual cell level, was detected in one case of melanoma. The present study suggests that CDK4 overexpression is characteristic for malignant melanoma, and probably reflects its autonomous accelerated cell proliferation. The expression rate of p16INK4 protein in malignant melanoma was lower than that in benign naevi, although the significance of p16INK4 deletion in melanoma development has not been definitely confirmed.

  13. A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation.

    PubMed

    Molven, Anders; Grimstvedt, Magne B; Steine, Solrun J; Harland, Mark; Avril, Marie-Françoise; Hayward, Nicholas K; Akslen, Lars A

    2005-09-01

    Mutations in two loci encoding cell-cycle-regulatory proteins have been shown to cause familial malignant melanoma. About 20% of melanoma-prone families bear a mutation in the CDKN2A locus, which encodes two unrelated proteins, p16INK4A and p14ARF. Mutations in the other locus, CDK4, are much rarer and have been linked to the disease in only three families worldwide. In the 1960s, a large Norwegian pedigree with multiple atypical nevi and malignant melanomas was identified. Subsequently, six generations and more than 100 family members were traced and 20 cases of melanoma verified. In this article, we report that CDK4 codon 24 is mutated from CGT to CAT (Arg24His) in this unusually large melanoma kindred. Intriguingly, one of the family members had ocular melanoma, but the CDK4 mutation could not be detected in archival tissue samples from this subject. Thus, the case of ocular melanoma in this family was sporadic, suggesting an etiology different from that of the skin tumors. The CDK4 mutation in the Norwegian family was identical to that in melanoma families in France, Australia, and England. Haplotype analysis using microsatellite markers flanking the CDK4 gene and single-nucleotide polymorphisms within the gene did not support the possibility that there was a common founder, but rather indicated at least two independent mutational events. All CDK4 melanoma families known to date have a substitution of amino acid 24. In addition to resulting from selection pressure, this observation may be explained by the CG dinucleotide of codon 24 representing a mutational hot spot in the CDK4 gene.

  14. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis.

  15. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation.

    PubMed

    Della Torre, G; Pasini, B; Frigerio, S; Donghi, R; Rovini, D; Delia, D; Peters, G; Huot, T J; Bianchi-Scarra, G; Lantieri, F; Rodolfo, M; Parmiani, G; Pierotti, M A

    2001-09-14

    Physical interaction between CDKN2A/p16 and CDK4 proteins regulates the cell cycle progression through the G1 phase and dysfunction of these proteins by gene mutation is implicated in genetic predisposition to melanoma. We analysed 15 Italian melanoma families for germ line mutations in the coding region of the CDKN2A gene and exon 2 of the CDK4 gene. One novel disease-associated mutation (P48T), 3 known pathological mutations (R24P, G101W and N71S) and 2 common polymorphisms (A148T and Nt500 G>C) were identified in the CDKN2A gene. In a family harbouring the R24P mutation, an intronic variant (IVS1, +37 G>C) of uncertain significance was detected in a non-carrier melanoma case. The overall incidence of CDKN2A mutations was 33.3%, but this percentage was higher in families with 3 or more melanoma cases (50%) than in those with only 2 affected relatives (25%). Noteworthy, functional analysis established that the novel mutated protein, while being impaired in cell growth and inhibition assays, retains some in vitro binding to CDK4/6. No variant in the p16-binding region of CDK4 was identified in our families. Our results, obtained in a heterogeneous group of families, support the view that inactivating mutations of CDKN2A contribute to melanoma susceptibility more than activating mutations of CDK4 and that other genetic factors must be responsible for melanoma clustering in a high proportion of families. In addition, they indicate the need for a combination of functional assays to determine the pathogenetic nature of new CDKN2A mutations.

  16. ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2016-01-01

    It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945

  17. ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells.

    PubMed

    Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2016-07-25

    It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression.

  18. 1α,25 dihydroxi-vitamin D₃ modulates CDK4 and CDK6 expression and localization.

    PubMed

    Irazoqui, Ana P; Heim, Nadia B; Boland, Ricardo L; Buitrago, Claudia G

    2015-03-27

    We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH)₂-vitamin D₃ [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21(Waf1/Cip1) and p27(Kip1) expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D -induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs -dependent mechanism in hormone modulation of myogenesis.

  19. Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy that Co-Targets MEK and CDK4/6

    PubMed Central

    Ziemke, Elizabeth K.; Dosch, Joseph S.; Maust, Joel D.; Shettigar, Amrith; Sen, Ananda; Welling, Theodore H.; Hardiman, Karin M.; Sebolt-Leopold, Judith S.

    2015-01-01

    Purpose The emerging need for rational combination treatment approaches led us to test the concept that co-targeting MEK and CDK4/6 would prove efficacious in KRAS mutant (KRASmt) colorectal cancers, where upregulated CDK4 and hyperphosphorylated retinoblastoma (RB) typify the vast majority of tumors. Experimental Design Initial testing was carried out in the HCT-116 tumor model, which is known to harbor a KRAS mutation. Efficacy studies were then performed with five RB+ patient-derived colorectal xenograft models, genomically diverse with respect to KRAS, BRAF, and PIK3CA mutational status. Tolerance, efficacy, and pharmacodynamic evaluation of target modulation were evaluated in response to daily dosing with either agent alone or concurrent co-administration. Results Synergy was observed in vitro when HCT-116 cells were treated over a broad range of doses of trametinib and palbociclib. Subsequent in vivo evaluation of this model showed a higher degree of antitumor activity resulting from the combination compared to that achievable with single agent treatment. Testing of colorectal patient-derived xenograft (PDX) models further showed that combination of trametinib and palbociclib was well tolerated and resulted in objective responses in all KRASmt models tested. Stasis was observed in a KRAS/BRAF wild type and a BRAFmt model. Conclusions Combination of trametinib and palbociclib was well tolerated and highly efficacious in all three KRAS mutant CRC PDX models tested. Promising preclinical activity seen here supports clinical evaluation of this treatment approach to improve therapeutic outcome for metastatic colorectal cancer patients. PMID:26369631

  20. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter.

  1. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase.

    PubMed

    Verba, Kliment A; Wang, Ray Yu-Ruei; Arakawa, Akihiko; Liu, Yanxin; Shirouzu, Mikako; Yokoyama, Shigeyuki; Agard, David A

    2016-06-24

    The Hsp90 molecular chaperone and its Cdc37 cochaperone help stabilize and activate more than half of the human kinome. However, both the mechanism by which these chaperones assist their "client" kinases and the reason why some kinases are addicted to Hsp90 while closely related family members are independent are unknown. Our structural understanding of these interactions is lacking, as no full-length structures of human Hsp90, Cdc37, or either of these proteins with a kinase have been elucidated. Here we report a 3.9 angstrom cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex. Surprisingly, the two lobes of Cdk4 are completely separated with the β4-β5 sheet unfolded. Cdc37 mimics part of the kinase N lobe, stabilizing an open kinase conformation by wedging itself between the two lobes. Finally, Hsp90 clamps around the unfolded kinase β5 strand and interacts with exposed N- and C-lobe interfaces, protecting the kinase in a trapped unfolded state. On the basis of this structure and an extensive amount of previously collected data, we propose unifying conceptual and mechanistic models of chaperone-kinase interactions.

  2. Atomic structure of Hsp90:Cdc37:Cdk4 reveals Hsp90 regulates kinase via dramatic unfolding

    PubMed Central

    Verba, Kliment A.; Wang, Ray Yu-Ruei; Arakawa, Akihiko; Liu, Yanxin; Shirouzu, Mikako; Yokoyama, Shigeyuki; Agard, David A.

    2017-01-01

    The Hsp90 molecular chaperone and its Cdc37 co-chaperone help stabilize and activate over half of the human kinome. However, neither the mechanism by which these chaperones assist their client kinases nor why some kinases are addicted to Hsp90 while closely related family members are independent is known. Missing has been any structural understanding of these interactions, with no full-length structures of human Hsp90, Cdc37 or either of these proteins with a kinase. Here we report a 3.9Å cryoEM structure of the Hsp90:Cdc37:Cdk4 kinase complex. Cdk4 is in a novel conformation, with its two lobes completely separated. Cdc37 mimics part of the kinase N-lobe, stabilizing an open kinase conformation by wedging itself between the two lobes. Finally, Hsp90 clamps around the unfolded kinase β5 strand and interacts with exposed N- and C-lobe interfaces, protecting the kinase in a trapped unfolded state. Based on this novel structure and extensive previous data, we propose unifying conceptual and mechanistic models of chaperone-kinase interactions. PMID:27339980

  3. RASSF1A inhibits gastric cancer cell proliferation by miR-711- mediated downregulation of CDK4 expression

    PubMed Central

    Chen, Lin; Zhou, Weiwei; Hu, Hongsai

    2016-01-01

    Although interaction with DNA repair proteins has demonstrated that RASSF1A is a tumour suppressor gene, much attention has been directed in recent years towards its roles in regulating the cell cycle. However, the precise mechanism remains unclear. Uncovering how RASSF1A participates in regulating the cell cycle is critical to exploring effective therapeutic targets for gastric cancer. Here we show that RASSF1A could regulate 14 miRNAs’ expression in the typical human gastric cancer line SGC-7901, of which miR-711 was upregulated the most. Moreover, for SGC-7901 cells, miR-711 was found to downregulate CDK4 expression, and to arrest the cell cycle in the G1 phase. Our results suggest that RASSF1A inhibits the proliferation of gastric cancer cells by upregulating the expression of miR-711, which arrested gastric cancer cells in the G1 phase by downregulating expression of CDK4. This finding might provide us with a novel therapeutic target for gastric cancer by increasing RASSF1A expression via miR-711 regulation. PMID:26735582

  4. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

    PubMed

    Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia

    2015-07-27

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis.

  5. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43.

    PubMed

    Kempisty, Bartosz; Ziółkowska, Agnieszka; Piotrowska, Hanna; Zawierucha, Piotr; Antosik, Paweł; Bukowska, Dorota; Ciesiółka, Sylwia; Jaśkowski, Jędrzej M; Brüssow, Klaus P; Nowicki, Michał; Zabel, Maciej

    2013-09-01

    The proper maturation of cumulus somatic cells depends on bidirectional communication between the oocyte and the surrounding cumulus cells (CCs). The aim of this study was (i) to investigate maturation markers, such as Cx43 and Cdk4 protein levels, and (ii) to analyze the distribution of these two proteins in CCs cultured for 44, 88, 132, and 164 hours in both separated and cumulus-enclosed oocyte cultures. CCs were isolated from porcine ovarian follicles after the treatment of the recovered COCs with collagenase. Then, the separated CCs were cultured in TCM-199 for 0 to 164 hours, using a real-time cellular analyzer; however, the immunostaining was performed only after 44, 88, and 132 hours. The protein levels and distribution were analyzed using confocal microscopy. After the CCs underwent in vitro cultivation (IVC) for 25 hours, a logarithmically increasing normalized proliferation index was found throughout the entire 164 hours cultivation time. The Cx43 and Cdk4 proteins were observed at higher levels after 44 hours of culture than before IVC. After 88 and 132 hours of IVC, no significant alterations in either mRNA or protein levels of Cx43 and Cdk4 were found. Cx43 and Cdk4 were localized in the cell nucleus before IVC, whereas after 44, 88, and 132 hours of IVC, both proteins translocated to the cytoplasm. In cumulus-enclosed oocyte cultures, Cdk4 was localized both in the nucleus and cytoplasm, whereas Cx43 was only in the cytoplasm. Additionally, only low levels of the cumulus expansion markers MIS and SNAT3 were observed. In summary, we could demonstrate that the in vitro cultivation of CCs was associated with cell proliferation and that Cx43 and Cdk4 gene expression was upregulated after IVC, resulting in significantly higher protein levels. Moreover, the two proteins translocated from the nucleus to the cytoplasm of the CCs during IVC. The protein distribution is presumably related to different protein functions during bidirectional communication via

  6. Analysis of Latvian familial melanoma patients shows novel variants in the noncoding regions of CDKN2A and that the CDK4 mutation R24H is a founder mutation.

    PubMed

    Veinalde, Rūta; Ozola, Aija; Azarjana, Kristīne; Molven, Anders; Akslen, Lars A; Doniņa, Simona; Proboka, Guna; Cēma, Ingrīda; Baginskis, Ainārs; Pjanova, Dace

    2013-06-01

    Hereditary cutaneous melanoma is associated with mutations in the high-risk CDKN2A gene in about 40% of melanoma-prone families. Mutations in the CDK4 gene are the cause in only a few pedigrees. In this study, we analyzed 20 Latvian familial melanoma probands and carried out a comprehensive analysis of CDKN2A including sequencing of its promoter/intronic regions and deletion screening. We also analyzed the critical second exon of the CDK4 gene. One novel intronic variant (IVS2+82C>T) of the CDKN2A gene and a small deletion (c.-20677_-20682delGTACGC) in its promoter region were found. Genotyping of the novel variants in larger melanoma and control groups indicated that the deletion increases the risk of melanoma (odds ratio=6.353, 95% confidence interval: 1.34-30.22, P=0.0168). The CDK4 gene analysis showed a Latvian melanoma family with the mutation R24H carried on the same haplotype as in two previously described Latvian CDK4-positive families. Our study suggests that the main risk gene in Latvian families with a strong family history of melanoma is CDK4 and that most of the other cases analyzed could be sporadic or associated with low-penetrance risk genes.

  7. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome.

    PubMed

    Dawson, Simon; Apcher, Sebastien; Mee, Maureen; Higashitsuji, Hiroaki; Baker, Rohan; Uhle, Stefan; Dubiel, Wolfgang; Fujita, Jun; Mayer, R John

    2002-03-29

    A yeast two-hybrid screen with the human S6 (TBP7, RPT3) ATPase of the 26 S proteasome has identified gankyrin, a liver oncoprotein, as an interacting protein. Gankyrin interacts with both free and regulatory complex-associated S6 ATPase and is not stably associated with the 26 S particle. Deletional mutagenesis shows that the C-terminal 78 amino acids of the S6 ATPase are necessary and sufficient to mediate the interaction with gankyrin. Deletion of an orthologous gene in Saccharomyces cerevisiae suggests that it is dispensable for cell growth and viability. Overexpression and precipitation of tagged gankyrin from cultured cells detects a complex containing co-transfected tagged S6 ATPase (or endogenous S6) and endogenous cyclin D-dependent kinase CDK4. The proteasomal ATPases are part of the AAA (ATPases associated with diverse cellular activities) family, members of which are molecular chaperones; gankyrin complexes may therefore influence CDK4 function during oncogenesis.

  8. Autochthonous primary and metastatic melanomas in Hgf-Cdk4 R24C mice evade T-cell-mediated immune surveillance.

    PubMed

    Landsberg, Jennifer; Gaffal, Evelyn; Cron, Mira; Kohlmeyer, Judith; Renn, Marcel; Tüting, Thomas

    2010-10-01

    Genetically engineered mouse models offer new opportunities to investigate the role of cell-mediated immunity in the natural progression of melanoma in an immunocompetent host. Here we report that Hgf-Cdk4(R24C) mice spontaneously develop a spectrum of primary melanomas with high penetrance during their first year of life. Malignant transformation proceeds in a stepwise manner from multiple melanocytic nevi to single nodular melanomas and disseminated metastases in most mice. Migrating melanoma cells invade the draining lymph nodes without activating the immune system. Autochthonous primary tumors are destroyed following experimental introduction of immune surveillance using an adoptive lymphocyte transfer approach. However, some tumor cells are able to survive, evade immune cell control, and recur both locally and systemically. Immune tolerance in recurring tumors may be supported by immunosuppressive Gr1(+) myeloid cells. Taken together, our results demonstrate that primary and metastatic melanomas developing spontaneously in Hgf-Cdk4(R24C) mice effectively evade cellular immune surveillance.

  9. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies

    PubMed Central

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490

  10. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies.

    PubMed

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.

  11. Preclinical Therapeutic Synergy of MEK1/2 and CDK4/6 Inhibition in Neuroblastoma.

    PubMed

    Hart, Lori S; Rader, JulieAnn; Raman, Pichai; Batra, Vandana; Russell, Mike R; Tsang, Matthew; Gagliardi, Maria; Chen, Lucy; Martinez, Daniel; Li, Yimei; Wood, Andrew; Kim, Sunkyu; Parasuraman, Sudha; Delach, Scott; Cole, Kristina A; Krupa, Shiva; Boehm, Markus; Peters, Malte; Caponigro, Giordano; Maris, John M

    2017-04-01

    Purpose: Neuroblastoma is treated with aggressive multimodal therapy, yet more than 50% of patients experience relapse. We recently showed that relapsed neuroblastomas frequently harbor mutations leading to hyperactivated ERK signaling and sensitivity to MEK inhibition therapy. Here we sought to define a synergistic therapeutic partner to potentiate MEK inhibition.Experimental Design: We first surveyed 22 genetically annotated human neuroblastoma-derived cell lines (from 20 unique patients) for sensitivity to the MEK inhibitor binimetinib. After noting an inverse correlation with sensitivity to ribociclib (CDK4/6 inhibitor), we studied the combinatorial effect of these two agents using proliferation assays, cell-cycle analysis, Ki67 immunostaining, time-lapse microscopy, and xenograft studies.Results: Sensitivity to binimetinib and ribociclib was inversely related (r = -0.58, P = 0.009). MYCN amplification status and expression were associated with ribociclib sensitivity and binimetinib resistance, whereas increased MAPK signaling was the main determinant of binimetinib sensitivity and ribociclib resistance. Treatment with both compounds resulted in synergistic or additive cellular growth inhibition in all lines tested and significant inhibition of tumor growth in three of four xenograft models of neuroblastoma. The augmented growth inhibition was attributed to diminished cell-cycle progression that was reversible upon removal of drugs.Conclusions: Here we demonstrate that combined binimetinib and ribociclib treatment shows therapeutic synergy across a broad panel of high-risk neuroblastoma preclinical models. These data support testing this combination therapy in relapsed high-risk neuroblastoma patients, with focus on cases with hyperactivated RAS-MAPK signaling. Clin Cancer Res; 23(7); 1785-96. ©2016 AACR.

  12. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-β1/CyclinD1/CDK4 pathway.

    PubMed

    Chai, Xue-Min; Li, You-Lun; Chen, Hong; Guo, Shu-Liang; Shui, Li-Li; Chen, Ya-Juan

    2016-09-05

    This study was aimed to investigate the effect of phospholipid transfer protein (PLTP) on cigarette smoke extract (CSE)-induced alteration of the cell cycle and the possible mechanism. Male Wistar rats and the rat alveolar epithelial cell line (RLE-6TN) were exposed to normal air or different concentrations of CSE. Then PLTP siRNA was transfected into cells and an inhibitor of transforming growth factor-β1 (TGF-β1) was administered prior to CSE exposure. Histological changes and cell cycle stage were recorded, as were the expression levels of PLTP, TGF-β1, CyclinD1 and CDK4. Resulting morphological changes included diffuse interstitial substance incrassation and elevated alveolar rupturing. Flow cytometry analysis revealed an increase in the number of cells in the G1 phase in a time- and dose-related manner. Both PLTP and TGF-β1 were up-regulated at protein and mRNA levels, whereas CyclinD1 and CDK4 expression was down-regulated after CSE exposure. Furthermore, PLTP siRNA significantly suppressed CSE-induced TGF-β1 expression, resulting in up-regulation of CyclinD1 and CDK4, but the TGF-β1 inhibitor was not able to abrogate CSE-induced PLTP over-expression. In conclusion, PLTP may operate upstream of the TGF-β1/CyclinD1/CDK4 pathway and may mediate the CSE-induced G1 arrest in RLE-6TN cells. Our work provides some new insight into the relation between PLTP and cell cycle progression.

  13. Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation.

    PubMed

    Tormo, Damia; Ferrer, Aleix; Gaffal, Evelyn; Wenzel, Jörg; Basner-Tschakarjan, Etiena; Steitz, Julia; Heukamp, Lukas C; Gütgemann, Ines; Buettner, Reinhard; Malumbres, Marcos; Barbacid, Mariano; Merlino, Glenn; Tüting, Thomas

    2006-08-01

    Currently, novel mouse models of melanoma are being generated that recapitulate the histopathology and molecular pathogenesis observed in human disease. Impaired cell-cycle control, which is a hallmark of both familial and sporadic melanoma, promotes slowly growing carcinogen-induced melanomas in the skin of mice carrying a mutated cyclin-dependent kinase 4 (CDK4(R24C)). Deregulated receptor tyrosine kinase signaling, which is another important feature of human melanoma, leads to spontaneous development of metastatic melanoma after a long latency period in mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF mice). Here we report that treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced metastatic melanomas in all HGF/SF mice on the C57BL/6 background, which histologically resemble human melanoma. Importantly, mutant CDK4 dramatically increased the number and the growth kinetics of carcinogen-induced primary melanomas in the skin and promoted the growth of spontaneous metastases in lymph nodes and lungs in all HGF/SF mice within the first 3 months of life. Apart from very few skin papillomas, we did not observe tumors of other histology in carcinogen-treated HGF/SF x CDK4(R24C) mice. This new experimental mouse model can now be exploited to study further the biology of melanoma and evaluate new treatment modalities.

  14. 1α,25 dihydroxi-vitamin D{sub 3} modulates CDK4 and CDK6 expression and localization

    SciTech Connect

    Irazoqui, Ana P.; Heim, Nadia B.; Boland, Ricardo L.; Buitrago, Claudia G.

    2015-03-27

    We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH){sub 2}-vitamin D{sub 3} [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21{sup Waf1/Cip1} and p27{sup Kip1} expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D –induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs –dependent mechanism in hormone modulation of myogenesis. - Highlights: • 1,25D modulates CDKs 4 and 6 expression in skeletal muscle cells. • CDK4 co

  15. CDK4/6 inhibitors in HER2-positive breast cancer.

    PubMed

    Corona, Silvia Paola; Ravelli, Andrea; Cretella, Daniele; Cappelletti, Maria Rosa; Zanotti, Laura; Dester, Martina; Gobbi, Angela; Petronini, Pier Giorgio; Generali, Daniele

    2017-04-01

    Notwithstanding the continuous progress made in cancer treatment in the last 20 years, and the availability of new targeted therapies, metastatic Breast Cancer (BC) is still incurable. Targeting the cell cycle machinery has emerged as an attractive strategy to tackle cancer progression, showing very promising results in the preclinical and clinical settings. The first selective inhibitors of CDK4/6 received breakthrough status and FDA approval in combination with letrozole (February 2015) and fulvestrant (February 2016) as first-line therapy in ER-positive advanced and metastatic BC. Considering the success of this family of compounds in hormone-positive BC, new possible applications are being investigated in other molecular subtypes. This review summarizes the latest findings on the use of CDK4/6 inhibitors in HER2 positive BC.

  16. Structural Basis of CDK4 Inhibition by p18INK4

    DTIC Science & Technology

    1999-05-01

    structure database (Accession Number: IIHB). The crystal structure reveals an elongated molecule comprised of five ankyrin repeat units. Each ankyrin repeat...Marmorstein, Crystal structure of the CDK4/6 inhibitory protein p]8(INK4c) provides insights into ankyrin -like repeat structure/function and tumor... ankyrin -like repeat structure/function and tumor-derived p16(INK4) mutations. Nature Structural Biology, 1998. 5(1): p. 74-81. 2. Presentation

  17. Mutation testing in melanoma families: INK4A, CDK4 and INK4D

    PubMed Central

    Newton Bishop, J A; Harland, M; Bennett, D C; Bataille, V; Goldstein, A M; Tucker, M A; Ponder, B A J; Cuzick, J; Selby, P; Bishop, D T

    1999-01-01

    The INK4A gene which codes for the cyclin-dependent kinase (CDK) inhibitor INK4A or p16 underlies susceptibility to melanoma in some families. Germline mutations in the gene that codes for the target protein of p16, CDK4, underlie susceptibility in very rare families. We report mutation screening of the INK4A and CDK4 genes in 42 UK families. A total of nine families were identified with INK4A mutations and none with CDK4 exon 2 mutations. These mutations were in 8/22 (35%) families with three or more cases of melanoma and 1/20 (5%) families with only two cases. In one of these nine families a novel single base pair substitution was identified, Gly67Arg. In an attempt to identify another melanoma susceptibility gene, a member of the INK4 family, the p19 INK4D gene has been studied. The p19 gene was sequenced in DNA from the 42 UK families and six additional US families. No mutations were identified. © 1999 Cancer Research Campaign PMID:10390011

  18. In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN.

    PubMed

    Huang, Chu Zhu; Huang, Wei Zhe; Zhang, Ge; Tang, Dan Ling

    2013-10-01

    In this study we investigated the effects of curcumin, derived from plant Curcuma longa, on oxidative toxicity, and the possible molecular mechanism of antitumour of curcumin in liver cancer rats. Results showed that blood levels of Gamma-glutamyltransferase, aspartate aminotransferase, alanine aminotransferase, glutathione S-transferase, and liver level of MD were significantly decreased after curcumin feeding. Levels of the liver malondialdehyde MDA, nitric oxide and antioxidant enzymes were significantly increased. Moreover, RT-PCR and Western blot analysis results showed that curcumin treatment significantly decreased liver vascular endothelial growth factor (VEGF), CyclinD1 and CDK4 mRNA expression levels and CyclinD1 and CDK4 proteins levels in liver cancer rats. These findings were confirmed by histopathology. It is concluded that curcumin can protect the liver from the damage caused by N-nitrosodiethylamine. Moreover, curcumin has the potential to be used in a therapy for liver cancer. The present data provide evidence to support the presence of free radicals and VEGF, CyclinD1 and CDK4 mRNA in rat tumour cells. Studies are in progress in order to further characterize the role of VEGF, CyclinD1 and CDK4 mRNA in liver cancer cells and in hepatic therapeutics.

  19. Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression--a real-time cell proliferation approach.

    PubMed

    Kempisty, Bartosz; Ziółkowska, Agnieszka; Piotrowska, Hanna; Ciesiółka, Sylwia; Antosik, Paweł; Bukowska, Dorota; Zawierucha, Piotr; Woźna, Magdalena; Jaśkowski, Jędrzej M; Brüssow, Klaus P; Nowicki, Michał; Zabel, Maciej

    2013-01-01

    The CC (cumulus cell) proliferation index in relation to the expression and distribution of Cdk4 and Cx43 proteins, which are crucial factors for oocyte maturation, was investigated. Cumulus-oocyte complexes (COCs) were recovered from pubertal crossbred Landrace gilts and treated with collagenase, and separated CCs were cultured in standard TCM199 medium for 44 h. At each step of in vitro cultivation (IVC) of CCs (0, 12, 24 and 44 h), a normalized proliferation index was assessed. Cdk4 and Cx43 protein expression and the CC-specific cellular distribution were analyzed by confocal microscopic observation. The normalized proliferation index (number of cells attached, measured by impedance) was increased in the first 12 h of IVC (P<0.01) and differed between 12 h and 24 h of cultivation (P<0.001). Later, between 24 h-44 h of IVC, the CC proliferation rate was stable, and no significant differences were observed. Based on the confocal microscopic observation, increased expression of both Cdk4 and Cx43 was found after 44 h of IVC compared with the expression of these proteins before IVC. Moreover, after IVC, a substantial translocation of Cdk4 and Cx43 was noted from the nucleus to the cytoplasm of CCs. In conclusion, it was demonstrated for the first time that CCs can be cultured in vitro separately without oocytes and that the proliferation index was significantly increased in the first 12 h of IVC, which may reflect the process of ordinary cumulus cell expansion. Furthermore, the expression of both Cdk4 and Cx43 in CCs suggested that these proteins may be regarded as markers not only of proper oocyte maturation but also of CC differentiation. Translocation of these proteins into the cytoplasm of CCs after 44 h of IVC may be related to the expansion process.

  20. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6.

    PubMed

    Malumbres, Marcos; Sotillo, Rocío; Santamaría, David; Galán, Javier; Cerezo, Ana; Ortega, Sagrario; Dubus, Pierre; Barbacid, Mariano

    2004-08-20

    Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation.

  1. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma

    PubMed Central

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K.; Diehl, J. Alan; Wong, Kwok-Kin; Bass, Adam J.

    2017-01-01

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial–mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically. PMID:28059068

  2. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi

    PubMed Central

    Papp, T.; Pemsel, H.; Zimmermann, R.; Bastrop, R.; Weiss, D.; Schiffmann, D.

    1999-01-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.


Keywords: naevi; N-ras; p53; p16 PMID:10465111

  3. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi.

    PubMed

    Papp, T; Pemsel, H; Zimmermann, R; Bastrop, R; Weiss, D G; Schiffmann, D

    1999-08-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.

  4. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions.

    PubMed

    Pabla, Navjotsingh; Gibson, Alice A; Buege, Mike; Ong, Su Sien; Li, Lie; Hu, Shuiying; Du, Guoqing; Sprowl, Jason A; Vasilyeva, Aksana; Janke, Laura J; Schlatter, Eberhard; Chen, Taosheng; Ciarimboli, Giuliano; Sparreboom, Alex

    2015-04-21

    Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.

  5. Association of CDK4 germline and BRAF somatic mutations in a patient with multiple primary melanomas and BRAF inhibitor resistance.

    PubMed

    Governa, Maurizio; Caprarella, Evelina; Dalla Pozza, Edoardo; Vigato, Enrico; Maritan, Monia; Caputo, Glenda G; Zannoni, Marina; Rosina, Paolo; Elefanti, Lisa; Stagni, Camilla; Menin, Chiara

    2015-10-01

    Many genetic alterations, including predisposing or somatic mutations, may contribute toward the development of melanoma. Although CDKN2A and CDK4 are high-penetrance genes for melanoma, MC1R is a low-penetrance gene that has been associated most consistently with the disease. Moreover, BRAF is the most frequently somatically altered oncogene and is a validated therapeutic target in melanoma. This paper reports a case of multiple primary melanoma with germline CDK4 mutation, MC1R variant, and somatic BRAF mutation in nine out of 10 melanomas, indicating that a common pathogenesis, because of a predisposing genetic background, may be shared among distinct subsequent melanomas of probable clonal origin. After 3 months of targeted therapy with BRAF inhibitor, our patient developed resistance with rapid progression of the disease leading to death. This is the first case in which early resistance to BRAF inhibitor has been reported in a patient with CDK4 germline mutation.

  6. Marine steroids as potential anticancer drug candidates: In silico investigation in search of inhibitors of Bcl-2 and CDK-4/Cyclin D1.

    PubMed

    Saikia, Surovi; Kolita, Bhaskor; Dutta, Partha P; Dutta, Deep J; Neipihoi; Nath, Shyamalendu; Bordoloi, Manobjyoti; Quan, Pham Minh; Thuy, Tran Thu; Phuong, Doan Lan; Long, Pham Quoc

    2015-10-01

    Star fishes (Asteroidea) are rich in polar steroids with diverse structural characteristics. The structural modifications of star fish steroids occur at 3β, 4β, 5α, 6α (or β), 7α (or β), 8, 15α (or β) and 16β positions of the steroidal nucleus and in the side chain. Widely found polar steroids in starfishes include polyhydroxysteroids, steroidal sulfates, glycosides, steroid oligoglycosides etc. Bioactivity of these steroids is less studied; only a few reports like antibacterial, cytotoxic activity etc. are available. In continuation of our search for bioactive molecules from natural sources, we undertook in silico screening of steroids from star fishes against Bcl-2 and CDK-4/Cyclin D1 - two important targets of progression and proliferation of cancer cells. We have screened 182 natural steroids from star fishes occurring in different parts of the world and their 282 soft-derivatives by in silico methods. Their physico-chemical properties, drug-likeliness, binding potential with the selected targets, ADMET (absorption, distribution, metabolism, toxicity) were predicted. Further, the results were compared with those of existing steroidal and non steroidal drugs and inhibitors of Bcl-2 and CDK-4/Cyclin D1. The results are promising and unveil that some of these steroids can be potent leads for cancer treatments.

  7. CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

    PubMed Central

    Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico

    2015-01-01

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472

  8. CDKN2A and CDK4 variants in Latvian melanoma patients: analysis of a clinic-based population.

    PubMed

    Pjanova, Dace; Engele, Ludmila; Randerson-Moor, Juliette A; Harland, Mark; Bishop, D Timothy; Newton Bishop, Julia A; Taylor, Claire; Debniak, Tadeusz; Lubinski, Jan; Kleina, Regina; Heisele, Olita

    2007-06-01

    Germline mutations of the CDKN2A and CDK4 genes explain a significant proportion of familial melanoma. To date, there have been few published estimations of the prevalence of such mutations in sporadic melanoma patients. In this study, we investigated CDKN2A and CDK4 exon 2 for germline mutations in 125 consecutive cutaneous malignant melanoma patients recruited through the Latvian Oncological Center, using amplicon melting analysis and sequencing. No disease-related CDKN2A germline mutations were identified in any of the melanoma patients analysed but the previously described CDK4 mutation, Arg24His, was found in one patient with a family history of melanoma. CDKN2A polymorphisms were studied as putative low penetrance susceptibility genes. The proportion of cases with polymorphisms in this Latvian melanoma population was Ala148Thr (c.442G>A) (6%), 500 C/G (c.*29C>G) (18%), and 540 C/T (c.*69C>T) (20%); however, only the frequency of the Ala148Thr polymorphism was higher in melanoma patients than in 203 controls (6 versus 1%, P=0.03). Ala148Thr has also been reported in association with melanoma in a Polish series but not in an English series. We therefore examined the Ala148Thr carrier's haplotype in 10 Latvian and 39 Polish samples. No significant difference was seen between these populations and the predominant haplotype observed in English samples, giving no indication that the discrepancy could be explained by population differences in linkage disequilibrium. In summary, our results show that germline mutations at the CDKN2A locus are rare in sporadic melanoma in Latvia. The study does, however, provide some additional evidence for a role for the CDKN2A polymorphism Ala148Thr as a low penetrance susceptibility gene. The detected CDK4 exon 2 mutation was found in only the seventh family identified worldwide with a germline CDK4 mutation.

  9. Population-based prevalence of CDKN2A and CDK4 mutations in patients with multiple primary melanomas.

    PubMed

    Helsing, Per; Nymoen, Dag Andre; Ariansen, Sarah; Steine, Solrun J; Maehle, Lovise; Aamdal, Steinar; Langmark, Frøydis; Loeb, Mitchell; Akslen, Lars A; Molven, Anders; Andresen, Per Arne

    2008-02-01

    The presence of multiple primary cutaneous melanomas (MPM) has been advocated as guidance to identifying melanoma families. Frequencies of CDKN2A mutations in materials of sporadic MPM cases from pigmented lesion clinics vary between 8 and 15%. Patients with MPM have therefore been regarded as good candidates for CDKN2A mutational screening. We describe a population-based study where all persons in Norway diagnosed with MPM between 1953 and 2004 (n = 738 alive per April 2004) were invited to participate. Three-hundred-and-ninety patients (52.8%) responded confidentially. Mutations in CDKN2A were found in 6.9% of the respondents. Eighty-one MPM patients (20.8%) reported that they belonged to melanoma families, and 17 (21.0%) of these harboured a CDKN2A mutation, compared to 3.2% of the nonfamilial cases. The probability of finding a CDKN2A mutation increased when the patients had three or more melanomas, or a young age of onset of first melanoma. We identified five novel CDKN2A variants (Ala57Gly, Pro81Arg, Ala118Val, Leu130Val, and Arg131Pro) and four that previously have been reported in melanoma families (Glu27X, Met53Ile, Arg87Trp, and Ala127Pro). A large deletion (g.13623_23772del10150) encompassing exon 1alpha and the 5' part of exon 2 was detected in six patients with a family history of melanoma. Three patients, belonging to the same family, had the CDK4 Arg24His mutation. The frequency of CDKN2A mutations was lower than previously reported in other studies, an observation which probably is due to the population-based design of our study.

  10. PCAF acts as a gastric cancer suppressor through a novel PCAF-p16-CDK4 axis

    PubMed Central

    Fei, Hong-Jun; Zu, Li-Dong; Wu, Jun; Jiang, Xiao-Shu; Wang, Jing-Long; Chin, Y Eugene; Fu, Guo-Hui

    2016-01-01

    Gastric cancer (GC) is a leading cause of cancer-related death worldwide and the pathogenesis of GC remains largely unknown. Here, we demonstrate a novel mechanism by which P300/CBP associating factor (PCAF) acts as a tumor suppressor in GC cells. We showed that both PCAF mRNA and protein were downregulated in GC cells, and that this downregulation correlated with poor survival. Meanwhile, the interaction between human anion exchanger 1 (AE1) and p16 is a key event in GC development. We found that PCAF inhibited GC growth by interacting with AE1 and p16 to promote ubiquitin-mediated degradation of AE1 and p16 upregulation and translocation into the nucleus. Binding of nuclear p16 to CDK4 prevented the CDK4-Cyclin D1 interaction to inhibit GC proliferation. Furthermore, reduced PCAF levels in GC cells were associated with intracellular alkalinization and decreased immunity. Together these results suggest that PCAF acts as a GC suppressor through a novel PCAF-p16-CDK4 axis. The downregulation of PCAF expression in GC cells that follows intracellular alkalinization and decreased immune response, indicates that GC therapies should focus on restoring PCAF levels. PMID:28042499

  11. MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D.

    PubMed

    Georgantas, Robert W; Streicher, Katie; Luo, Xiaobing; Greenlees, Lydia; Zhu, Wei; Liu, Zheng; Brohawn, Philip; Morehouse, Christopher; Higgs, Brandon W; Richman, Laura; Jallal, Bahija; Yao, Yihong; Ranade, Koustubh

    2014-03-01

    Expression profiling of microRNAs in melanoma lesional skin biopsies compared with normal donor skin biopsies, as well as melanoma cell lines compared with normal melanocytes, revealed that hsa-miR-206 was down-regulated in melanoma (-75.4-fold, P = 1.7 × 10(-4)). MiR-206 has been implicated in a large number of cancers, including breast, lung, colorectal, ovarian, and prostate cancers; however, its role in tumor development remains largely unknown, its biologic function is poorly characterized, and its targets affecting cancer cells are largely unknown. MiR-206 reduced growth and migration/invasion of multiple melanoma cell lines. Bioinformatics identified cell cycle genes CDK2, CDK4, Cyclin C, and Cyclin D1 as strong candidate targets. Western blots and 3'UTR reporter gene assays revealed that miR-206 inhibited translation of CDK4, Cyclin D1, and Cyclin C. Additionally, hsa-miR-206 transfection induced G1 arrest in multiple melanoma cell lines. These observations support hsa-miR-206 as a tumor suppressor in melanoma and identify Cyclin C, Cyclin D1, and CDK4 as miR-206 targets.

  12. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group.

    PubMed

    Soufir, N; Avril, M F; Chompret, A; Demenais, F; Bombled, J; Spatz, A; Stoppa-Lyonnet, D; Bénard, J; Bressac-de Paillerets, B

    1998-02-01

    Germline mutations in the p16 and CDK4 genes have been reported in a subset of melanoma pedigrees, but their prevalence is not well known. We searched for such germline mutations in 48 French melanoma-prone families selected according to two major criteria: families with at least three affected members (n = 20) or families with two affected members, one of them affected before the age of 50 (n = 28), and one additional minor criterion. Sixteen different p16 germline mutations were found in 21 families, while one germline mutation, Arg24His, was detected in the CDK4 gene. The frequency of p16 gene mutation in our sample (44%) is among the highest rates yet reported and the CDK4 mutation is the second mutation detected in this gene worldwide. In summary, our results show frequent involvement of the p16 gene in familial melanoma and confirm the role of the CDK4 gene as a melanoma-predisposing gene.

  13. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma

    PubMed Central

    Crompton, Brian; Cowley, Glenn; Vazquez, Francisca; Weir, Barbara A.; Tsherniak, Aviad; Parasuraman, Sudha; Kim, Sunkyu; Alexe, Gabriela; Stegmaier, Kimberly

    2015-01-01

    Ewing sarcoma is an aggressive bone and soft tissue tumor in children and adolescents, with treatment remaining a clinical challenge. This disease is mediated by somatic chromosomal translocations of the EWS gene and a gene encoding an ETS transcription factor, most commonly, FLI1. While direct targeting of aberrant transcription factors remains a pharmacological challenge, identification of dependencies incurred by EWS/FLI1 expression would offer a new therapeutic avenue. We used a combination of super-enhancer profiling, near-whole genome shRNA-based and small-molecule screening to identify cyclin D1 and CDK4 as Ewing sarcoma-selective dependencies. We revealed that super-enhancers mark Ewing sarcoma specific expression signatures and EWS/FLI1 target genes in human Ewing sarcoma cell lines. Particularly, a super-enhancer regulates cyclin D1 and promotes its expression in Ewing sarcoma. We demonstrated that Ewing sarcoma cells require CDK4 and cyclin D1 for survival and anchorage-independent growth. Additionally, pharmacologic inhibition of CDK4 with selective CDK4/6 inhibitors led to cytostasis and cell death of Ewing sarcoma cell lines in vitro and growth delay in an in vivo Ewing sarcoma xenograft model. These results demonstrated a dependency in Ewing sarcoma on CDK4 and cyclin D1 and support exploration of CDK4/6 inhibitors as a therapeutic approach for patients with this disease. PMID:26337082

  14. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  15. Individuals with presumably hereditary uveal melanoma do not harbour germline mutations in the coding regions of either the P16INK4A, P14ARF or cdk4 genes

    PubMed Central

    Soufir, N; Bressac-de Paillerets, B; Desjardins, L; Lévy, C; Bombled, J; Gorin, I; Schlienger, P; Stoppa-Lyonnet, D

    2000-01-01

    In familial cutaneous malignant melanoma (CMM), disruption of the retinoblastoma (pRB) pathway frequently occurs through inactivating mutations in the p16 (p16INK4A/CDKN2A/MTS1) gene or activating mutations in the G1-specific cyclin dependent kinase 4 gene (CDK4). Uveal malignant melanoma (UMM) also occurs in a familial setting, or sometimes in association with familial or sporadic CMM. Molecular studies of sporadic UMM have revealed somatic deletions covering the INK4A-ARF locus (encoding P16INK4Aand P14ARF) in a large proportion of tumours. We hypothesized that germline mutations in the p16INK4A, p14ARFor CDK4 genes might contribute to some cases of familial UMM, or to some cases of UMM associated with another melanoma. Out of 155 patients treated at the Institut Curie for UMM between 1994 and 1997, and interviewed about their personal and familial history of melanoma, we identified seven patients with a relative affected with UMM (n = 6) or CMM (n = 1), and two patients who have had, in addition to UMM, a personal history of second melanoma, UMM (n = 1), or CMM (n = 1). We screened by polymerase chain reaction single-strand conformation polymorphism the entire coding sequence of the INK4A-ARF locus (exon 1α from p16INK4A, exon 1β from p14ARF, and exons 2 and 3, common to both genes), as well as the exons 2, 5 and 8 of the CDK4 gene, coding for the functional domains involved in p16 and/or cyclin D1 binding. A previously reported polymorphism in exon 3 of the INK4A-ARF locus was found in one patient affected with bilateral UMM, but no germline mutations were detected, either in the p16INK4A, p14ARFor CDK4 genes. Our data support the involvement of other genes in predisposition to uveal melanoma. © 2000 Cancer Research Campaign PMID:10732752

  16. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration.

    PubMed

    Chen, Shuyuan; Shimoda, Masayuki; Chen, Jiaxi; Matsumoto, Shinichi; Grayburn, Paul A

    2012-02-15

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.

  17. Gestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring

    PubMed Central

    Nazari, Zahra; Nabiuni, Mohammad; Saeidi, Mohsen; Golalipour, Mohammad Jafar

    2017-01-01

    Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provided evidence that the CDK4-pRB-E2F1 regulatory pathway is involved in β-cells proliferation. Therefore, we postulated that GDM exposure impacts the offspring’s β-cells by disruption in the CDK4-pRB-E2F1 pathway. Materials and Methods: Adult Wistar rats were randomly allocated in control and diabetic group. The experimental group received 40 mg/kg/body weight of streptozotocin (STZ) on day zero of gestation. After delivery, diabetic offspring of GDM mothers and control dams at the age of 15 week were randomly scarified and pancreases were harvested. Langerhans islets of diabetic and control groups were digested by collagenase digestion technique. After RNA extraction, we investigated the expressions of the kir 6.2 and CDK4-pRB-E2F1 pathway genes by quantitative real-time PCR. Results: GDM reduced the expression of CDK4-pRB-E2F1 pathway genes in Langerhans islets cells of offspring. CDK4, pRB and E2F1 pathway genes were downregulated in diabetic islets by 51%, 35% and 84%, respectively. Also, the expression of Kir 6.2 was significantly decreased in diabetic islets by 88%. Conclusion: We suggest that the effect of gestational diabetes on offspring’s β-cells may be primarily caused by the suppression of CDK4-pRB-E2F1 pathway. PMID:28293391

  18. Application of platelet-rich plasma accelerates the wound healing process in acute and chronic ulcers through rapid migration and upregulation of cyclin A and CDK4 in HaCaT cells.

    PubMed

    Kim, Sung-Ae; Ryu, Han-Won; Lee, Kyu-Suk; Cho, Jae-We

    2013-02-01

    Application of autologous platelet-rich plasma (PRP) has been used for chronic wound healing. The aim of this study was to evaluate the effect of PRP on the wound healing processes of both acute and chronic ulcers and the underlying molecular mechanisms involved. We treated 16 patients affected by various acute and chronic ulcers with PRP. We performed molecular studies of cell proliferation, migration assays, immunoblotting and chloramphenicol acetyltransferase (CAT) assays in PRP-treated HaCaT keratinocyte cells. PRP treatment induced increased rates of cell proliferation and cell migration of HaCaT cells. In addition, the expression of cyclin A and cyclin dependent kinase (CDK) 4 proteins was markedly increased with a low concentration (0.5%) of PRP treatment in HaCaT cells. In 11 patients with chronic ulcers, including stasis ulcers, diabetic ulcers, venous leg ulcers, livedoid vasculitis, claw foot and traumatic ulcers, 9 patients showed 90-100% epithelization after 15.18 days. In 5 patients with acute ulcers, such as dehiscence, open wound and burn wound, 80-100% epithelization was achieved between 4 to 20 days. Topical application of PRP to acute and chronic skin ulcers significantly accelerated the epithelization process, likely through upregulation of the cell cycle regulatory proteins cyclin A and CDK4.

  19. Genomic rearrangements of the CDKN2A locus are infrequent in Italian malignant melanoma families without evidence of CDKN2A/CDK4 point mutations.

    PubMed

    Vignoli, Marina; Scaini, Maria Chiara; Ghiorzo, Paola; Sestini, Roberta; Bruno, William; Menin, Chiara; Gensini, Francesca; Piazzini, Mauro; Testori, Alessandro; Manoukian, Siranoush; Orlando, Claudio; D'Andrea, Emma; Bianchi-Scarrà, Giovanna; Genuardi, Maurizio

    2008-12-01

    Predisposition to familial cutaneous malignant melanoma has been associated with mutations in the CDKN2A and CDK4 genes. However, only a small subgroup of melanoma pedigrees harbour CDKN2A or CDK4 germline mutations. It is possible that other types of CDKN2A rearrangements, not detectable by routine PCR-based approaches, are involved in a fraction of melanoma cases negative for point sequence changes. In order to gain insights on the possible role of CDKN2A large deletions or duplications in melanoma susceptibility in the Italian population, we screened a series of 124 cutaneous malignant melanoma families referred to five national medical/cancer genetics centres. All probands were negative for point mutations in CDKN2A and CDK4. All samples were tested by MLPA (multiplex ligation-dependent probe amplification), and the results were confirmed by real-time quantitative PCR in a subset of 53 cases. No genomic rearrangements were detected in this series, one of the largest so far investigated. These data suggest that large deletions/duplications in the CDKN2A locus are infrequently involved in the development of familial melanoma in the Italian population. Based on these results, routine search for these rearrangements in CDKN2A- and CDK4-mutation negative melanoma families is not warranted, although it would be reasonable to pursue it in selected cases with very strong family history and/or showing linkage to 9p21.

  20. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma

    PubMed Central

    Furgason, John M.; Koncar, Robert F.; Michelhaugh, Sharon K.; Sarkar, Fazlul H.; Mittal, Sandeep; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.; Bahassi, El Mustapha

    2015-01-01

    Background Findings based on recent advances in next-generation sequence analysis suggest that, in some tumors, a single catastrophic event, termed chromothripsis, results in several simultaneous tumorigenic alterations. Previous studies have suggested that glioblastoma (GBM) may exhibit chromothripsis at a higher rate (39%) than other tumors (9%). Primary glioblastoma is an aggressive form of brain cancer that typically appears suddenly in older adults. With aggressive treatment, the median survival time is only 15 months. Their acute onset and widespread genomic instability indicates that chromothripsis may play a key role in their initiation and progression. GBMs are often characterized by EGFR amplification, CDKN2A and PTEN deletion, although approximately 20% of GBMs harbor additional amplifications in MDM2 or MDM4 with CDK4. Methods We used the chromothripsis prediction tool, Shatterproof, in conjunction with a custom whole genome sequence analysis pipeline in order to generate putative regions of chromothripsis. The data derived from this study was further expanded on using fluorescence in situ hybridization (FISH) analysis and susceptibility studies with colony formation assays. Results We show that primary GBMs are associated with higher chromothripsis scores and establish a link between chromothripsis and gene amplification of receptor tyrosine kinases (RTKs), as well as modulators of the TP53 and RB1 pathways. Conclusions Utilizing a newly introduced bioinformatic tool, we provide evidence that chromothripsis is associated with the formation of amplicons containing several oncogenes involved in key pathways that are likely essential for post-chromothriptic cell survival. PMID:26328271

  1. Assessing and Increasing Physical Activity

    ERIC Educational Resources Information Center

    Van Camp, Carole M.; Hayes, Lynda B.

    2012-01-01

    Increasing physical activity is a crucial component of any comprehensive approach to combat the growing obesity epidemic. This review summarizes recent behavioral research on the measurement of physical activity and interventions aimed at increasing physical activity and provides directions for future research.

  2. A flexible multiplex bead-based assay for detecting germline CDKN2A and CDK4 variants in melanoma-prone kindreds.

    PubMed

    Lang, Julie M; Shennan, Michael; Njauw, Jenny C-N; Luo, Su; Bishop, Julia N; Harland, Mark; Hayward, Nicholas K; Tucker, Margaret A; Goldstein, Alisa M; Landi, Maria T; Puig, Susana; Gruis, Nelleke A; Bergman, Wilma; Bianchi-Scarra, Giovanna; Ghiorzo, Paola; Hogg, David; Tsao, Hensin

    2011-02-01

    The presence of recurrent high-risk mutations in cyclin-dependent kinase inhibitor 2A/cyclin-dependent kinase 4 (CDKN2A/CDK4) among melanoma-prone families suggests that a high-throughput, multiplex assay could serve as an effective initial screening tool. To this end, we have developed a multiplex bead-based assay for high-throughput CDKN2A/CDK4 genotyping in the context of familial melanoma. Genomic DNA from 1,603 subjects (1,005 in training set and 598 in validation set) were amplified by multiplex PCR using five CDKN2A/CDK4 primer sets followed by multiplex allele-specific primer extension for 39 distinct germline variants. The products were then sorted and analyzed using the Luminex xMAP system. Genotypes were compared with previously determined sequence data. In the Toronto training cohort, all 145 samples with known variants were detected by the bead assay (100% concordance). Analysis of the 598 samples from the GenoMEL validation set led to identification of 150/155 expected variants (96.77%). Overall, the bead assay correctly genotyped 1,540/1,603 (96.07%) of all individuals in the study and 1,540/1,545 (99.68%) of individuals whose variants were represented in the probe set. Out of a total of 62,517 allelic calls, 62,512 (99.99%) were correctly assigned. The multiplex bead-based assay is an accurate method for genotyping CDKN2A/CDK4 variants and is potentially useful in genotyping low-to-moderate melanoma risk single-nucleotide polymorphisms.

  3. Effects of quercetin on CDK4 mRNA and protein expression in A549 cells infected by H1N1

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; LIN, YUAN; GU, LIGANG; HAN, MEI; YANG, ZHIWEI; ZHANG, YANLI; MA, RUI; WANG, LI; WANG, ZHISHENG

    2013-01-01

    This study was conducted to investigate the effects of quercetin on the expression of cyclin-dependent kinase (CDK4) mRNA and protein in A549 lung epithelial tumor cells infected by H1N1. First, the Thiazolyl Blue Tetrazolium Bromide (MTT) method was used to determine H1N1 virulence, quercetin cytotoxicity and inhibition of the cytopathic effect of H1N1 on A549 cells by quercetin. Subsequently, 100 TCID50 H1N1 was used to infect A549 cells for 2 h prior to culture in maintenance media containing 10 mg/l quercetin. After 4, 12, 24 and 48 h of culture, the cells were collected and total RNA and protein were extracted. Fluorescent quantitative polymerase chain reaction and western blot analysis were then performed to assess the expression of CDK4 mRNA and protein. The experiment demonstrated that the TCID50 of H1N1 in A549 cells was 10−4.75, the maximum non-toxic concentration of quercetin in A549 cells was 30–60 mg/l and the minimum effective concentration of quercetin for the inhibition of the H1N1 cytopathic effect on A549 cells was 10 mg/l. The results indicated that quercetin may significantly inhibit CDK4 mRNA and protein overexpression caused by H1N1 within 4–48 h. In conclusion, quercetin may protect against H1N1 infection by effectively reducing the mRNA and protein expression of CDK4 caused by H1N1 infection. PMID:24649026

  4. Normal repair of ultraviolet radiation-induced DNA damage in familial melanoma without CDKN2A or CDK4 gene mutation.

    PubMed

    Shannon, J A; Matias, C; Luxford, C; Kefford, R F; Mann, G J

    1999-04-01

    Excessive sun exposure and family history are strong risk factors for the development of cutaneous melanoma. Inherited susceptibility to this type of skin cancer could therefore result from constitutively impaired capacity to repair ultraviolet (UV)-induced DNA lesions. While a proportion of familial melanoma kindreds exhibit germline mutations in the cell cycle regulatory gene CDKN2A (p16INK4a) or its protein target, cyclin-dependent kinase 4 (CDK4), the biochemical basis of most familial melanoma is unknown. We have examined lymphoblastoid cell lines from melanoma-affected and unaffected individuals from large hereditary melanoma kindreds which are not attributable to CDKN2A or CDK4 gene mutation. These lines were tested for sensitivity of clonogenic growth to UV radiation and for their ability to repair transfected UV-damaged plasmid templates (host cell reactivation). Two of seven affected-unaffected pairs differed in colony survival after exposure to UVB radiation; however, no significant differences were observed in the host-cell reactivation assays. These results indicate that melanoma susceptibility genes other than CDKN2A and CDK4 do not impair net capacity to repair UV-induced DNA damage.

  5. Prevalence of Germline BAP1, CDKN2A, and CDK4 Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases.

    PubMed

    Aoude, Lauren G; Gartside, Michael; Johansson, Peter; Palmer, Jane M; Symmons, Judith; Martin, Nicholas G; Montgomery, Grant W; Hayward, Nicholas K

    2015-04-01

    Mutations in Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) and Cyclin-Dependent Kinase 4 (CDK4) contribute to susceptibility in approximately 40% of high-density cutaneous melanoma (CMM) families and about 2% of unselected CMM cases. BRCA-1 associated protein-1 (BAP1) has been more recently shown to predispose to CMM and uveal melanoma (UMM) in some families; however, its contribution to CMM development in the general population is unreported. We sought to determine the contribution of these genes to CMM susceptibility in a population-based sample of cases from Australia. We genotyped 1,109 probands from Queensland families and found that approximately 1.31% harbored mutations in CDKN2A, including some with novel missense mutations (p.R22W, p.G35R and p.I49F). BAP1 missense variants occurred in 0.63% of cases but no CDK4 variants were observed in the sample. This is the first estimate of the contribution of BAP1 and CDK4 to a population-based sample of CMM and supports the previously reported estimate of CDKN2A germline mutation prevalence.

  6. Increased Spreading Activation in Depression

    ERIC Educational Resources Information Center

    Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria

    2011-01-01

    The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…

  7. Search for germline alterations in CDKN2A/ARF and CDK4 of 42 Jewish melanoma families with or without neural system tumours.

    PubMed

    Marian, C; Scope, A; Laud, K; Friedman, E; Pavlotsky, F; Yakobson, E; Bressac-de Paillerets, B; Azizi, E

    2005-06-20

    To gain insight into the molecular mechanisms involved in the inherited predisposition to melanoma and associated neural system tumours, 42 Jewish, mainly Ashkenazi, melanoma families with or without neural system tumours were genotyped for germline point mutations and genomic deletions at the CDKN2A/ARF and CDK4 loci. CDKN2A/ARF deletion detection was performed using D9S1748, an intragenic microsatellite marker. Allele dosage at the p14ARF locus was analysed by quantitative real-time PCR employing a TaqMan probe that anneals specifically to exon 1beta of the p14ARF gene. For detecting point mutations, dHPLC and direct sequencing of the coding sequences of CDKN2A/ARF and CDK4 was used. No germline alterations in any of the tested genes were detected among the families under study. We conclude that in the majority of Ashkenazi Jewish families, the genes tested are unlikely to be implicated in the predisposition to melanoma and associated neural system tumours.

  8. Evaluation of genetic melanoma vaccines in cdk4-mutant mice provides evidence for immunological tolerance against authochthonous melanomas in the skin.

    PubMed

    Steitz, Julia; Büchs, Stefanie; Tormo, Damia; Ferrer, Aleix; Wenzel, Jörg; Huber, Christoph; Wölfel, Thomas; Barbacid, Mariano; Malumbres, Marcos; Tüting, Thomas

    2006-01-15

    We evaluated the efficacy of a candidate melanoma vaccine approach in mice genetically prone to develop melanoma due to the introduction of an oncogenic mutation (R24C) in the germline sequence of the cyclin-dependent kinase 4 (cdk4), a protein critically involved in cell cycle regulation. Melanomas were induced in cdk4-mutant mice by chemical carcinogenesis and UVB irradiation. A genetic prime-boost strategy targeting the clinically relevant differentiation antigen tyrosinase-related protein 2 (TRP2) was performed which was able to stimulate a melanocyte-specific cellular immune response associated with localized autoimmune vitiligo-like depigmentation. However, significant destruction of carcinogen-induced autochthonous melanocytic neoplasms in the skin was not observed following immunization. We provide evidence that autochthonous melanomas expressed TRP2 but not the MHC molecule H2-Kb and are immunologically tolerated in the skin. Our results highlight the importance of assessing melanoma vaccines in genetic mouse models that more adequately represent the expected clinical situation in order to identify strategies, which eventually may be of benefit for melanoma patients.

  9. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines.

    PubMed

    Young, Richard J; Waldeck, Kelly; Martin, Claire; Foo, Jung H; Cameron, Donald P; Kirby, Laura; Do, Hongdo; Mitchell, Catherine; Cullinane, Carleen; Liu, Wendy; Fox, Stephen B; Dutton-Regester, Ken; Hayward, Nicholas K; Jene, Nicholas; Dobrovic, Alexander; Pearson, Richard B; Christensen, James G; Randolph, Sophia; McArthur, Grant A; Sheppard, Karen E

    2014-07-01

    We have investigated the potential for the p16-cyclin D-CDK4/6-retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three-quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma-specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16(INK) (4A) ) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.

  10. Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons.

    PubMed

    Veas-Pérez de Tudela, Miguel; Maestre, Carolina; Delgado-Esteban, María; Bolaños, Juan P; Almeida, Angeles

    2015-12-10

    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.

  11. Increase in composite binder activity

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Smoliakov, A.; Stoyushko, N.

    2016-11-01

    The binder of portland cement (51-59 wt.%), fly ash of thermal power stations (3644 wt.%), limestone crushing waste (4-9 wt.%) and dry hyper plasticizer (0.2 wt.%) has been created. It can be used in the building materials industry for production of high-strength concrete. The composite binder is obtained by co-milling of the components in vario-planetary mill to a specific surface area of 550-600 m2/kg. The technical result is the possibility of obtaining a composite binder with significant replacement of cement with industrial waste, cost-effective and superior to portland cement for construction and technical properties, increased activity. This allows producing concrete for walling with a compressive strength of 100 MPa, while using more than 50% of industrial waste.

  12. Giant cell rich osteosarcoma revisited-diagnostic criteria and histopathologic patterns, Ki67, CDK4, and MDM2 expression, changes in response to bisphosphonate and denosumab treatment.

    PubMed

    Chow, Louis Tsun Cheung

    2016-06-01

    Defining giant cell-rich osteosarcoma (GCRO) as "an osteosarcoma in which more than 50% of the tumor consists of numerous uniformly distributed osteoclastic giant cells amidst oval or spindle mononuclear cells embedded in a fibrovascular stroma," eight such cases identified among 265 cases of osteosarcoma were analysed. Their age ranges from 11 to 33 years, with peak incidence in the second decade and equal sex distribution. Seventy-five percent presented with pain, commonest in the knee, affecting the metaphysis. Most appeared radiologically as well-circumscribed expansile multiloculated osteolytic lesions, and many are displayed periosteal reaction. They showed several distinct histologic patterns: the stromal and giant cell, fibrohistiocytic, aneurysmal-cystic, osteoblastoma-like, and parosteal and fibrous dysplasia-like patterns. Focal subtle lacelike osteoid deposition, permeative infiltration into adjacent native bony trabeculae and over 30 % Ki67 proliferative index were characteristic. There was no CDK4 and MDM2 amplification. In those having bisphosphonate and denosumab treatment, there was limited focal necrosis with reduction in the number of giant cells and broad trabecular woven bone formation but no giant osteoclast was seen. Two patients with initial diagnosis of giant cell tumor treated by curettage and local resection pursued aggressive clinical courses, died after 14 and 21 months. The others survived 12 to 110 months. GCRO accounts for about 3 % of all osteosarcomas and apart from its more frequent diaphyseal location and associated normal bone-specific alkaline phosphate levels; it shares with conventional high-grade osteosarcoma the same patient demographics, sites of occurrence, absence of CDK4 and MDM2 amplification, and probably clinical course.

  13. Increasing opportunities for physical activity.

    PubMed

    Buckley, Sue

    2007-07-01

    Being physically active can have a number of benefits - having fun, meeting with friends, keeping healthy and experiencing success. For children with Down syndrome the foundations need to be laid early if they are to keep active in school, teenage and adult years and parents ask for more help in this area from professionals.

  14. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    PubMed

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  15. Increasing Youth Physical Activity with Activity Calendars

    ERIC Educational Resources Information Center

    Eckler, Seth

    2016-01-01

    Physical educators often struggle with ways to get their students to be active beyond the school day. One strategy to accomplish this is the use of physical activity calendars (PACs). The purpose of this article is to support the use of PACs and give practical advice for creating effective PACs.

  16. A blueprint for staging of murine melanocytic lesions based on the Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) model.

    PubMed

    Wurm, Elisabeth M T; Lin, Lynlee L; Ferguson, Blake; Lambie, Duncan; Prow, Tarl W; Walker, Graeme J; Soyer, H Peter

    2012-09-01

    It has been shown that gene mutations which drive the development of malignant melanoma (MM) in humans also lead to emergence of MM when engineered mice. However, little attention has been paid to the clinical and histopathological features of melanocytic lesions and their natural history in a given mouse model. This knowledge is crucial to enable us to understand how engineered mutations influence the initiation and evolution of melanocytic lesions, and/or for the use of mice as a preclinical model to test specific treatments. We recently reported the development of melanocytic proliferations along the spectrum of naevi to MM in a Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) mouse model. In this study, we followed the development of lesions over time using digital photography and dermoscopy with the aim to correlate the clinical and histopathological features of lesions developing in this model. We identified two types of lesions. The first are slow-growing dermal MMs that emanate from dermal naevi. The second did not emanate from naevi, grew rapidly, and appeared to be solely confined to the subcutaneous fat. We present a simple staging system for the MMs that progress from naevi, based on depth of extension into the dermis and subcutis. This represents a blueprint for documentation and follow-up of MMs in the live animal, which is critical for the proper use of murine melanoma models.

  17. Analysis of the CDKN2A and CDK4 genes and HLA-DR and HLA-DQ alleles in two Spanish familial melanoma kindreds.

    PubMed

    Nagore, E; Climent, J; Planelles, M D; Ledesma, E; Rubio-Moscardó, F; Fortea, J M; Oliver, V

    2000-01-01

    Some confusion exists in the literature about which criteria should be used to define familial melanoma. This could explain the different reported frequencies of mutations in predisposing genes, mostly CDKN2A, in these patients. This study evaluated the human leucocyte antigen (HLA) class II genotype and the presence of mutations in CDKN2A and CDK4 genes in 2 families with very different clinical features. The family with a germinal mutation in exon 2 of CDKN2A (Gly101Try) presented the following clinical features: 3 first-degree affected members, 1 of whom had 2 melanomas, and all the melanomas appearing before 35 years of age. In contrast, the second family did not present any mutation in the studied genes and included 2 first-degree affected members diagnosed at over 45 years of age. Neither family showed an association with HLA genotype. Other genes are also involved in familial melanoma but, when the CDKN2A gene is affected, some clinical features seem to be uniform.

  18. Analysis of the miR-34a locus in 62 patients with familial cutaneous melanoma negative for CDKN2A/CDK4 screening.

    PubMed

    Cozzolino, Angela M; Pedace, Lucia; Castori, Marco; De Simone, Paola; Preziosi, Nicoletta; Sperduti, Isabella; Panetta, Chiara; Mogini, Valerio; De Bernardo, Carmelilia; Morrone, Aldo; Catricalà, Caterina; Grammatico, Paola

    2012-06-01

    MicroRNAs are small non-coding RNAs, which inhibit expression of specific target genes at the post-transcriptional level and are often misregulated in human cancer. Among them, miR-34a is considered a tumor suppressor with a hypothetical role in melanoma tumorigenesis. In this work, 62 Italian index patients with familial melanoma and negative for CDKN2A/CDK4 screening were investigated for miR-34a germline mutations. Eight novel miR-34a sequence variants were identified at both the heterozygous (c.+259G>A, c.+424G>A, c.+1465C>T, c.+1769C>T, c.+2456T>G, c.+2603C>T, c.+2972T>A, c.+3069T>C) and homozygous (c.+424G>A, c.+1465C>T, c.+1769C>T) states. Molecular screening identified all nucleotide changes in a healthy population of 150 controls and demonstrated that they are common polymorphisms. However, statistically significant differences of allele and genotype frequencies were detected for c.+1465C>T and c.+1769C>T, and borderline values for c.+2456T>G. By stratifying patients by relevant clinical features (presence/absence of multiple primary melanoma, Breslow's thickness, phototype and number of nevi), no significant findings were noted except for an association between the c.+424G>A (heterozygous individual GA) and multiple primary melanoma and phototype III-IV. Our preliminary study suggests that miR-34a, although having a role in late tumorigenesis, does not contribute to the inherited susceptibility to cutaneous melanoma. A function as phenotypic modulator in familial melanoma cannot be excluded.

  19. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells.

    PubMed

    Tolomeo, Manlio; Grimaudo, Stefania; Di Cristina, Antonietta; Pipitone, Rosaria M; Dusonchet, Luisa; Meli, Maria; Crosta, Lucia; Gebbia, Nicola; Invidiata, Francesco Paolo; Titone, Lucina; Simoni, Daniele

    2008-07-08

    Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias.

  20. Exergames: Increasing Physical Activity through Effective Instruction

    ERIC Educational Resources Information Center

    Rudella, Jennifer L.; Butz, Jennifer V.

    2015-01-01

    Due to the growing obesity epidemic in the United States, educators must consider new ways to increase physical activity in an effort to address obesity. There are a variety of ways educators can increase physical activity in the classroom, and exergames--video games that require physical movement in order to play--are a modern-day approach to…

  1. Bufalin induces G0/G1 phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells.

    PubMed

    Huang, Wen-Wen; Yang, Jai-Sing; Pai, Shu-Jen; Wu, Ping-Ping; Chang, Shu-Jen; Chueh, Fu-Shin; Fan, Ming-Jen; Chiou, Shang-Ming; Kuo, Hsiu-Maan; Yeh, Chin-Chung; Chen, Po-Yuan; Tsuzuki, Minoru; Chung, Jing-Gung

    2012-04-01

    Most of the chemotherapy treatments for bladder cancer aim to kill the cancer cells, but a high recurrence rate after medical treatments is still occurred. Bufalin from the skin and parotid venom glands of toad has been shown to induce apoptotic cell death in many types of cancer cell lines. However, there is no report addressing that bufalin induced cell death in human bladder cancer cells. The purpose of this study was investigated the mechanisms of bufalin-induced apoptosis in a human bladder cancer cell line (T24). We demonstrated the effects of bufalin on the cell growth and apoptosis in T24 cells by using DAPI/TUNEL double staining, a PI exclusion and flow cytometric analysis. The effects of bufalin on the production of reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔΨ(m)), and DNA content including sub-G1 (apoptosis) in T24 cells were also determined by flow cytometry. Western blot analysis was used to examine the expression of G(0)/G(1) phase-regulated and apoptosis-associated protein levels in bufalin-treated T24 cells. The results indicated that bufalin significantly decreased the percentage of viability, induced the G(0)/G(1) phase arrest and triggered apoptosis in T24 cells. The down-regulation of the protein levels for cyclin D, CDK4, cyclin E, CDK2, phospho-Rb, phospho-AKT and Bcl-2 with the simultaneous up-regulation of the cytochrome c, Apaf-1, AIF, caspase-3, -7 and -9 and Bax protein expressions and caspase activities were observed in T24 cells after bufalin treatment. Based on our results, bufalin induces apoptotic cell death in T24 cells through suppressing AKT activity and anti-apoptotic Bcl-2 protein as well as inducing pro-apoptotic Bax protein. The levels of caspase-3, -7 and -9 are also mediated apoptosis in bufalin-treated T24 cells. Therefore, bufalin might be used as a therapeutic agent for the treatment of human bladder cancer in the future.

  2. Increased Ribozyme Activity in Crowded Solutions*

    PubMed Central

    Desai, Ravi; Kilburn, Duncan; Lee, Hui-Ting; Woodson, Sarah A.

    2014-01-01

    Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg2+ concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg2+ threshold at which activity was detected and increased total RNA cleavage at high Mg2+ concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates. PMID:24337582

  3. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues.

    PubMed

    Miliani de Marval, Paula L; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G; Conti, Claudio J; Rodriguez-Puebla, Marcelo L

    2004-09-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors.

  4. Exercise Sandals Increase Lower Extremity Electromyographic Activity During Functional Activities

    PubMed Central

    Hirth, Christopher J.; Guskiewicz, Kevin M.

    2003-01-01

    Objective: Anecdotal evidence suggests that use of Exercise Sandals results in a number of positive clinical outcomes. However, little research has been conducted to determine their efficacy objectively. Our purposes were to determine the effect of Exercise Sandals on lower leg electromyography (EMG) during activities in the Exercise Sandals and to compare EMG associated with Exercise Sandals with traditional lower extremity rehabilitation exercises. Design and Setting: Two within-subjects, repeated-measures designs were used to identify differences in lower extremity EMG: (1) between activities with and without Exercise Sandals and (2) between Exercise Sandals activities and traditional rehabilitation activities. All data were collected in the Sports Medicine Research Laboratory. Subjects: Eighteen subjects involved in rehabilitation using Exercise Sandals for at least 2 weeks within the year before data collection. Measurements: Mean EMG amplitudes from the tibialis anterior, peroneus longus, soleus, and lateral gastrocnemius muscles were measured during single-leg stance, side stepping, and “high knees,” all performed with and without the Exercise Sandals, as well as single-leg stance on a foam surface and T-band kicks in the sagittal and frontal planes. Results: Exercise Sandals increased lower leg EMG activity, particularly in the ankle invertors and evertors. Also, activities involving the Exercise Sandals resulted in EMG activity similar to or exceeding that associated with traditional ankle-rehabilitation exercises. Conclusions: These results, coupled with the fact that Exercise Sandals are used in a functional closed kinetic chain manner, suggest that they are an effective means of increasing lower extremity muscle activity. PMID:14608427

  5. School Programs to Increase Physical Activity

    ERIC Educational Resources Information Center

    Lee, Amelia; Solmon, Melinda

    2007-01-01

    A quality physical education program is at the heart of any plan to promote lifelong participation in physical activity, but it has become evident at many schools that physical education specialists alone cannot address the physical activity needs of children. This is why a series of studies were conducted to develop strategies for the…

  6. Increased ABCA1 activity protects against atherosclerosis.

    PubMed

    Singaraja, Roshni R; Fievet, Catherine; Castro, Graciela; James, Erick R; Hennuyer, Nathalie; Clee, Susanne M; Bissada, Nagat; Choy, Jonathan C; Fruchart, Jean-Charles; McManus, Bruce M; Staels, Bart; Hayden, Michael R

    2002-07-01

    The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.

  7. Enhancement of DNA repair using topical T4 endonuclease V does not inhibit melanoma formation in Cdk4(R24C/R24C)/Tyr-Nras(Q61K) mice following neonatal UVR.

    PubMed

    Hacker, Elke; Muller, H Konrad; Hayward, Nicholas; Fahey, Paul; Walker, Graeme

    2010-02-01

    To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4(R24C/R24C)/Nras(Q61K) mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.

  8. Downregulation of telomerase activity by diclofenac and curcumin is associated with cell cycle arrest and induction of apoptosis in colon cancer.

    PubMed

    Rana, Chandan; Piplani, Honit; Vaish, Vivek; Nehru, Bimla; Sanyal, S N

    2015-08-01

    Uncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors. We studied the regulation of telomerase and telomerase reverse transcriptase catalytic subunit (TERT) by diclofenac and curcumin, alone and also in combination, in 1, 2-dimethylhydrazine dihydrochloride-induced colorectal cancer in rats. The relationship of telomerase activity with tumors suppressor proteins (p51, Rb, p21), cell cycle machinery, and apoptosis was also studied. Telomerase is highly expressed in DMH group and its high activity is associated with increased TERT expression. However, telomerase is absent or is present at lower levels in normal tissue. CDK4, CDK2, cyclin D1, and cyclin E are highly expressed in DMH as assessed by RT-PCR, qRT-PCR, Western blot, and immunofluorescence analysis. Diclofenac and curcumin overcome these carcinogenic effects by downregulating telomerase activity, diminishing the expression of TERT, CDK4, CDK2, cyclin D1, and cyclin E. The anticarcinogenic effects shown after the inhibition of telomerase activity by diclofenac and curcumin may be associated with upregulation of tumor suppressor proteins p51, Rb, and p21, whose activation induces the cells cycle arrest and apoptosis.

  9. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.

  10. How Active Are Your Students? Increasing Physical Activity in Schools

    ERIC Educational Resources Information Center

    Avery, Marybell; Brandt, Janet

    2010-01-01

    The U. S. Department of Health and Human Services recommends that youth engage in at least 60 minutes of physical activity each day, most of which should be either moderate- or vigorous-intensity aerobic physical activity. Half of this amount (30 minutes) should be achieved during the school day. NASPE provides guidance in the form of a…

  11. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1.

    PubMed

    Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A

    2014-01-01

    Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass.

  12. Age-specific CUGBP1-eIF2 complex increases translation of CCAAT/enhancer-binding protein beta in old liver.

    PubMed

    Timchenko, Lubov T; Salisbury, Elizabeth; Wang, Guo-Li; Nguyen, Heather; Albrecht, Jeffrey H; Hershey, John W B; Timchenko, Nikolai A

    2006-10-27

    The RNA-binding protein CUGBP1 regulates translation of proteins in a variety of biological processes. In this study, we show that aging liver increases CUGBP1 translational activities by induction of a high molecular weight protein-protein complex of CUGBP1. The complex contains CUGBP1, subunits alpha, beta, and gamma of the initiation translation factor eIF2, and four proteins of the endoplasmic reticulum, eR90, CRT, eR60, and Grp78. The induction of the CUGBP1-eIF2 complex in old livers is associated with the elevation of protein levels of CUGBP1 and with the hyper-phosphorylation of CUGBP1 by a cyclin D3-cdk4 kinase, activity of which is increased with age. We have examined the role of the elevation of CUGBP1 and the role of cyclin D3-cdk4-mediated phosphorylation of CUGBP1 in the formation of the CUGBP1-eIF2 complex by using CUGBP1 transgenic mice and young animals expressing high levels of cyclin D3 after injection with cyclin D3 plasmid. These studies showed that both the increased levels of CUGBP1 and cdk4-mediated hyper-phosphorylation of CUGBP1 are involved in the age-associated induction of the CUGBP1-eIF2 complex. The CUGBP1-eIF2 complex is bound to C/EBPbeta mRNA in the liver of old animals, and this binding correlates with the increased amounts of liver-enriched activator protein and liver-enriched inhibitory protein. Consistent with these observations, the purified CUGBP1-eIF2 complex binds to the 5' region of C/EBPbeta mRNA and significantly increases translation of the three isoforms of C/EBPbeta in a cell-free translation system, in cultured cells, and in the liver. Thus, these studies demonstrated that age-mediated induction of the CUGBP1-eIF2 complex changes translation of C/EBPbeta in old livers.

  13. The Older Woman: Increased Psychosocial Benefits from Physical Activity.

    ERIC Educational Resources Information Center

    Wakat, Diane; Odom, Sarah

    1982-01-01

    Older women who participate in physical activity programs find physical benefits in the improvement of cardiovascular and musculoskeletal systems. The psychosocial benefits which result from physical activity include an increase in self-esteem, increased social contacts, a counteraction to depression, and improved stress management. Suggestions…

  14. Best Practices and Recommendations for Increasing Physical Activity in Youth

    ERIC Educational Resources Information Center

    Erwin, Heather; Beets, Michael W.; Centeio, Erin; Morrow, James R., Jr.

    2014-01-01

    Many efforts to increase the physical activity levels of Americans have been introduced and implemented over the past 20 years. National Physical Activity Guidelines have been established, and the National Physical Activity Plan (NPAP) is now in place, which includes a specific sector dedicated to education. This article addresses the Education…

  15. School-Based Health Promotion Initiative Increases Children's Physical Activity

    ERIC Educational Resources Information Center

    Cluss, Patricia; Lorigan, Devin; Kinsky, Suzanne; Nikolajski, Cara; McDermott, Anne; Bhat, Kiran B.

    2016-01-01

    Background: Childhood obesity increases health risk, and modest physical activity can impact that risk. Schools have an opportunity to help children become more active. Purpose: This study implemented a program offering extra school-day activity opportunities in a rural school district where 37% of students were obese or overweight in 2005 and…

  16. Technology to promote and increase physical activity in heart failure.

    PubMed

    Franklin, Nina C

    2015-01-01

    Regular physical activity is firmly recommended as part of a multifaceted approach to heart failure (HF) self-management. Unfortunately, research indicates that most patients are less likely to engage in and adhere to such activities. The widespread use of information and communication technology tools and resources offers an innovative and potentially beneficial avenue for increasing physical activity levels in HF patients. This article presents specific ways in which advances in information and communication technologies, including Internet- and mobile-based communications, social media platforms, and self-monitoring health devices, can serve as a means to broadly promote increasing levels of physical activity to improve health outcomes in the HF population.

  17. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  18. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load.

    PubMed

    Häggman-Henrikson, Birgitta; Nordh, Erik; Eriksson, Per-Olof

    2013-10-01

    Previous findings, during chewing, that boluses of larger size and harder texture result in larger amplitudes of both mandibular and head-neck movements suggest a relationship between increased chewing load and incremental recruitment of jaw and neck muscles. The present report evaluated jaw (masseter and digastric) and neck [sternocleidomastoid (SCM) and trapezius] muscle activity during the chewing of test foods of different sizes and textures by 10 healthy subjects. Muscle activity was recorded by surface electromyography and simultaneous mandibular and head movements were recorded using an optoelectronic technique. Each subject performed continuous jaw-opening/jaw-closing movements whilst chewing small and large boluses of chewing gum and rubber silicone (Optosil). For jaw opening/jaw closing without a bolus, SCM activity was recorded for jaw opening concomitantly with digastric activity. During chewing, SCM activity was recorded for jaw closing concomitantly with masseter activity. Trapezius activity was present in some, but not all, cycles. For the masseter and SCM muscles, higher activity was seen with larger test foods, suggesting increased demand and recruitment of these muscles in response to an increased chewing load. This result reinforces the previous notion of a close functional connection between the jaw and the neck motor systems in jaw actions and has scientific and clinical significance for studying jaw function and dysfunction.

  19. Mechanism of pyruvate dehydrogenase activation by increased cardiac work.

    PubMed

    Kobayashi, K; Neely, J R

    1983-06-01

    The effects of increased cardiac work, pyruvate and insulin on the state of pyruvate dehydrogenase (PDH) activation and rate of pyruvate decarboxylation was studied in the isolated perfused rat heart. At low levels of cardiac work, 61% of PDH was present in the active form when glucose was the only substrate provided. The actual rate of pyruvate decarboxylation was only 5% of the available capacity calculated from the percent of active PDH. Under this condition, the rate of pyruvate decarboxylation was restricted by the slow rate of pyruvate production from glycolysis. Increasing cardiac work accelerated glycolysis, but production of pyruvate remained rate limiting for pyruvate oxidation and only 40% of the maximal active PDH capacity was used. Addition of insulin along with glucose reduced the percent of active PDH to 16% of the total at low cardiac work. This effect of insulin was associated with increased mitochondria NADH/NAD and acetyl CoA/CoA ratios. With both glucose and insulin the calculated maximum capacity of active PDH was about the same as measured rates of pyruvate oxidation indicating that pyruvate oxidation was limited by the activation state of PDH. In this case, raising the level of cardiac work increased the active PDH to 85% and although pyruvate oxidation was accelerated, measured flux through PDH was only 73% of the maximal activity of active PDH. With pyruvate as added exogenous substrate, PDH was 82% of active at low cardiac work probably due to pyruvate inhibition of PDH kinase. In this case, the measured rate of pyruvate oxidation was 64% of the capacity of active PDH. However, increased cardiac work still caused further activation of PDH to 96% active. Thus, actual rates of pyruvate oxidation in the intact tissue were determined by (1) the supply of pyruvate in hearts receiving glucose alone, (2) by the percent of active PDH in hearts receiving both glucose and insulin at low work and (3) by end-product inhibition in hearts receiving

  20. Building a better mousetrap (exergame) to increase youth physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While exergames have been demonstrated to induce moderate levels of physical activity (PA) if played as designed, there is conflicting evidence on use of exergaming leading to increased habitual PA. Exergames have increased PA in some home and school studies, but not others. Exergames have been us...

  1. [Increase of physical activity by improvement of the nutritional status].

    PubMed

    Torún, B

    1989-09-01

    Physical activity is affected by nutritional modifications and, in turn, influences growth, cognition, social behavior, work performance and other functions. Studies in preschool children showed that: 1. A decrease in energy intake during four to seven days reduced the time allocated to energy-demanding activities and increased sedentary activities. 2. Children with mild weight deficit were more sedentary than well-nourished counterparts. 3. Children became more active when nutritional status improved. 4. A 10% reduction in energy intake reduced total energy expenditure by 15% without affecting weight gain nor basal metabolism. Studies of men working in non-mechanized agriculture showed that: 1. Dietary improvements led to faster salaried work, reduction of napping time and greater physical activity after work. 2. An increase in energy intake increased total daily energy expenditure, tending to maintain energy balance and relatively stable body weight within the cyclic variations of the agricultural year. 3. Food supplementation did not necessarily improve productivity. Other labor incentives without dietary improvements increased energy expenditure during working hours, which resulted in weight loss. In conclusion, good health and nutrition provide the biological basis for adequate physical activity that may improve cognitive development, social interactions, economic productivity and the quality of life of an individual or a population, but other incentives are required for the optimal expression of that biologic potential.

  2. Increasing physical activity of children during school recess.

    PubMed

    Hayes, Lynda B; Van Camp, Carole M

    2015-09-01

    Physical activity is crucial for children's health. Fitbit accelerometers were used to measure steps of 6 elementary students during recess. The intervention included reinforcement, self-monitoring, goal setting, and feedback. Steps taken during the intervention phase (M = 1,956 steps) were 47% higher than in baseline (M = 1,326 steps), and the percentage of recess spent in moderate-to-vigorous physical activity was higher during intervention (M = 25%) than in baseline (M = 4%). These methods successfully increased steps during recess and could be used to increase steps in other settings.

  3. Local school policies increase physical activity in Norwegian secondary schools

    PubMed Central

    Haug, Ellen; Torsheim, Torbjørn; Samdal, Oddrun

    2010-01-01

    SUMMARY The implementation of school policies to support the adoption of physical activity is one of the main strategies recommended to increase physical activity levels among this age group. However, documentation of the effect of such policies is so far limited. The purpose of this study was to explore policy-related practices to support physical activity in Norwegian secondary schools and their association with recess physical activity. Emphasis was given to examine the association between policies and physical activity, over and beyond, individual level interests and environmental factors and to examine cross-level interaction effects. This cross-sectional study was based on a nationally representative sample of Norwegian secondary schools and grade 8 students who participated in the Health Behaviour in School-aged Children (HBSC) 2005/06 study. The final sample comprised 68 schools and 1347 students. Data were collected through questionnaires. The results showed that schools with a written policy for physical activity and schools offering organized non-curricular physical activity several times a week had a higher proportion of students reporting daily participation in recess physical activity. Multilevel logistic regression analysis demonstrated a cross-level main effect of the policy index after controlling for sex, socio-economic status, individual-level interests and the physical environment. A significant contribution of adding the policy index to the prediction of recess physical activity above that provided by the individual-level interests and the physical environment was demonstrated. The results are encouraging and give scientific support to policy documents recommending the implementation of school policies to increase physical activity. PMID:19884244

  4. Using the Web to Increase Physical Activity in College Students

    ERIC Educational Resources Information Center

    Magoc, Dejan; Tomaka, Joe; Bridges-Arzaga, Amber

    2011-01-01

    Objectives: To evaluate the effectiveness of a theoretically based and Web-delivered intervention using common course technology for increasing physical activity in a college student sample. Methods: One hundred four students randomly participated in either a Web-based intervention involving 7 theory-based learning lessons or a control group that…

  5. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  6. Texting to increase adolescent physical activity: Feasibility assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feasibility trials assess whether a behavior change program warrants a definite trial evaluation. This paper reports the feasibility of an intervention consisting of Self Determination Theory-informed text messages, pedometers, and goal prompts to increase adolescent physical activity. A 4-group ran...

  7. Reduced Frontal Activation with Increasing 2nd Language Proficiency

    ERIC Educational Resources Information Center

    Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Lehmann, Christoph; Wiest, Roland; Strik, Werner; Brandeis, Daniel; Dierks, Thomas

    2009-01-01

    The factors influencing the degree of separation or overlap in the neuronal networks responsible for the processing of first and second language are still subject to investigation. This longitudinal study investigates how increasing second language proficiency influences activation differences during lexico-semantic processing of first and second…

  8. Games for increasing physical activity: Mechanisms for change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small conference was held in Houston, TX, in May 2014, to address how to enhance exergames to increase physical activity. Several leading researchers were asked to address specific topics. Attendees came from across the globe. This Games for Health Journal Special Issue is devoted to sharing the a...

  9. Hypocholesterolemia in chronic anemias with increased erythropoietic activity.

    PubMed

    Shalev, Hanna; Kapelushnik, Joseph; Moser, Asher; Knobler, Hilla; Tamary, Hannah

    2007-03-01

    Hypocholesterolemia of unknown etiology has been previously described in various chronic anemias. Few small studies also suggested that those patients have a lower incidence of atherosclerotic events. The aim of our study was to determine the extent of hypocholesterolemia in various types of anemias. We studied 59 patients with chronic anemias associated with high-erythropoietic activity (thalassemia intermedia, congenital dyserythropoietic anemia type I, congenital spherocytosis), 8 patients with low-erythropoietic activity anemias (acquired aplastic anemia, Fanconi anemia, and Diamond Blackfan anemia), and 20 healthy controls. Mean serum cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, hemoglobin, serum ferritin, soluble transferrin receptor (STR), and serum erythropoietin levels were determined in each patient. All patients with chronic anemia and increased erythropoietic activity had hypocholesterolemia, whereas none of those with low erythropoietic activity was hypocholesterolemic. Mean serum cholesterol, HDL cholesterol, and LDL cholesterol levels were found to be significantly lower in the high-erythropoietic activity group (80+/-19 mg/dl; 31+/-10 mg/dl; 35+/-14 mg/dl, respectively) compared with the control group (P<0.001; 0.001; 0.001, respectively) and the low-erythropoietic activity group (P<0.001; 0.001; 0.01, respectively). Significant inverse correlation (R2=0.507) was observed between serum cholesterol and STR levels, which in the absence of iron deficiency reflect bone marrow activity. Taken together, our results imply that hypocholesterolemia accompanies anemias with high-erythropoietic activity. We suggest that the high-erythropoitic activity-associated hypocholesterolemia is due to increased cholesterol requirements by the proliferating erythoid cells. Further studies are needed to elucidate the exact mechanism and the possible clinical consequences of this phenomenon.

  10. Increased matriptase zymogen activation in inflammatory skin disorders

    PubMed Central

    Chen, Cheng-Jueng; Wu, Bai-Yao; Tsao, Pai-In; Chen, Chi-Yung; Wu, Mei-Hsuan; Chan, Yee Lam E.; Lee, Herng-Sheng; Johnson, Michael D.; Eckert, Richard L.; Chen, Ya-Wen; Chou, Fengpai; Lin, Chen-Yong

    2011-01-01

    Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H2O2 and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases. PMID:21123732

  11. Chromosome 1 replacement increases brain orexins and antidepressive measures without increasing locomotor activity.

    PubMed

    Feng, Pingfu; Hu, Yufen; Vurbic, Drina; Akladious, Afaf; Strohl, Kingman P

    2014-12-01

    Decreased orexin level has been well demonstrated in patients suffering from narcolepsy, depression accompanied with suicide attempt; obstructive sleep apnea and comorbidity were also demonstrated in these diseases. As C57BL/6J (B6) mice are more "depressed" and have lower brain orexins than A/J mice, B6 mice having chromosome 1 replacement (B6A1 mice) might have restored orexin levels and less depressive behavior. We studied the behavior of 4-6 month old B6, A/J and B6A1 mice with forced swim, tail suspension, and locomotor activity tests. The animals were then sacrificed and hypothalamus and medullas dissected from brain tissue. Orexins-A and -B were determined by radioimmunoassay. Compared with A/J mice, B6 mice displayed several signs of depression, including increased immobility, increased locomotors activity, and decreased orexin A and -B levels in both the hypothalamus and medulla. Compared to B6 mice, B6A1 mice exhibited significantly higher levels of orexins-A and -B in both brain regions. B6A1 mice also exhibited antidepressive features in most of measured variables, including decreased locomotor activity, decreased immobility and increased swim in tail suspension test; compared with B6 mice, however. B6A1 mice also reversed immobility in the early phase of the swim test. In summary, B6 mice exhibited depressive attributes compared with A/J mice, including increased locomotor activity, greater immobility, and decreased brain orexins, these were largely reversed in B6A1 mice. We conclude that orexin levels modulate these B6 behaviors, likely due to expression of A/J alleles on Chromosome 1.

  12. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  13. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  14. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  15. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  16. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  17. Exercising self-control increases relative left frontal cortical activation.

    PubMed

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion).

  18. Increasing Arabian dust activity and the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Nair, V. S.; Mallet, M.

    2015-07-01

    Over the past decade, aerosol optical depth (AOD) observations based on satellite and ground measurements have shown a significant increase over Arabia and the Arabian Sea, attributed to an intensification of regional dust activity. Recent studies have also suggested that west Asian dust forcing could induce a positive response of Indian monsoon precipitations on a weekly timescale. Using observations and a regional climate model including interactive slab-ocean and dust aerosol schemes, the present study investigates possible climatic links between the increasing June-July-August-September (JJAS) Arabian dust activity and precipitation trends over southern India during the 2000-2009 decade. Meteorological reanalysis and AOD observations suggest that the observed decadal increase of dust activity and a simultaneous intensification of summer precipitation trend over southern India are both linked to a deepening of JJAS surface pressure conditions over the Arabian Sea. In the first part of the study, we analyze the mean climate response to dust radiative forcing over the domain, discussing notably the relative role of Arabian vs. Indo-Pakistani dust regions. In the second part of the study, we show that the model skills in reproducing regional dynamical patterns and southern Indian precipitation trends are significantly improved only when an increasing dust emission trend is imposed on the basis of observations. We conclude that although interannual climate variability might primarily determine the observed regional pattern of increasing dust activity and precipitation during the 2000-2009 decade, the associated dust radiative forcing might in return induce a critical dynamical feedback contributing to enhancing regional moisture convergence and JJAS precipitations over southern India.

  19. Increased antitumor activity of tumor-specific peptide modified thymopentin.

    PubMed

    Lao, Xingzhen; Li, Bin; Liu, Meng; Chen, Jiao; Gao, Xiangdong; Zheng, Heng

    2014-12-01

    Thymopoietin pentapeptide (thymopentin, TP5), an immunomodulatory peptide, has been successfully used as an immune system enhancer for treating immune deficiency, cancer, and infectious diseases. However, poor penetration into tumors remains a key limitation to the efficacy and application of TP5. iRGD (CRGDK/RGPD/EC) has been introduced to certain anticancer agents, and increased specific tumor penetrability of drugs and cell internalization have been observed. In the present study, we fused this iRGD fragment with the C-terminal of TP5 to yield a new product, TP5-iRGD. Cell attachment assay showed that TP5-iRGD exhibits more extensive attachment to the melanoma cell line B16F10 than wild-type TP5. Tumor cell viability assay showed that iRGD conjugation with the TP5 C-terminus increases the basal antiproliferative activity of the pentapeptide against the melanoma cell line B16F10, the human lung cancer cell line H460, and the human breast cancer cell line MCF-7. Subsequent injections of TP5-iRGD inhibited in vivo melanoma progression more efficiently than the native TP5. Murine spleen lymphocyte proliferation assay also showed that TP5-iRGD and the parent pentapeptide feature nearly identical spleen lymphocyte proliferation activities. We built an integrin αvβ3 and TP5-iRGD computational binding model to investigate the mechanism by which TP5-iRGD promotes increased activity further. Conjugation with iRGD promotes binding to integrin αvβ3, thereby increasing the tumor-homing efficiency of the resultant peptide. These experimental and computational observations of increased TP5-iRGD activity help broaden the usage of TP5 and reflect the great application potential of the peptide as an anticancer agent.

  20. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  1. Active learning increases student performance in science, engineering, and mathematics.

    PubMed

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  2. Active learning increases student performance in science, engineering, and mathematics

    PubMed Central

    Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-01-01

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms. PMID:24821756

  3. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    PubMed

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p < 0.001) and EDTA (p < 0.001). Both adhesives partially demineralized the dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p < 0.001) that were significantly (p < 0.001) but incompletely inactivated after 10 min application of chlorhexidine. Mild self-etching adhesives activate latent MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  4. Interactions Increase Forager Availability and Activity in Harvester Ants.

    PubMed

    Pless, Evlyn; Queirolo, Jovel; Pinter-Wollman, Noa; Crow, Sam; Allen, Kelsey; Mathur, Maya B; Gordon, Deborah M

    2015-01-01

    Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  5. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased.

  6. Projecting climate-driven increases in North American fire activity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near

  7. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  8. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription

    SciTech Connect

    Waldron, Elaine; Isbert, Simone; Kern, Andreas; Jaeger, Sebastian; Martin, Anne M.; Hebert, Sebastien S.; Behl, Christian; Weggen, Sascha; De Strooper, Bart; Pietrzik, Claus U.

    2008-08-01

    A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid {beta} peptide (A{beta}) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target 0011gen.

  9. A ketogenic diet increases succinic dehydrogenase activity in aging cardiomyocytes.

    PubMed

    Balietti, Marta; Fattoretti, Patrizia; Giorgetti, Belinda; Casoli, Tiziana; Di Stefano, Giuseppina; Solazzi, Moreno; Platano, Daniela; Aicardi, Giorgio; Bertoni-Freddari, Carlo

    2009-08-01

    Impairment of energy metabolism and an increase of reactive oxygen species (ROS) production seem to play a major role in age-related apoptotic loss of cardiomyocytes. Succinic dehydrogenase (SDH) is an important marker of the mitochondrial capability to provide an adequate amount of ATP. Moreover, because of its unique redox properties, SDH activity contributes to maintain the reduced state of the ubiquinone pool. Recent reports have shown that ketone body intake improves cardiac metabolic efficiency and exerts a cardioprotective antioxidant action, we therefore performed a cytochemical investigation of SDH activity in cardiomyocytes of late-adult (19-month-old) rats fed for 8 weeks with a medium-chain triglycerides ketogenic diet (MCT-KD). Young, age-matched and old animals fed with a standard chow were used as controls. The overall area of the precipitates (PA) from SDH activity and the area of the SDH-positive mitochondria (MA) were measured. The percent ratios PA/MA and MA/total myocardial tissue area (MA/TA) were the parameters taken into account. We found that PA/MA was significantly higher in young control rats and in MCT-KD-fed rats versus late-adult and old control rats and in young control versus MCT-KD-fed rats. MA/TA of MCT-KD-fed rats was significantly higher versus age-matched and old control rats and tended to be higher versus young control rats; this parameter was significantly higher in young versus old control rats. Thus, MCT-KD intake partially recovers age-related decrease of SDH activity and increases the myocardial area occupied by metabolically active mitochondria. These effects might counteract metabolic alterations leading to apoptosis-induced myocardial atrophy and failure during aging.

  10. Betaine increases the butyrylcholinesterase activity in rat plasma.

    PubMed

    Šišková, K; Dubničková, M; Pašková, Ľ; Rajdl, D; Ďuračková, Z; Muchová, J; Pauliková, I; Racek, J

    2016-01-01

    The physiological function of butyrylcholinesterase (EC 3.1.1.8, BChE) is not clearly understood, but a role was suggested in the fat utilization process, resulting in positive correlation between plasma triglyceride (TG) levels and BChE activity. Consequently we tested the hypothesis that regular intake of betaine, a natural compound intervening in the liver TG metabolism could influence the BChE activity. The BChE activity was estimated spectrophotometrically in plasma of rats fed with betaine enriched standard (B) or high-fat diet (HFB). The results confirmed decreased TG plasma levels after betaine treatment independently on the type of diet (0.15+/-0.03 (B) vs. 0.27+/-0.08 (control) mmol/l; p=0.003 and 0.13+/-0.03 (HFB) vs. 0.27+/-0.08 (control) mmol/l; p=0.005). The BChE activity increased significantly with betaine administration, however the change was more distinct in the HFB group (0.84+/-0.34 (HFB) vs. 0.22+/-0.04 (control) O.D./min/mg; p<0.001 and 0.41+/-0.11 (B) vs. 0.22+/-0.04 (control) O.D./min/mg; p=0.001). In conclusion, betaine intake led to elevated BChE activity in plasma and this effect was potentiated by the HF diet. Since betaine is in general used as a supplement in the treatment of liver diseases accompanied by TG overload, its impact on the BChE activity in the role of the liver function marker should be taken into account.

  11. Obstruction increases activation in the right inferior frontal gyrus.

    PubMed

    Liu, Tao; Saito, Hirofumi; Oi, Misato

    2016-01-01

    The right inferior frontal gyrus (IFG) is involved in intention understanding during interpersonal interactions. To examine how prior experience of cooperation and competition affects one's right IFG activation in the subsequent interaction, using near-infrared spectroscopy (NIRS) we simultaneously measured paired participants' bilateral IFG activations during a turn-taking game. Participant pairs were assigned to either one of two roles: a Builder taking the initial move to copy a target disk-pattern on monitor and the Partner taking the second move to aid in (cooperation) or to obstruct (competition) the Builder. The experiment consisted of two sessions. One participant (B-P) played as a Builder (B-) in session 1 and changed the role to the Partner (-P) in session 2, and vice versa for the paired participant (P-B). NIRS data in competition demonstrated that the Builder (B-) being obstructed in session 1 showed higher right IFG activation when (s)he took a role of obstructor (-P) in session 2 (the obstructed effect), whereas "the cooperated effect" was not revealed in cooperation. These results suggest that prior experience of being obstructed may facilitate understanding of the Builder and/or the obstructor's tactical move, thereby increasing his/her right IFG activation when one is meant to obstruct in subsequent competitions.

  12. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  13. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  14. Flavone deglycosylation increases their anti-inflammatory activity and absorption

    PubMed Central

    Hostetler, Gregory; Riedl, Ken; Cardenas, Horacio; Diosa-Toro, Mayra; Arango, Daniel; Schwartz, Steven; Doseff, Andrea I.

    2014-01-01

    Scope Flavones have reported anti-inflammatory activities, but the ability of flavone-rich foods to reduce inflammation is unclear. Here, we report the effect of flavone glycosylation in the regulation of inflammatory mediators in vitro and the absorption of dietary flavones in vivo. Methods and results The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects. Deglycosylation of flavones increased cellular uptake and cytoplasmic localization as shown by high-performance liquid chromatography (HPLC) and microscopy using the flavonoid fluorescent dye diphenyl-boric acid 2-aminoethyl ester (DPBA). Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5 or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). Conclusion These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases. PMID:22351119

  15. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    PubMed

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  16. [Increased fibrinolytic activity during cardiopulmonary bypass is caused by activated protein C system].

    PubMed

    Gando, S; Tedo, I; Masio, H; Goda, Y; Kawahigashi, H

    1994-06-01

    To examine the hypothesis that activated protein C system during cardiopulmonary bypass surgery may increase fibrinolytic activity during cardiopulmonary bypass, protein C activity, protein C antigen and thrombomodulin of sixteen patients undergoing elective cardiopulmonary bypass surgery were investigated after induction of anesthesia, before and after cardiopulmonary bypass, and at the end of operation. Protein C activity decreased and thrombomodulin increased significantly after the cardiopulmonary bypass. There were no significant correlations of thrombomodulin with protein C activity and protein C antigen. In conclusion, we have demonstrated that protein C system is activated and circulating thrombomodulin appears in the systemic circulation during cardiopulmonary bypass surgery and this enhanced activation of protein C system is possibly related to the reported increase of fibrinolytic activity during cardiopulmonary bypass.

  17. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  18. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  19. Cytokinin activity increases stomatal density and transpiration rate in tomato

    PubMed Central

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-01-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions. PMID:27811005

  20. Prescribed Active Learning Increases Performance in Introductory Biology

    PubMed Central

    O'Connor, Eileen; Parks, John W.; Cunningham, Matthew; Hurley, David; Haak, David; Dirks, Clarissa; Wenderoth, Mary Pat

    2007-01-01

    We tested five course designs that varied in the structure of daily and weekly active-learning exercises in an attempt to lower the traditionally high failure rate in a gateway course for biology majors. Students were given daily multiple-choice questions and answered with electronic response devices (clickers) or cards. Card responses were ungraded; clicker responses were graded for right/wrong answers or participation. Weekly practice exams were done as an individual or as part of a study group. Compared with previous versions of the same course taught by the same instructor, students in the new course designs performed better: There were significantly lower failure rates, higher total exam points, and higher scores on an identical midterm. Attendance was higher in the clicker versus cards section; attendance and course grade were positively correlated. Students did better on clicker questions if they were graded for right/wrong answers versus participation, although this improvement did not translate into increased scores on exams. In this course, achievement increases when students get regular practice via prescribed (graded) active-learning exercises. PMID:17548875

  1. Obesity-induced increases in sympathetic nerve activity: sex matters.

    PubMed

    Brooks, Virginia L; Shi, Zhigang; Holwerda, Seth W; Fadel, Paul J

    2015-01-01

    Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women.

  2. Cytokinin activity increases stomatal density and transpiration rate in tomato.

    PubMed

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-12-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

  3. Geometric complexity is increased in in vitro activated platelets.

    PubMed

    Bianciardi, Giorgio

    2015-06-01

    This article investigates the use of computerized fractal analysis for objective characterization of the complexity of platelets in vitro stimulated by low level thrombin (0.02 U mL(-1) ), collected from healthy individuals and observed by means of transmission electron microscopy. Platelet boundaries were extracted by means of automatically image analysis. Local fractal dimension was evaluated by the box-counting technique (measure of geometric complexity of the platelet outline). The results showed that the platelet boundary is fractal when observed by transmission electron microscopy and that, after an in vitro platelet activation test, the shape of platelets present increased geometric complexity in comparison to the no stimulated platelets (P < 0.001), with 100% correct classification. Computerized fractal analysis of platelet shape by transmission electron microscopy can provide accurate, quantitative, data to study platelet activation. The results may play important roles in the evaluation of the platelets status in pathological conditions, like as atherosclerosis and diabetes mellitus, where in in vivo activated platelets have been described.

  4. NOX Activity Is Increased in Mild Cognitive Impairment

    PubMed Central

    Gupta, Sunita; Parrino, Taryn E.; Knight, Alecia G.; Ebenezer, Philip J.; Weidner, Adam M.; LeVine, Harry; Keller, Jeffrey N.; Markesbery, William R.

    2010-01-01

    Abstract This study was undertaken to investigate the profile of NADPH oxidase (NOX) in the clinical progression of Alzheimer's disease (AD). Specifically, NOX activity and expression of the regulatory subunit p47phox and the catalytic subunit gp91phox was evaluated in affected (superior and middle temporal gyri) and unaffected (cerebellum) brain regions from a longitudinally followed group of patients. This group included both control and late-stage AD subjects, and also subjects with preclinical AD and with amnestic mild cognitive impairment (MCI) to evaluate the profile of NOX in the earliest stages of dementia. Data show significant elevations in NOX activity and expression in the temporal gyri of MCI patients as compared with controls, but not in preclinical or late-stage AD samples, and not in the cerebellum. Immunohistochemical evaluations of NOX expression indicate that whereas microglia express high levels of gp91phox, moderate levels of gp91phox also are expressed in neurons. Finally, in vitro experiments showed that NOX inhibition blunted the ability of oligomeric amyloid beta peptides to injure cultured neurons. Collectively, these data show that NOX expression and activity are upregulated specifically in a vulnerable brain region of MCI patients, and suggest that increases in NOX-associated redox pathways in neurons might participate in the early pathogenesis of AD. Antioxid. Redox Signal. 12, 1371–1382. PMID:19929442

  5. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  6. The Potential for Pocket Parks to Increase Physical Activity

    PubMed Central

    Cohen, Deborah A.; Marsh, Terry; Williamson, Stephanie; Han, Bing; Derose, Kathryn Pitkin; Golinelli, Daniella; McKenzie, Thomas L.

    2014-01-01

    Purpose To assess the use of new pocket parks in low-income neighborhoods. Setting Los Angeles Subjects Parks users and residents living within ½ mile of 3 pocket parks and 15 neighborhood parks Intervention The creation of pocket parks Design Quasi-experimental post-only comparison Measures We used the System of Observing Play and Recreation in Communities (SOPARC) to measure park use and park-based physical activity and surveyed park users and residents about their park use. Analysis We surveyed 392 and 432 household members within one-half mile of the 3 pocket parks before and after park construction, respectively, as well as 71 pocket park users and compared them to 992 neighborhood park users and 342 residents living within ½ mile of other neighborhood parks. We compared pocket park use to playground area use in the larger neighborhood parks. We used descriptive statistics and Generalized Estimating Equations for the analysis. Results Overall, pocket park use compared favorably in promoting moderate-to-vigorous physical activity with that of existing playground space in nearby parks and they were cost-effective at $0.73/MET hour gained. Pocket park visitors walked an average of 0.25 miles to get there. Conclusions Pocket parks, when perceived as attractive and safe destinations, may increase physical activity by encouraging families with children to walk there. Additional strategies and programs may be needed to encourage more residents to use the parks. PMID:24380461

  7. Effect of increasing the choice of active options on children’s physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To determine whether increasing the choice of physical activity options increases the duration and intensity of children’s physical activity. Design: This cross-sectional laboratory study included gender (male, female) and choice group [single toy (no choice), three toys (low choice...

  8. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation.

    PubMed

    Narasimha, Anil M; Kaulich, Manuel; Shapiro, Gary S; Choi, Yoon J; Sicinski, Piotr; Dowdy, Steven F

    2014-06-04

    The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase.

  9. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation.

  10. Use of active video games to increase physical activity in children: a (virtual) reality?

    PubMed

    Foley, Louise; Maddison, Ralph

    2010-02-01

    There has been increased research interest in the use of active video games (in which players physically interact with images onscreen) as a means to promote physical activity in children. The aim of this review was to assess active video games as a means of increasing energy expenditure and physical activity behavior in children. Studies were obtained from computerized searches of multiple electronic bibliographic databases. The last search was conducted in December 2008. Eleven studies focused on the quantification of the energy cost associated with playing active video games, and eight studies focused on the utility of active video games as an intervention to increase physical activity in children. Compared with traditional nonactive video games, active video games elicited greater energy expenditure, which was similar in intensity to mild to moderate intensity physical activity. The intervention studies indicate that active video games may have the potential to increase free-living physical activity and improve body composition in children; however, methodological limitations prevent definitive conclusions. Future research should focus on larger, methodologically sound intervention trials to provide definitive answers as to whether this technology is effective in promoting long-term physical activity in children.

  11. NIMS Observes Increased Activity at Loki Patera, Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Loki Patera, historically the most active and persistent hot spot on Io, is located on the hemisphere of Io always facing Jupiter. Loki Patera was the site of two plumes during the Voyager encounters, which were not seen during the early orbits of Galileo. Ground-based observers reported Loki Patera to be unusually dim during this time, marking a period of low volcanic activity.

    On 21 February 1997, during Galileo's sixth orbit, the Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft observed Io in daylight from a range of approximately 703,000 km (440,000 miles). The image on the left shows Io at a wavelength of 2.95 microns. Loki Patera is seen to be relatively quiescent (at longer wavelengths which are more sensitive to thermal emission, Loki Patera is more noticeable).

    A few weeks later, on March 12th 1997, ground based observers using the Infra-Red Telescope Facility (IRTF) on Mauna Kea, Hawaii, observed an intense brightening in the Loki region, so much that Loki was contributing 75% of Io's in-eclipse flux for this hemisphere. A large eruption was taking place! Other ground-based observations through March, April and May tracked the course of the activity and confirmed its location at Loki Patera.

    On 4 April 1997, NIMS again observed Io during the seventh orbit from a range of 556,000 km (348,000 miles), with Loki Patera positioned in darkness, close to the limb. The image on the right shows the increase in activity at Loki Patera, again at 2.95 microns. A preliminary single temperature fit to NIMS orbit seven Loki Patera hot spot data yields a temperature of 500 K and an area of over 800 square kilometers. That the image is so bright at this wavelength is an indication of the areal extent of the activity. It is also probable that some part of the volcanic material being erupted or exposed is at considerably higher temperatures than that of the 500 K single-temperature fit.

    Io is under observation by ground-based observers under

  12. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.

  13. Writer's cramp: increased dorsal premotor activity during intended writing.

    PubMed

    Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan

    2013-03-01

    Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing.

  14. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.

  15. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  16. Immobilization induces a very rapid increase in osteoclast activity

    NASA Astrophysics Data System (ADS)

    Heer, Martina; Baecker, Natalie; Mika, Claudia; Boese, Andrea; Gerzer, Rupert

    2005-07-01

    We studied in a randomized, strictly controlled cross-over design, the effects of 6 days 6° head-down tilt bed rest (HDT) in eight male healthy subjects in our metabolic ward. The study consisted of two periods (phases) of 11 days each in order to allow for the test subjects being their own controls. Both study phases were identical with respect to environmental conditions, study protocol and diet. Two days before arriving in the metabolic ward the subjects started with a diet. The diet was continued in the metabolic ward. The metabolic ward period (1l days) was divided into three parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers. On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers. Urinary calcium excretion was, as early as the first day in immobilization, increased (p<0.01). CTX- and NTX-excretion stayed unchanged in the first 24 h in HDT compared to the control. But already on the 2nd day of immobilization, both bone resorption markers significantly increased. We conclude from these results—pronounced rise of bone resorption markers—that already 24 h of immobilization induce a significant rise in osteoclast activity in healthy subjects. Thus, it appears possible to use short-term bed rest studies as a first step for the development of countermeasures to immobilization.

  17. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    SciTech Connect

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  18. Altered behavior in spotted hyenas associated with increased human activity

    USGS Publications Warehouse

    Boydston, Erin E.; Kapheim, Karen M.; Watts, Heather E.; Szykman, Micaela; Holekamp, Kay E.

    2003-01-01

    To investigate how anthropogenic activity might affect large carnivores, we studied the behaviour of spotted hyenas (Crocuta crocuta) during two time periods. From 1996 to 1998, we documented the ecological correlates of space utilization patterns exhibited by adult female hyenas defending a territory at the edge of a wildlife reserve in Kenya. Hyenas preferred areas near dense vegetation but appeared to avoid areas containing the greatest abundance of prey, perhaps because these were also the areas of most intensive livestock grazing. We then compared hyena behaviour observed in 1996–98 with that observed several years earlier and found many differences. Female hyenas in 1996–98 were found farther from dens, but closer to dense vegetation and to the edges of their territory, than in 1988–90. Recent females also had larger home ranges, travelled farther between consecutive sightings, and were more nocturnal than in 1988–90. Finally, hyenas occurred in smaller groups in 1996–98 than in 1988–90. We also found several changes in hyena demography between periods. We next attempted to explain differences observed between time periods by testing predictions of hypotheses invoking prey abundance, climate, interactions with lions, tourism and livestock grazing. Our data were consistent with the hypothesis that increased reliance on the reserve for livestock grazing was responsible for observed changes. That behavioural changes were not associated with decreased hyena population density suggests the behavioural plasticity typical of this species may protect it from extinction.

  19. Platelet-activating factor-induced increases in glucose kinetics

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Hargrove, D.M.; Bagby, G.J.; Spitzer, J.J. )

    1988-02-01

    Platelet-activating factor (PAF) is a postulated mediator of many of the early hemodynamic effects of endotoxin. The aim of the present study was to determine whether in vivo administration of PAF could produce alterations in whole-body glucose metabolism that would mimic those seen during endotoxemia. Glucose kinetics were assessed in chronically catheterized conscious rats by the constant infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose before and for 4 h after either a bolus injection or a constant infusion of PAF. The bolus injection of PAF elevated the rate of glucose appearance (R{sub a}; 44%) for 1.5 h. The lower PAF infusion rate decreased blood pressure 11% to 104 mmHg, whereas the higher infusion rate decreased pressure 34% to 77 mmHg. Both PAF infusion rates produced elevations in plasma glucose and glucose R{sub a} throughout the 4-h infusion period in a dose-related manner. The PAF infusions also induced dose-related increases in plasma glucagon and catecholamine levels throughout the infusion period. Because the constant infusion of PAF did stimulate many of the hemodynamic and metabolic alterations produced by endotoxin, this study provides additional support for the potential importance of PAF as a mediator of the early hemodynamic and metabolic sequela of endotoxin shock. Furthermore, the PAF-induced changes in glucose metabolism appear to be mediated by the resultant elevation in plasma catecholamines.

  20. Increasing SK2 channel activity impairs associative learning

    PubMed Central

    McKay, Bridget M.; Oh, M. Matthew; Galvez, Roberto; Burgdorf, Jeffrey; Kroes, Roger A.; Weiss, Craig; Adelman, John P.; Moskal, Joseph R.

    2012-01-01

    Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning. PMID:22552186

  1. Nest predation increases with parental activity: Separating nest site and parental activity effects

    USGS Publications Warehouse

    Martin, T.E.; Scott, J.; Menge, C.

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection.

  2. Nest predation increases with parental activity: separating nest site and parental activity effects.

    PubMed Central

    Martin, T E; Scott, J; Menge, C

    2000-01-01

    Alexander Skutch hypothesized that increased parental activity can increase the risk of nest predation. We tested this hypothesis using ten open-nesting bird species in Arizona, USA. Parental activity was greater during the nestling than incubation stage because parents visited the nest frequently to feed their young during the nestling stage. However, nest predation did not generally increase with parental activity between nesting stages across the ten study species. Previous investigators have found similar results. We tested whether nest site effects might yield higher predation during incubation because the most obvious sites are depredated most rapidly. We conducted experiments using nest sites from the previous year to remove parental activity. Our results showed that nest sites have highly repeatable effects on nest predation risk; poor nest sites incurred rapid predation and caused predation rates to be greater during the incubation than nestling stage. This pattern also was exhibited in a bird species with similar (i.e. controlled) parental activity between nesting stages. Once nest site effects are taken into account, nest predation shows a strong proximate increase with parental activity during the nestling stage within and across species. Parental activity and nest sites exert antagonistic influences on current estimates of nest predation between nesting stages and both must be considered in order to understand current patterns of nest predation, which is an important source of natural selection. PMID:11413645

  3. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus

    PubMed Central

    2011-01-01

    Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells. PMID:21827709

  4. Engaging parents to increase youth physical activity: A systematic review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parents are often involved in interventions to engage youth in physical activity, but it is not clear which methods for involving parents are effective. A systematic review was conducted of interventions with physical activity and parental components among healthy youth to identify how best to invol...

  5. Opportunities for Public Health to Increase Physical Activity Among Youths

    PubMed Central

    Dorn, Joan M.; Fulton, Janet E.; Janz, Kathleen F.; Lee, Sarah M.; McKinnon, Robin A.; Pate, Russell R.; Pfeiffer, Karin A.; Young, Deborah Rohm; Troiano, Richard P.; Lavizzo-Mourey, Risa

    2015-01-01

    Despite the well-known benefits of youths engaging in 60 or more minutes of daily physical activity, physical inactivity remains a significant public health concern. The 2008 Physical Activity Guidelines for Americans (PAG) provides recommendations on the amount of physical activity needed for overall health; the PAG Midcourse Report (2013) describes effective strategies to help youths meet these recommendations. Public health professionals can be dynamic change agents where youths live, learn, and play by changing environments and policies to empower youths to develop regular physical activity habits to maintain throughout life. We have summarized key findings from the PAG Midcourse Report and outlined actions that public health professionals can take to ensure that all youths regularly engage in health-enhancing physical activity. PMID:25602864

  6. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  7. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    PubMed Central

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is involved in regulation of energy homeostasis. Activation of PPARδ markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary cholesterol secretion, nor by reduced cholesterol absorption. To test the hypothesis that PPARδ activation leads to stimulation of transintestinal cholesterol efflux (TICE), we quantified it by intestine perfusions in FVB mice treated with PPARδ agonist GW610742. To exclude the effects on cholesterol absorption, mice were also treated with cholesterol absorption inhibitor ezetimibe or ezetimibe/GW610742. GW601742 treatment had little effect on plasma lipid levels but stimulated both fecal neutral sterol excretion (∼200%) and TICE (∼100%). GW610742 decreased intestinal Npc1l1 expression but had no effect on Abcg5/Abcg8. Interestingly, expression of Rab9 and LIMPII, encoding proteins involved in intracellular cholesterol trafficking, was increased upon PPARδ activation. Although treatment with ezetimibe alone had no effect on TICE, it reduced the effect of GW610742 on TICE. These data show that activation of PPARδ stimulates fecal cholesterol excretion in mice, primarily by the two-fold increase in TICE, indicating that this pathway provides an interesting target for the development of drugs aiming at the prevention of atherosclerosis. PMID:19439761

  8. ROFA INCREASES CASPASE-3 ACTIVITY IN HUMAN ALVEOLAR MACRAPHAGE

    EPA Science Inventory

    Exposure to air pollution particles produces pulmonary inflammation and injury, but the mechanisms of this injury are unclear. Apoptosis, involving activation of caspases, may be one potential mechanism. In this study, we hypothesized that ROFA, a constituent of air pollution...

  9. State Legislation Related to Increasing Physical Activity: 2006-2012

    PubMed Central

    Eyler, Amy A.; Budd, Elizabeth; Camberos, Gabriela J.; Yan, Yan; Brownson, Ross C.

    2016-01-01

    Background Strategies to improve physical activity prevalence often include policy and environmental changes. State-level policies can be influential in supporting access and opportunities for physical activity in schools and communities. The purpose of this study was to explore the prevalence of state legislation related to physical activity and identify the correlates of enactment of this legislation. Methods An online legislative database was used to collect bills from 50 states in the U.S. from 2006-2012 for ten topics related to physical activity. Bills were coded for content and compiled into a database with state-level variables (e.g., obesity prevalence). With enactment status as the outcome, bivariate and multivariate analyses were conducted. Results Of the 1542 bills related to physical activity introduced, 30% (N=460) were enacted. Bills on public transportation and trails were more likely to be enacted than those without these topics. Primary sponsorship by the Republican Party, bipartisan sponsorship, and mention of specific funding amounts were also correlates of enactment. Conclusion Policy surveillance of bills and correlates of enactment are important for understanding patterns in legislative support for physical activity. This information can be used to prioritize advocacy efforts and identify ways for research to better inform policy. PMID:26104603

  10. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  11. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  12. Increasing Pupil Physical Activity: A Comprehensive Professional Development Effort

    ERIC Educational Resources Information Center

    Kulinna, Pamela Hodges

    2012-01-01

    Study aim: To determine if pupil physical activity and Body Mass Index classifications maintained or improved after a one-year professional development program involving both classroom and physical education teachers. Guskey's model of teacher change guided this study. Material and methods: Indigenous children from ten schools (N = 320) in grades…

  13. Texting to increase physical activity in teens: Development & preliminary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our purpose was to present formative research and preliminary results for a self-determination-theory (SDT)-based text messages to promote physical activity (PA) among teens. Thirty 14- to 17-year olds, stratified by gender and race/ethnicity (Black, Hispanic, White), were recruited to participate i...

  14. Increasing Physical Activity of Children during School Recess

    ERIC Educational Resources Information Center

    Hayes, Lynda B.; Van Camp, Carole M.

    2015-01-01

    Physical activity is crucial for children's health. Fitbit accelerometers were used to measure steps of 6 elementary students during recess. The intervention included reinforcement, self-monitoring, goal setting, and feedback. Steps taken during the intervention phase (M?=?1,956 steps) were 47% higher than in baseline (M?=?1,326 steps), and the…

  15. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  16. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist HC-067047 and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of HC-067047 after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity. PMID:23459987

  17. T Lymphocyte Activation Threshold is Increased in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Adams, Charley L.; Gonzalez, M.; Sams, C. F.

    2000-01-01

    There have been substantial advances in molecular and cellular biology that have provided new insight into the biochemical and genetic basis of lymphocyte recognition, activation and expression of distinct functional phenotypes. It has now become evident that for both T and B cells, stimuli delivered through their receptors can result in either clonal expansion or apoptosis. In the case of T cells, clonal expansion of helper cells is accompanied by differentiation into two major functional subsets which regulate the immune response. The pathways between the membrane and the nucleus and their molecular components are an area of very active investigation. This meeting will draw together scientists working on diverse aspects of this problem, including receptor ligand interactions, intracellular pathways that transmit receptor mediated signals and the effect of such signal transduction pathways on gene regulation. The aim of this meeting is to integrate the information from these various experimental approaches into a new synthesis and molecular explanation of T cell activation, differentiation and death.

  18. Density increase due to active feedback in mirror machine

    NASA Astrophysics Data System (ADS)

    Seemann, Omri; Be'Ery, Ilan

    2014-10-01

    Mirror machines are one of the schemes for future fusion systems. Its main drawbacks are the flute instability and being open ended which results in plasma losses. A feedback system is used to stabilize the flute instability in a table top mirror machine with a continuous plasma source and RF heating. Under certain source density and temperature conditions, although the plasma was stabilized, plasma density increase was not measured. After decreasing the source density and increasing the temperature, Plasma density increase was achieved. It is theorized that these results are due to transition of the plasma main loss mechanism from collision dominated to instability dominated. In the former, the main density loss is through diffusion and In the latter, it is through flute instability which drives the plasma to the edge of the vacuum chamber. Future research directions are discussed for a planned machine which should achieve higher temperatures and better diagnostic capabilities. The research will focus on magnetic actuators and passive RF stabilization.

  19. Active commuting to school in Finland, the potential for physical activity increase in different seasons

    PubMed Central

    Kallio, Jouni; Turpeinen, Salla; Hakonen, Harto; Tammelin, Tuija

    2016-01-01

    Background Active commuting to school (ACS) can be a significant source of physical activity and provide many health benefits. Objective This study identified the potential to increase physical activity levels by promoting ACS in Finnish schools and evaluated the effects of season, distance and age on ACS. Design Data were collected with a questionnaire from 5,107 students, aged 10–16, in 45 comprehensive schools in Finland. The distance and the mode of transport to school in different seasons were self-reported. Results The prevalence of ACS was over 80% during spring/fall for those living 0–5 km from school. ACS was inversely associated with the distance to school and was lower in winter compared to spring and fall. Cycling is less common in winter, especially among girls and younger students. The potential for increasing students’ physical activity levels via ACS seems to be largest in winter, especially among students living 1–5 km from school. The variation in the prevalence of ACS between schools was large, especially in winter. Conclusions When planning interventions to promote ACS, one is encouraged to acknowledge and evaluate the potential in the selected target schools in different seasons. The potential varies largely between schools and seasons and is highly dependent on students’ commuting distances. PMID:27924739

  20. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications

    PubMed Central

    Sjogren, M; Folkesson, S; Blennow, K; Tarkowski, E

    2004-01-01

    Objective: Immunological mechanisms may be part of the pathophysiological mechanisms in frontotemporal dementia (FTD), but hitherto only vague evidence of such mechanisms has been presented. The aim of this study was to compare the cerebrospinal fluid (CSF) levels of the pro-inflammatory cytokines interleukin (IL)-1ß and tumour necrosis factor (TNF)-α, and the anti-inflammatory cytokine transforming growth factor (TGF)-ß in patients with FTD and normal controls. Furthermore, serum levels of TNF-α, TGF-ß, and IL-1ß were measured in FTD patients. Methods: The CSF levels of IL-1ß, TNFα, and TGF-ß were measured using ELISA in 19 patients with FTD and 24 sex and age matched healthy controls. Results: The CSF levels of TNF-α (FTD 0.6 pg/mL (median: lower, upper quartile 0.3, 0.7); controls: 0.0 pg/mL (0.0, 0.0); p = 0.008) and TGF-ß (FTD 266 pg/mL (157, 371), controls: 147 pg/mL (119, 156); p = 0.0001) were significantly increased in FTD patients compared with controls. No correlations were found between CSF and serum levels of the cytokines. In the controls, but not in the FTD patients, a positive correlation was found between the CSF levels of TGF-ß and age (r = 0.42, p<0.05). No correlation was found between any of the cytokines and degree of brain atrophy or white matter changes. No differences between the groups were found for age, gender, or CSF/serum albumin ratio. Conclusions: The results suggest an increased intrathecal production of both pro- and anti-inflammatory cytokines in FTD. As no correlations were found with the albumin ratio, and no correlations between CSF and serum levels of the cytokines were found, these changes in the CSF cannot be explained by a systemic overproduction of cytokines. PMID:15258209

  1. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  2. Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex

    PubMed Central

    Nasr, Shahin; Stemmann, Heiko; Vanduffel, Wim; Tootell, Roger B. H.

    2015-01-01

    Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this “reversed” size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys. PMID:25480358

  3. Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex.

    PubMed

    Nasr, Shahin; Stemmann, Heiko; Vanduffel, Wim; Tootell, Roger B H

    2015-10-01

    Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this "reversed" size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys.

  4. Development of a universal approach to increase physical activity among adolescents: the GoActive intervention

    PubMed Central

    Corder, Kirsten; Schiff, Annie; Kesten, Joanna M; van Sluijs, Esther M F

    2015-01-01

    Objectives To develop a physical activity (PA) promotion intervention for adolescents using a process addressing gaps in the literature while considering participant engagement. We describe the initial development stages; (1) existing evidence, (2) large scale opinion gathering and (3) developmental qualitative work, aiming (A) to gain insight into how to increase PA among the whole of year 9 (13–14 years-old) by identifying elements for intervention inclusion (B) to improve participant engagement and (C) to develop and refine programme design. Methods Relevant systematic reviews and longitudinal analyses of change were examined. An intervention was developed iteratively with older adolescents (17.3±0.5 years) and teachers, using the following process: (1) focus groups with (A) adolescents (n=26) and (B) teachers (n=4); (2) individual interviews (n=5) with inactive and shy adolescents focusing on engagement and programme acceptability. Qualitative data were analysed thematically. Results Limitations of the existing literature include lack of evidence on whole population approaches, limited adolescent involvement in intervention development, and poor participant engagement. Qualitative work suggested six themes which may encourage adolescents to do more PA; choice, novelty, mentorship, competition, rewards and flexibility. Teachers discussed time pressures as a barrier to encouraging adolescent PA and suggested between-class competition as a strategy. GoActive aims to increase PA through increased peer support, self-efficacy, group cohesion, self-esteem and friendship quality, and is implemented in tutor groups using a student-led tiered-leadership system. Conclusions We have followed an evidence-based iterative approach to translate existing evidence into an adolescent PA promotion intervention. Qualitative work with adolescents and teachers supported intervention design and addressed lack of engagement with health promotion programmes within this age group

  5. Playground Designs to Increase Physical Activity Levels during School Recess: A Systematic Review

    ERIC Educational Resources Information Center

    Escalante, Yolanda; García-Hermoso, Antonio; Backx, Karianne; Saavedra, Jose M.

    2014-01-01

    School recess provides a major opportunity to increase children's physical activity levels. Various studies have described strategies to increase levels of physical activity. The purpose of this systematic review is therefore to examine the interventions proposed as forms of increasing children's physical activity levels during recess. A…

  6. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.

    PubMed

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E; Ginzburg, Yelena Z

    2016-03-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.

  7. Role of CDK4 in Breast Development and Cancer

    DTIC Science & Technology

    2006-04-01

    Bender, D. Niederacher, Am. J . Pathol. 154, 113 (1999). 3. S. G. Ran, P. Dubus, R. V. Mettus, E. J . Galbreath, G. Boden, E. P. Reddy, M. Barbacid, Nat...neo/neo) /MMTV-wnt-1 (E ) transgenic mice. F, G, H , and I, H&E-stained sections of the mammary glands shown in B, C, D , and E respectively. J ...oncogene. Oncogene 1991;6:439–44. 9. Gillet C, Smith P, Gregory W, et al. Cyclin D1 and prognosis in human breast cancer. Int J Cancer 1996; 69:612–22. 10

  8. The effect of increasing autonomy through choice on young children’s physical activity behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing autonomy by manipulating the choice of available physical activity options in a laboratory setting can increase physical activity in older children and adults. However, the effect of manipulating the number of physically active choices has yet to be examined in young children in a gymnas...

  9. Promising School-Based Strategies and Intervention Guidelines to Increase Physical Activity of Adolescents

    ERIC Educational Resources Information Center

    Pardo, Berta Murillo; Bengoechea, Enrique Garcia; Lanaspa, Eduardo Generelo; Bush, Paula L.; Casterad, Javier Zaragoza; Clemente, Jose A. Julian; Gonzalez, Luis Garcia

    2013-01-01

    This narrative review describes the available scientific evidence regarding promising school-based strategies to increase physical activity of adolescents. We conducted a literature search for studies published up to 2011, regarding adolescent physical activity intervention studies that resulted in increased physical activity (regardless of…

  10. An Evaluation of Photographic Activity Schedules to Increase Independent Playground Skills in Young Children with Autism

    ERIC Educational Resources Information Center

    Akers, Jessica S.; Higbee, Thomas S.; Pollard, Joy S.; Pellegrino, Azure J.; Gerencser, Kristina R.

    2016-01-01

    We used photographic activity schedules to increase the number of play activities completed by children with autism during unstructured time on the playground. All 3 participants engaged in more playground activities during and after training, and they continued to complete activities when novel photographs were introduced.

  11. [Two cases of Lambert-Eaton syndrome with an increase of serum cholinesterase activity].

    PubMed

    Ciechanowski, K; Cebula, D

    1997-02-01

    Paraneoplastic Lambert-Eaton myasthenia syndrome is presented in two cases with small cell lung cancer. An increase of serum cholinesterase activity was explained by induced release of biologically active proteins by neoplastic tissue.

  12. Vitamin E supplementation increases the resistance of both LDL and HDL to oxidation and increases cholesteryl ester transfer activity.

    PubMed

    Arrol, S; Mackness, M I; Durrington, P N

    2000-05-01

    There is increasing evidence that lipid peroxidation and oxidative modification of low density lipoprotein (LDL) is important in atherogenesis. Evidence that antioxidant therapy decreases mortality is, however, inconclusive. We have examined the effects of vitamin E on the susceptibility of LDL and high density lipoprotein (HDL) to oxidation, and on cholesteryl ester heteroexchange in an in vitro system using autologous serum lipoproteins. Vitamin E in doses of 200 and 400 mg/day were administered orally to 21 healthy volunteers (12 females and nine males) aged between 23 and 50 years, and to 16 healthy volunteers (eight females and eight males) aged between 22 and 51 years for 50 days, respectively. Fasting serum lipoproteins, susceptibility of lipoproteins to oxidation and cholesteryl ester transfer activity (CETA) were measured before and after vitamin E supplementation. Serum lipoprotein and lipid concentrations did not change significantly in either group. The LDL-conjugated diene (CD) lag phase during incubation with Cu(2+) was increased by 157% (110-232%) (median (interquartile range)) (P<0.05) on vitamin E (200 mg/day) and by 235% (185-259%) (P<0.0001) on 400 mg/day. The lag phases for LDL-lipid peroxide (LPO) generation were also significantly increased by 146% (122-192%) (P<0.005) and 177% (101-267%) (P<0.005), respectively. The HDL-CD lag phase also increased on both doses 140% (115-169%) (P<0.005) and 171% (122-192%) (P<0.005), as did the HDL-LPO lag phase by 123% (104-153%) (P<0.05) on 200 mg/day and 240% (97-360%) (P<0.005) on 400 mg daily. Cholesteryl ester transfer activity from HDL to very low and low density lipoproteins significantly increased from 12. 7+/-2.6 (mean+/-SEM) to 16+/-3.4 nmol/ml/h (P<0.05) on 200 mg/daily and 10.4+/-2.0 to 19.2+/-3.3 nmol/ml/h (P<0.005) on vitamin E, 400mg day. Thus, vitamin E (200 and 400mg daily) significantly decreased the susceptibility of LDL and HDL to oxidation in vitro. However, the increase in CETA

  13. Increased von Willebrand factor levels in patients with systemic lupus erythematosus reflect inflammation rather than increased propensity for platelet activation

    PubMed Central

    Raymond, Warren D; Eilertsen, Gro Østli

    2016-01-01

    Background von Willebrand factor (VWF) is involved in platelet plug formation and protein transport. Increased VWF levels in systemic lupus erythematous (SLE) are considered risk factors for vascular events. VWF protein levels, however, do not accurately reflect its platelet-aggregating function, which has not been examined in SLE. Methods Cross-sectional study with clinical and laboratory data obtained in patients with SLE (n=92) from a regional lupus registry. VWF function was determined by ristocetin-induced platelet aggregation (VWF ristocetin cofactor, VWF:RCo) and VWF levels by turbidimetric assay (VWF antigen, VWF:Ag). The platelet-aggregating activity per VWF unit was estimated by the VWF RCo/Ag ratio. Healthy controls served as comparators and associations were evaluated by non-parametric methods. Results VWF:Ag (142% vs 107%, p=0.001) and VWF:RCo levels (123% vs 78%, p<0.041) were increased in patients with SLE, but VWF RCo/Ag ratio was similar as in controls (0.83 vs 0.82, p=0.8). VWF:Ag levels were higher in patients experiencing serositis but unrelated to other manifestations, thrombotic disease, Systemic Lupus Erythematous Disease Activity Index 2000 or Systemic Lupus International Collaborative Clinics-Damage Index. VWF:Ag levels correlated significantly with VWF:RCo levels (Rs 0.8, p<0.001), erythrocyte sedimentation rate (ESR) (Rs 0.32, p<0.01), anti-dsDNA Ab (Rs 0.27, p<0.01), total IgG (Rs 0.33 p<0.01), fibrinogen (Rs 0.28, p<0.01) and ceruloplasmin (Rs 0.367, p<0.01) levels. VWF:RCo levels were not related to clinical findings but were correlated with ESR, anti-dsDNA and transferrin levels. No serological associations existed for VWF RCo/Ag ratio (all p>0.2). Conclusions In this SLE cohort, VWF:Ag behaved similarly to acute-phase reactants, but VWF:Ag increases were not matched by increases in functional activity per unit of VWF. Thus, more VWF did not increase the propensity for platelet aggregation in SLE. PMID:27651919

  14. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  15. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  16. Increasing Physical Activity during the School Day through Physical Activity Classes: Implications for Physical Educators

    ERIC Educational Resources Information Center

    Adkins, Megan; Bice, Matt; Bartee, Todd; Heelan, Kate

    2015-01-01

    Across the nation schools are adopting health and wellness policies, specifically physical activity (PA) initiatives that aid healthy long-term lifestyles. Interest has been generated about the inclusion of physical activity classes to complement existing physical education classes. Furthermore, discussion has evolved as to if additional…

  17. Decreasing Stereotypy in Preschoolers with Autism Spectrum Disorder: The Role of Increased Physical Activity and Function

    ERIC Educational Resources Information Center

    McLaughlin, Constance Ann Hylton

    2010-01-01

    This study used increased physical activity during recess to reduce stereotypy in preschoolers with Autism Spectrum Disorder. Results indicate increasing physical activity can be used as an intervention to reduce automatically maintained stereotypy in preschoolers with ASD. The intervention had a lesser effect on a preschooler whose stereotypy was…

  18. Men on the Move: A Pilot Program to Increase Physical Activity among African American Men

    ERIC Educational Resources Information Center

    Griffith, Derek M.; Allen, Julie Ober; Johnson-Lawrence, Vicki; Langford, Aisha

    2014-01-01

    Despite the important contribution increasing physical activity levels may play in reducing chronic disease morbidity and mortality, there is a paucity of interventions and research indicating how to improve physical activity levels in African American men. "Men on the Move" was a pilot study to increase African American men's levels of…

  19. Evidence-Based Practice Guideline: Increasing Physical Activity in Schools--Kindergarten through 8th Grade

    ERIC Educational Resources Information Center

    Bagby, Karen; Adams, Susan

    2007-01-01

    Because of the growing obesity epidemic across all age groups in the United States, interventions to increase physical activity and reduce sedentary behaviors have become a priority. Evidence is growing that interventions to increase physical activity and reduce sedentary behaviors have positive results and are generally inexpensive to implement.…

  20. Increasing Activity Attendance and Engagement in Individuals with Dementia Using Descriptive Prompts

    ERIC Educational Resources Information Center

    Brenske, Shasta; Rudrud, Eric H.; Schulze, Kimberly A.; Rapp, John T.

    2008-01-01

    The effects of providing descriptive prompts to increase activity attendance and engagement in 6 individuals with dementia were evaluated using a reversal design. The results showed that providing descriptive prompts increased activity attendance and engagement for all participants. The results support the use of antecedent interventions for…

  1. Evidence-based practice guideline: increasing physical activity in schools--kindergarten through 8th grade.

    PubMed

    Bagby, Karen; Adams, Susan

    2007-06-01

    Because of the growing obesity epidemic across all age groups in the United States, interventions to increase physical activity and reduce sedentary behaviors have become a priority. Evidence is growing that interventions to increase physical activity and reduce sedentary behaviors have positive results and are generally inexpensive to implement. National and international health organizations are calling for a comprehensive approach for reducing obesity in children that includes increasing physical activity in the school setting. Although the call to increase activity levels in schools is clear, little guidance has been given to schools on specific methods to accomplish this task. This article provides an overview of an evidence-based guideline developed by a physical education teacher and a school nurse to provide inexpensive, easy-to-implement, effective strategies to increase physical activity in students. Tools are also included in the guideline to measure the effectiveness of the intervention.

  2. Use of a lag differential reinforcement contingency to increase varied selections of classroom activities.

    PubMed

    Cammilleri, Anthony P; Hanley, Gregory P

    2005-01-01

    The present study evaluated the effects of a lag differential reinforcement contingency on 2 students' activity selections using reversal designs. Results showed that the lag contingency was responsible for promoting increased novel selections, engagement in diverse activities, and greater progress with respect to programmed academic activities.

  3. Use of an open-loop system to increase physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effectiveness of an open-loop system that reinforces physical activity with TV watching to increase children’s physical activity. Non-overweight, sedentary boys and girls (8-12 y) were randomized to a group that received feedback of activity counts + reinforcement for physic...

  4. Use of a Lag Differential Reinforcement Contingency to Increase Varied Selections of Classroom Activities

    ERIC Educational Resources Information Center

    Cammilleri, Anthony P.; Hanley, Gregory P.

    2005-01-01

    The present study evaluated the effects of a lag differential reinforcement contingency on 2 students' activity selections using reversal designs. Results showed that the lag contingency was responsible for promoting increased novel selections, engagement in diverse activities, and greater progress with respect to programmed academic activities.

  5. Texting to increase physical activity among teenagers (TXT Me!): Rationale, design, and methods proposal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity decreases from childhood through adulthood. Among youth, teenagers (teens) achieve the lowest levels of physical activity, and high school age youth are particularly at risk of inactivity. Effective methods are needed to increase youth physical activity in a way that can be maintai...

  6. Increases in nuclear p65 activation in dystrophic skeletal muscle are secondary to increases in the cellular expression of p65 and are not solely produced by increases in IkappaB-alpha kinase activity.

    PubMed

    Singh, Rajvir; Millman, Gregory; Turin, Eric; Polisiakeiwicz, Lucasz; Lee, Brian; Gatti, Francesca; Berge, Jonas; Smith, Emily; Rutter, John; Sumski, Chris; Winders, W Tyler; Samadi, Abbas; Carlson, C George

    2009-10-15

    Dystrophin-deficient muscle exhibits substantial increases in nuclear NF-kappaB activation. To examine potential mechanisms for this enhanced activation, the present study employs conventional Western blot techniques to provide the first determination of the relative expression of NF-kappaB signaling molecules in adult nondystrophic and dystrophic (mdx) skeletal muscle. The results indicate that dystrophic muscle is characterized by increases in the whole cell expression of IkappaB-alpha, p65, p50, RelB, p100, p52, IKK, and TRAF-3. The proportion of phosphorylated IkappaB-alpha, p65, NIK, and IKKbeta, and the level of cytosolic IkappaB-alpha, were also increased in the mdx diaphragm. Proteasomal inhibition using MG-132 increased the proportion of phosphorylated IkappaB-alpha in nondystrophic diaphragm, but did not significantly increase this proportion in the mdx diaphragm. This result suggests that phosphorylated IkappaB-alpha accumulates in dystrophic cytosol because the rate of IkappaB-alpha degradation is lower than the effective rate of IkappaB-alpha synthesis and phosphorylation. Dystrophic increases in SUMO-1 (small ubiquitin modifier-1) protein and in Akt activation were also observed. The results indicate that increases in nuclear p65 activation in dystrophic muscle are not produced solely by increases in the activity of IkappaB-alpha kinase (IKK), but are due primarily to increases in the expression of p65 and other NF-kappaB signaling components.

  7. Botulinum Toxin Complex Increases Paracellular Permeability in Intestinal Epithelial Cells via Activation of p38 Mitogen-Activated Protein Kinase

    PubMed Central

    MIYASHITA, Shin-ichiro; SAGANE, Yoshimasa; INUI, Ken; HAYASHI, Shintaro; MIYATA, Keita; SUZUKI, Tomonori; OHYAMA, Tohru; WATANABE, Toshihiro; NIWA, Koichi

    2013-01-01

    ABSTRACT Clostridium botulinum produces a large toxin complex (L-TC) that increases paracellular permeability in intestinal epithelial cells by a mechanism that remains unclear. Here, we show that mitogen-activated protein kinases (MAPKs) are involved in this permeability increase. Paracellular permeability was measured by FITC-dextran flux through a monolayer of rat intestinal epithelial IEC-6 cells, and MAPK activation was estimated from western blots. L-TC of C. botulinum serotype D strain 4947 increased paracellular dextran flux and activated extracellular signal-regulated kinase (ERK), p38, but not c-Jun N-terminal kinase (JNK) in IEC-6 cells. The permeability increase induced by L-TC was abrogated by the p38 inhibitor SB203580. These results indicate that L-TC increases paracellular permeability by activating p38, but not JNK and ERK. PMID:23884081

  8. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    PubMed

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; p<0.0001), suggesting that peroxisome proliferator-activated receptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients

  9. Longterm persistence of proteolytic activities in frass of Blattella germanica increases its allergenic potential.

    PubMed

    Erban, T; Hubert, J

    2011-06-01

    Chromogenic microplate assays in 96 wells were used to determine the stability of enzyme activity in frass of Blattella germanica (Blattodea: Blattellidae). Frass samples were exposed to controlled conditions [temperature 15-35 °C and/or 53-100% relative humidity (RH)] and to household conditions (apartment). Exposure times were 0 (control), 90, 183 and 276 days. Starch digestion and cellulolytic activities decreased during exposure. Non-specific proteolytic activities were affected by changes in selective proteolytic activities. Activities towards AAPpNA and SA(3) pNA strongly increased at 100% RH, indicating the possible influence of microorganisms growing on frass. Activities towards BApNA and ArgpNA decreased with increasing decomposition time, whereas activity towards ZRRpNA was not influenced by exposure time. The largest decrease in activities towards ArgpNA and BApNA occurred at temperatures of 15 °C, 30 °C and 35 °C and at 100% RH. Activities towards BApNA and ZRRpNA were very stable under different temperature and RH conditions; this was confirmed by findings showing that these activities were stable in the experimental apartment. In comparison with the control, activities towards ZRRpNA and BApNA after 276 days decreased by 1% and 19%, respectively. The longterm persistence of proteolytic activities in cockroach frass increases their allergenic hazard potential.

  10. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  11. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  12. Feasibility and Effects of Short Activity Breaks for Increasing Preschool-Age Children's Physical Activity Levels

    ERIC Educational Resources Information Center

    Alhassan, Sofiya; Nwaokelemeh, Ogechi; Mendoza, Albert; Shitole, Sanyog; Puleo, Elaine; Pfeiffer, Karin A.; Whitt-Glover, Melicia C.

    2016-01-01

    Background: We examined the effects of short bouts of structured physical activity (SBS-PA) implemented within the classroom setting as part of designated gross-motor playtime on preschoolers PA. Methods: Preschools were randomized to SBS-PA (centers, N = 5; participants, N = 141) or unstructured free playtime (UPA) (centers, N = 5; participants,…

  13. INCREASED ENDOCRINE ACTIVITY OF XENOBIOTIC CHEMICALS AS MEDIATED BY METABOLIC ACTIVATION

    EPA Science Inventory

    This research is part of an effort to develop in vitro assays and QSARs applicable to untested chemicals on EPA inventories through study of estrogen receptor (ER) binding and estrogen mediated gene expression in fish. The current effort investigates metabolic activation of chemi...

  14. Geomagnetic activity during the previous day is correlated with increased consumption of sucrose during subsequent days: is increased geomagnetic activity aversive?

    PubMed

    Galic, M A; Persinger, M A

    2004-06-01

    In five separate blocks over a period of several months for 33 female rats the amount of geomagnetic activity during the day before ad libitum access to 10% sucrose or water was positively correlated with the volume of sucrose consumed per 24-hr. period. The strength of the correlation (.62 to .77) declined over the subsequent 10 days from between .12 to -.18 and resembled an extinction curve. In a subsequent experiment four rats exposed to 5 nT to 8 nT, 0.5-Hz magnetic fields that ceased for 30 min. once every 4 hr. for 4 days consumed 11% more sucrose than the four rats exposed to no field. We suggest that the initial consumption of 10% sucrose may have been reinforced because it diminished the aversive physiological effects associated with the increased geomagnetic activity. However, over the subsequent days, as geomagnetic activity decreased or habituation occurred, negative reinforcement did not maintain this behavior.

  15. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus.

    PubMed

    Koehler, Alexander; Kolesnikova, Larissa; Becker, Stephan

    2016-10-01

    Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40D184N), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40D184N, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

  16. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    NASA Technical Reports Server (NTRS)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  17. Exercise increases hexokinase II mRNA, but not activity in obesity and type 2 diabetes.

    PubMed

    Cusi, K J; Pratipanawatr, T; Koval, J; Printz, R; Ardehali, H; Granner, D K; Defronzo, R A; Mandarino, L J

    2001-05-01

    Glucose phosphorylation, catalyzed by hexokinase, is the first committed step in glucose uptake in skeletal muscle. Hexokinase II (HKII) is the isoform that is present in muscle and is regulated by insulin and muscle contraction. Glucose phosphorylation and HKII expression are both reduced in obese and type 2 diabetic subjects. A single bout of exercise increases HKII mRNA and activity in muscle from healthy subjects. The present study was performed to determine if a moderate exercise increases HKII mRNA expression and activity in patients with type 2 diabetes. Muscle biopsies were performed before and 3 hours after a single bout of cycle ergometer exercise in obese and type 2 diabetic patients. HKII mRNA and activity and glycogen synthase activity were determined in the muscle biopsies. Exercise increased HKII mRNA in obese and diabetic subjects by 1.67 +/- 0.34 and 1.87 +/- 0.26-fold, respectively (P <.05 for both). Exercise did not significantly increase HKI mRNA. When HKII mRNA increases were compared with the 2.26 +/- 0.36-fold increase in HKII mRNA previously reported for healthy lean subjects, no statistically significant differences were found. In contrast to the increase in HKII activity observed after exercise by lean healthy controls, exercise did not increase HKII activity in obese nondiabetic or diabetic subjects. Exercise increased glycogen synthase activity (GS(0.1) and GS(FV)) significantly in both obese nondiabetic and type 2 diabetic patients. The present results indicate that there is a posttranscriptional defect in the response of HKII expression to exercise in obese and type 2 diabetic subjects. This defect may contribute to reduced HKII activity and glucose uptake in these patients.

  18. Morphine treatment during juvenile isolation increases social activity and opioid peptides release in the adult rat.

    PubMed

    Van den Berg, C L; Kitchen, I; Gerrits, M A; Spruijt, B M; Van Ree, J M

    1999-05-29

    The consequences of juvenile isolation and morphine treatment on general activity, social activity and endogenous opioid release during a social interaction test were investigated in the adult rat. Rats were either isolated or socially housed during weeks 4 and 5 of age and treated daily during this isolation period subcutaneously with either saline or morphine. Directly after a social interaction test at 10 weeks of age, rats were injected with [3H]-diprenorphine and subsequently prepared for in vivo autoradiography. The autoradiographic technique was used to visualise neuroanatomical changes in opioid receptor occupancy, probably reflecting changes in opioid peptide release, as a result of social activity. Juvenile isolation increased general activity during the social interaction test, an effect which was accompanied by a reduction of opioid receptor occupancy in many brain areas, suggesting an increased opioid peptide release as a consequence of socially-induced general activity. Morphine treatment in isolated rats caused an increase in adult social activity and enhanced opioid peptide release in some cortical regions and the ventral tegmental area as compared to saline treated rats. Both social activity and opioid receptor occupancy were unaffected by morphine treatment in non-isolated rats. The present study underscores the role of opioid systems in adult social behaviors as a consequence of juvenile isolation. The results suggest a relationship between social activity and opioid peptide release during social contact. Increased social activity seems to be accompanied by elevated opioid peptide release in distinct brain areas after morphine treatment during juvenile isolation.

  19. Resistance training increases total energy expenditure and free-living physical activity in older adults.

    PubMed

    Hunter, G R; Wetzstein, C J; Fields, D A; Brown, A; Bamman, M M

    2000-09-01

    The purpose of this study was to determine what effects 26 wk of resistance training have on resting energy expenditure (REE), total free-living energy expenditure (TEE), activity-related energy expenditure (AEE), engagement in free-living physical activity as measured by the activity-related time equivalent (ARTE) index, and respiratory exchange ratio (RER) in 61- to 77-yr-old men (n = 8) and women (n = 7). Before and after training, body composition (four-compartment model), strength, REE, TEE (doubly labeled water), AEE (TEE - REE + thermic response to meals), and ARTE (AEE adjusted for energy cost of standard activities) were evaluated. Strength (36%) and fat-free mass (2 kg) significantly increased, but body weight did not change. REE increased 6.8%, whereas resting RER decreased from 0.86 to 0.83. TEE (12%) and ARTE (38%) increased significantly, and AEE (30%) approached significance (P = 0.06). The TEE increase remained significant even after adjustment for the energy expenditure of the resistance training. In response to resistance training, TEE increased and RER decreased. The increase in TEE occurred as a result of increases in both REE and physical activity. These results suggest that resistance training may have value in increasing energy expenditure and lipid oxidation rates in older adults, thereby improving their metabolic profiles.

  20. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity

    PubMed Central

    Zavadzkas, Juozas A.; Rivers, William T.; McLean, Julie E.; Chang, Eileen I.; Bouges, Shenikqua; Matthews, Robert G.; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30–35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 ± 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 ± 0.4%), but MMP activity remained elevated (121 ± 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling. PMID:20472759

  1. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity.

    PubMed

    Mukherjee, Rupak; Zavadzkas, Juozas A; Rivers, William T; McLean, Julie E; Chang, Eileen I; Bouges, Shenikqua; Matthews, Robert G; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-07-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30-35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 +/- 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 +/- 0.4%), but MMP activity remained elevated (121 +/- 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling.

  2. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  3. Understanding dog owners' increased levels of physical activity: results from RESIDE.

    PubMed

    Cutt, Hayley; Giles-Corti, Billie; Knuiman, Matthew; Timperio, Anna; Bull, Fiona

    2008-01-01

    We examined the influence of dog ownership on physical activity, independent of demographic, intrapersonal, and perceived environmental factors, in a cross-sectional survey of 1813 adults. Although only 23% of the dog owners walked their dogs 5 or more times per week, the adjusted odds of achieving sufficient physical activity and walking were 57% to 77% higher among dog owners compared with those not owning dogs (P< .05). Dog ownership was independently associated with physical activity and walking. Actively encouraging more dog walking may increase community physical activity levels.

  4. Transgenic expression of cyclin-dependent kinase 4 results in epidermal hyperplasia, hypertrophy, and severe dermal fibrosis.

    PubMed

    Miliani de Marval, P L; Gimenez-Conti, I B; LaCava, M; Martinez, L A; Conti, C J; Rodriguez-Puebla, M L

    2001-07-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27(Kip1) to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression.

  5. Using targeted messaging to increase physical activity in older adults: a review.

    PubMed

    Ostrander, Rachel E; Thompson, Hilaire J; Demiris, George

    2014-09-01

    Physical activity has many benefits for older adults; however, motivating older adults to engage in and maintain optimal levels of physical activity can be challenging for health care providers. A comprehensive literature review was performed to determine whether any evidence-based methods of delivery or particular content for targeted messaging exist that result in actual improvements in physical activity of older adults. Findings of the review demonstrate that messaging directed toward older adults to be physically active resulted in improvements in physical activity up to 1 year. Across studies many different modes of message delivery were shown to be effective. Message content, whether tailored or not, resulted in significant increases in physical activity. There is evidence to support the use of environmentally mediated messaging (i.e., local walking paths) for stronger results. Targeting the client's stage of change, having an activity partner if preferred, and scheduling physical activity also contribute to improved effects.

  6. Newspaper Content Analysis in Evaluation of a Community-Based Participatory Project to Increase Physical Activity

    ERIC Educational Resources Information Center

    Granner, Michelle L.; Sharpe, Patricia A.; Burroughs, Ericka L.; Fields, Regina; Hallenbeck, Joyce

    2010-01-01

    This study conducted a newspaper content analysis as part of an evaluation of a community-based participatory research project focused on increasing physical activity through policy and environmental changes, which included activities related to media advocacy and media-based community education. Daily papers (May 2003 to December 2005) from both…

  7. Increasing Student Physical Activity during the School Day: Opportunities for the Physical Educator

    ERIC Educational Resources Information Center

    Brewer, Joan D.; Luebbers, Paul E.; Shane, Shawna D.

    2009-01-01

    America is facing an obesity epidemic--one that is difficult to ignore. In order to combat the nation's obesity crisis, it is imperative that schools find ways to increase the physical activity levels of students during the school day, as well as encourage additional activity outside of school. By teaching youth to incorporate physical activity…

  8. Physical Activity and Executive Control: Implications for Increased Cognitive Health during Older Adulthood

    ERIC Educational Resources Information Center

    Hillman, Charles H.; Belopolsky, Artem V.; Snook, Erin M.; Kramer, Arthur F.; McAuley, Edward

    2004-01-01

    Electrocortical and behavioral responses of low, moderate, and high physically active older adults where compared with a younger control group on neutral and incompatible conditions of a flankers task. Compared to younger adults, high and moderate active older adults exhibited increased event-related potentials component P3 amplitude for the…

  9. Focused Campaign Increases Activity among Participants in "Nature's Notebook," a Citizen Science Project

    ERIC Educational Resources Information Center

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants' activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a…

  10. [Methods of increasing the activity of extracellular esterase, beta-fructofuranosidase and proteases of wine yeast].

    PubMed

    Abdurazakova, S Kh; Salomov, Kh T

    1975-01-01

    Upon regular fermentation changes in the activity of the enzymes esterase, beta-fructofuranosidase and protease of the yeast Saccharomyces mini of the Parkent I race were examined. The maximum activity of the enzymes occurred in the stationary phase of the yeast growth. An increase in the activity of the above enzymes was shown possible during a prolonged stabilization of the stationary conditions in the process of a continuous chemostat cultivation of wine yeast.

  11. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  12. Effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity

    PubMed Central

    Zhao, Xiaoguang; Tsujimoto, Takehiko; Kim, Bokun; Katayama, Yasutomi; Wakaba, Kyousuke; Wang, Zhennan; Tanaka, Kiyoji

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity and to verify whether the rate of change in foot structure is related to that in ankle muscle strength. [Subjects and Methods] Twenty-seven adults with obesity completed a 12-week program in which the intensity of physical activity performed was gradually increased. Physical activity was monitored using a three-axis accelerometer. Foot structure was assessed using a three-dimensional foot scanner, while ankle muscle strength was measured using a dynamometry. [Results] With the increasing physical activity, the participants’ feet became thinner (the rearfoot width, instep height, and girth decreased) and the arch became higher (the arch height index increased) and stiffer (the arch stiffness index increased); the ankle muscle strength also increased after the intervention. Additionally, the changes in the arch height index and arch stiffness index were not associated with changes in ankle muscle strength. [Conclusion] Increasing physical activity may be one possible approach to improve foot structure and function in individuals with obesity. PMID:27630426

  13. Proximal aortic stiffness is increased in systemic lupus erythematosus activity in children and adolescents.

    PubMed

    El Gamal, Yehia Mohamad; Elmasry, Ola Abd Elaziz; El Hadidi, Iman Saleh; Soliman, Ola Kamel

    2013-01-01

    Patients with systemic lupus erythematosus (SLE) are prone to premature atherosclerosis and are at risk for the development of cardiovascular disease. Increased arterial stiffness is emerging as a marker of subclinical atherosclerosis. Purpose. To measure proximal aortic stiffness in children and adolescents with SLE. Methods. We studied 16 patients with SLE in activity (mean age 15 ± 2.42 years; 16 females), 14 patients with SLE not in activity (mean age 15.7 ± 1.89 years; 4 males, 10 females), and 16 age- and sex-comparable healthy children and adolescents (15.5 ± 1.71 years; 4 males, 12 females). Disease activity was determined by the SLE disease activity index (SLEDAI). All subjects underwent echocardiography for assessment of proximal aortic pulse wave velocity (PWV) [Ao distance/Ao wave transit time in the aortic arch]. Venous blood samples were collected for ESR. Results. Patients in activity had significantly higher PWV values than controls (P < 0.05), while no significant difference was found between patients not in activity and controls. Conclusions. SLE patients with disease activity demonstrate increased PWV and arterial stiffness of the proximal aorta, while patients without disease activity do not. This suggests that inflammation secondary to SLE activity, and not subclinical atherosclerosis, is the major underlying cause for increased arterial stiffness in this age group.

  14. Targeting Reductions in Sitting Time to Increase Physical Activity and Improve Health.

    PubMed

    Keadle, Sarah K; Conroy, David E; Buman, Matthew P; Dunstan, David W; Matthews, Charles E

    2017-03-08

    New evidence suggests that reductions in sedentary behavior may increase physical activity and improve health. These findings point to new behavioral targets for intervention and new ways to think about intervening to increase overall physical activity in the population. This report provides a knowledge update reflecting the rapid accumulation of new evidence related to sedentary behavior and health among adults. Recent observational studies suggest that leveraging the time-inverse relationship between sedentary and active behaviors by replacing sitting with standing, light or moderate-intensity activity can have important health benefits, particularly among less active adults. Clinical studies are providing evidence of the probable physiologic mechanisms underlying these associations, as well as insights into the cardiometabolic impact of breaking up and reducing sedentary behavior. In contrast to the well-established behavioral theories that guide the development and dissemination of evidence-based interventions to increase moderate-vigorous intensity physical activity (MVPA), much less is known about how to reduce sedentary time in order to increase daily activities. It has become clear that the environmental, social and individual level-determinants for sedentary time are distinct from those linked to the adoption and maintenance of MVPA. As a result, novel intervention strategies that focus on sitting and lower intensity activities by leveraging the surrounding environment (e.g., workplace, school, home) as well as individual-level cues and habits of sedentary behavior are being tested to increase the potency of interventions designed to increase overall physical activity. Herein we summarize the solutions-oriented research across the behavioral research framework, with a focus on highlighting areas of synergy across disciplines and identifying gaps for future research.

  15. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  16. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    PubMed Central

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L.; Bellamy, Scarlett L.; Betts, Michael R.

    2014-01-01

    ABSTRACT The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4+ T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4+ T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4+ T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4+ T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4+ T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4+ T cells and potentially increases susceptibility to SIV

  17. Increasing Physical Activity in Preschool: A Pilot Study to Evaluate Animal Trackers

    ERIC Educational Resources Information Center

    Williams, Christine L.; Carter, Betty Jean; Kibbe, Debra L.; Dennison, David

    2009-01-01

    Objective: This report describes a pilot study to evaluate Animal Trackers (AT), a preschool program designed to (1) increase structured physical activity (PA) during the preschool day; (2) increase practice of gross motor skills; (3) provide teachers with an easy-to-use PA program regardless of teacher experience; and (4) implement a teacher…

  18. Hematopoietic cell transplantation activity of Turkey in 2014: Ongoing increase in HCT rates.

    PubMed

    Tekgündüz, Emre; Şencan, İrfan; Kapuağası, Arif; Ünal, Doğan; Öztürk, Murat; Gümüş, Eyüp; Göker, Hakan; Tavil, Emine Betül; Ertem, Mehmet; Çetin, Mustafa; Arat, Mutlu; Soysal, Teoman; Karakaşlı, Osman; Sur, Halil Yılmaz; Yeşilipek, Akif; Ferhanoğlu, Burhan; Uçkan, Duygu; İlhan, Osman; Altuntaş, Fevzi

    2016-02-01

    Hematopoietic cell transplantation is an established treatment option with curative potential for a variety of clinical conditions. The last decade especially witnessed a remarkable increase in HCT activity in Turkey. In 2014, 696 pediatric and 2631 adult (total 3327) HCT were performed in Turkey. Corresponding transplant rates per 10 million inhabitants for autologous-HCT and allogeneic-HCT were 226 and 202, respectively. Total HCT procedures in Turkey increased 177% in the last 5 years and 791% in the last 14 years. This report focuses mainly on HCT activity of Turkey in 2014 based on the national HCT registry and presents a general picture of national HCT activity.

  19. Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry.

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Ammann, Sabine; Oksman-Caldentey, Kirsi-Marja; Buchert, Johanna

    2008-02-13

    The effects of nine cell wall-degrading enzymes on the antimicrobial and antioxidant activities of bilberry were studied. Antimicrobial activity was measured using the human pathogens Salmonella enterica sv. Typhimurium and Staphylococcus aureus as test strains. Enzyme treatments liberated phenolics from the cell wall matrix, which clearly increased the antimicrobial activity of berry juices, press cakes, and berry mashes on the basis of plate counts. Antibacterial effects were stronger against Salmonella than against Staphylococcus bacteria. In general, the increase in activity measured as colony-forming units per milliliter was 3-5 logarithmic units against Salmonella and 1-2 units against Staphylococcus bacteria. Increase in antimicrobial activity was observed only in acidic conditions, which is also the natural environment in various berry products, such as juices. The activity profile of the pectinase preparation affected the chemistry of the phenolics due to the presence of deglycosylating activities in some preparations. The difference in phenolic profiles was reflected in the antimicrobial effects. Bilberry mashes treated with Pectinex Ultra SP-L, Pectinex 3 XL, and Pectinex BE XXL were most efficient against Salmonella bacteria, whereas mashes treated with Pectinex Smash, Pectinex BE 3-L, and Biopectinase CCM showed the strongest antimicrobial activity against Staphylococcus bacteria. Due to the liberation of phenolics from the cell wall matrix the antioxidant activity measured as radical scavenging activity was also increased on average about 30% by the enzymatic treatments. The highest increase in phenolic compounds was about 40%. Highest increases in anthocyanins and in antioxidant activity were observed in berry mash treated with Pectinex Smash XXL enzyme, and the lowest increase was observed after treatment with Pectinex BE 3-L. Enzyme-assisted processing is traditionally used to improve berry and fruit juice yields. However, enzymatic treatments also

  20. DMH1 increases glucose metabolism through activating Akt in L6 rat skeletal muscle cells.

    PubMed

    Xie, Xin; Xu, Xiao-Ming; Li, Na; Zhang, Yong-Hui; Zhao, Yu; Ma, Chun-Yan; Dong, De-Li

    2014-01-01

    DMH1(4-[6-(4-Isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline) is a compound C analogue with the structural modifications at the 3- and 6-positions in pyrazolo[1,5-a]pyrimidine backbone. Compound C was reported to inhibit both AMPK and Akt. Our preliminary work found that DMH1 activated Akt. Since Akt was involved in glucose metabolism, we aimed to identify the effects of DMH1 on glucose metabolism in L6 rat muscle cells and the potential mechanism. Results showed that DMH1 increased lactic acid release and glucose consumption in L6 rat muscle cells in a dose-dependent manner. DMH1 activated Akt in L6 cells. Akt inhibitor inhibited DMH1-induced Akt activation and DMH1-induced increases of glucose uptake and consumption. DMH1 had no cytotoxicity in L6 cells, but inhibited mitochondrial function and reduced ATP production. DMH1 showed no effect on AMPK, but in the presence of Akt inhibitor, DMH1 significantly activated AMPK. Compound C inhibited DMH1-induced Akt activation in L6 cells. Compound C inhibited DMH1-induced increase of glucose uptake, consumption and lactic acid release in L6 cells. DMH1 inhibited PP2A activity, and PP2A activator forskolin reversed DMH1-induced Akt activation. We concluded that DMH1 increased glucose metabolism through activating Akt and DMH1 activated Akt through inhibiting PP2A activity in L6 rat muscle cells. In view of the analogue structure of DMH1 and compound C and the contrasting effects of DMH1 and compound C on Akt, the present study provides a novel leading chemical structure targeting Akt with potential use for regulating glucose metabolism.

  1. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  2. Increased anterior insula activity in anxious individuals is linked to diminished perceived control

    PubMed Central

    Alvarez, R P; Kirlic, N; Misaki, M; Bodurka, J; Rhudy, J L; Paulus, M P; Drevets, W C

    2015-01-01

    Individuals with high-trait anxiety frequently report decreased perceived control. However, it is unclear how these processes are instantiated at a neural level. Prior research suggests that individuals prone to anxiety may have exaggerated activity in the anterior insula and altered activity in the cingulate cortex during anticipation of aversive events. Thus, we hypothesized that anxiety proneness influences anterior insula activation during anticipation of unpredictable threat through decreased perceived control. Forty physically healthy adults underwent neuroimaging while they explored computer-simulated contexts associated either with or without the threat of an unpredictable shock. Skin conductance, anxiety ratings and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging were used to assess responses to threat versus no threat. Perceived control was measured using the Anxiety Control Questionnaire-Revised. Mediation analysis examined how anxiety proneness influenced BOLD activity. Anticipation of unpredictable threat resulted in increased skin conductance responses, anxiety ratings and enhanced activation in bilateral insula, anterior midcingulate cortex (aMCC) and bed nucleus of the stria terminalis. Individuals with greater anxiety proneness and less perceived control showed greater activity in dorsal anterior insula (dAI). Perceived control mediated the relationship between anxiety proneness and dAI activity. Increased dAI activity was associated with increased activity in aMCC, which correlated with increased exploratory behavior. Results provide evidence that exaggerated insula activation during the threat of unpredictable shock is directly related to low perceived control in anxiety-prone individuals. Perceived control thus may constitute an important treatment target to modulate insula activity during anxious anticipation in anxiety-disordered individuals. PMID:26125154

  3. Salivary Acetylcholinesterase Activity Is Increased in Parkinson's Disease: A Potential Marker of Parasympathetic Dysfunction

    PubMed Central

    Fedorova, Tatyana; Knudsen, Cindy Soendersoe; Mouridsen, Kim; Nexo, Ebba; Borghammer, Per

    2015-01-01

    Introduction. Decreased salivary flow and xerostomia are frequent findings in Parkinson's disease (PD), possibly caused by alterations in the parasympathetic tonus. Here we explore salivary acetylcholinesterase (AChE) activity as a potential biomarker in PD. Methods. We measured salivary flow, AChE activity, and total protein concentration in 30 PD patients and 49 healthy controls. We also performed exploratory correlation analyses with disease duration, motor symptom severity, autonomic complaints, and other nonmotor symptoms. Results. PD patients displayed significantly decreased salivary flow rate, significantly increased salivary AChE activity, and total protein concentration. Importantly, the AChE activity/total protein ratio was significantly increased in PD patients, suggesting that increased AChE activity cannot be explained solely by upconcentration of saliva. The Unified PD Rating Scale (UPDRS) score displayed significant correlation with total salivary protein (P = 0.002) and near-significant correlation with salivary flow (P = 0.07). Color vision test scores were also significantly correlated with AChE activity (P = 0.04) and total protein levels (P = 0.002). Conclusion. Salivary AChE activity is increased in PD patients compared to healthy controls. Future studies are needed to elucidate whether this parameter reflects the extent of neuronal damage and parasympathetic denervation in the salivary glands of PD patients. PMID:25767737

  4. Increased chitotriosidase activity in plasma of patients with type 2 diabetes

    PubMed Central

    Knapik-Kordecka, Maria; Rorbach-Dolata, Anna; Piwowar, Agnieszka

    2016-01-01

    Introduction Chitotriosidase (CHIT1) is a chitinolytic enzyme involved mainly in the immune and inflammatory response. It shows increased activity in many pathologies, including in newly diagnosed type 2 diabetes (T2D). This study aimed to investigate this enzyme's activity in plasma of patients with ongoing T2D and indicate factors related to the increased activity of this enzyme. Material and methods Ninety-one patients and 46 control subjects without abnormalities in carbohydrate metabolism and inflammatory states were enrolled in the study. Plasma CHIT1 activity was measured by a spectrofluorometric method. Routine laboratory parameters such as blood glucose, total cholesterol and HDL fraction, triglyceride, glycated hemoglobin, white blood cell count and C-reactive protein were measured by standard methods. Results We found that the chitotriosidase activity was significantly higher (p < 0.001) in type 2 diabetic patients and positively associated with parameters of glycemic control (levels of glucose and glycated hemoglobin) and blood pressure. Plasma glucose level and systolic blood pressure were independent determinants of increased CHIT1 activity in T2D patients, even after adjustment for disease duration, body mass index, parameters of inflammation and lipid metabolism. We also found that increased CHIT1 activity was associated with occurrence of diabetic angiopathies. Conclusions This investigation indicates a possible role of chitotriosidase in the course of T2D, especially in relation to development of diabetic angiopathies. PMID:27695487

  5. Increased endocytotic and lysosomal activities in denervated type I and type II muscle fibres.

    PubMed

    Lawoko, G; Tågerud, S; Libelius, R

    1992-01-01

    Previous work has shown that increased endocytotic and lysosomal activities occur in the endplate region of denervated skeletal muscle fibres. This, however, does not engage all fibres of a muscle at a given time after denervation. The present study was carried out in order to determine if both type I (slow) and type II (fast) muscle fibres can react to denervation by increased endocytotic and lysosomal activities. Uptake of horseradish peroxidase as a marker for endocytosis was studied in conjunction with acid phosphatase staining for lysosomal activity in type I and type II fibres of the denervated mouse hemidiaphragm. Fibre typing was performed using a monoclonal antibody against fast skeletal myosin and by adenosine triphosphatase staining. The results show that increased endocytosis and lysosomal activation occur in both type I and type II fibres after denervation.

  6. Increase of histidine decarboxylase activity in mice hypothalamus after intracerebroventricular administration of lipopolysaccharide.

    PubMed

    Niimi, M; Mochizuki, T; Cacabelos, R; Yamatodani, A

    1993-10-01

    The effect of intracerebroventricular (icv) administration of lipopolysaccharide on histidine decarboxylase activity and histamine content in the hypothalamus were investigated in male mice of ddY strain in vivo. Two-fold increase in histidine decarboxylase activity (HDC) was observed 4 h after administration of 50 mcg lipopolysaccharide, and HDC activity returned to the basal level within 12 h after injection. Furthermore, histamine contents showed a slight decrease at 1 and 2 h and a mild increase at 12 h after administration. However, changes in histamine content were not statistically significant. These results suggest that the increase of HDC activity in the hypothalamus by lipopolysaccharide may be involved in the central neuroimmune responses.

  7. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory.

    PubMed

    Fiset, Catherine; Rioux, France M; Surette, Marc E; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity.

  8. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  9. Increase in larval gut proteolytic activities and Bti resistance in the Dengue fever mosquito.

    PubMed

    Tetreau, Guillaume; Stalinski, Renaud; David, Jean-Philippe; Després, Laurence

    2013-02-01

    The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field-collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine-aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.

  10. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  11. Preliminary efficacy of prize-based contingency management to increase activity levels in healthy adults.

    PubMed

    Washington, Wendy Donlin; Banna, Kelly M; Gibson, Amanda L

    2014-01-01

    An estimated 30% of Americans meet the criteria for obesity. Effective, low-cost interventions to increase physical activity are needed to prevent and treat obesity. In this study, 11 healthy adults wore Fitbit accelerometers for 3 weeks. During the initial baseline, subjects earned prize draws for wearing the Fitbit. During intervention, percentile schedules were used to calculate individual prize-draw criteria. The final week was a return to baseline. Four subjects increased step counts as a result of the intervention. A bout analysis of interresponse times revealed that subjects increased overall step counts by increasing daily minutes active and within-bout response rates and decreasing pauses between bouts of activity. Strategies to improve effectiveness are suggested, such as modification of reinforcement probability and amount and identification of the function of periods of inactivity.

  12. ABDOMINAL MUSCLE ACTIVATION INCREASES LUMBAR SPINAL STABILITY: ANALYSIS OF CONTRIBUTIONS OF DIFFERENT MUSCLE GROUPS

    PubMed Central

    Stokes, Ian A.F.; Gardner-Morse, Mack G.; Henry, Sharon M.

    2011-01-01

    Background Antagonistic activation of abdominal muscles and raised intra-abdominal pressure are associated with both spinal unloading and spinal stabilization. Rehabilitation regimens have been proposed to improve spinal stability via selective recruitment of certain trunk muscle groups. This biomechanical study used an analytical model to address whether lumbar spinal stability is increased by selective activation of abdominal muscles. Methods The biomechanical model included anatomically realistic three-layers of curved abdominal musculature connected by fascia, rectus abdominis and 77 symmetrical pairs of dorsal muscles. The muscle activations were calculated with the model loaded with either flexion, extension, lateral bending or axial rotation moments up to 60 Nm, along with intra-abdominal pressure up to 5 or 10 kPa (37.5 or 75 mm Hg) and partial bodyweight. After solving for muscle forces, a buckling analysis quantified spinal stability. Subsequently, different patterns of muscle activation were studied by forcing activation of selected abdominal muscles to at least 10% or 20% of maximum. Findings The spinal stability increased by an average factor of 1.8 with doubling of intra-abdominal pressure. Forced activation of obliques or transversus abdominis muscles to at least 10% of maximum increased stability slightly for efforts other than flexion, but forcing at least 20% activation generally did not produce further increase in stability. Forced activation of rectus abdominis did not increase stability. Interpretation Based on predictions from an analytical spinal buckling model, the degree of stability was not substantially influenced by selective forcing of muscle activation. This casts doubt on the supposed mechanism of action of specific abdominal muscle exercise regimens that have been proposed for low back pain rehabilitation. PMID:21571410

  13. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  14. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    PubMed

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  15. Adolescent Activity-Based Anorexia Increases Anxiety-Like Behavior in Adulthood

    PubMed Central

    Kinzig, Kimberly P.; Hargrave, Sara L.

    2010-01-01

    Activity-based anorexia is a paradigm that induces increased physical activity, reduced food intake, and heightened activity of the hypothalamic-pituitary-adrenal axis in adult rats. To investigate whether experience with activity-based anorexia produced enduring effects on brain and behavior, female adolescent rats experienced activity-based anorexia during adolescence and were tested in adulthood for anxiety-like behavior on an elevated plus maze and in an open field. Analysis of elevated plus maze and open field behavior in adulthood revealed that rats that experienced activity-based anorexia during adolescence, but not rats that were simply food restricted, displayed increased anxiety-like behavior in adulthood. Plasma corticosterone and expression levels of corticotropin- releasing hormone mRNA in the hypothalamic paraventricular nucleus and in the central nucleus of the amygdala were significantly elevated in adult rats that had undergone activity-based anorexia in adolescence in response to the open field exposure, as compared to control rats. These data demonstrate enduring effects of adolescent activity-based anorexia on anxiety-like behavior and neuroendocrine factors critical in stress responsivity in adulthood. Furthermore, we demonstrate that activity-based anorexia during adolescence serves as a model whereby prolonged anxiety is induced, allowing for evaluation of the behavioral and neural correlates of mediating anxiety-like behaviors in adulthood. PMID:20566408

  16. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  17. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.

    PubMed Central

    Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo

    2003-01-01

    The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism. PMID:12887329

  18. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis.

    PubMed

    Canady, Johanna; Arndt, Stephanie; Karrer, Sigrid; Bosserhoff, Anja K

    2013-03-01

    Fibrotic disorders of the skin share the characteristic features of increased production and deposition of extracellular matrix components by activated fibroblasts. Their clinical course ranges from benign with localized cutaneous involvement to a systemic, life-threatening disease. The molecular cause for fibroblast activation remains unknown, yet epithelial-mesenchymal interactions draw mounting attention in the research field of fibrogenesis. We examined keratinocyte growth factor (KGF), a crucial molecule in fibroblast-keratinocyte cross talk, exemplarily in keloid and scleroderma, and found its expression to be increased in disease-derived fibroblasts and tissues compared with healthy controls. This overexpression induces fibroblast activation through a double paracrine mode of action. Upon KGF stimulation, the keratinocytes produced and secreted OSM (oncostatin M). Fibroblasts were in turn activated by OSM reacting with the increased expression of collagen type I-α1, fibroblast activation protein, and enhanced migration. The observed increase in collagen expression and fibroblast migration can be traced back to OSM-regulated STAT3 phosphorylation, leading to enhanced urokinase plasminogen activator expression. Hence, we propose a causative loop in the pathogenesis of fibrosing disorders of the skin mediated by the overexpression of KGF in mesenchymal cells.

  19. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties 'Dwarf Blue Curled Vates' and 'Red Winter' in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar 'Red Winter' in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined

  20. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.

    PubMed

    Martinez, Ronny; Jakob, Felix; Tu, Ran; Siegert, Petra; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2013-03-01

    Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (K(cat)) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5-fold increased specific activity (15°C) and over 100 times prolonged half-life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity-altering amino acid substitutions were from non-charged to non-charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions.

  1. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor.

    PubMed Central

    Vadillo-Ortega, F.; González-Avila, G.; Furth, E. E.; Lei, H.; Muschel, R. J.; Stetler-Stevenson, W. G.; Strauss, J. F.

    1995-01-01

    To determine whether specific collagenolytic enzymes are expressed in human fetal membranes with labor, we examined gelatinase activity in extracts of amniochorion by zymography. The 92-kd gelatinase (MMP-9) was barely detectable in extracts of fetal membranes before the onset of labor but was readily demonstrable in extracts prepared from membranes isolated from laboring women or membranes collected immediately after delivery. In contrast, the 72-kd gelatinase (MMP-2) was detectable in extracts from pre- and post-labor membranes. Ethylenediaminetetracetic acid and the tissue inhibitor of metalloproteinases, TIMP-1, inhibited the gelatinase activities detected by zymography, confirming that the enzymes are metalloproteinase. Assay of amniochorion gelatinase activity using a radiolabeled denatured collagen substrate revealed a more than twofold increase in activity comparing pre-labor with post-labor fetal membrane extracts. A function-blocking anti-MMP-9 monoclonal antibody inhibited pre-labor membrane gelatinase activity by approximately 11.5%, which was only slightly greater inhibition than observed with irrelevant monoclonal antibodies. However, post-labor membrane gelatinase activity was reduced by 53% by the function-blocking antibody, indicating that MMP-9 is a major contributor to the increased gelatinase activity extractable from post-labor membranes. Western blot analyses demonstrated increased MMP-9 protein in amniochorion extracts after onset of labor. MMP-9 protein and mRNA were co-localized in amnion epithelium, underlying macrophages and chorion laeve trophoblast and decidual cells after labor. We conclude that 1) MMP-9 activity and protein in human amniochorion increases with labor and 2) MMP-9 is expressed by amnion epithelium, macrophages and chorion laeve trophoblast and decidual cells. The increased expression of MMP-9 may result in degradation of the extracellular matrix of the fetal membranes and facilitate their rupture under both

  2. Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women.

    PubMed

    Gregory, Rebecca; Cheng, Hu; Rupp, Heather A; Sengelaub, Dale R; Heiman, Julia R

    2015-03-01

    After giving birth, women typically experience decreased sexual desire and increased responsiveness to infant stimuli. These postpartum changes may be viewed as a trade-off in reproductive interests, which could be due to alterations in brain activity including areas associated with reward. The goal of this study was to describe the roles of oxytocin and parity on reward area activation in response to reproductive stimuli, specifically infant and sexual images. Because they have been shown to be associated with reward, the ventral tegmental area (VTA) and nucleus accumbens (NAc) were targeted as areas of expected alterations in activity. Oxytocin was chosen as a potential mediator of reproductive trade-offs because of its relationship to both mother-infant interactions, including breastfeeding and bonding, and sexual responses. We predicted that postpartum women would show higher reward area activation to infant stimuli and nulliparous women would show higher activation to sexual stimuli and that oxytocin would increase activation to infant stimuli in nulliparous women. To test this, we measured VTA and NAc activation using fMRI in response to infant photos, sexual photos, and neutral photos in 29 postpartum and 30 nulliparous women. Participants completed the Sexual Inhibition (SIS) and Sexual Excitation (SES) Scales and the Brief Index of Sexual Function for Women (BISF-W), which includes a sexual desire dimension, and received either oxytocin or placebo nasal spray before viewing crying and smiling infant and sexual images in an fMRI scanner. For both groups of women, intranasal oxytocin administration increased VTA activation to both crying infant and sexual images but not to smiling infant images. We found that postpartum women showed lower SES, higher SIS, and lower sexual desire compared to nulliparous women. Across parity groups, SES scores were correlated with VTA activation and subjective arousal ratings to sexual images. In postpartum women, sexual

  3. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  4. Increased alpha 2-macroglobulin in diabetes: a hyperglycemia related phenomenon associated with reduced antithrombin III activity.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Stante, A; Dello Russo, P; Torella, R

    1989-01-01

    Increased alpha 2-macroglobulin (alpha 2M) activity and concentration, and decreased antithrombin III (ATIII) plasma concentration are reported in diabetic subjects. In diabetes an inverse correlation between ATIII activity and blood glucose, HbA1, alpha 2M activity and alpha 2M concentration, and a direct correlation between both alpha 2M activity and alpha 2M concentration with blood glucose and HbA1 are found. Moreover, a direct correlation between alpha 2M activity and alpha 2M concentration fails. In both diabetic and normal subjects induced hyperglycemia increases alpha 2M activity and alpha 2M concentration reduces ATIII activity, while ATIII concentration is not affected. These data which show that hyperglycemia may increase alpha 2M molecule levels while altering only the biological function of ATIII, provide evidence that hyperglycemia may decrease, directly, the biological function of some proteins and may condition the levels of some risk factors for the development of diabetic complications such as alpha 2M.

  5. TNFα Increases RANKL Expression via PGE2-Induced Activation of NFATc1

    PubMed Central

    Park, Hyun-Jung; Baek, Kyunghwa; Baek, Jeong-Hwa; Kim, Hyung-Ryong

    2017-01-01

    Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter. PMID:28245593

  6. Dietary resveratrol administration increases MnSOD expression and activity in mouse brain

    SciTech Connect

    Robb, Ellen L.; Winkelmolen, Lieke; Visanji, Naomi; Brotchie, Jonathan; Stuart, Jeffrey A.

    2008-07-18

    trans-Resveratrol (3,4',5-trihydroxystilbene; RES) is of interest for its reported protective effects in a variety of pathologies, including neurodegeneration. Many of these protective properties have been attributed to the ability of RES to reduce oxidative stress. In vitro studies have shown an increase in antioxidant enzyme activities following exposure to RES, including upregulation of mitochondrial superoxide dismutase, an enzyme that is capable of reducing both oxidative stress and cell death. We sought to determine if a similar increase in endogenous antioxidant enzymes is observed with RES treatment in vivo. Three separate modes of RES delivery were utilized; in a standard diet, a high fat diet and through a subcutaneous osmotic minipump. RES given in a high fat diet proved to be effective in elevating antioxidant capacity in brain resulting in an increase in both MnSOD protein level (140%) and activity (75%). The increase in MnSOD was not due to a substantial proliferation of mitochondria, as RES treatment induced a 10% increase in mitochondrial abundance (Citrate Synthase activity). The potential neuroprotective properties of MnSOD have been well established, and we demonstrate that a dietary delivery of RES is able to increase the expression and activity of this enzyme in vivo.

  7. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.

    PubMed

    O'Leary, Brendan; Preston, Gail M; Sweetlove, Lee J

    2014-01-01

    Plants naturally produce cyanide (CN) which is maintained at low levels in their cells by a process of rapid assimilation. However, high concentrations of environmental CN associated with activities such as industrial pollution are toxic to plants. There is thus an interest in increasing the CN detoxification capacity of plants as a potential route to phytoremediation. Here, Arabidopsis seedlings overexpressing the Pseudomonas fluorescens β-cyanoalanine nitrilase pinA were compared with wild-type and a β-cyanoalanine nitrilase knockout line (ΔAtnit4) for growth in the presence of exogenous CN. After incubation with CN, +PfpinA seedlings had increased root length, increased fresh weight, and decreased leaf bleaching compared with wild-type, indicating increased CN tolerance. The increased tolerance was achieved without an increase in β-cyanoalanine synthase activity, the other enzyme in the cyanide assimilation pathway, suggesting that nitrilase activity is the limiting factor for cyanide detoxification. Labeling experiments with [¹³C]KCN demonstrated that the altered CN tolerance could be explained by differences in flux from CN to Asn caused by altered β-cyanoalanine nitrilase activity. Metabolite profiling after CN treatment provided new insight into downstream metabolism, revealing onward metabolism of Asn by the photorespiratory nitrogen cycle and accumulation of aromatic amino acids.

  8. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO.

  9. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors.

    PubMed

    Wang, Lei; de Kloet, Annette D; Pati, Dipanwita; Hiller, Helmut; Smith, Justin A; Pioquinto, David J; Ludin, Jacob A; Oh, S Paul; Katovich, Michael J; Frazier, Charles J; Raizada, Mohan K; Krause, Eric G

    2016-06-01

    Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the

  10. The Influence of Neighborhood Crime on Increases in Physical Activity during a Pilot Physical Activity Intervention in Children.

    PubMed

    Broyles, Stephanie T; Myers, Candice A; Drazba, Kathryn T; Marker, Arwen M; Church, Timothy S; Newton, Robert L

    2016-04-01

    The purpose of this study was to examine whether neighborhood crime moderated the response (increases in steps) to a pilot intervention to increase physical activity in children. Twenty-seven insufficiently active children aged 6-10 years (mean age = 8.7 years; 56 % female; 59 % African American) were randomly assigned to an intensive intervention group (IIG) or minimal intervention group (MIG). Change in average daily number of steps from baseline was regressed against an index of neighborhood crime in a multilevel repeated-measures model that included a propensity score to reduce confounding. Safer neighborhoods were associated with higher increases in steps during the pilot intervention (interaction p = 0.008). Children in the IIG living in low-crime neighborhoods significantly increased their physical activity (5275 ± 1040 steps/day) while those living in high-crime neighborhoods did not (1118 ± 1007) (p for difference = 0.046). In the IIG, the increase in daily steps was highly correlated with neighborhood crime (r = 0.58, p = 0.04). These findings suggest the need for physical activity interventions to account for participants' environments in their design and/or delivery. To promote healthy behaviors in less-supportive environments, future studies should seek to understand how environments modify intervention response and to identify mediators of the relationship between environment and intervention.

  11. Interventions to Increase Physical Activity in Children Aged 2-5 Years: A Systematic Review.

    PubMed

    Ling, Jiying; Robbins, Lorraine B; Wen, Fujun; Peng, Wei

    2015-08-01

    Comprehensive evaluation of prior interventions designed to increase preschoolers' physical activity is lacking. This systematic review aimed to examine the effect of interventions on objectively measured physical activity in children aged 2-5 years. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. In May 2014, we searched PubMed, CINAHL, PsycINFO, ERIC, SPORTDiscus, Cochrane, and Embase. Two reviewers independently identified and appraised the studies. Twenty-four articles describing 23 independent studies and 20 unique interventions met inclusion criteria. Of the 8 interventions resulting in a significant effect in objectively measured physical activity, all were center-based and included a structured physical activity component, 6 included multiple components, 5 integrated theories or models, and 4 actively involved parents. Seven of the 8 were randomized controlled trials. Due to the heterogeneity of the study designs, physical activity measures, and interventions, drawing definitive conclusions was difficult. Although the overall intervention effect was less than optimal, the review indicated that theory-driven, multicomponent interventions including a structured physical activity component and targeting both parents and their children may be a promising approach for increasing preschoolers' physical activity and warrant continued investigation using rigorous designs to identify those that are most effective.

  12. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  13. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  14. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  15. Global increase in task-related fronto-parietal activity after focal frontal lobe lesion.

    PubMed

    Woolgar, Alexandra; Bor, Daniel; Duncan, John

    2013-09-01

    A critical question for neuropsychology is how complex brain networks react to damage. Here, we address this question for the well-known executive control or multiple-demand (MD) system, a fronto-parietal network showing increased activity with many different kinds of cognitive demand, including standard tests of fluid intelligence. Using fMRI, we ask how focal frontal lobe damage affects MD activity during a standard fluid intelligence task. Despite poor behavioral performance, frontal patients showed increased fronto-parietal activity relative to controls. The activation difference was not accounted for by difference in IQ. Moreover, rather than specific focus on perilesional or contralesional cortex, additional recruitment was distributed throughout the MD regions and surrounding cortex and included parietal MD regions distant from the injury. The data suggest that, following local frontal lobe damage, there is a global compensatory recruitment of an adaptive and integrated fronto-parietal network.

  16. Engineering of TM1459 from Thermotoga maritima for Increased Oxidative Alkene Cleavage Activity

    PubMed Central

    Fink, Matthias; Trunk, Sarah; Hall, Mélanie; Schwab, Helmut; Steiner, Kerstin

    2016-01-01

    Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to twofold improved conversion level of styrene derivatives were successfully identified. Especially, changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope. PMID:27713741

  17. Increased Myeloperoxidase Activity and Protein Nitration Are Indicators of Inflammation in Patients with Chagas' Disease▿

    PubMed Central

    Dhiman, Monisha; Estrada-Franco, Jose Guillermo; Pando, Jasmine M.; Ramirez-Aguilar, Francisco J.; Spratt, Heidi; Vazquez-Corzo, Sara; Perez-Molina, Gladys; Gallegos-Sandoval, Rosa; Moreno, Roberto; Garg, Nisha Jain

    2009-01-01

    In this study, we investigated whether inflammatory responses contribute to oxidative/nitrosative stress in patients with Chagas' disease. We used three tests (enzyme-linked immunosorbent assay, immuno-flow cytometry, and STAT-PAK immunochromatography) to screen human serum samples (n = 1,481) originating from Chiapas, Mexico, for Trypanosoma cruzi-specific antibodies. We identified 121 subjects who were seropositive for T. cruzi-specific antibodies, a finding indicative of an 8.5% seroprevalence in the rural population from Chiapas. Seropositive and seronegative subjects were examined for plasma levels of biomarkers of inflammation, i.e., myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and xanthine oxidase (XOD), as well as for oxidative (advanced oxidation protein products [AOPPs]) and nitrosative (3-nitrotyrosine [3NT]) biomarkers. The seropositive subjects exhibited a significant increase in MPO activity and protein level, the indicator of neutrophil activation. Subsequently, a corresponding increase in AOPP contents, formed by MPO-dependent hypochlorous acid and chloramine formation, was noted in seropositive subjects. The plasma level of 3NT was significantly increased in seropositive subjects, yet we observed no change in XOD activity (O2− source) and nitrate/nitrite contents (denotes iNOS activation and NO production), which implied that direct peroxynitrite formation does not contribute to increased nitrosative damage in chagasic subjects. Instead, a positive correlation between increased MPO activity and protein 3NT formation was observed, which suggested to us that MPO-dependent formation of nitrylchloride that occurs in the presence of physiological NO and O2− concentrations contributes to protein nitration. Overall, our data demonstrate that T. cruzi-induced neutrophil activation is pathological and contributes to MPO-mediated collateral protein oxidative and nitrosative damage in human patients with Chagas' disease. Therapies

  18. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  19. Increasing physical activity through health-enabling technologies: the project "being strong without violence".

    PubMed

    Scharnweber, Corinna; Ludwig, Wolfram; Marschollek, Michael; Pein, Wolfgang; Schack, Peter; Schubert, Reiner; Haux, Reinhold

    2011-01-01

    Due to the increasing prevalence of adiposity in children numerous schools are introducing prevention programmes. Among these is "Gewaltlos Starksein" ("Being strong without violence"), a project of Hauptschule Sophienstraße Braunschweig, Germany (a general education secondary school for grades 5-10). This study aims to discover possible increases in activity through "Gewaltlos Starksein" where health-enabling technologies play a major role. A prospective intervention study with a span of 1.5 years was designed to measure this increase in activity. Partners in this study were Hauptschule Sophienstraße as the intervention group and Grund- und Hauptschule Pestalozzistraße as control group. Data collection was performed using a multi-sensor device, and questionnaires. Confirmatory data analysis of average metabolic equivalent (METs) yielded no significant results. Exploratory analysis showed interesting results, especially concerning the number of steps during leisure time. Descriptive analysis of questionnaires showed that all children enjoy physical activity. There were differences in sports team participation, open-air games and club affiliation. The study could not prove that the intervention "Gewaltlos Starksein" improves physical activity in children. However, the increased leisure activity step count indicates that "Gewaltlos Starksein" has positive effects on children's behaviour. This should be investigated in a further study in cooperation with psychologists.

  20. Increase of renal sympathetic nerve activity by metoprolol or propranolol in conscious spontaneously hypertensive rats.

    PubMed

    Majcherczyk, S; Mikulski, A; Sjölander, M; Thorén, P

    1987-08-01

    1 Mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in conscious spontaneously hypertensive rats (SHR). 2 Infusion of metoprolol (4 mumol kg-1 h-1) or propranolol (1.5 mumol kg-1 h-1) reduced HR and significantly increased RSNA. 3 Administration of metoprolol caused a sustained decrease of MAP starting in the third hour of infusion. In contrast, administration of propranolol induced a biphasic response in MAP. It is suggested that the increase of RSNA after both beta-adrenoceptor blocking drugs is due to a decrease in arterial baroreceptor activity.

  1. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity.

    PubMed

    Jo, Yoon Kyung; Park, Na Yeon; Park, So Jung; Kim, Byung-Gyu; Shin, Ji Hyun; Jo, Doo Sin; Bae, Dong-Jun; Suh, Young-Ah; Chang, Jeong Ho; Lee, Eun Kyung; Kim, Sang-Yeob; Kim, Jin Cheon; Cho, Dong-Hyung

    2016-08-30

    Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition.

  2. Functional differences in the activity of the hamstring muscles with increasing running speed.

    PubMed

    Higashihara, Ayako; Ono, Takashi; Kubota, Jun; Okuwaki, Toru; Fukubayashi, Toru

    2010-08-01

    In this study, we examined hamstring muscle activation at different running speeds to help better understand the functional characteristics of each hamstring muscle. Eight healthy male track and field athletes (20.1 +/- 1.1 years) performed treadmill running at 50%, 75%, 85%, and 95% of their maximum velocity. Lower extremity kinematics of the hip and knee joint were calculated. The surface electromyographic activities of the biceps femoris and semitendinosus muscles were also recorded. Increasing the running speed from 85% to 95% significantly increased the activation of the hamstring muscles during the late swing phase, while lower extremity kinematics did not change significantly. During the middle swing phase, the activity of the semitendinosus muscle was significantly greater than that of the biceps femoris muscle at 75%, 85%, and 95% of running speed. Statistically significant differences in peak activation time were observed between the biceps femoris and semitendinosus during 95%max running (P < 0.05 for stance phase, P < 0.01 for late swing phase). Significant differences in the activation patterns between the biceps femoris and semitendinosus muscles were observed as running speed was increased, indicating that complex neuromuscular coordination patterns occurred during the running cycle at near maximum sprinting speeds.

  3. Use of an open-loop system to increase physical activity.

    PubMed

    Roemmich, James N; Lobarinas, Christina L; Barkley, Jacob E; White, Tressa M; Paluch, Rocco; Epstein, Leonard H

    2012-08-01

    This study evaluated the effectiveness of an open-loop system that reinforces physical activity with TV watching to increase children's physical activity. Nonoverweight, sedentary boys and girls (8-12 y) were randomized to a group that received feedback of activity counts + reinforcement for physical activity by providing access to television (F+R, n = 20); or to feedback, no reinforcement (Feedback, n = 20) or no feedback, no reinforcement control (Control, n = 21) groups. Children wore an accelerometer with a count display for 4-months with a 1-year follow-up. F+R reduced TV by 68 min/day and TV time was lower than the Feedback (p < .005) and Control (p < .002) groups. TV time of F+R remained 31 min lower (p < .02) than baseline at 1-year. F+R had a 44% increase in physical activity, which was greater than the feedback (p < .04) and control (p < .01) groups. An open-loop system decreases TV viewing and increases physical activity of children for 4-months. TV of the F+R group remained lower at 12 months, suggesting a reduction in screen-time habits.

  4. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity

    PubMed Central

    Jo, Yoon Kyung; Park, Na Yeon; Park, So Jung; Kim, Byung-Gyu; Shin, Ji Hyun; Jo, Doo Sin; Bae, Dong-Jun; Suh, Young-Ah; Chang, Jeong Ho; Lee, Eun Kyung; Kim, Sang-Yeob; Kim, Jin Cheon; Cho, Dong-Hyung

    2016-01-01

    Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition. PMID:27527864

  5. Acute and Chronic Treatments with Quetiapine Increase Mitochondrial Respiratory Chain Complex Activity in the Rat Brain.

    PubMed

    Ignácio, Zuleide M; Réus, Gislaine Z; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; da Luz, Jaine R; Matias, Beatriz I; Bruchchen, Livia; Carvalho-Silva, Milena; Gomes, Lara M; Rebelo, Joyce; Streck, Emilio L; Quevedo, João

    2015-01-01

    Several studies have found that the molecular mechanisms of mitochondrial energy metabolism are impaired in major depressive disorder (MDD). Classic antidepressants and atypical antipsychotics can alter the function of enzymes involved in adenosine triphosphate (ATP) metabolism. Quetiapine is an atypical antipsychotic that, in addition to having a therapeutic benefit in treating MDD, appears to exert antioxidant and neuroprotective effects. Therefore, we aimed to evaluate the acute and chronic effects of quetiapine on the activity of enzyme complexes I to IV of the mitochondrial respiratory chain and creatine kinase (CK) in brain regions involved with MDD. After a single dose or serial injections over 14 days of quetiapine (20, 40, and 80 mg) were administered, isolates from the pre- frontal cortex, hippocampus, amygdala and nucleus accumbens were analyzed for enzyme activity levels. The enzyme activity varied according to the dose, brain region, and acute or chronic dosing protocols. In general, complexes I-III activity was increased, especially after acute administration. Acute administration also increased the activity of complex IV and CK in the amygdala while complex I was inhibited in the prefrontal cortex and nucleus accumbens. These results suggest that quetiapine produces an increase in respiratory chain complex activity, which may be underlying its efficacy against psychiatric disorders and neuronal damage.

  6. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor.

    PubMed

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi

    2016-06-30

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature.

  7. Increasing physical activity. A report on recommendations of the Task Force on Community Preventive Services.

    PubMed

    2001-10-26

    The Task Force on Community Preventive Services (the Task Force) has conducted systematic reviews of community interventions to increase physical activity. The Task Force either strongly recommends or recommends six interventions: two informational approaches (i.e., communitywide campaigns and point-of-decision prompts to encourage use of stairs); three behavioral and social approaches (i.e., school-based physical education, social support interventions in community settings [e.g., setting up a buddy system or contracting with another person to complete specified levels of physical activity], and individually adapted health behavior change programs); and one intervention to increase physical activity by using environmental and policy approaches (i.e., creation of or enhanced access to places for physical activity, combined with informational outreach activities). The Task Force found insufficient evidence on which to base recommendations for classroom-based health education focused on information provision, behavioral skills, and social support interventions in family settings because of inconsistent findings; mass media campaigns, college-age physical education, and health education because of an insufficient number of studies; and classroom-based health education focusing on reducing television viewing and video game playing because of the lack of a demonstrated link between reduced time spent watching television or playing video games and increased physical activity. This report provides additional information regarding the recommendations, briefly describes how the reviews were conducted, and provides information that can help in applying the interventions locally.

  8. Texting to Increase Physical Activity Among Teenagers (TXT Me!): Rationale, Design, and Methods Proposal

    PubMed Central

    Cantu, Dora; Bhatt, Riddhi; Baranowski, Tom; Rodgers, Wendy; Jago, Russell; Anderson, Barbara; Liu, Yan; Mendoza, Jason A; Tapia, Ramsey; Buday, Richard

    2014-01-01

    Background Physical activity decreases from childhood through adulthood. Among youth, teenagers (teens) achieve the lowest levels of physical activity, and high school age youth are particularly at risk of inactivity. Effective methods are needed to increase youth physical activity in a way that can be maintained through adulthood. Because teens text a great deal, text messages promoting walking, a low cost physical activity, may be an effective method for promoting sustainable physical activity. Objective The objective of our study was to determine the effect of pedometers, self selected step goals, and texts grounded in the self-determination theory (SDT) on physical activity among the teens. Methods “TXT Me!” was a 12 week intervention that texted 14-17 year olds to increase their daily physical activity by increasing the number of steps they take each day. The intervention was grounded in the SDT. Formative research with the teens helped construct the intervention and develop the texts. A total of 84 texts were developed (12 to set a step goal, and 72 promoting autonomy, competence, and relatedness). The pilot evaluation used a four group, randomized design (n=160). After baseline data collection, the participants were randomized to one of four conditions (no treatment control, pedometer only, pedometer + weekly prompts, pedometer + weekly prompts + SDT grounded texts). Data were collected at baseline and immediately upon completion of the study. The primary outcome was physical activity, measured by 7 days of accelerometry. Basic psychological needs, physical activity motivation, process evaluation, and program satisfaction data were also collected. Results To our knowledge, this is one of the first studies to explore the use of stand alone, SDT grounded texts, supported by pedometers and prompts to set a self selected step goal, as a method for increasing physical activity among teens. Conclusions This pilot study will contribute valuable information

  9. Let's Move for Pacific Islander Communities: an Evidence-Based Intervention to Increase Physical Activity.

    PubMed

    LaBreche, Mandy; Cheri, Ashley; Custodio, Harold; Fex, Cleo Carlos; Foo, Mary Anne; Lepule, Jonathan Tana; May, Vanessa Tui'one; Orne, Annette; Pang, Jane Ka'ala; Pang, Victor Kaiwi; Sablan-Santos, Lola; Schmidt-Vaivao, Dorothy; Surani, Zul; Talavou, Melevesi Fifita; Toilolo, Tupou; Palmer, Paula Healani; Tanjasiri, Sora Park

    2016-06-01

    Pacific Islander (PI) populations of Southern California experience high obesity and low physical activity levels. Given PI's rich cultural ties, efforts to increase physical activity using a community-tailored strategy may motivate members in a more sustainable manner. In this paper, we (1) detail the program adaptation methodology that was utilized to develop the Weaving an Islander Network for Cancer Awareness, Research and Training (WINCART) Center's PI Let's Move Program, a culturally tailored program aimed to increase physical activity levels among members of PI organizations in Southern California, and (2) share the program's pilot evaluation results on individual and organizational changes. The WINCART Center applied the National Cancer Institute's program adaptation guidelines to tailor the evidence-based Instant Recess program to fit the needs of PIs. The end product, the PI Let's Move Program, was piloted in 2012 with eight PI organizations, reaching 106 PI adults. At baseline, 52 % of participants reported that they were not physically active, with the average number of days engaged in medium-intensity physical activity at 2.09 days/week. After the 2-month program, participants increased the number of days that they engaged in medium-intensity physical activity from 2.09 to 2.90 days/week. Post-pilot results found that 82 % of participants reported intentions to engage in physical activity for at least the next 6 months. At baseline, only one organization was currently implementing a physical activity program, and none had implemented an evidence-based physical activity program tailored for PIs. After the 2-month timeframe, despite varying levels of capacity, all eight organizations were able to successfully implement the program. In conclusion, results from our program provide evidence that disparity populations, such as PIs, can be successfully reached through programs that are culturally tailored to both individuals and their community

  10. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tayag, Carina Miranda; Li, Hui-Fang; Putra, Dedi Fazriansyah; Kuo, Yi-Hsuan; Bai, Jia-Chin; Chang, Yu-Hsuan

    2016-08-01

    The effect of Spirulina dried powder (SDP) on the immune response of white shrimp Litopenaeus vannamei was studied in vitro and in vivo. Incubating shrimp haemocytes in 0.5 mg ml(-1) SDP caused the degranulation of haemocytes and a reduction in the percentage of large cells within 30 min. Shrimp haemocytes incubated in 1 mg ml(-1) SDP significantly increased their phenoloxidase (PO) activity, serine proteinase activity, and respiratory burst activity (RB, release of superoxide anion). A recombinant protein of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of the white shrimp was produced, named rLvLGBP, and examined for its binding with SDP. An ELISA binding assay showed that rLvLGBP binds to SDP with a dissociation constant of 0.0507 μM. In another experiment, shrimp fed diets containing SDP at 0 (control), 30, and 60 g kg(-1) after four weeks were examined for LGBP transcript level and lysozyme activity, as well as phagocytic activity, clearance efficiency, and resistance to Vibrio alginolyticus. These parameters were significantly higher in shrimp receiving diets containing SDP at 60 g kg(-1) or 30 g kg(-1) than in controls. In conclusion, shrimp haemocytes receiving SDP provoked the activation of innate immunity as evidenced by the recognition and binding of LGBP, degranulation of haemocytes, reduction in the percentage of large cells, increases in PO activity, serine proteinase activity, superoxide anion levels, and up-regulated LGBP transcript levels. Shrimp receiving diets containing SDP had increased lysozyme activity and resistance against V. alginolyticus infection. This study showed the mechanism underlying the immunostimulatory action of Spirulina and its immune response in shrimp.

  11. Warming and earlier spring increase Western U.S. forest wildfire activity

    USGS Publications Warehouse

    Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W.

    2006-01-01

    Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

  12. [Secretory activity of the stomach during modeling of increased filling of abdominal veins].

    PubMed

    Afonin, B V; Goncharova, N P

    2009-01-01

    Determination of the stomach secretory activity and ultrasonic investigation of the gastroduodenal organs and vessels were performed in test-subjects tilted at -12 degrees and -15 degrees. Short HDT(12-24 hrs.) as a hypokinesia factor was minimized which caused enlargement of the parenchymatous and thickening of walls of the hollow organs. Increased filling of the abdominal veins was paralleled by rise in pepsinogen levels in blood and urine, and increase in the intravitelline content in fasting subjects. Elevated tone of the pylorus and retarded evacuation from the stomach indicated active hydrochloric acid secretion. Concurrently, bile and pancreas juices were secreted more profusely and intestinal content in the duodenum increased. It was shown that modeled increase of abdominal vein filling stimulates secretion as by fasting stomach so by the liver and pancreas.

  13. Phosphorylation of Serine422 increases the stability and transactivation activities of human Osterix.

    PubMed

    Xu, Yuexin; Yao, Bing; Shi, Kaikai; Lu, Jianlei; Jin, Yucui; Qi, Bing; Li, Hongwei; Pan, Shiyang; Chen, Li; Ma, Changyan

    2015-03-24

    Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation site of Osx and demonstrated that GSK-3β interacted and co-localized with Osx. GSK-3β increased the stability and transactivation activity of Osx through phosphorylation of the newly identified site. These findings expanded our understanding of the mechanisms of posttranslational regulation of Osx and the role of GSK-3β in the control of Osx transactivation activity.

  14. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  15. Increased activation in cingulate cortex in conversion disorder: what does it mean?

    PubMed

    van Beilen, M; Vogt, B A; Leenders, K L

    2010-02-15

    Conversion disorder is one of the terms used to describe various psychosomatic neurological symptoms that are thought to originate from a psychological conflict. Psychological stressors can usually be identified but appear to be almost similar to the severity of psychological stress in non-psychosomatic neurological disorders. Recent neuroimaging research provides one rather robust finding of increased activation in the anterior cingulate gyrus. This activation has been explained as a reflection of 'active inhibition' or 'self-monitoring' but its meaning in conversion disorder still remains mysterious. In this paper, current theories are re-examined from a neuroanatomical point of view.

  16. Sucrose increases calcium-dependent protein kinase and phosphatase activities in potato plants.

    PubMed

    Raíces, M; MacIntosh, G C; Ulloa, R M; Gargantini, P R; Vozza, N F; Téllez-Inón, M T

    2003-09-01

    The effect of sucrose on tuber formation, calcium-dependent protein kinase (CDPK) and phosphatase activities was analysed using in vitro cultured potato plants. In short treatments, sucrose induced CDPK and phosphatase activities. In long treatments, sucrose induced tuber formation in the absence of other tuber inducing stimuli. Sorbitol caused a minor increase in CDPK activity and affected plant morphology but did not induce tuber development. The addition of the protein kinase inhibitor Staurosporine precluded sucrose-induced tuberization. Altogether, our results suggest that phosphorylation/dephosphorylation events are involved in sucrose-induced tuber development.

  17. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system.

  18. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.

    PubMed

    Can, Özge; Holland, Nolan B

    2013-12-03

    Antifreeze proteins (AFPs) are ice growth inhibitors that allow the survival of several species living at temperatures colder than the freezing point of their bodily fluids. AFP activity is commonly defined in terms of thermal hysteresis, which is the difference observed for the solution freezing and melting temperatures. Increasing the thermal hysteresis activity of these proteins, particularly at low concentrations, is of great interest because of their wide range of potential applications. In this study, we have designed and expressed one-, two-, and three-domain antifreeze proteins to improve thermal hysteresis activity through increased binding avidity. The three-domain type III AFP yielded significantly greater activity than the one- and two-domain proteins, reaching a thermal hysteresis of >1.6 °C at a concentration of <1 mM. To elucidate the basis of this increase, the data were fit to a multidomain protein adsorption model based on the classical Langmuir isotherm. Fits of the data to the modified isotherms yield values for the equilibrium binding constants for the adsorption of AFP to ice and indicate that protein surface coverage is proportional to thermal hysteresis activity.

  19. Improvements in knee biomechanics during walking are associated with increased physical activity after total knee arthroplasty.

    PubMed

    Arnold, John B; Mackintosh, Shylie; Olds, Timothy S; Jones, Sara; Thewlis, Dominic

    2015-12-01

    Total knee arthroplasty (TKA) in people with knee osteoarthritis increases knee-specific and general physical function, but it has not been established if there is a relationship between changes in these elements of functional ability. This study investigated changes and relationships between knee biomechanics during walking, physical activity, and use of time after TKA. Fifteen people awaiting TKA underwent 3D gait analysis before and six months after surgery. Physical activity and use of time were determined in free-living conditions from a high resolution 24-h activity recall. After surgery, participants displayed significant improvements in sagittal plane knee biomechanics and improved their physical activity profiles, standing for 105 more minutes (p=0.001) and performing 64 min more inside chores on average per day (p=0.008). Changes in sagittal plane knee range of motion (ROM) and peak knee flexion positively correlated with changes in total daily energy expenditure, time spent undertaking moderate to vigorous physical activity, inside chores and passive transport (r=0.52-0.66, p=0.005-0.047). Restoration of knee function occurs in parallel and is associated with improvements in physical activity and use of time after TKA. Increased functional knee ROM is required to support improvements in total and context specific physical activity.

  20. Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity.

    PubMed

    Aoshima, Hitoshi; Tsunoue, Hideaki; Koda, Hirofumi; Kiso, Yoshinobu

    2004-08-11

    1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of Japanese whiskey after various aging periods in oak barrels was measured to evaluate the antioxidative effects of whiskey. The activity of the whiskey increased with the aging period with high correlation. The activity of various types of whiskey was measured and shown to be correlated to the potentiation of the GABAA receptor response measured in a previous paper. However, the fragrant compounds in the whiskey which potentiated the GABAA receptor response had low DPPH radical scavenging activity, while phenol derivatives had high radical scavenging activity. The whiskey was extracted by pentane. The aqueous part showed the scavenging activity, whereas the pentane part did not. Thus, both the DPPH radical scavenging activity and the potentiation of the GABAA receptor response increased during whiskey aging in oak barrels, but were due to different components. The whiskey protected the H2O2-induced death of E. coli more than ethanol at the same concentration as that of the whiskey. The changes that occurred in the whiskey during aging may be the reason aged whiskies are so highly valued.

  1. Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity.

    PubMed Central

    Koumanov, Kamen S; Momchilova, Albena B; Quinn, Peter J; Wolf, Claude

    2002-01-01

    Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis. PMID:11903045

  2. Comparative Effectiveness of After-School Programs to Increase Physical Activity

    PubMed Central

    Gesell, Sabina B.; Sommer, Evan C.; Lambert, E. Warren; Vides de Andrade, Ana Regina; Davis, Lauren; Beech, Bettina M.; Mitchell, Stephanie J.; Neloms, Stevon; Ryan, Colleen K.

    2013-01-01

    Background. We conducted a comparative effectiveness analysis to evaluate the difference in the amount of physical activity children engaged in when enrolled in a physical activity-enhanced after-school program based in a community recreation center versus a standard school-based after-school program. Methods. The study was a natural experiment with 54 elementary school children attending the community ASP and 37 attending the school-based ASP. Accelerometry was used to measure physical activity. Data were collected at baseline, 6 weeks, and 12 weeks, with 91% retention. Results. At baseline, 43% of the multiethnic sample was overweight/obese, and the mean age was 7.9 years (SD = 1.7). Linear latent growth models suggested that the average difference between the two groups of children at Week 12 was 14.7 percentage points in moderate-vigorous physical activity (P < .001). Cost analysis suggested that children attending traditional school-based ASPs—at an average cost of $17.67 per day—would need an additional daily investment of $1.59 per child for 12 weeks to increase their moderate-vigorous physical activity by a model-implied 14.7 percentage points. Conclusions. A low-cost, alternative after-school program featuring adult-led physical activities in a community recreation center was associated with increased physical activity compared to standard-of-care school-based after-school program. PMID:23984052

  3. Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels.

    PubMed

    Hassel, B; Taubøll, E; Gjerstad, L

    2001-02-01

    The mechanism of action of the antiepileptic drug lamotrigine has previously been investigated only in acute experiments and is thought to involve inhibition of voltage-dependent sodium channels. However, lamotrigine is effective against more forms of epilepsies than other antiepileptic drugs that also inhibit sodium channels. We investigated whether chronic lamotrigine treatment may affect cerebral amino acid levels. Rats received lamotrigine, 10 mg/kg/day, for 90 days. The hippocampal level of GABA increased 25%, and the activities of glutamate decarboxylase and succinic semialdehyde/GABA transaminase increased 12 and 21% (p< 0.05), respectively, indicating increased GABA turnover. The uptake of GABA and glutamate into proteoliposomes remained unaltered. The level of taurine increased 27% in the hippocampus and 16% in the frontal and parietal cortices. The activities of hexokinase and alpha-ketoglutarate dehydrogenase, remained at control values. Serum lamotrigine was 41.7+/-1.5 microM (mean+/-S.E.M.), which is within the range seen in epileptic patients. Acute experiments with 5, 20 or 100 mg lamotrigine/kg, caused no changes in brain amino acid levels. The results suggest that chronic lamotrigine treatment increases GABAergic activity in the hippocampus. The cerebral increase in taurine, which has neuromodulatory properties, may contribute to the antiepileptic effect of lamotrigine.

  4. No Evidence for Activity Adjustment in Response to Increased Density in Daphnia magna

    PubMed Central

    Sereni, Laura; Einum, Sigurd

    2015-01-01

    Increased population density may lead to a decrease in energy available for growth and reproduction via effects on the activity level of individuals. Whilst this may be of particular importance for organisms that compete for defendable resources and/or have a high frequency of social interactions, it is less obvious how individual activity should covary with population density when food resources are not defendable or direct interactions among individuals are negligible. Based on observations that there is a general negative relationship between population density and metabolism it has been suggested that organisms actively reduce activity under increased density to accommodate an expected decrease in food availability. However, in the absence of direct activity measurements the validity of this hypothesis is unclear. Here we test for such anticipatory adjustments of activity levels in the planktonic cladoceran Daphnia magna Straus, a filter feeder whose food resources are not defendable, meaning that density responses can be evaluated in the absence of direct interactions. We tested for changes in activity in response to two separate density cues, one being the direct physical and visual stimuli resulting from being in the vicinity of conspecifics (‘direct density experiment’), and the other being the detection of olfactory cues in their environment (‘olfactory cue experiment’). Ten genetically distinct clones were used to evaluate the potential for genetic variation in these responses. Our measures of activity were highly repeatable, and there was significant variation in activity among clones. Furthermore, this clonal variation was consistent in the ‘direct density’ and ‘olfactory cue’ experiments. The estimated evolvability of the trait (1.3–3.2%) was within the range typically observed in behavioural traits. However, there was no indication that the activity level of individuals respond to population density, either directly to actual density

  5. Activated factor XI increases the procoagulant activity of the extrinsic pathway by inactivating tissue factor pathway inhibitor

    PubMed Central

    Tucker, Erik I.; Matafonov, Anton; Cheng, Qiufang; Zientek, Keith D.; Gailani, Dave; Gruber, András; McCarty, Owen J. T.

    2015-01-01

    Activation of coagulation factor XI (FXI) may play a role in hemostasis. The primary substrate of activated FXI (FXIa) is FIX, leading to FX activation (FXa) and thrombin generation. However, recent studies suggest the hemostatic role of FXI may not be restricted to the activation of FIX. We explored whether FXI could interact with and inhibit the activity of tissue factor pathway inhibitor (TFPI). TFPI is an essential reversible inhibitor of activated factor X (FXa) and also inhibits the FVIIa-TF complex. We found that FXIa neutralized both endothelium- and platelet-derived TFPI by cleaving the protein between the Kunitz (K) 1 and K2 domains (Lys86/Thr87) and at the active sites of the K2 (Arg107/Gly108) and K3 (Arg199/Ala200) domains. Addition of FXIa to plasma was able to reverse the ability of TFPI to prolong TF-initiated clotting times in FXI- or FIX-deficient plasma, as well as FXa-initiated clotting times in FX-deficient plasma. Treatment of cultured endothelial cells with FXIa increased the generation of FXa and promoted TF-dependent fibrin formation in recalcified plasma. Together, these results suggest that the hemostatic role of FXIa may be attributed not only to activation of FIX but also to promoting the extrinsic pathway of thrombin generation through inactivation of TFPI. PMID:25587039

  6. Potential enzyme activities altered by increased nutrient availability in Arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Koyama, A.; Wallenstein, M. D.; Moore, J. C.; Simpson, R. T.

    2012-12-01

    The Arctic tundra is a biome affected most by global warming predicted in the future. Such warming is expected to increase nutrient availability to soil microbes which, in turn, may accelerate soil organic matter decomposition. We investigated how extra-cellular enzyme activities in soils were affected by increasing nutrient availability in an Arctic tundra ecosystem. Specifically, we measured potential activities of seven enzymes at three profiles (organic, organic/mineral interface, and mineral) of soils which had been fertilized in long- (23 years) and short-terms (six years), assayed at four temperatures. The long-term site had a high fertilization treatment (10g N m-2 year-1 and 5g P m-2 year-1) and control, and the short-term site had a low fertilization treatment (5g N m-2 year-1 and 2.5g P m-2 year-1) in addition to the high fertilization treatment and control. The fertilization treatments significantly altered most of the enzyme activities in both sites. The fertilization treatments increased activities of enzymes hydrolyzing products for C and nitrogen N sources, but decreased phosphatase activities. Such alterations were most pronounced in the organic soils. The fertilization treatments also increased ratios of total enzyme activities involved in hydrolysis for C products to those for N products. This result is consistent with an observation that long-term N and P fertilization decreased soil organic C in the same tundra ecosystem. Altered enzymatic stoichiometry with increased nutrient availability should be considered when modeling biogeochemical cycles in Arctic tundra ecosystems in response to warming predicted in the future.

  7. Ghrelin increases food intake, swimming activity and growth in juvenile brown trout (Salmo trutta).

    PubMed

    Tinoco, Ana B; Näslund, Joacim; Delgado, María J; de Pedro, Nuria; Johnsson, Jörgen I; Jönsson, Elisabeth

    2014-01-30

    Several key functions of ghrelin are well conserved through vertebrate phylogeny. However, some of ghrelin's effects are contradictory and among teleosts only a limited number of species have been used in functional studies on food intake and foraging-related behaviors. Here we investigated the long-term effects of ghrelin on food intake, growth, swimming activity and aggressive contest behavior in one year old wild brown trout (Salmo trutta) using intraperitoneal implants. Food intake and swimming activity were individually recorded starting from day 1, and aggressive behavior was tested at day 11, after ghrelin implantation. Body weight and growth rate were measured from the beginning to the end of the experiment. Triglycerides and lipase activity in muscle and liver; monoaminergic activity in the telencephalon and brainstem; and neuropeptide Y (NPY) mRNA levels in the hypothalamus were analyzed. Ghrelin treatment was found to increase food intake and growth without modifying lipid deposition or lipid metabolism in liver and muscle. Ghrelin treatment led to an increased foraging activity and a trend towards a higher swimming activity. Moreover, ghrelin-treated fish showed a tendency to initiate more conflicts, but this motivation was not reflected in a higher ability to win the conflicts. No changes were observed in monoaminergic activity and NPY mRNA levels in the brain. Ghrelin is therefore suggested to act as an orexigenic hormone regulating behavior in juvenile wild brown trout. These actions are accompanied with an increased growth without the alteration of liver and muscle lipid metabolism and they do not seem to be mediated by changes in brain monoaminergic activity or hypothalamic expression of NPY.

  8. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus

    PubMed Central

    Ashwinkumar Subramenium, Ganapathy; Viszwapriya, Dharmaprakash; Iyer, Prasanth Mani; Balamurugan, Krishnaswamy; Karutha Pandian, Shunmugiah

    2015-01-01

    Background Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. Principal Findings The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. Significance Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds

  9. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen.

    PubMed

    Shi, Zhigang; Brooks, Virginia L

    2015-04-01

    Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin.

  10. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  11. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    PubMed Central

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  12. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  13. Reminiscence Activity and Increased Communication Interaction among Cognitively Disabled Elderly Women.

    ERIC Educational Resources Information Center

    Krupar, Karen R.; Smith, N. Richmond

    Designed as the first phase of a larger project to explore the relationships between the possible impact of reminiscence on memory deterioration in elderly women confined to nursing home environments, a study demonstrated that reminiscence activity is positively correlated with increases in communication interactions. Women were chosen as the…

  14. Increasing Children's Physical Activity: Individual, Social, and Environmental Factors Associated with Walking to and from School

    ERIC Educational Resources Information Center

    Trapp, Georgina S. A.; Giles-Corti, Billie; Christian, Hayley E.; Bulsara, Max; Timperio, Anna F.; McCormack, Gavin R.; Villaneuva, Karen P.

    2012-01-01

    Background. Efforts to increase the prevalence of children's active school transport require evidence to inform the development of comprehensive interventions. This study used a multilevel ecological framework to investigate individual, social, and environmental factors associated with walking to and from school among elementary school-aged…

  15. Text Messaging as a Tool to Increase Physical Activity in College Students

    ERIC Educational Resources Information Center

    Muñoz, Laura R.; La France, Kevin; Dominguez, Daniel; Goei, Kathleen; Herbers, Sharon; Gunter, M. Danielle; Fike, David; Carleton, William; Etnyre, Annette; Richardson, Cynthia; Allwein, David; Rauschhuber, Maureen; Norgan, Gary; Moore, Renée; Marquise, Lisa; Jones, Mary Elaine

    2014-01-01

    The purpose of this study was to assess the effectiveness of text messaging with pedometer intervention for increasing physical activity of college students. Using a two-group prospective randomized intervention-based design, the researchers gave 201 college students pedometers and divided them into intervention and control groups. The…

  16. 78 FR 75905 - Credit for Increasing Research Activities: Intra-Group Gross Receipts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ...; ] DEPARTMENT OF TREASURY Internal Revenue Service 26 CFR Part 1 RIN 1545-BE14 Credit for Increasing Research Activities: Intra-Group Gross Receipts AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... under section 41 of the Internal Revenue Code (Code) relating to the treatment of qualified...

  17. Astute Activities: Increasing Cognitive and Creative Development in the Language Arts Classroom.

    ERIC Educational Resources Information Center

    Bay, Lois Marie Zinke

    Using Mark Twain's "Huckleberry Finn," John Knowles'"A Separate Peace," and Maya Angelou's "I Know Why the Caged Bird Sings," a study examined the effects of Astute Activities--teaching techniques which increase students' cognitive ability and creativity--on student performance in two senior English classes in a small…

  18. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOEpatents

    George, Thomas J.; Meacham, G. B. Kirby

    2002-03-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  19. Peers Increase Adolescent Risk Taking by Enhancing Activity in the Brain's Reward Circuitry

    ERIC Educational Resources Information Center

    Chein, Jason; Albert, Dustin; O'Brien, Lia; Uckert, Kaitlyn; Steinberg, Laurence

    2011-01-01

    The presence of peers increases risk taking among adolescents but not adults. We posited that the presence of peers may promote adolescent risk taking by sensitizing brain regions associated with the anticipation of potential rewards. Using fMRI, we measured brain activity in adolescents, young adults, and adults as they made decisions in a…

  20. Diabetes promotes DMH-induced colorectal cancer by increasing the activity of glycolytic enzymes in rats.

    PubMed

    Jia, Yanglei; Xu, Gang; Zhou, Wenjing; Wang, Zhenzheng; Meng, Linlin; Zhou, Songnan; Xu, Xia; Yuan, Huiqing; Tian, Keli

    2014-01-01

    The objective of the present study was to investigate the association between diabetes mellitus and colorectal carcinogenesis as well as the possible mechanism involved in this interaction. Diabetes rat models were induced with a low dose of STZ followed by a low dose of DMH to induce colorectal cancer. The formation of ACF in the colon and the incidence, number and size of tumors were measured. The activity of glycolytic enzymes in colonic tissues was also measured. The results demonstrated that both the total number of ACF and the number of foci that contain a different number of crypts were increased in diabetic rats. At the end of the experimental treatment, the incidence, number and size of tumors were also increased in diabetic rats. Overall, these data indicated that diabetes increased the risk of colorectal cancer. The activity of HK and PK in colonic tissues was increased in diabetic rats, whereas the activity of PDH was decreased. In addition, the activities of these enzymes in intratumor were higher than that of in peritumor. These data indicated that the high rate of glycolysis may play a role in colorectal carcinogenesis in diabetic rats.

  1. Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements.

    PubMed

    Selva, Javier; Egea, Gustavo

    2011-12-01

    We previously reported that cells chronically exposed to ethanol show alterations in actin cytoskeleton organization and dynamics in primary cultures of newborn rat astrocytes, a well-established in vitro model for foetal alcohol spectrum disorders. These alterations were attributed to a decrease in the cellular levels of active RhoA (RhoA-GTP), which in turn was produced by an increase in the total RhoGAP activity. We here provide evidence that p190RhoGAPs are the main factors responsible for such increase. Thus, in astrocytes chronically exposed to ethanol we observe: (i) an increase in p190A- and p190B-associated RhoGAP activity; (ii) a higher binding of p190A and p190B to RhoA-GTP; (iii) a higher p120RasGAP-p190A RhoGAP complex formation; and (iv) the recruitment of both p190RhoGAPs to the plasma membrane. The simultaneous silencing of both p190 isoforms prevents the actin rearrangements and the total RhoGAP activity increase triggered both by ethanol. Therefore, our data directly points p190RhoGAPs as ethanol-exposure molecular targets on glial cells of the CNS.

  2. Approach run increases preactivation and eccentric phases muscle activity during drop jumps from different drop heights.

    PubMed

    Ruan, Mianfang; Li, Li

    2010-10-01

    The purpose of this study was to investigate the effects of a horizontal approach run and drop height on the activation of lower extremity muscles during drop jumps. Ten participants performed drop jumps from drop heights of 15, 30, 45 and 60cm with zero (standing), one, two, and three approach run steps. The EMG activities of the Gluteus Maximus (GM), Rectus Femoris (RF), Biceps Femoris (BF), Vastus Lateralis (VL), Tibialis Anterior (TA), Gastrocnemius (GA) and Soleus (SO) were recorded, full-wave rectified, and averaged (aEMG) during the preactivation (50ms before touchdown), downward, and push-off phases. Increasing drop height did not enhance the muscle activation level of any examined muscles except GA. During the preactivation phase, the aEMG of all muscles except TA increased with the number of approach run steps. The aEMG of RF, BF, VL, and SO also increased with the number of approach run steps during the downward phase, while no aEMG changes were observed during the push-off phase. These results suggest that a horizontal approach run preceding the drop jump is an effective strategy for increasing the muscle preactivation level, which contributes to a higher level of muscle activity during the eccentric contraction phase and could potentially contribute to the reported higher power output during the concentric contraction phase.

  3. Integrated Health and Physical Education Program to Reduce Media Use and Increase Physical Activity in Youth

    ERIC Educational Resources Information Center

    Clocksin, Brian D.; Wattson, Doris L.; Williams, Daniel P.; Randsell, Lynda

    2009-01-01

    The purpose of this project was to compare an integrated health and physical education curriculum, focused on reducing media use and on increasing physical activity in middle school adolescents, to traditional and nonintegrated health and physical education curricula. Two middle schools' health and physical education classes were assigned to an…

  4. Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP).

    PubMed

    Zhao, Hong-Yan; Wu, Li-Ying; Liu, Gang; Feng, Hong

    2016-12-01

    To engineer dehairing alkaline protease (DHAP) variants to improve cold activity and increase thermostability so these variants are suitable for the leather processing industry. Based on previous studies with bacterial alkaline proteases, double-site mutations (W106K/V149I and W106K/M124L) were introduced into the DHAP from Bacillus pumilus. Compared with the wild-type DHAP hydrolytic activity, the double-site variant W106K/V149I showed an increase in specific hydrolytic activity at 15 °C by 2.3-fold toward casein in terms of hydrolytic rate and 2.7-fold toward the synthetic peptide AAPF-pN by means of kcat/Km value. The thermostability of the variant (W106K/V149I) was improved with the half-life at 60 and 70 °C increased by 2.7- and 5.0-fold, respectively, when compared with the thermostability of the wild-type DHAP. Conclusively, an increase in the cold activity and thermostability of a bacterial alkaline protease was achieved by protein engineering.

  5. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  6. Pedometers: A Strategy to Promote Increased Physical Activity among College Students

    ERIC Educational Resources Information Center

    Hackmann, Debra J.; Mintah, Joseph K.

    2010-01-01

    Inactive lifestyle behaviors are predominant in society, especially among the adult population. This study examined the issue of inactivity among college students. A pedometer was used as an intervention strategy, to increase awareness of, and motivate college students to achieve the minimum recommended amount of daily physical activity. A…

  7. Planar fuel cell utilizing nail current collectors for increased active surface area

    SciTech Connect

    George, Thomas J.; Meacham, G.B. Kirby

    1999-11-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  8. Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart.

    PubMed

    Meldrum, D R; Shenkar, R; Sheridan, B C; Cain, B S; Abraham, E; Harken, A H

    1997-10-01

    The heart is a tumor necrosis factor (TNFalpha) producing organ. Locally (v systemically)-produced TNFalpha likely contributes to myocardial dysfunction via direct suppression of myocardial contractile function, the induction of myocardial apoptosis, and the genesis of cardiac hypertrophy. Although recent studies have demonstrated increased myocardial TNFalpha following endotoxemia, it remains unknown whether shock, in the absence of sepsis, activates myocardial nuclear factor kappa B (NFkappaB, a TNFalpha transcription factor) and/or increases TNFalpha in the heart. To study this, rats were hemorrhaged and resuscitated, after which hearts were harvested and analysed for evidence of NFkappaB activation (electrophoretic mobility shift assay) and assayed for TNFalpha levels. Hemorrhage and resuscitation activated NFkappaB and resulted in a dramatic increase in myocardial TNFalpha. This study constitutes the initial demonstration that hemorrhagic shock activates the signaling mechanisms which culminate in increased myocardial TNFalpha. Indeed, this may have important clinical implications, since hemorrhage is a frequent complication of both iatrogenic and accidental trauma, as well as a potent instigator of multiple organ failure.

  9. Increased Protein Kinase A Activity in the Prkar1a-defective Mouse is Associated with Hyperarousal and Increased Anxiety

    DTIC Science & Technology

    2011-03-09

    Brain , P. F., & Martinez, M. (1999). Effect of predatory stress on sucrose intake and behavior on the plus-maze in male mice . Physiol Behav, 67(2...Extinction in Traumatized Civilians with Posttraumatic Stress Disorder: Relation to Symptom Severity . Biol Psychiatry. Phelps, E. A., & LeDoux, J. E. (2005...showed R1b mice had reduced injury -induced inflammation and pain, without apparent differences in PKA brain activity, likely due to compensatory

  10. Increased Serum Activity of Matrix Metalloproteinase-9 in Patients with Acute Variceal Bleeding

    PubMed Central

    Kwon, Oh Sang; Jung, Hyuk Sang; Bae, Kyung Sook; Jung, Young Kul; Kim, Yeon Suk; Choi, Duck Joo; Kim, Yun Soo

    2012-01-01

    Background/Aims Matrix metalloproteinases (MMP)-2 and -9 can degrade essential components of vascular integrity. The aim of this study was to investigate the association between those MMPs and variceal bleeding (VB). Methods Fifteen controls, 12 patients with acute ulcer bleeding (UB) group, 37 patients with varix (V group), and 35 patients with acute VB group were enrolled. Serum was obtained to measure MMP-2 and -9 activity by zymogram protease assays. Results The activity levels of these compounds were compared with the controls' median value. The median MMP-9 activity was 1.0 in controls, 1.05 in the UB group, 0.43 in the V group, and 0.96 in the VB group. The level of MMP-9 activity was higher in the VB group than in the V group (p<0.001). In the VB group, there was a signifi cant decrease in MMP-9 activity over time after bleeding (p<0.001). The median MMP-2 activity level was 1.0 in controls, 1.01 in the UB group, 1.50 in the V group, and 1.55 in the VB group. The level of MMP-2 activity was similar in the VB and V groups. Conclusions The level of MMP-9 activity increased in association with VB. The role of MMP-9 in the pathogenesis of VB should be verified. PMID:22570756

  11. The TMS Map Scales with Increased Stimulation Intensity and Muscle Activation.

    PubMed

    van de Ruit, Mark; Grey, Michael J

    2016-01-01

    One way to study cortical organisation, or its reorganisation, is to use transcranial magnetic stimulation (TMS) to construct a map of corticospinal excitability. TMS maps are reported to be acquired with a wide variety of stimulation intensities and levels of muscle activation. Whilst MEPs are known to increase both with stimulation intensity and muscle activation, it remains to be established what the effect of these factors is on the map's centre of gravity (COG), area, volume and shape. Therefore, the objective of this study was to systematically examine the effect of stimulation intensity and muscle activation on these four key map outcome measures. In a first experiment, maps were acquired with a stimulation intensity of 110, 120 and 130% of resting threshold. In a second experiment, maps were acquired at rest and at 5, 10, 20 and 40% of maximum voluntary contraction. Map area and map volume increased with both stimulation intensity (P < 0.01) and muscle activation (P < 0.01). Neither the COG nor the map shape changed with either stimulation intensity or muscle activation (P > 0.09 in all cases). This result indicates the map simply scales with stimulation intensity and muscle activation.

  12. aPKC Phosphorylation of HDAC6 Results in Increased Deacetylation Activity

    PubMed Central

    Du, Yifeng; Seibenhener, Michael L.; Yan, Jin; Jiang, Jianxiong; Wooten, Michael C.

    2015-01-01

    The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates α-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62) interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKCζ), we sought to examine if HDAC6 could be a substrate for PKCζ phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKCζ but can also be phosphorylated by PKCζ. We also show that specific phosphorylation of HDAC6 by PKCζ increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKCζ and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases. PMID:25860570

  13. aPKC phosphorylation of HDAC6 results in increased deacetylation activity.

    PubMed

    Du, Yifeng; Seibenhener, Michael L; Yan, Jin; Jiang, Jianxiong; Wooten, Michael C

    2015-01-01

    The Class II histone deacetylase, HDAC6, has been shown to be involved in cell motility, aggresome formation and mitochondria transport. HDAC6 deacetylase activity regulates α-tubulin acetylation levels and thus plays a critical role in these processes. In turn, HDAC6 activity can be regulated by interaction with various proteins including multiple kinases. Kinase mediated phosphorylation of HDAC6 can lead to either increased or reduced activity. Our previous research has shown that sequestosome1/p62 (SQSTM1/p62) interacts with HDAC6 and regulates its activity. As SQSTM1/p62 is a scaffolding protein known to interact directly with the zeta isoform of Protein Kinase C (PKCζ), we sought to examine if HDAC6 could be a substrate for PKCζ phosphorylation and if so, how its activity might be regulated. Our data demonstrate that HDAC6 is not only present in a protein complex with PKCζ but can also be phosphorylated by PKCζ. We also show that specific phosphorylation of HDAC6 by PKCζ increases HDAC6 deacetylase activity resulting in reduced acetylated tubulin levels. Our findings provide novel insight into the molecular mechanism by which HDAC6, PKCζ and SQSTM1/p62 function together in protein aggregate clearance. These results also highlight a new research direction which may prove fruitful for understanding the underlying cause of several neurodegenerative diseases.

  14. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.

    PubMed

    Ancuta, Petronela; Kamat, Anupa; Kunstman, Kevin J; Kim, Eun-Young; Autissier, Patrick; Wurcel, Alysse; Zaman, Tauheed; Stone, David; Mefford, Megan; Morgello, Susan; Singer, Elyse J; Wolinsky, Steven M; Gabuzda, Dana

    2008-06-25

    Elevated plasma lipopolysaccharide (LPS), an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD). To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL) assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4(+) T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP) levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV) co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes.

  15. Increased activation of the human cerebellum during pitch discrimination: a positron emission tomography (PET) study.

    PubMed

    Petacchi, Augusto; Kaernbach, Christian; Ratnam, Rama; Bower, James M

    2011-12-01

    Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum.

  16. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  17. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy

    PubMed Central

    Nelson, Elke S.; Folkmann, Andrew W.; Henry, Michael D.; DeMali, Kris A.

    2011-01-01

    Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand binding properties. Here we report that a novel reagent, denoted vinculin activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated: (1) numbers of active integrins, (2) adhesion of cells to extracellular matrix ligands, (3) numbers of cell-matrix adhesions, and (4) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we demonstrate that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively these findings demonstrate for the first time that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas. PMID:21460181

  18. Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes)

    PubMed Central

    Seebacher, Frank; Glanville, Elsa J.

    2010-01-01

    Background Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity for substrate oxidation and energy expenditure. Methodology/Principal Findings We used wild rats (Rattus fuscipes) to avoid potential effects of breeding on physiological phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance) at 22°C increased mRNA concentrations of PGC1α, PPARδ, and NRF-1 in skeletal muscle and brown adipose tissue compared to sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in skeletal muscle, and of PPARδ of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C) alone did not change any of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria (cytochrome c oxidase and citrate synthase activities) of either muscle or brown adipose tissue. Animals that exercised regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced metabolic scope was greater in exercised rats. Conclusions/Significance Physical activity is a necessary prerequisite for the expression of transcriptional regulators that influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake. A sedentary lifestyle leads to decreased daily energy expenditure because of a lack of direct use

  19. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  20. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase.

    PubMed

    Piao, Lian-Hua; Fujita, Tsugumi; Jiang, Chang-Yu; Liu, Tao; Yue, Hai-Yuan; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na(+)-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  1. Increased activity in human visual cortex during directed attention in the absence of visual stimulation.

    PubMed

    Kastner, S; Pinsk, M A; De Weerd, P; Desimone, R; Ungerleider, L G

    1999-04-01

    When subjects direct attention to a particular location in a visual scene, responses in the visual cortex to stimuli presented at that location are enhanced, and the suppressive influences of nearby distractors are reduced. What is the top-down signal that modulates the response to an attended versus an unattended stimulus? Here, we demonstrate increased activity related to attention in the absence of visual stimulation in extrastriate cortex when subjects covertly directed attention to a peripheral location expecting the onset of visual stimuli. Frontal and parietal areas showed a stronger signal increase during this expectation than did visual areas. The increased activity in visual cortex in the absence of visual stimulation may reflect a top-down bias of neural signals in favor of the attended location, which derives from a fronto-parietal network.

  2. Increasing total and biologically active chromium in wheat grain and spinach by spraying with chromium salts

    SciTech Connect

    Vicini, F.A.; Ellis, B.G.

    1981-06-01

    Recently, chromium has been shown to be necessary for glucose metabolism in man. But most plant species greatly restrict the uptake of Cr. This study was conducted to determine if both total and biologically active Cr could be increased in wheat grain or spinach by spraying the plants with either Cr/sub 2/(SO/sub 4/)/sub 3/ or Cr-EDTA. Concentrations of Cr in wheat grain were about doubled in a greenhouse experiment by spraying with either Cr source. Biologically active Cr (estimated by extraction with ethanol or NH/sub 4/OH) was increased from about 40 to greater than 50% of total Cr when wheat was sprayed with Cr salts. Total Cr in spinach leaves was increased by as much as 10-fold by spraying, with the sulfate source being more effective than the EDTA.

  3. Theobromine increases NAD⁺/Sirt-1 activity and protects the kidney under diabetic conditions.

    PubMed

    Papadimitriou, Alexandros; Silva, Kamila C; Peixoto, Elisa B M I; Borges, Cynthia M; Lopes de Faria, Jacqueline M; Lopes de Faria, José B

    2015-02-01

    Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.

  4. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System

    PubMed Central

    Nater, Urs M.; La Marca, Roberto; Erni, Katja; Ehlert, Ulrike

    2015-01-01

    Background & Aim Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies. Methods In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies. Results Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest. Conclusions Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals. PMID:26110636

  5. Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.

    PubMed Central

    Kish, S J; Dixon, L M; Sherwin, A L

    1988-01-01

    Increased concentration of the excitatory neurotransmitter aspartic acid in actively spiking human epileptic cerebral cortex was recently described. In order to further characterise changes in the aspartergic system in epileptic brain, the behaviour of aspartic acid aminotransferase (AAT), a key enzyme involved in aspartic acid metabolism has now been examined. Electrocorticography performed during surgery was employed to identify cortical epileptic spike foci in 16 patients undergoing temporal lobectomy for intractable seizures. Patients with spontaneously spiking lateral temporal cortex (n = 8) were compared with a non-spiking control group (n = 8) of patients in whom the epileptic lesions were confined to the hippocampus sparing the temporal convexity. Mean activity of AAT in spiking cortex was significantly elevated by 16-18%, with aspartic acid concentration increased by 28%. Possible explanations for the enhanced AAT activity include increased proliferation of cortical AAT-containing astrocytes at the spiking focus and/or a generalised increase in neuronal or extraneuronal metabolism consequent to the ongoing epileptic discharge. It is suggested that the data provide additional support for a disturbance of central excitatory aspartic acid mechanisms in human epileptic brain. PMID:2898010

  6. Increased digitalis-like activity in human cerebrospinal fluid after expansion of the extracellular fluid volume

    SciTech Connect

    Halperin, J.A.; Martin, A.M.; Malave, S.

    1985-08-12

    The present study was designed to determine whether acute expansion of the extracellular fluid volume influenced the digitalis-like activity of human cerebrospinal fluid (CSF), previously described. Human CSF samples, drawn before and 30 minutes after the intravenous infusion of 1 liter of either saline or glucose solutions, were assayed for digitalis-like activity by inhibition of either the /sup 86/Rb/sup +/ uptake into human erythrocytes or by the activity of a purified Na/sup +/-K/sup +/ ATPase. The CSF inhibitory activity on both systems significantly increased after the infusion of sodium solutions but did not change after the infusion of glucose. These results indicate that the digitalis-like factor of human CSF might be involved in the regulation of the extracellular fluid volume and electrolyte content and thereby in some of the physiological responses to sodium loading. 31 references, 2 figures, 1 table.

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  8. Decreases in Theta and Increases in High Frequency Activity Underlie Associative Memory Encoding

    PubMed Central

    Greenberg, Jeffrey A.; Burke, John F.; Haque, Rafi; Kahana, Michael J.; Zaghloul, Kareem A.

    2015-01-01

    Episodic memory encoding refers to the cognitive process by which items and their associated contexts are stored in memory. To investigate changes directly attributed to the formation of explicit associations, we examined oscillatory power captured through intracranial electroencephalography (iEEG) as 27 neurosurgical patients receiving subdural and depth electrodes for seizure monitoring participated in a paired associates memory task. We examined low (3–8 Hz) and high (45–95 Hz) frequency activity, and found that the successful formation of new associations was accompanied by broad decreases in low frequency activity and a posterior to anterior progression of increases in high frequency activity in the left hemisphere. These data suggest that the observed patterns of activity may reflect the neural mechanisms underlying the formation of novel item-item associations. PMID:25862266

  9. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  10. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  11. Increase in natural killer cell activity following living-related liver transplantation.

    PubMed

    Hirata, M; Kita, Y; Saito, S; Nishimura, M; Ito, M; Mizuta, K; Tanaka, H; Harihara, Y; Kawarasaki, H; Hashizume, K; Makuuchi, M

    1998-01-01

    We monitored the serial changes of natural killer cell (NK) activity in eight recipients of living-related liver transplantation. The HLA types of all eight patients were haplotypically identical with those of their donors. Tacrolimus and methylprednisolone were used for immunosuppression. The NK activity before transplantation was 24.1 +/- 20.2% which is surprisingly low when compared with the value for normal individuals (67.7 +/- 13.2%, P < 0.01) or a liver dysfunction group (49.4 +/- 21.9%, P < 0.05). Serial changes in NK activity revealed a minimum of 6.1 +/- 3.6% 1 week after transplantation, gradually increasing to 49.2 +/- 12.5% at 2 months after transplantation. These results suggest that the diseased liver might play an important role in the suppression of NK activity.

  12. Building a foundation for systems change: increasing access to physical activity programs for older adults.

    PubMed

    Lachenmayr, Sue; Mackenzie, Geraldine

    2004-10-01

    Although 25% of U.S. adults are physically inactive, this percentage increases dramatically for older adults. Organizational change theory guided a state health department in identifying system gaps and developing strategies to expand programming for seniors. A survey of provider agencies in New Jersey assessed (a) capacity for physical activity programs for older adults, (b) accessibility of programs, and (c) barriers to providing programs. One hundred sixty agencies provided physical activity programs to almost 184,000 individuals annually. Fewer than one half of the agencies provided exercise programs for people with disabilities, and only 44% provided in-home programs. Eighty-two percent of program providers wanted to expand programming but cited lack of trained instructors and peer leaders, inadequate facility space, insufficient funding, and limited transportation resources as barriers. Sustaining older adult behavior change requires infrastructure that will ensure access to diverse physical activities. This article provides strategies to expand access to physical activity programs for older adults.

  13. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to

  14. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts.

    PubMed

    Nägler, D K; Storer, A C; Portaro, F C; Carmona, E; Juliano, L; Ménard, R

    1997-10-14

    The main feature distinguishing cathepsin B from other cysteine proteases of the papain family is the presence of a large insertion loop, termed the occluding loop, which occupies the S' subsites of the enzyme. The loop is held in place mainly by two contacts with the rest of the enzyme, involving residues His110 and Arg116 on the loop that form salt bridges with Asp22 and Asp224, respectively. The influence of this loop on the endopeptidase activity of cathepsin B has been investigated using site-directed mutagenesis and internally quenched fluorogenic (IQF) substrates. Wild-type cathepsin B displays poor activity against the substrates Abz-AFRSAAQ-EDDnp and Abz-QVVAGA-EDDnp as compared to cathepsin L and papain. Appreciable increases in kcat/KM were observed for cathepsin B containing the single mutations D22A, H110A, R116A, and D224A. The highest activity however is observed for mutants where both loop to enzyme contacts are disrupted. For the triple-mutant D22A/H110A/R116A, an optimum kcat/KM value of 12 x 10(5) M-1 s-1 was obtained for hydrolysis of Abz-AFRSAAQ-EDDnp, which corresponds to a 600-fold increase relative to wild-type cathepsin B and approaches the level of activity observed with cathepsin L or papain. By comparison, the mutations have little effect on the hydrolysis of Cbz-FR-MCA. The influence of the mutations on the pH dependency of activity also indicates that the complexity of pH activity profiles normally observed for cathepsin B is related to the presence of the occluding loop. The major increase in endopeptidase activity is attributed to an increase in loop "flexibility" and suggests that the occluding loop might move when an endopeptidase substrate binds to the enzyme. The possible contribution of these interactions in regulating endopeptidase activity and the implications for cathepsin B activity in physiological or pathological conditions are discussed.

  15. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  16. PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production.

    PubMed

    García-Morales, Verónica; Cuíñas, Andrea; Elíes, Jacobo; Campos-Toimil, Manuel

    2014-03-01

    Vascular relaxation induced by 3',5'-cyclic adenosine monophosphate (cAMP) is both endothelium-dependent and endothelium-independent, although the underlying signaling pathways are not fully understood. Aiming to uncover potential mechanisms, we performed contraction-relaxation experiments on endothelium-denuded and intact rat aorta rings and measured NO levels in isolated human endothelial cells using single cell fluorescence imaging. The vasorelaxant effect of forskolin, an adenylyl cyclase activator, was decreased after selective inhibitor of protein kinase A (PKA), a cAMP-activated kinase, or L-NAME, an endothelial nitric oxide synthase (eNOS) inhibitor, only in intact aortic rings. Both selective activation of PKA with 6-Bnz-cAMP and exchange protein directly activated by cAMP (Epac) with 8-pCPT-2'-O-Me-cAMP significantly relaxed phenylephrine-induced contractions. The vasorelaxant effect of the Epac activator, but not that of the PKA activator, was reduced by endothelium removal. Forskolin, dibutyryl cAMP (a cAMP analogue), 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP increased NO levels in endothelial cells and the forskolin effect was significantly inhibited by inactivation of both Epac and PKA, and eNOS inhibition. Our results indicate that the endothelium-dependent component of forskolin/cAMP-induced vasorelaxation is partially mediated by an increase in endothelial NO release due to an enhanced eNOS activity through PKA and Epac activation in endothelial cells.

  17. Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability

    PubMed Central

    Escudero-Pérez, Beatriz; Volchkova, Valentina A.; Dolnik, Olga; Lawrence, Philip; Volchkov, Viktor E.

    2014-01-01

    During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. PMID:25412102

  18. Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes.

    PubMed

    Burke, Derek G; Rahim, Ahad A; Waddington, Simon N; Karlsson, Stefan; Enquist, Ida; Bhatia, Kailash; Mehta, Atul; Vellodi, Ashok; Heales, Simon

    2013-09-01

    Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal β-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 ± 5.6, heterozygote; 71.5 ± 2.4, wild type 76.8 ± 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.

  19. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain

    NASA Astrophysics Data System (ADS)

    Mintun, Mark A.; Vlassenko, Andrei G.; Rundle, Melissa M.; Raichle, Marcus E.

    2004-01-01

    The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD+ ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD+ ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.

  20. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    PubMed

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  1. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  2. Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants

    SciTech Connect

    Palma, J.M.; Gomez, M.; Yanez, J.; Del Rio, L.A.

    1987-10-01

    The effect in vivo of high nutrient levels of copper (240 micromolar) on the activity of different metalloenzymes containing Cu, Mn, Fe, and Zn, distributed in chloroplasts, peroxisomes, and mitochondria, was studied in leaves of two varieties of Pisum sativum L. plants with different sensitivity to copper. The metalloenzymes studied were: cytochrome c oxidase, Mn-superoxide dismutase (Mn-SOD) and Cu,Zn-superoxide dismutase I (Cu,Zn-SOD I), for mitochondria; catalase and Mn-SOD, for peroxisomes; and isozyme Cu,Zn-SOD II for chloroplasts. The activity of mitochondrial SOD isozymes (Mn-SOD and Cu,Zn-SOD I) was very similar in Cu-tolerant and Cu-sensitive plants, whereas cytochrome c oxidase was lower in Cu-sensitive plants. Chloroplastid Cu,Zn-SOD activity was the same in the two plant varieties. In contrast, the peroxisomal Mn-SOD activity was considerably higher in Cu-tolerant than in Cu-sensitive plants, and the activity of catalase was also increased in peroxisomes of Cu-tolerant plants. The higher activities of these peroxisomal active oxygen-related enzymes in Cu-tolerant plants suggest the involvement of reactive oxygen intermediates (O/sub 2//sup -/, OH) in the mechanism of Cu lethality, and also imply a function for peroxisomal Mn-SOD in the molecular mechanisms of plant tolerance to Cu in Pisum sativum L.

  3. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    PubMed Central

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  4. Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy.

    PubMed

    Yun, Jang-Hyuk; Park, Sung Wook; Kim, Kyung-Jin; Bae, Jong-Sup; Lee, Eun Hui; Paek, Sun Ha; Kim, Seung U; Ye, Sangkyu; Kim, Jeong-Hun; Cho, Chung-Hyun

    2017-05-01

    Vascular inflammation is characteristic feature of diabetic retinopathy. In diabetic retina, a variety of the pro-inflammatory cytokines are elevated and involved in endothelial dysfunction. STAT3 transcription factor has been implicated in mediating cytokine signaling during vascular inflammation. However, whether and how STAT3 is involved in the direct regulation of the endothelial permeability is currently undefined. Our studies revealed that IL-6-induced STAT3 activation increases retinal endothelial permeability and vascular leakage in retinas of mice through the reduced expression of the tight junction proteins ZO-1 and occludin. In a co-culture model with microglia and endothelial cells under a high glucose condition, the microglia-derived IL-6 induced STAT3 activation in the retinal endothelial cells, leading to increasing endothelial permeability. In addition, IL-6-induced STAT3 activation was independent of ROS generation in the retinal endothelial cells. Moreover, we demonstrated that STAT3 activation downregulates the ZO-1 and occludin levels and increases the endothelial permeability through the induction of VEGF production in retinal endothelial cells. These results suggest the potential importance of IL-6/STAT3 signaling in regulating endothelial permeability and provide a therapeutic target to prevent the pathology of diabetic retinopathy. J. Cell. Physiol. 232: 1123-1134, 2017. © 2016 Wiley Periodicals, Inc.

  5. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity.

    PubMed

    Venturi, V; Wolfs, K; Leong, J; Weisbeek, P J

    1994-10-17

    Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by subcloning, transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.

  6. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory

    PubMed Central

    Fiset, Catherine; Rioux, France M.; Surette, Marc E.; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups’ locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity. PMID:26186713

  7. Mechanism of allopurinol-mediated increase in enzyme activity in man

    PubMed Central

    Beardmore, Thomas D.; Cashman, Jay S.; Kelley, William N.

    1972-01-01

    Allopurinol therapy in man interferes with pyrimidine biosynthesis de novo by inhibition of one or both of the two enzymes, orotate phosphoribosyltransferase (OPRT) and orotidylic decarboxylase (ODC), responsible for the conversion of orotic acid to uridine-5′-monophosphate. Inhibition of this pathway in vivo is followed in 1-3 wk by an increase in the activity of both of these enzymes in erythrocytes and of ODC in circulating leukocytes. This drug-mediated increase in enzyme activity in erythrocytes could not be attributed to enzyme stabilization or induction in vivo but appeared to be due to enzyme “activation.” “Activation” of the OPRT enzyme was directly demonstrated in erythrocytes studied in vitro after incubation with oxipurinol, and to a lesser extent, with allopurinol. No evidence for “activation” of the ODC enzyme was demonstrated in vitro. This response to allopurinol therapy provides an excellent model for examining the mechanism of increased enzyme activity in response to drug administration. PMID:5032526

  8. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity.

    PubMed

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R; Kuipers, Eline N; Loef, Marieke; Zonneveld, Tom C M; Lucassen, Eliane A; Sips, Hetty C M; Chatzispyrou, Iliana A; Houtkooper, Riekelt H; Meijer, Johanna H; Coomans, Claudia P; Biermasz, Nienke R; Rensen, Patrick C N

    2015-05-26

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.

  9. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  10. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.

    PubMed

    Thorn, Stephanie R; Sekar, Satya M; Lavezzi, Jinny R; O'Meara, Meghan C; Brown, Laura D; Hay, William W; Rozance, Paul J

    2012-10-15

    Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene activation following sustained hypoglycemia to determine whether hepatic insulin sensitivity is maintained. Control fetuses (CON), hypoglycemic fetuses induced by maternal insulin infusion for 8 wk (HG), and 8 wk HG fetuses that received an isoglycemic insulin infusion for the final 7 days (HG+INS) were studied. Glucose and insulin concentrations were 60% lower in HG compared with CON fetuses. Insulin was 50% higher in HG+INS compared with CON and four-fold higher compared with HG fetuses. Expression of the hepatic gluconeogenic genes, PCK1, G6PC, FBP1, GLUT2, and PGC1A was increased in the HG and reduced in the HG+INS liver. Expression of the insulin-regulated glycolytic and lipogenic genes, PFKL and FAS, was increased in the HG+INS liver. Total FOXO1 protein expression, a gluconeogenic activator, was 60% higher in the HG liver. Despite low glucose, insulin, and IGF1 concentrations, phosphorylation of AKT and ERK was higher in the HG liver. Thus, a physiological increase in fetal insulin is sufficient for suppression of gluconeogenic genes and activation of glycolytic and lipogenic genes in the HG fetal liver. These results demonstrate that fetuses exposed to sustained hypoglycemia have maintained hepatic insulin action in contrast to fetuses exposed to placental insufficiency.

  11. Increasing Level of Leisure Physical Activity Could Reduce the Risk of Hip Fracture in Older Women

    PubMed Central

    Rong, Ke; Liu, Xiao-yu; Wu, Xu-hua; Li, Xiao-liu; Xia, Qing-quan; Chen, Jiong; Yin, Xiao-fan

    2016-01-01

    Abstract We carried out the study to investigate and quantitatively assess the potential association between current level of physical activity and the risk of osteoporosis hip fracture in older women. Relevant publications before October 2015 were identified using the PubMed and Ovid searching tools. A dose–response meta-analysis was carried out to combine and analysis results. Fourteen prospective studies were included in the meta-analysis. A general analysis of 9 studies showed a significant inverse relationship between increasing level of physical activity and risk of hip fracture in older women [relative risk (RR) = 0.93, 95% confidence interval (95% CI): 0.91–0.96]. The result of a sensitivity analysis was consistent with the general analysis (RR = 0.94, 95% CI: 0.93–0.96). The association between increasing level of physical activity and risk of wrist fracture was not statistically significant in a general analysis of three studies (RR = 1.004, 95% CI: 0.98–1.03). A potential direct association between increasing level of physical activity and risk of wrist fracture was observed after removing 1 study with the greatest weight (RR = 1.01, 95% CI: 1.00–1.03). No significant publication bias was observed in our analysis. Our results show that increasing level of physical activity within an appropriate range may reduce the risk of hip fracture but not the risk of wrist fracture in older women. PMID:26986111

  12. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea.

    PubMed

    Parra, Andres; Gonzalez-Gonzalez, Omar; Gallar, Juana; Belmonte, Carlos

    2014-08-01

    Dry eye disease (DED) is a multifactorial disorder affecting the composition and volume of tears. DED causes ocular surface dryness, cooling, and hyperosmolality, leading ultimately to corneal epithelium damage and reduced visual performance. Ocular discomfort is the main clinical symptom in DED. However, the peripheral neural source of such unpleasant sensations is still unclear. We analyzed in excised, superfused mouse eyes, the effect of NaCl-induced hyperosmolality (325-1005 mOsm·kg(-1)) on corneal cold thermoreceptor and polymodal nociceptor nerve terminal impulse (NTI) activity. Osmolality elevations at basal corneal temperature (33.6°C) linearly increased the ongoing NTI frequency of cold thermoreceptors, at a mean rate of 0.34 imp·s(-1)/10 mOsm. This frequency increase became significant with osmolality values greater than 340 mOsm. Comparison of cold thermoreceptor activity increase induced by a dynamic temperature reduction of 1.8°C under iso- and hyperosmolal (360-mOsm) conditions provided evidence that more than 50% of the increased firing response was attributable to hyperosmolality. Comparatively, activation of corneal polymodal nociceptor endings by hyperosmolal solutions started with values of 600 mOsm and greater. Sensitization of polymodal nociceptors by continuous perfusion with an "inflammatory soup" (bradykinin, histamine, prostaglandin E2 [PGE2], serotonin, and adenosine triphosphate [ATP]) did not enhance their activation by hyperosmolal solutions. High osmolality also altered the firing pattern and shape of cold and polymodal NTIs, possibly reflecting disturbances in local membrane currents. Results strongly suggest that tear osmolality elevations in the range observed in DED predominantly excite cold thermoreceptors, supporting the hypothesis that dryness sensations experienced by these patients are due, at least in part, to an augmented activity of corneal cold thermoreceptors.

  13. Acute and chronic caffeine administration increases physical activity in sedentary adults.

    PubMed

    Schrader, Patrick; Panek, Leah M; Temple, Jennifer L

    2013-06-01

    Caffeine is a commonly used stimulant thought to have ergogenic properties. Most studies on the ergogenic effects of caffeine have been conducted in athletes. The purpose of this study was to test the hypothesis that caffeine reduces ratings of perceived exertion and increases liking of physical activity in sedentary adults. Participants completed treadmill walking at 60% to 70% of their maximal heart rate at baseline and for 6 subsequent visits, during which half of the participants were given caffeine (3 mg/kg) and half given placebo in a sports drink vehicle. To investigate the potential synergistic effects of acute and chronic caffeine on self-determined exercise duration, participants were rerandomized to either the same or different condition for the last visit, creating 4 chronic/acute treatment groups (placebo/placebo, placebo/caffeine, caffeine/placebo, caffeine/caffeine). Participants rated how much they liked the activity and perceived exertion at each visit. There was a main effect of time on liking of physical activity, with liking increasing over time and an interaction of sex and caffeine treatment on liking, with liking of activity increasing in female participants treated with caffeine, but not with placebo. There was no effect of caffeine on ratings of perceived exertion. Individuals who received caffeine on the final test day exercised for significantly longer than those who received placebo. These data suggest that repeated exposure to physical activity significantly increases liking of exercise and reduces ratings of perceived exertion and that caffeine does little to further modify these effects.

  14. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis.

    PubMed

    Zou, Chun; Duan, Xuguo; Wu, Jing

    2016-08-01

    Addition of MgCl2 to the culture medium has been found to dramatically increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. The specific activity of the pullulanase obtained from medium supplemented with MgCl2 was also higher than that obtained in culture medium without added magnesium ions. In this work, the mechanism of this increase was studied. When cultured in medium without added magnesium ions, B. choshinensis mainly produced a thermolabile, inactive form of pullulanase. The addition of magnesium ions led to the production of a thermostable, active form of pullulanase. Circular dichroism assays revealed considerable differences in secondary structure between the active and inactive pullulanase forms. Transmission electron microscopy suggested that magnesium ion addition inhibits the shedding of cell wall protein (HWP) layers from the cell surface. Quantitative real-time PCR showed that magnesium ion addition represses transcription of HWP. Because the pullulanase gene and HWP have identical promoters, pullulanase gene transcription was also inhibited. These results suggest that when pullulanase is expressed slowly, it tends to fold into an active form.

  15. Does increased physical activity in school affect children's executive function and aerobic fitness?

    PubMed

    Kvalø, S E; Bru, E; Brønnick, K; Dyrstad, S M

    2017-02-16

    This study seeks to explore whether increased PA in school affects children's executive function and aerobic fitness. The "Active school" study was a 10-month randomized controlled trial. The sample included 449 children (10-11 years old) in five intervention and four control schools. The weekly interventions were 2×45 minutes physically active academic lessons, 5×10 minutes physically active breaks, and 5×10 minutes physically active homework. Aerobic fitness was measured using a 10-minute interval running test. Executive function was tested using four cognitive tests (Stroop, verbal fluency, digit span, and Trail Making). A composite score for executive function was computed and used in analyses. Mixed ANCOVA repeated measures were performed to analyze changes in scores for aerobic fitness and executive function. Analysis showed a tendency for a time×group interaction on executive function, but the results were non-significant F(1, 344)=3.64, P=.057. There was no significant time×group interaction for aerobic fitness. Results indicate that increased physical activity in school might improve children's executive function, even without improvement in aerobic fitness, but a longer intervention period may be required to find significant effects.

  16. The effectiveness of interventions to increase physical activity. A systematic review.

    PubMed

    Kahn, Emily B; Ramsey, Leigh T; Brownson, Ross C; Heath, Gregory W; Howze, Elizabeth H; Powell, Kenneth E; Stone, Elaine J; Rajab, Mummy W; Corso, Phaedra

    2002-05-01

    The Guide to Community Preventive Service's methods for systematic reviews were used to evaluate the effectiveness of various approaches to increasing physical activity: informational, behavioral and social, and environmental and policy approaches. Changes in physical activity behavior and aerobic capacity were used to assess effectiveness. Two informational interventions ("point-of-decision" prompts to encourage stair use and community-wide campaigns) were effective, as were three behavioral and social interventions (school-based physical education, social support in community settings, and individually-adapted health behavior change) and one environmental and policy intervention (creation of or enhanced access to places for physical activity combined with informational outreach activities). Additional information about applicability, other effects, and barriers to implementation are provided for these interventions. Evidence is insufficient to assess a number of interventions: classroom-based health education focused on information provision, and family-based social support (because of inconsistent findings); mass media campaigns and college-based health education and physical education (because of an insufficient number of studies); and classroom-based health education focused on reducing television viewing and video game playing (because of insufficient evidence of an increase in physical activity). These recommendations should serve the needs of researchers, planners, and other public health decision makers.

  17. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  18. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  19. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment

    PubMed Central

    Song, Jia; Liu, Qian; Tang, Han; Tao, Aibin; Wang, Hao; Kao, Raymond; Rui, Tao

    2016-01-01

    Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression. PMID:27821807

  20. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  1. Process Evaluation of an Intervention to Increase Child Activity Levels in Afterschool Programs

    PubMed Central

    Weaver, R. Glenn; Saunders, Ruth; Webster, Collin; Beets, Michael W.

    2014-01-01

    Background Identifying effective strategies in Afterschool programs (ASPs) to increase children's moderate-to-vigorous physical activity (MVPA) in the ASP setting is crucial. This study describes the process evaluation outcomes from an intervention to reduce child sedentary time and increase MVPA in ASPs. Methods Four ASPs participated in a quasi-experimental single-group pre-post study targeting child sedentary time and MVPA. The strategies implemented to help ASPs meet Physical Activity Standards consisted of detailed schedules, professional development trainings, on-site booster sessions, and technical assistance. Process evaluation related to staff behaviors was collected via systematic observation to identify the interventions impact on the physical and social environment of the ASP. Random-effects regression models examined the impact of the intervention on boys/girls observed sedentary behavior, MVPA, and changes in staff behaviors. Results Increases in MVPA and reductions in sedentary behavior were observed during enrichment, academics, organized and free-play physical activities (PA). Corresponding changes in staff behaviors were observed during these ASP contexts. For example, staff reduced child idle-time during organized PA (38.9%-1.8%) and provided energizers more often during enrichment (0.2%-11.5%). Conclusions This study identified changes in staff behavior during ASP contexts that led to increases in child MVPA and decreases in child sedentary behavior. PMID:24836999

  2. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    PubMed Central

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  3. INCREASE IN ACTIVATED PROTEIN C MEDIATES ACUTE TRAUMATIC COAGULOPATHY IN MICE

    PubMed Central

    Chesebro, Brian B.; Rahn, Pamela; Carles, Michel; Esmon, Charles T.; Xu, Jun; Brohi, Karim; Frith, Daniel; Pittet, Jean-François; Cohen, Mitchell J.

    2013-01-01

    In severely injured and hypoperfused trauma patients, endogenous acute coagulopathy (EAC) is associated with an increased morbidity and mortality. Recent human data correlate this coagulopathy with activation of the protein C pathway. To examine the mechanistic role of protein C in the development of EAC, we used a mouse model of trauma and hemorrhagic shock, characterized by the combination of tissue injury and severe metabolic acidosis. Mice were subjected to one of four treatment groups: 1) C, control; 2) T, trauma (laparotomy); 3) H, hemorrhage (MAP, 35 mmHg × 60 min); 4) TH, trauma + hemorrhage. After 60 min, blood was drawn for analysis. Compared with C mice, the TH mice had a significantly elevated activated partial thromboplastin time (23.3 vs. 34.5 s) and significantly increased levels of activated protein C (aPC; 2.30 vs. 13.58 ng/mL). In contrast, T and H mice did not develop an elevated activated partial thromboplastin time or increased aPC. Selective inhibition of the anticoagulant property of aPC prevented the coagulopathy seen in response to trauma/hemorrhage (23.5 vs. 38.6 s [inhibitory vs. control monoclonal antibody]) with no impact on survival during the shock period. However, complete blockade of both the anticoagulant and cytoprotective functions of aPC caused 100% mortality within 45 min of shock, with histopathology evidence of pulmonary thrombosis and perivascular hemorrhage. These results indicate that our unique mouse model of T/H shock mimics our previous observations in trauma patients and demonstrates that EAC is mediated by the activation of the protein C pathway. In addition, the cytoprotective effect of protein C activation seems to be necessary for survival of the initial shock injury. PMID:19333141

  4. Progesterone increases the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Son, Ilsoon; Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Hae-Kyoung; Do, Sang-Hwan; Zuo, Zhiyi

    2013-09-05

    Progesterone is an important sex hormone for pregnancy and also has neuroprotective and anticonvulsant effects. It is well-known that full-term parturients become more susceptible to volatile anesthetics. Glutamate transporters are important for preventing neurotoxicity and anesthetic action in the central nervous system. We investigated the effects of progesterone on the activity of glutamate transporter type 3 (EAAT3), the major neuronal EAAT. EAAT3 was expressed in Xenopus laevis oocytes by injecting its mRNA. Oocytes were incubated with diluted progesterone for 72 h. Two-electrode voltage clamping was used to measure membrane currents before, during, and after applying 30 μML-glutamate. Progesterone (1-100 nM) significantly increased EAAT3 activity in a dose-dependent manner. Our kinetic study showed that the Vmax was increased in the progesterone group compared with that in the control group (2.7 ± 0.2 vs. 3.6 ± 0.2μC for control group vs. progesterone group; n=18-23; P<0.05), however, Km was unaltered (46.7 ± 10.2μM vs. 55.9 ± 10.5μM for control group vs. progesterone group; n=18-23; P>0.05). Phorbol-12-myristate-13-acetate, a protein kinase C (PKC) activator, did not change progesterone-enhanced EAAT3 activity. Inhibitors of PKC or phosphatidylinositol 3-kinase (PI3K) abolished the progesterone-induced increases in EAAT3 activity. Our results suggest that progesterone enhances EAAT3 activity and that PKC and PI3K are involved in mediating these effects. These effects of progesterone may contribute to its anticonvulsant and anesthesia-related properties.

  5. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    SciTech Connect

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A. )

    1989-09-15

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation.

  6. Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus.

    PubMed

    Kadivar, Mehdi; Farahmandfar, Maryam; Ranjbar, Faezeh Esmaeli; Zarrindast, Mohammad-Reza

    2014-07-01

    Repeated exposure to drugs of abuse, such as morphine, elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect long-lasting changes in some of the important molecules involved in memory processing such as calcium/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of morphine sensitization on mRNA expression of α and β isoforms and activity of CaMKII in the hippocampus of male rats. Animals were treated for 3 days with saline or morphine (20mg/kg) and following a washout period of 5 days, a challenge dose of morphine (5mg/kg) were administered. The results indicate that morphine administration in pre-treated animals produces behavioral sensitization, as determined by significant increase in locomotion and oral stereotypy behavior. In addition, repeated morphine treatment increased mRNA expression of both α and β isoforms of CaMKII in the hippocampus. The present study also showed that induction of morphine sensitization significantly increased both Ca2+/calmodulin-independent and Ca2+/calmodulin-dependent activities of CaMK II in the rat hippocampus. However, acute administration of morphine (5mg/kg) did not alter either α and β CaMKII mRNA expression or CaMKII activity in the hippocampus. The stimulation effects of morphine sensitization on mRNA expression and activity of CaMKII were completely abolished by administration of naloxone, 30min prior to s.c. injections of morphine (20mg/kg/day×3 days). Our data demonstrated that induction of morphine sensitization could effectively modulate the activity and the mRNA expression of CaMKII in the hippocampus and this effect of morphine was exerted by the activation of opioid receptors.

  7. Postnatal Chick Choroids Exhibit Increased Retinaldehyde Dehydrogenase Activity During Recovery From Form Deprivation Induced Myopia

    PubMed Central

    Harper, Angelica R.; Wang, Xiang; Moiseyev, Gennadiy; Ma, Jian-Xing; Summers, Jody A.

    2016-01-01

    Purpose Increases in retinaldehyde dehydrogenase 2 (RALDH2) transcript in the chick choroid suggest that RALDH2 may be responsible for increases observed in all-trans-retinoic acid (atRA) synthesis during recovery from myopic defocus. The purpose of the present study was to examine RALDH2 protein expression, RALDH activity, and distribution of RALDH2 cells in control and recovering chick ocular tissues. Methods Myopia was induced in White Leghorn chicks for 10 days, followed by up to 15 days of unrestricted vision (recovery). Expression of RALDH isoforms in chick ocular tissues was evaluated by Western blot. Catalytic activity of RALDH was measured in choroidal cytosol fractions using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Distribution of RALDH2 cells throughout the choroid was evaluated by immunohistochemistry. Results RALDH2 was expressed predominately in the chick choroid (P < 0.001) and increased after 24 hours and 4 days of recovery (76%, 74%, and 165%, respectively; P < 0.05). Activity of RALDH was detected solely in the choroid and was elevated at 3 and 7 days of recovery compared to controls (70% and 48%, respectively; P < 0.05). The number of RALDH2 immunopositive cells in recovering choroids was increased at 24 hours and 4 to 15 days of recovery (P < 0.05) and were concentrated toward the RPE side compared to controls. Conclusions The results of this study suggest that RALDH2 is the major RALDH isoform in the chick choroid and is responsible for the increased RALDH activity seen during recovery. PMID:27654415

  8. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  9. Relaxin increases sympathetic nerve activity and activates spinally projecting neurons in the paraventricular nucleus of nonpregnant, but not pregnant, rats

    PubMed Central

    Coldren, K. Max; Brown, Randall; Hasser, Eileen M.

    2015-01-01

    Pregnancy is characterized by increased blood volume and baseline sympathetic nerve activity (SNA), vasodilation, and tachycardia. Relaxin (RLX), an ovarian hormone elevated in pregnancy, activates forebrain sites involved in control of blood volume and SNA through ANG II-dependent mechanisms and contributes to adaptations during pregnancy. In anesthetized, arterial baroreceptor-denervated nonpregnant (NP) rats, RLX microinjected into the subfornical organ (SFO; 0.77 pmol in 50 nl) produced sustained increases in lumbar SNA (8 ± 3%) and mean arterial pressure (MAP; 26 ± 4 mmHg). Low-dose intracarotid artery infusion of RLX (155 pmol·ml−1·h−1; 1.5 h) had minor transient effects on AP and activated neurons [increased Fos-immunoreactivity (IR)] in the SFO and in spinally projecting (19 ± 2%) and arginine-vasopressin (AVP)-IR (21 ± 5%) cells in the paraventricular nucleus of the hypothalamus of NP, but not pregnant (P), rats. However, mRNA for RLX and ANG II type 1a receptors in the SFO was preserved in pregnancy. RLX receptor-IR is present in the region of the SFO in NP and P rats and is localized in astrocytes, the major source of angiotensinogen in the SFO. These data provide an anatomical substrate for a role of RLX in the resetting of AVP secretion and increased baseline SNA in pregnancy. Since RLX and ANG II receptor expression was preserved in the SFO of P rats, we speculate that the lack of response to exogenous RLX may be due to maximal activation by elevated endogenous levels of RLX in near-term pregnancy. PMID:26400184

  10. EGFR Activation Increases Parathyroid Hyperplasia and Calcitriol Resistance in Kidney Disease

    PubMed Central

    Arcidiacono, Maria Vittoria; Sato, Tetsuhiko; Alvarez-Hernandez, Daniel; Yang, Jing; Tokumoto, Masanori; Gonzalez-Suarez, Ignacio; Lu, Yan; Tominaga, Yoshihiro; Cannata-Andia, Jorge; Slatopolsky, Eduardo; Dusso, Adriana S.

    2008-01-01

    Calcitriol, acting through vitamin D receptors (VDR) in the parathyroid, suppresses parathyroid hormone synthesis and cell proliferation. In secondary hyperparathyroidism (SH), VDR content is reduced as hyperplasia becomes more severe, limiting the efficacy of calcitriol. In a rat model of SH, activation of the EGF receptor (EGFR) by TGF-α is required for the development of parathyroid hyperplasia, but the relationship between EGFR activation and reduced VDR content is unknown. With the use of the same rat model, it was found that pharmacologic inhibition of EGFR activation with erlotinib prevented the upregulation of parathyroid TGF-α, the progression of growth, and the reduction of VDR. Increased TGF-α/EGFR activation induced the synthesis of liver-enriched inhibitory protein, a potent mitogen and the dominant negative isoform of the transcription factor CCAAT enhancer binding protein-β, in human hyperplastic parathyroid glands and in the human epidermoid carcinoma cell line A431, which mimics hyperplastic parathyroid cells. Increases in liver-enriched inhibitory protein directly correlated with proliferating activity and, in A431 cells, reduced VDR expression by antagonizing CCAAT enhancer binding protein-β transactivation of the VDR gene. Similarly, in nodular hyperplasia, which is the most severe form of SH and the most resistant to calcitriol therapy, higher TGF-α activation of the EGFR was associated with an 80% reduction in VDR mRNA levels. Thus, in SH, EGFR activation is the cause of both hyperplastic growth and VDR reduction and therefore influences the efficacy of therapy with calcitriol. PMID:18216322

  11. Meta-analysis of internet-delivered interventions to increase physical activity levels

    PubMed Central

    2012-01-01

    Many internet-delivered physical activity behaviour change programs have been developed and evaluated. However, further evidence is required to ascertain the overall effectiveness of such interventions. The objective of the present review was to evaluate the effectiveness of internet-delivered interventions to increase physical activity, whilst also examining the effect of intervention moderators. A systematic search strategy identified relevant studies published in the English-language from Pubmed, Proquest, Scopus, PsychINFO, CINHAL, and Sport Discuss (January 1990 – June 2011). Eligible studies were required to include an internet-delivered intervention, target an adult population, measure and target physical activity as an outcome variable, and include a comparison group that did not receive internet-delivered materials. Studies were coded independently by two investigators. Overall effect sizes were combined based on the fixed effect model. Homogeneity and subsequent exploratory moderator analysis was undertaken. A total of 34 articles were identified for inclusion. The overall mean effect of internet-delivered interventions on physical activity was d = 0.14 (p = 0.00). Fixed-effect analysis revealed significant heterogeneity across studies (Q = 73.75; p = 0.00). Moderating variables such as larger sample size, screening for baseline physical activity levels and the inclusion of educational components significantly increased intervention effectiveness. Results of the meta-analysis support the delivery of internet-delivered interventions in producing positive changes in physical activity, however effect sizes were small. The ability of internet-delivered interventions to produce meaningful change in long-term physical activity remains unclear. PMID:22546283

  12. CMKLR1 activation ex vivo does not increase proportionally to serum total chemerin in obese humans

    PubMed Central

    Toulany, Jay; Parlee, Sebastian D; Sinal, Christopher J; Slayter, Kathryn; McNeil, Shelly

    2016-01-01

    Prochemerin is the inactive precursor of the adipokine chemerin. Proteolytic processing is obligatory for the conversion of prochemerin into active chemerin and subsequent regulation of cellular processes via the chemokine-like receptor 1 (CMKLR1). Elevated plasma or serum chemerin concentrations and differential processing of prochemerin have been reported in obese humans. The impact of these changes on CMKLR1 signalling in humans is unknown. The objective of this pilot study was to develop a cellular bioassay to measure CMKLR1 activation by chemerin present in human serum and to characterise how obesity modifies serum activation of CMKLR1 under fasted and fed conditions. Blood samples were collected from control (N = 4, BMI 20–25) and obese (N = 4, BMI >30) female subjects after an overnight fast (n = 2) and at regular intervals (n = 7) following consumption of breakfast over a period of 6 h. A cellular CMKLR1-luminescent reporter assay and a pan-chemerin ELISA were used to determine CMKLR1 activation and total chemerin concentrations, respectively. Serum total chemerin concentration (averaged across all samples) was higher in obese vs control subjects (17.9 ± 1.8 vs 10.9 ± 0.5 nM, P < 0.05), but serum activation of CMKLR1 was similar in both groups. The CMKLR1 activation/total chemerin ratio was lower in obese vs control subjects (0.33 ± 0.04 vs 0.58 ± 0.05, P < 0.05). After breakfast, serum total chemerin or CMKLR1 activation did not differ from baseline values. In conclusion, the unexpected observation that obese serum activation of CMKLR1 did not match increased total chemerin concentrations suggests impaired processing to and/or enhanced degradation of active chemerin in serum of obese humans. PMID:27881447

  13. Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.

    PubMed

    Cui, Ran Ji; Roberts, Brandon L; Zhao, Huan; Zhu, Mingyan; Appleyard, Suzanne M

    2012-11-14

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.

  14. Serotonin Activates Catecholamine Neurons in the Solitary Tract Nucleus by Increasing Spontaneous Glutamate Inputs

    PubMed Central

    Cui, Ran Ji; Roberts, Brandon L.; Zhao, Huan; Zhu, Mingyan

    2012-01-01

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT3 receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A2/C2 catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT3 receptor antagonist ondansetron and mimicked by the 5-HT3 receptor agonists SR5227 and mCPBG. In contrast, 5-HT3 receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT3 receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT3 receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function. PMID:23152635

  15. Mechanisms of Increased Particle and VOC Emissions during DPF Active Regeneration and Practical Emissions Considering Regeneration.

    PubMed

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2017-03-07

    Mechanisms involved in increased particle and volatile organic compound (VOC) emissions during active and parked active regenerations of a diesel particulate filter (DPF) were investigated using heavy-duty trucks equipped with both a urea selective catalytic reduction system and a DPF (SCR + DPF) and a DPF-only. Particle emissions increased in the later part of the regeneration period but the mechanisms were different above and below 23 nm. Particles above 23 nm were emitted due to the lower filtering efficiency of the DPF because of the decreasing amount of soot trapped during regeneration. Small particles below 23 nm were thought to be mainly sulfuric acid particles produced from SO2 trapped by the catalyst, being released and oxidized during regeneration. Contrary to the particle emissions, VOCs increased in the earlier part of the regeneration period. The mean molecular weights of the VOCs increased gradually as the regeneration proceeded. To evaluate "practical emissions" in which increased emissions during the regeneration were considered, a Regeneration Correction Factor (RCF), which is the average emission during one cycle of regeneration/emission in normal operation, was adopted. The RCFs of PM and VOCs were 1.1-1.5, and those of PNs were as high as 3-140, although they were estimated from a limited number of observations.

  16. Frontostriatal activity and connectivity increase during proactive inhibition across adolescence and early adulthood.

    PubMed

    Vink, Matthijs; Zandbelt, Bram B; Gladwin, Thomas; Hillegers, Manon; Hoogendam, Janna Marie; van den Wildenberg, Wery P M; Du Plessis, Stefan; Kahn, René S

    2014-09-01

    During adolescence, functional and structural changes in the brain facilitate the transition from childhood to adulthood. Because the cortex and the striatum mature at different rates, temporary imbalances in the frontostriatal network occur. Here, we investigate the development of the subcortical and cortical components of the frontostriatal network from early adolescence to early adulthood in 60 subjects in a cross-sectional design, using functional MRI and a stop-signal task measuring two forms of inhibitory control: reactive inhibition (outright stopping) and proactive inhibition (anticipation of stopping). During development, reactive inhibition improved: older subjects were faster in reactive inhibition. In the brain, this was paralleled by an increase in motor cortex suppression. The level of proactive inhibition increased, with older subjects slowing down responding more than younger subjects when anticipating a stop-signal. Activation increased in the right striatum, right ventral and dorsal inferior frontal gyrus, and supplementary motor area. Moreover, functional connectivity during proactive inhibition increased between striatum and frontal regions with age. In conclusion, we demonstrate that developmental improvements in proactive inhibition are paralleled by increases in activation and functional connectivity of the frontostriatal network. These data serve as a stepping stone to investigate abnormal development of the frontostriatal network in disorders such as schizophrenia and attention-deficit hyperactivity disorder.

  17. Increases in Physical Activity Result in Diminishing Increments in Daily Energy Expenditure in Mice.

    PubMed

    O'Neal, Timothy J; Friend, Danielle M; Guo, Juen; Hall, Kevin D; Kravitz, Alexxai V

    2017-02-06

    Exercise is a common component of weight loss strategies, yet exercise programs are associated with surprisingly small changes in body weight [1-4]. This may be due in part to compensatory adaptations, in which calories expended during exercise are counteracted by decreases in other aspects of energy expenditure [1, 5-10]. Here we examined the relationship between a rodent model of voluntary exercise- wheel running- and total daily energy expenditure. Use of a running wheel for 3 to 7 days increased daily energy expenditure, resulting in a caloric deficit of ∼1 kcal/day; however, total daily energy expenditure remained stable after the first week of wheel access, despite further increases in wheel use. We hypothesized that compensatory mechanisms accounted for the lack of increase in daily energy expenditure after the first week. Supporting this idea, we observed a decrease in off-wheel ambulation when mice were using the wheels, indicating behavioral compensation. Finally, we asked whether individual variation in wheel use within a group of mice would be associated with different levels of daily energy expenditure. Despite a large variation in wheel running, we did not observe a significant relationship between the amount of daily wheel running and total daily energy expenditure or energy intake across mice. Together, our experiments support a model in which the transition from sedentary to light activity is associated with an increase in daily energy expenditure, but further increases in physical activity produce diminishingly small increments in daily energy expenditure.

  18. Children with High Functioning Autism show increased prefrontal and temporal cortex activity during error monitoring

    PubMed Central

    Goldberg, Melissa C.; Spinelli, Simona; Joel, Suresh; Pekar, James J.; Denckla, Martha B.; Mostofsky, Stewart H.

    2010-01-01

    Evidence exists for deficits in error monitoring in autism. These deficits may be particularly important because they may contribute to excessive perseveration and repetitive behavior in autism. We examined the neural correlates of error monitoring using fMRI in 8–12-year-old children with high-functioning autism (HFA, n=11) and typically developing children (TD, n=15) during performance of a Go/No-Go task by comparing the neural correlates of commission errors versus correct response inhibition trials. Compared to TD children, children with HFA showed increased BOLD fMRI signal in the anterior medial prefrontal cortex (amPFC) and the left superior temporal gyrus (STempG) during commission error (versus correct inhibition) trials. A follow-up region-of-interest analysis also showed increased BOLD signal in the right insula in HFA compared to TD controls. Our findings of increased amPFC and STempG activity in HFA, together with the increased activity in the insula, suggest a greater attention towards the internally-driven emotional state associated with making an error in children with HFA. Since error monitoring occurs across different cognitive tasks throughout daily life, an increased emotional reaction to errors may have important consequences for early learning processes. PMID:21151713

  19. Focused campaign increases activity among participants in Nature's Notebook, a citizen science project

    USGS Publications Warehouse

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Citizen science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants’ activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a national-scale citizen science program. The campaign that we implemented was designed to answer a compelling scientific question. We invited participants in the phenology-observing program, Nature’s Notebook, to track trees throughout the spring of 2012, to ascertain whether the season arrived as early as the anomalous spring of 2010. Consisting of a series of six electronic newsletters and costing our office slightly more than 1 week of staff resources, our effort was successful; compared with previous years, the number of observations collected in the region where the campaign was run increased by 184%, the number of participants submitting observations increased by 116%, and the number of trees registered increased by 110%. In comparison, these respective metrics grew by 25, 55, and 44%, over previous years, in the southeastern quadrant of the United States, where no such campaign was carried out. The campaign approach we describe here is a model that could be adapted by a wide variety of programs to increase engagement and thereby positively influence participant retention.

  20. Endolymphatic Sac Tumor Showing Increased Activity on 68Ga DOTATATE PET/CT.

    PubMed

    Papadakis, Georgios Z; Millo, Corina; Sadowski, Samira M; Bagci, Ulas; Patronas, Nicholas J

    2016-10-01

    Endolymphatic sac tumors (ELSTs) are rare tumors arising from the epithelium of the endolymphatic sac and duct that can be either sporadic or associated with von Hippel-Lindau (VHL) disease. We report a case of a VHL patient with histologically proven residual ELST who underwent Ga DOTATATE PET/CT showing increased activity (SUVmax, 6.29) by the ELST. The presented case of a VHL-associated ELST with increased Ga DOTATATE uptake indicates cell-surface expression of somatostatin receptors by this tumor, suggesting the potential application of somatostatin receptor imaging using Ga DOTA-conjugated peptides in the workup and management of these patients.

  1. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter.

    PubMed

    Becker, Holger M; Deitmer, Joachim W

    2007-05-04

    Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.

  2. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity.

    PubMed

    Viggiano, Davide

    2008-12-01

    The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine

  3. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

    PubMed Central

    Herms, Albert; Bosch, Marta; Reddy, Babu J.N.; Schieber, Nicole L.; Fajardo, Alba; Rupérez, Celia; Fernández-Vidal, Andrea; Ferguson, Charles; Rentero, Carles; Tebar, Francesc; Enrich, Carlos; Parton, Robert G.; Gross, Steven P.; Pol, Albert

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. PMID:26013497

  4. Spectral Analysis of the Signals Associated with Increased Activity in Popocatepetl Volcano April 2012

    NASA Astrophysics Data System (ADS)

    Cuenca, J.

    2013-05-01

    After several decades of being inactive in 1994 had a strong reactivation. Since then he has had long periods where volcanic activity including increased growth and destruction of a dome. In April 2012 Popocatepetl Volcano activity showed an increase in the emission of gas and ash, and Vulcanian type explosions. As a result the National Center for Disaster Prevention (CENAPRED) raised the yellow phase from 2 to 3. Spectrally analyzes seismic activity characteristic of the types of events (explosions, LP, Type-B and tremors) that provides information of the source processes that cause it, despite sustained change reflected by the complexity of the volcanic apparatus, through of: 1) the spectral content of the process provides the source, 2) the spectral ratio H / V, its associated amplification and dominant frequencies, 3) time frequency analysis showing the variation in frequency, 4) the particle motion to analyze its retrograde or prograde acting in a volcanic complex medium. The calculation of H / V was performed by each hour using windows with duration of 80 seconds in the broadband seismic station "Canario" (PPPB). The predominant frequencies of H / V are around 1.4-1.8 Hz to 2.1-2.6 Hz and amplifications from 2.3 to 6.9 times. Analysis of H / V of 48 hours (days 16 and April 17) for the case of 1.4-1.8 Hz was observed: (1) From 0-9 hours there is no amplification. (2) The seismic amplification increases from 10 to 11 hours. (3) A first crisis reaches a maximum at 13 hours with about 6 times of amplification. (4) From 14 to 15 hours there is a strong relaxation of the activity. (5) The activity begins to increase from 16 to 23 hours where it reaches its maximum amplification of almost 7 times. (6) The following two hours and is kept exceeding 6 times of amplification. (7) Then is followed by a decrease to 4 hours on the day 17, from which is maintained at a level variable. (8) At 18 hours of the day 17 grows the amplification at 6.2 times, which conforms a

  5. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.

  6. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume

  7. Increased Brain Activation for Dual Tasking with 70-Days Head-Down Bed Rest

    PubMed Central

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia A.; De Dios, Yiri E.; Gadd, Nichole E.; Wood, Scott J.; Riascos, Roy; Kofman, Igor S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2016-01-01

    Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to simulate the effects of microgravity exposure on human physiology, sensorimotor function, and cognition on Earth. Previous studies have reported that concurrent performance of motor and cognitive tasks can be impaired during space missions. Understanding the consequences of HDBR for neural control of dual tasking may possibly provide insight into neural efficiency during spaceflight. In the current study, we evaluated how dual task performance and the