Circulating leptin levels are associated with increased craving to smoke in abstinent smokers
al’Absi, Mustafa; Hooker, Stephanie; Fujiwara, Koji; Kiefer, Falk; von der Goltz, Christoph; Cragin, Tiffany; Wittmers, Lorentz E.
2018-01-01
The adipocyte hormone leptin regulates satiety and energy expenditure. Recent evidence suggests that leptin is associated with increased craving for alcohol and with shorter length of abstinence during alcohol treatment. This study examined leptin’s associations with craving for cigarettes and smoking relapse among smokers interested in cessation. Participants (32 smokers; 14 women) attended a laboratory session 24 h following their designated quit day where circulating leptin levels and craving for smoking were assessed. Other measures of withdrawal symptoms, affect, physical symptoms, as well as neuroendocrine and cardiovascular measures were collected before and after performing two stress tasks (public speaking and cognitive tasks). High circulating leptin levels were associated with increased craving, withdrawal symptoms, negative affect, physical symptoms, and reduced positive affect. Circulating leptin levels were not related to cardiovascular and neuroendocrine measures, responses to acute stressors, or to smoking relapse. These results indicate that circulating leptin is a promising biological marker of craving for smoking and warrant further investigation of the links between appetite regulation and nicotine dependence. PMID:20951159
McMillen, I C; Muhlhausler, B S; Duffield, J A; Yuen, B S J
2004-08-01
Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the 'unilocular' component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a 'lipostatic' role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.
Palou, Mariona; Sánchez, Juana; Rodríguez, Ana M; Priego, Teresa; Picó, Catalina; Palou, Andreu
2009-01-01
Hypothalamus is crucial in the control of energy intake and expenditure in mammals, presenting two interconnected populations of neurons producing orexigenic NPY/AgRP (neuropeptide Y; agouti related peptide) and anorexigenic POMC/CART (pro-opiomelanocortin; cocaine and amphetamine regulated transcript) neuropeptides. We aimed to shed more light on the response and sensitivity in the production of these neuropeptides to face nutritional changes, particularly food deprivation, and on the signals that regulate them. Male Wistar rats were fasted for 0, 4, 8 and 24h and refed for 3h after 8h fasting. mRNA levels of gastric and adipose tissue (retroperitoneal, mesenteric and inguinal) leptin, and of hypothalamic NPY, AgRP, POMC, CART, leptin receptor, SOCS3 (suppressor of cytokine signaling 3) and insulin receptor were analyzed. Gastric and circulating leptin, and circulating insulin, glucose and ghrelin were also determined. The only neuropeptide mRNAs that responded (increasing) to the short-term periods of fasting used were those of NPY (transiently) and AgRP, and these changes were accompanied by an increase in leptin receptor mRNA levels and by a decrease in adipose and gastric leptin expression and in the circulating levels of leptin, insulin and glucose, but without changes in circulating ghrelin. The elevation in AgRP and leptin receptor mRNA levels and the drop in circulating leptin were not reverted with refeeding. It is suggested that the induction of expression of the orexigenic molecules in NPY/AgRP neurons is an early event upon fasting, related with changes in leptin, insulin and glucose levels, but with the role of leptin signaling in particular. 2009 S. Karger AG, Basel.
Pegylated Leptin Antagonist Is a Potent Orexigenic Agent: Preparation and Mechanism of Activity
Elinav, Eran; Niv-Spector, Leonora; Katz, Meirav; Price, Tulin O.; Ali, Mohammed; Yacobovitz, Michal; Solomon, Gili; Reicher, Shay; Lynch, Jessica L.; Halpern, Zamir; Banks, William A.; Gertler, Arieh
2009-01-01
Leptin, a pleiotropic adipokine, is a central regulator of appetite and weight and a key immunomodulatory protein. Although inborn leptin deficiency causes weight gain, it is unclear whether induced leptin deficiency in adult wild-type animals would be orexigenic. Previous work with a potent competitive leptin antagonist did not induce a true metabolic state of leptin deficiency in mice because of a short circulating half-life. In this study, we increased the half-life of the leptin antagonist by pegylation, which resulted in significantly increased bioavailability and retaining of antagonistic activity. Mice administered the pegylated antagonist showed a rapid and dramatic increase in food intake with weight gain. Resulting fat was confined to the mesenteric region with no accumulation in the liver. Serum cholesterol, triglyceride, and hepatic aminotransferases remained unaffected. Weight changes were reversible on cessation of leptin antagonist treatment. The mechanism of severe central leptin deficiency was found to be primarily caused by blockade of transport of circulating leptin across the blood-brain barrier with antagonisms at the arcuate nucleus playing a more minor role. Altogether we introduce a novel compound that induces central and peripheral leptin deficiency. This compound should be useful in exploring the involvement of leptin in metabolic and immune processes and could serve as a therapeutic for the treatment of cachexia. PMID:19342450
Direct and Indirect Effects of Leptin on Adipocyte Metabolism
Harris, Ruth B.S.
2013-01-01
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. PMID:23685313
Sinha, M K; Caro, J F
1998-01-01
Hyperleptinemia is an essential feature of human obesity. Total body fat mass > % body fat > BMI are the best predictors of circulating leptin levels. Although ob gene is differentially expressed in different fat compartments, apart from total body fat, upper or lower body adiposity or visceral fat does not influence basal leptin levels. Similarly, age, basal glucose levels, and ethnicity do not influence circulating leptin levels. Only in insulin-sensitive individuals do basal levels of insulin and leptin correlate positively even after factoring in body fat. Diabetes does not influence leptin secretion in both lean and obese subjects per se. Independent of adiposity, leptin levels are higher in women than in men. This sexual dimorphism is also present in adolescent children. In eating disorders anorexia nervosa and bulimea nervosa, leptin levels are not upregulated but simply reflect BMI and probably body fat. In spite of strong correlation between body fat and leptin levels, there is great heterogeneity in leptin levels at any given index of body fat. About 5% of obese populations can be regarded as "relatively" leptin deficient which could benefit from leptin therapy. Leptin has dual regulation in human physiology. During the periods of weight maintenance, when energy intake and energy output are equal, leptin levels reflect total bodyfat mass. However, in conditions of negative (weight-loss programs) and positive (weight-gain programs) energy balances, the changes in leptin levels function as a sensor of energy imbalance. This latter phenomenon is best illustrated by short-term fasting and overfeeding experiments. Within 24 h of fasting leptin levels decline to approximately 30% of initial basal values. Massive overfeeding over a 12-h period increases leptin levels by approximately 50% of initial basal values. Meal ingestion does not acutely regulate serum leptin levels. A few studies have shown a modest increase in leptin secretion at supraphysiological insulin concentrations 4-6 h following insulin infusion. Under in vitro conditions, insulin stimulates leptin production only after four days in primary cultures of human adipocytes, which is apparently due to its trophic effects and an increased fat-cell size. Similar to other hormones, leptin secretion shows circadian rhythm and oscillatory pattern. The nocturnal rise of leptin secretion is entrained to mealtime probably due to cumulative hyperinsulinemia of the entire day. Like other growth factors and cytokines, leptin binding proteins including soluble leptin receptor are present in human serum. In lean subjects, the majority of leptin circulates in the bound form whereas in obese subjects, the majority of leptin is present in the free form. When free-leptin levels are compared between lean and obese subjects, even more pronounced hyperleptinemia in obesity is observed than that reported by measuring total leptin levels. During short-term fasting, free-leptin levels in lean subjects decrease in much greater proportion than those in obese subjects. In lean subjects with a relatively small energy store and particularly during food deprivation, leptin circulating predominantly in the bound form could be the mechanism to restrict its availability to hypothalamic leptin receptors for inhibiting leptin's effect on food intake and/or energy metabolism. Unlike marked changes in serum leptin, CSF leptin is only modestly increased in obese subjects and the CSF leptin/serum leptin ratio decreases logarithmically with increasing BMI. If CSF leptin levels are any indication of brain interstitial fluid levels, then hypothalami of obese subjects are not exposed to abnormally elevated leptin concentrations. In the presence of normal leptin receptor (functional long form, i.e., OB-Rb) mRNA expression and in the absence of leptin receptor gene mutations, it is logical to assume defective leptin signaling and/or impaired affector system(s) are the likely causes of leptin resistance in
Shetty, Greeshma K; Matarese, Giuseppe; Magkos, Faidon; Moon, Hyun-Seuk; Liu, Xiaowen; Brennan, Aoife M; Mylvaganam, Geetha; Sykoutri, Despina; Depaoli, Alex M; Mantzoros, Christos S
2011-08-01
Short-term energy deprivation reduces leptin concentrations and alters the levels of circulating hormones of the hypothalamic-pituitary-peripheral axis in lean subjects. Whether the reduction in leptin concentration during long-term weight loss in obese individuals is linked to the same neuroendocrine changes seen in lean, leptin-sensitive subjects remains to be fully clarified. In this study, 24 overweight and obese adults (16 women and eight men; body mass index (BMI): 27.5-38.0 kg/m(2)) were prescribed a hypocaloric diet (-500 kcal/day) and were randomized to receive recombinant methionyl leptin (n=18, metreleptin, 10 mg/day self-injected s.c.) or placebo (n=6, same volume and time as metreleptin) for 6 months. Metreleptin administration did not affect weight loss beyond that induced by hypocaloric diet alone (P for interaction=0.341) but increased the serum concentrations of total leptin by six- to eight-fold (P<0.001) and led to the generation of anti-leptin antibodies. Despite free leptin concentration (P for interaction=0.041) increasing from 9±1 ng/ml at baseline to 43±15 and 36±12 ng/ml at 3 and 6 months, respectively, changes in circulating hormones of the thyroid and IGF axes at 3 and 6 months were not significantly different in the placebo- and metreleptin-treated groups. Leptin does not likely mediate changes in neuroendocrine function in response to weight loss induced by a mild hypocaloric diet in overweight and obese subjects.
Ingelsson, Erik; Larson, Martin G; Yin, Xiaoyan; Wang, Thomas J; Meigs, James B; Lipinska, Izabella; Benjamin, Emelia J; Keaney, John F; Vasan, Ramachandran S
2008-08-01
The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown. The objective of the study was to study the cross-sectional relations of these adipokines to cardiometabolic risk factors in a community-based sample. We measured circulating ghrelin, leptin, and sOB-R in 362 participants (mean age 45 yr; 54% women) of the Framingham Third Generation Cohort. Body mass index, waist circumference (WC), blood pressure, lipid measures, fasting glucose, smoking, and metabolic syndrome (MetS) were measured. Ghrelin and leptin concentrations were significantly higher in women (P < 0.0001). In multivariable models, ghrelin was inversely associated with age and systolic blood pressure, and leptin was positively related to body mass index and WC. sOB-R was positively associated with age, total cholesterol, and fasting glucose and inversely with WC and high-density lipoprotein cholesterol. Ghrelin and sOB-R concentrations were significantly lower with number of MetS components (P for trend = 0.022 and < 0.0001, respectively), whereas leptin concentrations were higher (P for trend = 0.0001). Relating all adipokines to MetS conjointly, higher ghrelin and leptin concentrations were associated with decreased and increased odds of MetS (odds ratio 0.55, P < 0.0001; odds ratio 4.44, P = 0.0002, per 1 sd increase of respective log adipokine). In our community-based sample, we observed a sexual dimorphism in circulating ghrelin and leptin concentrations. Ghrelin, leptin, and sOB-R were associated with number of MetS components cross-sectionally, consistent with the hypothesis that these adipokines may have a central role in cardiometabolic risk.
Schroeter, Marco R; Stein, Susanne; Heida, Nana-Maria; Leifheit-Nestler, Maren; Cheng, I-Fen; Gogiraju, Rajinikanth; Christiansen, Hans; Maier, Lars S; Shah, Ajay M; Hasenfuss, Gerd; Konstantinides, Stavros; Schäfer, Katrin
2012-01-01
Bone marrow (BM) progenitors participate in new vessel formation and endothelial repair. The leptin receptor (ObR) is expressed on hematopoietic cells; however, the effects of leptin on BM progenitor cells and their angiogenic potential are unknown. In the present study, we show that the short-term administration of leptin (over five consecutive days) into wild-type mice increased the number of circulating, BM-derived sca-1(+), flk-1(+) vascular progenitors, 95 ± 1.7% of which also expressed ObR. Ex vivo stimulation of BM cells with leptin enhanced the expression of NADPH oxidase isoform 2 (NOX2), and the leptin-induced increase in reactive oxygen species production, matrix metalloproteinase-9 (MMP9) expression and circulating soluble KitL levels was absent in mice lacking NOX2. Furthermore, intraperitoneal injections of leptin improved perfusion and increased the number of BM-derived, CD31-positive endothelial cells in ischaemic hindlimbs after femoral artery ligation. The effects of leptin on the mobilization of sca-1(+), flk-1(+) cells and neovascularization were abolished in mice transplanted with BM from ObR-deficient and in NOX2(-/-) mice. Our findings suggest that the angiogenic effects of leptin involve sca-1(+), flk-1(+) vascular progenitor cells mobilized from the BM in response to ObR-mediated activation of NOX2, increased MMP9 expression, and sKitL release.
Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women
Rizk, Nasser M.; Sharif, Elham
2015-01-01
Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R) circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17–25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml) and free leptin index (FLI) increased significantly while sOB-R (ng/ml) significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels) of 45.67 (41.98–48.04) and decreased sOB-R in ng/ml 11.47 (7.59–16.44) compared to lean PCOS 16.97 (10.60–45.55) for leptin and 16.62 (11.61–17.96) for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI) is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin. PMID:26180527
Leptin does not influence surfactant synthesis in fetal sheep and mice lungs
Sato, Atsuyasu; Schehr, Angelica
2011-01-01
In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122–124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment. PMID:21216976
Banerjee, A; Meenakumari, K J; Krishna, A
2010-08-01
An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.
Direct and indirect effects of leptin on adipocyte metabolism.
Harris, Ruth B S
2014-03-01
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.
Independent Circadian and Sleep/Wake Regulation of Adipokines and Glucose in Humans
Shea, Steven A.; Hilton, Michael F.; Orlova, Christine; Ayers, R. Timothy; Mantzoros, Christos S.
2010-01-01
Leptin and adiponectin play important physiological roles in regulating appetite, food intake, and energy balance and have pathophysiological roles in obesity and anorexia nervosa. To assess the relative contributions of day/night patterns in behaviors (sleep/wake cycle and food intake) and of the endogenous circadian pacemaker on observed day/night patterns of adipokines, in six healthy subjects we measured circulating leptin, soluble leptin receptor, adiponectin, glucose, and insulin levels throughout a constant routine protocol (38 h of wakefulness with constant posture, temperature, and dim light, as well as identical snacks every 2 h) and throughout sleep and fasting periods before and after the constant routine. There were significant endogenous circadian rhythms in leptin, glucose, and insulin, with peaks around the usual time of awakening. Sleep/fasting resulted in additional systematic decreases in leptin, glucose, and insulin, whereas wakefulness/food intake resulted in a systematic increase in leptin. Thus, the day/night pattern in leptin is likely caused by combined effects from the endogenous circadian pacemaker and day/night patterns in behaviors. Our data imply that alterations in the sleep/wake schedule would lead to an increased daily range in circulating leptin, with lowest leptin upon awakening, which, by influencing food intake and energy balance, could be implicated in the increased prevalence of obesity in the shift work population. PMID:15687326
Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.
Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen
2017-11-03
Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.
Kang, Eun Seok; Magkos, Faidon; Sienkiewicz, Elizabeth; Mantzoros, Christos S
2011-06-01
Animal and in vitro studies indicate that leptin alleviates starvation-induced reduction in circulating vaspin and stimulates the production of visfatin. We thus examined whether vaspin and visfatin are affected by short- and long-term energy deprivation and leptin administration in human subjects in vivo. We measured circulating levels of vaspin and visfatin i) before and after 72 h of starvation (leading to severe hypoleptinemia) with or without leptin administration in replacement doses in 13 normal-weight subjects, ii) before and after 72 h of starvation with leptin administration in pharmacological doses in 13 lean and obese subjects, iii) during chronic energy deficiency in eight women with hypothalamic amenorrhea on leptin replacement for 3 months, and iv) during chronic energy deficiency in 18 women with hypothalamic amenorrhea on leptin replacement or placebo for 3 months. Acute starvation decreased serum leptin to 21% of baseline values, (P=0.002) but had no significant effect on vaspin and visfatin concentrations (P>0.05). Nor did normalization of leptin levels affect the concentrations of these two adipokines (P>0.9). Leptin replacement in women with hypothalamic amenorrhea did not significantly alter vaspin and visfatin concentrations, whether relative to baseline or placebo administration (P>0.25). Pharmacological doses of leptin did not affect circulating vaspin and visfatin concentrations (P>0.9). Circulating vaspin and visfatin are not affected by acute or chronic energy deficiency leading to hypoleptinemia and are not regulated by leptin in human subjects, indicating that these adipocyte-secreted hormonal regulators of metabolism are independently regulated in humans.
Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.
Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F
2016-02-01
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
2018-01-01
Obesity-related sleep breathing disorders such as obstructive sleep apnea (OSA) and obesity hypoventilation syndrome (OHS) cause intermittent hypoxia (IH) during sleep, a powerful trigger of oxidative stress. Obesity also leads to dramatic increases in circulating levels of leptin, a hormone produced in adipose tissue. Leptin acts in the hypothalamus to suppress food intake and increase metabolic rate. However, obese individuals are resistant to metabolic effects of leptin. Leptin also activates the sympathetic nervous system without any evidence of resistance, possibly because these effects occur peripherally without a need to penetrate the blood-brain barrier. IH is a potent stimulator of leptin expression and release from adipose tissue. Hyperleptinemia and leptin resistance may upregulate generation of reactive oxygen species, increasing oxidative stress and promoting inflammation. The current review summarizes recent data on a possible link between leptin and oxidative stress in the pathogenesis of sleep breathing disorders. PMID:29675134
Moon, Hyun-Seuk; Matarese, Giuseppe; Brennan, Aoife M.; Chamberland, John P.; Liu, Xiaowen; Fiorenza, Christina G.; Mylvaganam, Geetha H.; Abanni, Luisa; Carbone, Fortunata; Williams, Catherine J.; De Paoli, Alex M.; Schneider, Benjamin E.; Mantzoros, Christos S.
2011-01-01
OBJECTIVE Metreleptin has been efficacious in improving metabolic control in patients with lipodystrophy, but its efficacy has not been tested in obese patients with type 2 diabetes. RESEARCH DESIGN AND METHODS We studied the role of leptin in regulating the endocrine adaptation to long-term caloric deprivation and weight loss in obese diabetic subjects over 16 weeks in the context of a double-blinded, placebo–controlled, randomized trial. We then performed detailed interventional and mechanistic signaling studies in humans in vivo, ex vivo, and in vitro. RESULTS In obese patients with diabetes, metreleptin administration for 16 weeks did not alter body weight or circulating inflammatory markers but reduced HbA1c marginally (8.01 ± 0.93–7.96 ± 1.12, P = 0.03). Total leptin, leptin-binding protein, and antileptin antibody levels increased, limiting free leptin availability and resulting in circulating free leptin levels of ∼50 ng/mL. Consistent with clinical observations, all metreleptin signaling pathways studied in human adipose tissue and peripheral blood mononuclear cells were saturable at ∼50 ng/mL, with no major differences in timing or magnitude of leptin-activated STAT3 phosphorylation in tissues from male versus female or obese versus lean humans in vivo, ex vivo, or in vitro. We also observed for the first time that endoplasmic reticulum (ER) stress in human primary adipocytes inhibits leptin signaling. CONCLUSIONS In obese patients with diabetes, metreleptin administration did not alter body weight or circulating inflammatory markers but reduced HbA1c marginally. ER stress and the saturable nature of leptin signaling pathways play a key role in the development of leptin tolerance in obese patients with diabetes. PMID:21617185
Martin, Seth S.; Qasim, Atif; Reilly, Muredach P.
2015-01-01
Nonstructured Abstract Leptin is an adipocyte-derived hormone and cytokine that regulates energy balance through a wide range of functions, including several important to cardiovascular health. Increased circulating leptin, a marker of leptin resistance, is common in obesity and independently associated with insulin resistance and cardiovascular disease (CVD) in humans. Mechanisms of leptin resistance include genetic mutation, leptin self regulation, limited tissue access and cellular or circulating molecular regulation. Evidence suggests that central leptin resistance causes obesity and that obesity-induced leptin resistance injures numerous peripheral tissues, including liver, pancreas, platelets, vasculature, and myocardium. This metabolic- and inflammatory-mediated injury may result from either resistance to leptin’s action in selective tissues, or excess leptin action from adiposity associated hyperleptinemia. In this sense, the term “leptin resistance” encompasses a complex pathophysiological phenomenon. The leptin axis has functional interactions with elements of metabolism, such as insulin, and inflammation, including mediators of innate immunity such as interleukin-6. Leptin is even purported to physically interact with C-reactive protein (CRP), resulting in leptin resistance, which is particularly intriguing given CRP’s well-studied relationship to CVD. Given that plasma levels of leptin and inflammatory markers are correlated and also predict cardiovascular risk, it is conceivable that part of this risk may be mediated through leptin-resistance related insulin resistance, chronic inflammation, type II diabetes, hypertension, atherothrombosis and myocardial injury. Leptin resistance and its interactions with metabolic and inflammatory factors, therefore, represent potential novel diagnostic and therapeutic targets in obesity-related cardiovascular disease. PMID:18926322
Effects of Experimental Sleep Restriction on Caloric Intake and Activity Energy Expenditure
Calvin, Andrew D.; Carter, Rickey E.; Adachi, Taro; G. Macedo, Paula; Albuquerque, Felipe N.; van der Walt, Christelle; Bukartyk, Jan; Davison, Diane E.; Levine, James A.
2013-01-01
Background: Epidemiologic studies link short sleep duration to obesity and weight gain. Insufficient sleep appears to alter circulating levels of the hormones leptin and ghrelin, which may promote appetite, although the effects of sleep restriction on caloric intake and energy expenditure are unclear. We sought to determine the effect of 8 days/8 nights of sleep restriction on caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Methods: We conducted a randomized study of usual sleep vs a sleep restriction of two-thirds of normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcomes were caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Results: Caloric intake in the sleep-restricted group increased by +559 kcal/d (SD, 706 kcal/d, P = .006) and decreased in the control group by −118 kcal/d (SD, 386 kcal/d, P = .51) for a net change of +677 kcal/d (95% CI, 148-1,206 kcal/d; P = .014). Sleep restriction was not associated with changes in activity energy expenditure (P = .62). No change was seen in levels of leptin (P = .27) or ghrelin (P = .21). Conclusions: Sleep restriction was associated with an increase in caloric consumption with no change in activity energy expenditure or leptin and ghrelin concentrations. Increased caloric intake without any accompanying increase in energy expenditure may contribute to obesity in people who are exposed to long-term sleep restriction. Trial Registration: ClinicalTrials.gov; No.: NCT01334788; URL: www.clinicaltrials.gov PMID:23392199
Wang, X; Qiao, Y; Yang, L; Song, S; Han, Y; Tian, Y; Ding, M; Jin, H; Shao, F; Liu, A
2017-11-01
Leptin levels are increased in patients with systemic lupus erythematosus (SLE) but little is known on how this correlates with several disease characteristics including the frequency of regulatory T cells (Tregs). Here we compared serum leptin levels with frequency of circulating Tregs in 47 lupus patients vs. 25 healthy matched controls. Correlations with lupus disease activity were also analyzed, as well as Treg proliferation potential. It was found that leptin was remarkably increased in SLE patients as compared to controls, particularly in SLE patients with moderate and severe active SLE, and the increase correlated with disease activity. Importantly, increased leptin in lupus patients inversely correlated with the frequency of Tregs but not in controls, and leptin neutralization resulted in the expansion of Tregs ex vivo. Thus, hyperleptinemia in lupus patients correlates directly with disease activity and inversely with Treg frequency. The finding that leptin inhibition expands Tregs in SLE suggests possible inhibition of this molecule for an enhanced Treg function in the disease.
White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.
2009-01-01
Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730
Lee, Y H; Bae, S-C
2016-12-01
This study aimed to evaluate the relationship between the circulating serum leptin level and rheumatoid arthritis (RA) and to establish a correlation between serum leptin levels and RA activity. We searched the PUBMED, EMBASE, and Cochrane databases. A meta-analysis was performed, comparing the serum/plasma leptin levels in patients with RA and healthy controls. Correlation coefficients between serum leptin level and either disease activity score 28 (DAS28) or C‑reactive protein (CRP) in RA patients were also examined. Thirteen studies with a total of 648 RA patients and 426 controls were included in this meta-analysis. Circulating leptin level was significantly higher in the RA group than in the control group (SMD = 1.056, 95 % CI = 0.647-1.465, p = 4.2 × 10 -7 ). In addition, stratification by ethnicity showed a significantly elevated leptin level in the RA group in Caucasian, Turkish, and Arab populations (SMD = 0.813, 95 % CI = 0.137-1.490, p = 0.018, SMD = 0.981, 95 % CI = 0.307-1.655, p = 0.004, and SMD = 1.469, 95 % CI = 0.443-2.495, p = 0.005 respectively). A meta-analysis of correlation coefficients showed a small but significantly positive correlation between the circulating leptin level and either DAS28 (correlation coefficient = 0.275, 95 % CI = 0.076-0.452, p = 0.007) or CRP (correlation coefficient = 0.274, 95 % CI = 0.068-0.458, p = 0.010). Our meta-analysis demonstrated that the circulating leptin level is significantly higher in patients with RA and that a small but significantly positive correlation exists between leptin levels and RA activity.
Leptin does not induce an inflammatory response in the murine placenta.
Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J
2014-06-01
Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta. © Georg Thieme Verlag KG Stuttgart · New York.
Modeling the impact of growth and leptin deficits on the neuronal regulation of blood pressure.
Steinbrekera, Baiba; Roghair, Robert
2016-11-01
The risk of hypertension is increased by intrauterine growth restriction (IUGR) and preterm birth. In the search for modifiable etiologies for this life-threatening cardiovascular morbidity, a number of pathways have been investigated, including excessive glucocorticoid exposure, nutritional deficiency and aberration in sex hormone levels. As a neurotrophic hormone that is intimately involved in the cardiovascular regulation and whose levels are influenced by glucocorticoids, nutritional status and sex hormones, leptin has emerged as a putative etiologic and thus a therapeutic agent. As a product of maternal and late fetal adipocytes and the placenta, circulating leptin typically surges late in gestation and declines after delivery until the infant consumes sufficient leptin-containing breast milk or accrues sufficient leptin-secreting adipose tissue to reestablish the circulating levels. The leptin deficiency seen in IUGR infants is a multifactorial manifestation of placental insufficiency, exaggerated glucocorticoid exposure and fetal adipose deficit. The preterm infant suffers from the same cascade of events, including separation from the placenta, antenatal steroid exposure and persistently underdeveloped adipose depots. Preterm infants remain leptin deficient beyond term gestation, rendering them susceptible to neurodevelopmental impairment and subsequent cardiovascular dysregulation. This pathologic pathway is efficiently modeled by placing neonatal mice into atypically large litters, thereby recapitulating the perinatal growth restriction-adult hypertension phenotype. In this model, neonatal leptin supplementation restores the physiologic leptin surge, attenuates the leptin-triggered sympathetic activation in adulthood and prevents leptin- or stress-evoked hypertension. Further pathway interrogation and clinical translation are needed to fully test the therapeutic potential of perinatal leptin supplementation. © 2016 Society for Endocrinology.
Modeling the Impact of Growth and Leptin Deficits on the Neuronal Regulation of Blood Pressure
Steinbrekera, Baiba; Roghair, Robert
2016-01-01
The risk of hypertension is increased by intrauterine growth restriction (IUGR) and preterm birth. In the search for modifiable etiologies for this life-threatening cardiovascular morbidity, a number of pathways have been investigated, including excessive glucocorticoid exposure, nutritional deficiency, and aberration in sex hormone levels. As a neurotrophic hormone intimately involved in cardiovascular regulation whose levels are influenced by glucocorticoids, nutritional status and sex hormones, leptin has emerged as a putative etiologic and thus therapeutic agent. As a product of maternal and late fetal adipocytes as well as the placenta, circulating leptin typically surges late in gestation and declines following delivery until the infant consumes sufficient leptin-containing breast milk or accrues sufficient leptin-secreting adipose tissue to reestablish circulating levels. The leptin deficiency seen in IUGR infants is a multifactorial manifestation of placental insufficiency, exaggerated glucocorticoid exposure and fetal adipose deficit. The preterm infant suffers from the same cascade of events, including separation from the placenta, antenatal steroid exposure and persistently underdeveloped adipose depots. Preterm infants remain leptin deficient beyond term gestation, rendering them susceptible to neurodevelopmental impairment and subsequent cardiovascular dysregulation. This pathologic pathway is efficiently modeled by placing neonatal mice into atypically large litters, thereby recapitulating the perinatal growth restriction-adult hypertension phenotype. In this model, neonatal leptin supplementation restores the physiologic leptin surge, attenuates leptin-triggered sympathetic activation in adulthood and prevents leptin- or stress-evoked hypertension. Further pathway interrogation and clinical translation are needed to fully test the therapeutic potential of perinatal leptin supplementation. PMID:27613336
Plasma leptin concentrations are highly correlated to emotional states throughout the day
Licinio, J; Negrao, A B; Wong, M-L
2014-01-01
Previous work has shown that leptin appears to regulate the plasma levels of hormones such as adrenocorticotropic hormone (ACTH) and cortisol in humans and that it has antidepressant effects in animals. It is unknown whether fluctuations in circulating leptin levels are correlated to changes in human emotions. This study was conducted to determine whether minute-to-minute fluctuations in the plasma concentrations of human leptin were associated with psychological variables. Leptin was sampled every 7 min throughout the day in 10 healthy subjects (five men and five women) studied in a clinical research center, and visual analog scales were applied every hour. We found highly significant correlations between fluctuations in plasma leptin concentrations and three psychological variables: sadness, carbohydrate craving and social withdrawal. We showed that during the course of the day increases in leptin levels are associated with decreased search for starchy foods, decreased feelings of sadness and increased social withdrawal. Our findings support the hypothesis that during the course of the day as leptin levels increase individuals subjectively feel happier (less sad) and have less inclination to interact socially. Conversely, when leptin levels decrease, we show increases in sadness and social cooperation, which might facilitate the search for food. We suggest that increased human leptin levels may promote positive feelings and that decreased leptin levels might modulate inner states that motivate and facilitate the search for nutrients. PMID:25350298
Abu-Farha, Mohamed; Behbehani, Kazem; Elkum, Naser
2014-04-09
Cardiovascular diseases (CVD) are a leading cause of death worldwide including the Middle East. This is caused in part by the dysregulation of adipose tissue leading to increased production of pro-inflammatory adipokines and reduction in cardio-protective adipokines such as adiponectin. Ethnicity has been recognized as a major factor in the association between CVD risk factors and the different circulating adipokines. In this study, for the first time, the relationship between traditional cardiovascular risk factors, Metabolic Syndrome (MetS) and circulating level of adipokines in Arab ethnicity was investigated. We conducted a population-based cross-sectional survey on 379 adult Arab participants living in Kuwait. Traditional cardiovascular risk factors such as blood pressure (BP), low density lipoprotein (LDL) and triglyceride (TG) were measured. Plasma levels of circulating Leptin, Plasminogen Activator Inhibitor (PAI-1) visfatin, adiponectin, resistin and adipsin were assessed using the multiplexing immunobead-based assay. Circulating levels of High sensitivity C-Reactive Protein (hsCRP), Leptin, PAI-1 and adiponectin were significantly higher in Arab women than men (p < 0.0001). In multi-variate analysis, the homeostasis model assessment-insulin resistance (HOMA-IR) and body mass index (BMI) showed strong association with most of the biomarkers (p < 0.05). HsCRP showed significant association with all risk factors (p < 0.05). Leptin, PAI-1 and adipsin showed significant positive correlation with BMI, unlike adiponectin which showed inverse correlation (p < 0.05). Subjects in the highest tertile of leptin, PAI-1 and hsCRP had higher odds of having Metabolic Syndrome (MetS) (odd ratio [OR] = 3.02, 95% confidence interval [CI] = 1.47-6.19) and (OR = 2.52, 95% CI = 1.45-4.35), (OR = 4.26, 95% CI = 2.39-7.59) respectively. On the other hand subjects with highest tertile of adiponectin had lower odds of having MetS (OR = 0.22, 95% CI = 0.12-0.40). Leptin, PAI-1 and hsCRP showed significant positive association with increased MetS components (P-trend <0.05), while adiponectin was negatively associated with increased MetS components (P-trend <0.0001). Our results show positive association between hsCRP, leptin, PAI-1 with increased MetS components and increase the odds of having MetS. Adiponectin on the other hand showed inverse correlation with MetS components and associated with reduction in MetS. Overall, our data highlights the significant clinical value these markers have in MetS especially hsCRP which can be used as good marker of low grade inflammation in Arabs.
Argente-Arizón, Pilar; Castro-González, David; Díaz, Francisca; Fernández-Gómez, María J.; Sánchez-Garrido, Miguel A.; Tena-Sempere, Manuel; Argente, Jesús; Chowen, Julie A.
2018-01-01
Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition) or 12 pups (controls) per dam. Leptin was administered sc (3 µg/g body weight) at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH) beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but with no change in testosterone levels. In conclusion, the advancement in pubertal onset in males with neonatal overnutrition does not appear to be related to overt modifications in the central response to exogenous leptin during the peripubertal period. PMID:29706935
Argente-Arizón, Pilar; Castro-González, David; Díaz, Francisca; Fernández-Gómez, María J; Sánchez-Garrido, Miguel A; Tena-Sempere, Manuel; Argente, Jesús; Chowen, Julie A
2018-01-01
Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition) or 12 pups (controls) per dam. Leptin was administered sc (3 µg/g body weight) at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH) beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but with no change in testosterone levels. In conclusion, the advancement in pubertal onset in males with neonatal overnutrition does not appear to be related to overt modifications in the central response to exogenous leptin during the peripubertal period.
Lemieux, Andrine; Nakajima, Motohiro; Hatsukami, Dorothy K; Allen, Sharon; al'Absi, Mustafa
2015-09-01
Leptin has been linked to tobacco craving and withdrawal-related symptoms. Very few studies have examined leptin prospectively in both male and female nonsmokers and smokers. We examine leptin concentrations prospectively in both male and female nonsmokers and smokers to assess the associations of leptin with psychological symptoms and smoking relapse during ad libitum smoking, the first 48 h post quit, and 4 weeks post-cessation. Self-report psychological, anthropomorphic, and biological measures (cotinine, carbon monoxide, and plasma leptin) were collected before and after 48 h of smoking abstinence. Smokers were stratified at 28 days post quit as abstinent or relapsed if they had smoked daily for seven consecutive days at any point in the 28 days. Leptin concentration (square root transformed ng/ml) increased over the 48-h abstinence, but only in female abstainers. In contrast, leptin was very stable across time for nonsmokers, relapsers, and males. Cox regression supported that increased leptin was associated with decreased risk of relapse. Leptin was correlated negatively with withdrawal symptoms for abstainers only. Females produce more leptin than males and this level increases from ad libitum smoking to 48-h post quit. The current analysis indicates that a leptin increase early in cessation predicts abstinence. The increase in women, but not men, in response to abstinence provides further evidence of important gender differences. The negative correlation between leptin and withdrawal symptoms indicates a possible protective effect of leptin. Further research is ongoing to elucidate the psychological and biological determinants of this effect.
Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.
Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida
2018-01-01
Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.
Xie, Xue-Feng; Huang, Xiao-Hui; Shen, Ai-Zong; Li, Jun; Sun, Ye-Huan
2018-05-01
Leptin, synthesised by adipocytes, has been identified as a hormone that can influence inflammatory activity. Several studies have investigated leptin levels in patients with multiple sclerosis (MS), but the results are not consistent. This study aims to derive a more precise evaluation on the relationship between circulating leptin levels and MS. A comprehensive literature searched up to July 2017 was conducted to evaluate the association of circulating leptin levels and MS. The random-effect model was applied to calculate pooled standardised mean difference (SMD) and its 95% CI. Circulating leptin levels of patients with MS and healthy controls. Of 2155 studies identified, 33 met eligibility criteria and 9 studies with 645 patients with MS and 586 controls were finally included in the meta-analysis. Meta-analysis revealed that, compared with the healthy control group, the MS group had significantly higher plasma/serum leptin levels, with the SMD of 0.70% and 95% CI (0.24 to 1.15). Subgroup analyses suggested that the leptin levels of patients with MS were associated with region, age, study sample size, measurement type, gender and blood sample type. Overall, our study suggests that patients with MS have a significantly higher leptin level than in healthy controls. Further mechanism studies and longitudinal large cohort studies are still needed to further reveal the role of leptin in the pathogenesis of MS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Modan-Moses, D; Ehrlich, S; Kanety, H; Dagan, O; Pariente, C; Esrahi, N; Lotan, D; Vishne, T; Barzilay, Z; Paret, G
2001-12-01
Leptin may be involved in the acute stress response, regulating inflammatory parameters of major importance after cardiopulmonary bypass (CPB) surgery. Critically ill patients demonstrated significant increases in leptin levels in response to stress-related cytokines (tumor necrosis factor, interleukin [IL]-1) and abolishment of the circadian rhythm of leptin secretion. We characterized the pattern of leptin secretion in the acute postoperative period in children undergoing cardiac surgery and compared the changes in leptin levels with concomitantly occurring changes in cortisol levels, IL-8, and clinical parameters. Investigative study. University-affiliated tertiary care hospital. Twenty-nine consecutive patients, aged 6 days to 15 yrs, operated upon for the correction of congenital heart defects were studied. Surgery in 20 patients (group 1) involved conventional CPB techniques, and 9 (group 2) underwent closed-heart surgery. The time courses of leptin, cortisol, and IL-8 levels were determined. Serial blood samples were collected preoperatively, on termination of CPB, and at six time points postoperatively. Plasma was recovered immediately, aliquoted, and frozen at -70 degrees C until use. The leptin levels in group 1 decreased during CPB to 51% of baseline (p <.001), then gradually increased, reaching 120% of baseline levels at 12-18 hrs postoperatively (p <.001), returning to baseline levels at 24 hrs (p <.01). In patients undergoing closed-heart surgery (group 2), leptin levels displayed a pattern resembling the first group: they decreased during surgery to 71% of baseline levels (p =.002) and showed a tendency to return to baseline thereafter. All group 1 patients' cortisol levels increased significantly during the first hour of surgery, then decreased, returning to baseline levels at 18-24 hrs postoperatively. There was a significant negative correlation between leptin and cortisol levels (r = -2.8, p <.01). In group 2, cortisol levels increased during and after surgery, peaking 4 hrs postoperatively and decreasing thereafter. IL-8 levels determined in 15 group 1 patients increased significantly during CPB, peaked at the end of surgery, and then decreased but remained slightly elevated even at 48 hrs postoperatively. There was a significant correlation between cortisol and IL-8 levels (r = 2.55, p <.05). Children with leukocytosis, tachycardia, and hypotension had lower leptin levels and less variation over time as opposed to those with an uncomplicated course. CPB is associated with acute changes in circulating leptin levels. These changes parallel those in cortisol, demonstrating an inverse relationship between leptin and cortisol. Further studies of the prognostic and therapeutic roles of leptin after CPB should be investigated.
Banerjee, A; Udin, S; Krishna, A
2011-02-01
Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P < 0.05) and with the changes in body fat mass (r = 0.88; P < 0.05) in C. sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P < 0.05) was also found in this species. This in vivo finding suggests that melatonin together with insulin may enhance leptin synthesis by increasing adipose tissue accumulation. The in vitro study showed that melatonin interacts synergistically with insulin in stimulating leptin synthesis by adipose tissue in C. sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Farr, Olivia M.; Tsoukas, Michael A.; Triantafyllou, Georgios; Dincer, Fadime; Filippaios, Andreas; Ko, Byung-Joon; Mantzoros, Christos S.
2016-01-01
Background GLP-1 agonists, including liraglutide, have emerged as effective therapies for type 2 diabetes (DM) and obesity. Here, we attempted to delineate how liraglutide, at doses approved for DM, may impact circulating hormones influencing energy homeostasis in diabetics. Basic Procedures Using a randomized, placebo-controlled, double-blind, cross-over trial of 20 patients with type 2 diabetes, we examined the effects of liraglutide as compared to placebo on fasting levels of circulating hormones important to energy homeostasis, including leptin, ghrelin, PYY, and GIP. After 17 days (0.6 mg for 7 days, 1.2 mg for 7 days and 1.8 mg for 3 days) of treatment, we also studied changes in fMRI responses to food cues. Main Findings By design, to avoid any confounding by weight changes, subjects were studied for 17 days, i.e. before body weight changed. Participants on liraglutide had significantly increased GLP-1 levels (p<0.001), decreased percent change in leptin levels (p<0.01) and increased GIP levels (p<0.03) in comparison to placebo treated subjects. Whole brain regressions of functional activity in response to food cues reveal that increased GIP levels were associated with deactivation of the attention- and reward-related insula. Decreases in leptin levels were associated with activations in the reward-related midbrain, precuneus, and dorsolateral prefrontal cortex (DLPFC), and sensorimotor-related motor cortex and with deactivations in the attention-related parietal cortex and the cognitive control-related thalamus and pre-SMA. Principal Conclusions We demonstrate herein short-term changes to circulating levels of GIP and leptin in response to GLP-1 agonist liraglutide therapy. These findings suggest that liraglutide may alter the circulating levels of hormones important in energy homeostasis that, in turn, influence CNS perception of food cues. This could possibly lead to compensatory changes in energy homeostasis that would over time limit the efficacy of liraglutide to decrease body weight. These novel findings, which, pointing to the potential advantages of combination therapies, may have therapeutic implications, will need to be confirmed by larger and longer-term trials. PMID:27282865
In vivo evidence for unidentified leptin-induced circulating factors that control white fat mass.
Harris, Ruth B S
2015-12-15
Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse. Fat from leptin receptor deficient db/db mice or wild-type mice was placed subcutaneously in db/db mice. After 12 wk, cell size distribution in the transplant was the same as in endogenous fat of the recipient. Thus, wild-type fat cells, which express leptin receptors, were enlarged in a hyperleptinemic environment, indicating that leptin does not directly control adipocyte size. By contrast, db/db or wild-type fat transplanted into wild-type mice decreased in size, suggesting that a functional leptin system in the recipient is required for body fat mass to be controlled. In the final experiment, wild-type fat was transplanted into a db/db mouse parabiosed to either another db/db mouse to an ob/ob mouse or in control pairs in which both parabionts were ob/ob mice. Transplants increased in size in db/db-db/db pairs, decreased in db/db-ob/ob pairs and did not change in ob/ob-ob/ob pairs. We propose that leptin from db/db parabionts activated leptin receptors in their ob/ob partners. This, in turn, stimulated release of unidentified circulating factors, which travelled back to the db/db partner and acted on the transplant to reduce fat cell size. Copyright © 2015 the American Physiological Society.
Leptin expression and leptin receptor gene polymorphisms in growth hormone deficiency patients.
Su, Pen-Hua; Chen, Jia-Yuh; Yu, Ju-Shan; Chen, Suh-Jen; Yang, Shun-Fa
2011-04-01
Growth hormone deficiency (GHD) patients have lower weight, height, bone age, insulin-like growth factor 1 (IGF-1) levels, GH levels, fat metabolism and skeletal growth. The association of leptin with GHD characteristics and the effect of gene variants of leptin on GHD are unknown. Our aim was to examine the association of circulating leptin levels and common genetic variants in leptin (LEP) and leptin receptor (LEPR) genes with anthropometric measures, circulating hormone concentrations and GHD. A case control study of 125 GHD cases and 159 control subjects were characterized for bone age, body mass index (BMI), height, weight, leptin, IGF-1, GH and their genotype at the leptin promoter G-2548A, and LEPR variants, K109R and Q223R, at Chung Shan Medical University Hospital. Leptin levels were significantly associated with lower bone age, weight and BMI in GHD patients. Leptin levels were also significantly associated with reduced IGF-1 levels in girls but not boys in both groups. The frequency of LEPR223 [A/G or A/A] genotype was significantly higher than the LEPR223 G/G genotype in the GHD group. The LEPR223 [A/G or A/A] genotype was significantly associated with increased weight and BMI in the control group, but not in the GHD group. In conclusion, the GHD group carried a significantly higher frequency of the LEPR [G/A or A/A] genotype and of the A allele (LEPR223R). The LEPR223R polymorphism affected weight and BMI in control, but not in GHD patients, suggesting that the effect of LEPR223 [A/G or A/A] genotype was counteracted by other factor(s) in GHD patients.
Cui, Jian-Guo; Tang, Gang-Bing; Wang, De-Hua
2011-07-01
Both pregnancy and lactation are associated with hyperphagia, and circulating leptin levels are elevated during pregnancy but decreased during lactation in Brandt's voles, Lasiopodomys brandtii. Previous findings suggest that impaired leptin sensitivity contributes to hyperphagia during pregnancy. The present study aimed to examine whether the decreased circulating leptin level and/or hypothalamic leptin sensitivity contributed to the hyperphagia during lactation in Brandt's voles. The serum leptin level and mRNA expression of the long form of the leptin receptor (Ob-Rb), suppressor-of-cytokine-signalling-3 (SOCS-3), neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus were examined on dioestrous, day 5, day 17 of lactation and day 27 (1 week after weaning) in Brandt's voles. Compared with controls, hypothalamic Ob-Rb and SOCS-3 mRNA expression was not significantly changed during lactation. The serum leptin level was significantly lower in lactating females than in the non-reproductive group. Hypothalamic NPY and AgRP mRNA expression significantly increased whereas POMC mRNA expression was significantly decreased during lactation compared with controls. However, there were no significant changes in hypothalamic CART mRNA expression. Food intake was positively correlated with NPY and AgRP mRNA expression but negatively correlated with POMC mRNA expression during lactation. These data suggest that hyperphagia during lactation was associated with low leptin levels, but not impaired leptin sensitivity, and that the hypothalamic neuropeptides NPY, AgRP and POMC are involved in mediating the role of leptin in food intake regulation in lactating Brandt's voles.
Jeong, Kyeong-Hoon; Sakihara, Satoru; Widmaier, Eric P; Majzoub, Joseph A
2004-07-01
Leptin has been postulated to comprise part of an adipostat, whereby during states of excessive energy storage, elevated levels of the hormone prevent further weight gain by inhibiting appetite. A physiological role for leptin in this regard remains unclear because the presence of excessive food, and therefore the need to restrain overeating under natural conditions, is doubtful. We have previously shown that CRH-deficient (Crh(-/-)) mice have glucocorticoid insufficiency and lack the fasting-induced increase in glucocorticoid, a hormone important in stimulating leptin synthesis and secretion. We hypothesized that these mice might have low circulating leptin. Indeed, Crh(-/-) mice exhibited no diurnal variation of leptin, whereas normal littermates showed a clear rhythm, and their leptin levels were lower than their counterparts. A continuous peripheral CRH infusion to Crh(-/-) mice not only restored corticosterone levels, but it also increased leptin expression to normal. Surprisingly, 36 h of fasting elevated leptin levels in Crh(-/-) mice, rather than falling as in normal mice. This abnormal leptin change during fasting in Crh(-/-) mice was corrected by corticosterone replacement. Furthermore, Crh(-/-) mice lost less body weight during 24 h of fasting and ate less food during refeeding than normal littermates. Taken together, we conclude that glucocorticoid insufficiency in Crh(-/-) mice results in impaired leptin production as well as an abnormal increase in leptin during fasting, and propose that the fast-induced physiological reduction in leptin may play an important role to stimulate food intake during the recovery from fasting.
2014-01-01
Background Cardiovascular diseases (CVD) are a leading cause of death worldwide including the Middle East. This is caused in part by the dysregulation of adipose tissue leading to increased production of pro-inflammatory adipokines and reduction in cardio-protective adipokines such as adiponectin. Ethnicity has been recognized as a major factor in the association between CVD risk factors and the different circulating adipokines. In this study, for the first time, the relationship between traditional cardiovascular risk factors, Metabolic Syndrome (MetS) and circulating level of adipokines in Arab ethnicity was investigated. Methods We conducted a population-based cross-sectional survey on 379 adult Arab participants living in Kuwait. Traditional cardiovascular risk factors such as blood pressure (BP), low density lipoprotein (LDL) and triglyceride (TG) were measured. Plasma levels of circulating Leptin, Plasminogen Activator Inhibitor (PAI-1) visfatin, adiponectin, resistin and adipsin were assessed using the multiplexing immunobead-based assay. Results Circulating levels of High sensitivity C-Reactive Protein (hsCRP), Leptin, PAI-1 and adiponectin were significantly higher in Arab women than men (p < 0.0001). In multi-variate analysis, the homeostasis model assessment-insulin resistance (HOMA-IR) and body mass index (BMI) showed strong association with most of the biomarkers (p < 0.05). HsCRP showed significant association with all risk factors (p < 0.05). Leptin, PAI-1 and adipsin showed significant positive correlation with BMI, unlike adiponectin which showed inverse correlation (p < 0.05). Subjects in the highest tertile of leptin, PAI-1 and hsCRP had higher odds of having Metabolic Syndrome (MetS) (odd ratio [OR] = 3.02, 95% confidence interval [CI] = 1.47 – 6.19) and (OR = 2.52, 95% CI = 1.45 – 4.35), (OR = 4.26, 95% CI = 2.39 – 7.59) respectively. On the other hand subjects with highest tertile of adiponectin had lower odds of having MetS (OR = 0.22, 95% CI = 0.12 – 0.40). Leptin, PAI-1 and hsCRP showed significant positive association with increased MetS components (P-trend <0.05), while adiponectin was negatively associated with increased MetS components (P-trend <0.0001). Conclusion Our results show positive association between hsCRP, leptin, PAI-1 with increased MetS components and increase the odds of having MetS. Adiponectin on the other hand showed inverse correlation with MetS components and associated with reduction in MetS. Overall, our data highlights the significant clinical value these markers have in MetS especially hsCRP which can be used as good marker of low grade inflammation in Arabs. PMID:24716628
Narrative review: the role of leptin in human physiology: emerging clinical applications.
Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S
2010-01-19
Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.
Site-specific circadian expression of leptin and its receptor in human adipose tissue
USDA-ARS?s Scientific Manuscript database
Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...
Kokolski, Marie; Ebling, Francis J; Henstock, James R; Anderson, Susan I
2017-01-01
The adipokine leptin regulates energy balance, appetite, and reproductive maturation. Leptin also acts on bone growth and remodeling, but both osteogenic and anti-osteogenic effects have been reported depending on experimental conditions. Siberian hamsters ( Phodopus sungorus ) have natural variation in circulating leptin concentrations, where serum leptin is significantly decreased during the short day (SD)-induced winter state. In summer long day (LD) photoperiods, appetite and body adiposity increase with associated central leptin insensitivity. This natural change in leptin secretion was exploited to investigate leptin's effect on bone growth. Hamsters were injected with calcium-chelating fluorescent dyes to measure bone mineral apposition rate (MAR). Measurements were initially obtained from 5-week and 6-month-old animals maintained in low leptin (SD) or high leptin (LD) states. A further study investigated effects of chronic administration of recombinant mouse leptin to hamsters housed in SD and LD conditions; growth plate thickness and bone density were also assessed. As expected, a reduction in body mass was seen in hamsters exposed to SD, confirming the phenotype change in all studies. Serum leptin concentrations were significantly reduced in SD animals in all studies. MAR was reproducibly and significantly increased in the femurs of SD animals in all studies. Vitamin D and growth plate thickness were significantly increased in SD animals at 6 months. No effect on bone density was observed in any study. Taken together these data suggest that bone growth is associated with the low leptin, winter, lean state. In leptin-treated animals, there was a significant interaction effect of leptin and photoperiod. In comparison to their vehicle counterparts, SD animals had decreased and LD animals had increased MAR, which was not apparent prior to leptin administration. In conclusion, increased MAR was associated with low serum leptin levels in early life and sustained over 6 months, implying that leptin has a negative effect on bone growth in this model. The unexpected finding that MAR increased after peripheral leptin administration in LD suggests that leptin exerts different effects on bone growth dependent on initial leptin status. This adds further weight to the hypothesis that leptin-treated LD animals display central leptin resistance.
Kokolski, Marie; Ebling, Francis J.; Henstock, James R.; Anderson, Susan I.
2017-01-01
The adipokine leptin regulates energy balance, appetite, and reproductive maturation. Leptin also acts on bone growth and remodeling, but both osteogenic and anti-osteogenic effects have been reported depending on experimental conditions. Siberian hamsters (Phodopus sungorus) have natural variation in circulating leptin concentrations, where serum leptin is significantly decreased during the short day (SD)-induced winter state. In summer long day (LD) photoperiods, appetite and body adiposity increase with associated central leptin insensitivity. This natural change in leptin secretion was exploited to investigate leptin’s effect on bone growth. Hamsters were injected with calcium-chelating fluorescent dyes to measure bone mineral apposition rate (MAR). Measurements were initially obtained from 5-week and 6-month-old animals maintained in low leptin (SD) or high leptin (LD) states. A further study investigated effects of chronic administration of recombinant mouse leptin to hamsters housed in SD and LD conditions; growth plate thickness and bone density were also assessed. As expected, a reduction in body mass was seen in hamsters exposed to SD, confirming the phenotype change in all studies. Serum leptin concentrations were significantly reduced in SD animals in all studies. MAR was reproducibly and significantly increased in the femurs of SD animals in all studies. Vitamin D and growth plate thickness were significantly increased in SD animals at 6 months. No effect on bone density was observed in any study. Taken together these data suggest that bone growth is associated with the low leptin, winter, lean state. In leptin-treated animals, there was a significant interaction effect of leptin and photoperiod. In comparison to their vehicle counterparts, SD animals had decreased and LD animals had increased MAR, which was not apparent prior to leptin administration. In conclusion, increased MAR was associated with low serum leptin levels in early life and sustained over 6 months, implying that leptin has a negative effect on bone growth in this model. The unexpected finding that MAR increased after peripheral leptin administration in LD suggests that leptin exerts different effects on bone growth dependent on initial leptin status. This adds further weight to the hypothesis that leptin-treated LD animals display central leptin resistance. PMID:29312147
Association Between Coffee Consumption and Circulating Levels of Adiponectin and Leptin.
Lee, Chang Beom; Yu, Sung Hoon; Kim, Na Yeon; Kim, Seon Mee; Kim, Sung Rae; Oh, Seung Joon; Jee, Sun Ha; Lee, Jung Eun
2017-11-01
Coffee has been proposed to have benefits for chronic diseases; however, the relevant mechanism remains to be elucidated. We conducted a cross-sectional study and evaluated the levels of adiponectin and leptin in relation to coffee consumption. We included a total of 4406 individuals (men = 2587 and women = 1819) for adiponectin analysis and 2922 individuals (men = 1731 and women = 1191) for leptin analysis. Participants answered number of cups of coffee per week and types of coffee they consumed and their serum levels of adiponectin and leptin were measured using an enzyme-linked immunosorbent assay. We found that increasing coffee consumption was associated with increased levels of adiponectin among women; geometric means of adiponectin were 8.0 (95% CI: 7.2-8.9 μg/mL) among women who regularly consumed 15 or greater cups/week, but 7.5 (95% CI: 6.8-8.4 μg/mL) among women who did not consume coffee (P for trend = .009). Leptin levels were inversely associated with coffee consumption among both men and women (P for trend = .04 for men and 0.04 for women); geometric means of 15 or greater cups of coffee per week were 2.6 (95% CI: 2.4-2.8 ng/mL) among men and 5.1 (95% CI: 4.5-5.8 ng/mL) among women, but for noncoffee drinkers, geometric means were 3.0 (95% CI: 2.7-3.3 ng/mL) for men and 5.8 (95% CI: 5.1-6.6 ng/mL) for women. Coffee consumption was associated with higher circulating levels of adiponectin and lower circulating levels of leptin. Our study may suggest that improvement in adipocyte function contributes to the beneficial metabolic effects of coffee consumption.
Jitprasertwong, Paiboon; Jaedicke, Katrin M; Nile, Christopher J; Preshaw, Philip M; Taylor, John J
2014-02-01
Circulating levels of leptin are elevated in type-2 diabetes mellitus (T2DM) and leptin plays a role in immune responses. Elevated circulating IL-18 levels are associated with clinical complications of T2DM. IL-18 regulates cytokine secretion and the function of a number of immune cells including T-cells, neutrophils and macrophages and as such has a key role in immunity and inflammation. Pro-inflammatory monocytes exhibiting elevated cytokine secretion are closely associated with inflammation in T2DM, however, little is known about the role of leptin in modifying monocyte IL-18 secretion. We therefore aimed to investigate the effect of leptin on IL-18 secretion by monocytes. We report herein that leptin increases IL-18 secretion in THP-1 and primary human monocytes but has no effect on IL-18mRNA. Leptin and LPS signalling in monocytes occurs by overlapping but distinct pathways. Thus, in contrast to a strong stimulation by LPS, leptin has no effect on IL-1βmRNA levels or IL-1β secretion. In addition, LPS stimulates the secretion of IL-6 but leptin did not whereas both treatments up regulate IL-8 secretion from the same cells. Although leptin (and LPS) has a synergistic effect with exogenous ATP on IL-18 secretion in both THP-1 and primary monocytes, experiments involving ATP assays and pharmacological inhibition of ATP signalling failed to provide any evidence that endogenous ATP secreted by leptin-stimulated monocytes was responsible for enhancement of monocyte IL-18 secretion by leptin. Analysis of the action of caspase-1 revealed that leptin up regulates caspase-1 activity and the effect of leptin on IL-18 release is prevented by caspase-1 inhibitor (Ac-YVAD-cmk). These data suggest that leptin activates IL-18 processing rather than IL-18 transcription. In conclusion, leptin enhances IL-18 secretion via modulation of the caspase-1 inflammasome function and acts synergistically with ATP in this regard. This process may contribute to aberrant immune responses in T2DM and other conditions of hyperleptinemia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chan, Jean L; Moschos, Stergios J; Bullen, John; Heist, Kathleen; Li, Xian; Kim, Young-Bum; Kahn, Barbara B; Mantzoros, Christos S
2005-03-01
Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 +/- 1.4 yr (mean +/- se) due to chronic energy deficit increased soluble TNFalpha receptor levels, indicating activation of the TNFalpha system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.
Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S
2017-01-01
Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.
Foo, Joo-Pin; Aronis, Konstantinos N; Chamberland, John P; Paruthi, Jason; Moon, Hyun-Seuk; Mantzoros, Christos S
2013-04-01
Fibroblast growth factor (FGF)-21 is an endocrine factor with potent metabolic effects. Its day-night patterns of secretion and/or its physiological response to energy deprivation and relationship to free fatty acids (FFAs) and/or leptin remain to be fully elucidated. We aim to elucidate day-night pattern of FGF-21 levels and its relationship to FFA, to assess whether energy deprivation alters its circulating patterns, and to examine whether leptin may mediate these changes. Six healthy lean females were studied for 72 h in a cross-over interventional study under three different conditions: on isocaloric diet and in a fasting state with administration of either placebo or metreleptin in physiological replacement doses. Blood samples were obtained hourly from 8:00 a.m. on day 4 until 8:00 a.m. on day 5. FGF-21 exhibited day-night variation pattern during the isocaloric fed state. Fasting significantly increased FGF-21 levels (P < 0.01) via a leptin-independent pathway. Day-night variation pattern in the fed state was lost on fasting. Leptin replacement in the hypoleptinemic state restored approximate entropy of FGF-21 time series but did not alter circulating levels. FGF-21 levels were closely cross-correlated with FFA levels in all three states. A day-night variation in the levels of FGF-21 exists in young lean females in the fed state. Energy deprivation increases FGF-21 levels via a leptin-independent pathway. The interaction between FGF-21 and starvation-induced lipolysis, as indicated by its close cross-correlations with FFA in both fed state and energy deprivation, needs to be studied further.
von Jeinsen, Beatrice; Short, Meghan I; Xanthakis, Vanessa; Carneiro, Herman; Cheng, Susan; Mitchell, Gary F; Vasan, Ramachandran S
2018-06-21
Adipokines mediate cardiometabolic risk associated with obesity but their role in the pathogenesis of obesity-associated heart failure remains uncertain. We investigated the associations between circulating adipokine concentrations and echocardiographic measures in a community-based sample. We evaluated 3514 Framingham Heart Study participants (mean age 40 years, 53.8% women) who underwent routine echocardiography and had select circulating adipokines measured, ie, leptin, soluble leptin receptor, fatty acid-binding protein 4, retinol-binding protein 4, fetuin-A, and adiponectin. We used multivariable linear regression, adjusting for known correlates (including weight), to relate adipokine concentrations (independent variables) to the following echocardiographic measures (dependent variables): left ventricular mass index, left atrial diameter in end systole, fractional shortening, and E/e'. In multivariable-adjusted analysis, left ventricular mass index was inversely related to circulating leptin and fatty acid-binding protein 4 concentrations but positively related to retinol-binding protein 4 and leptin receptor levels ( P ≤0.002 for all). Left atrial end-systolic dimension was inversely related to leptin but positively related to retinol-binding protein 4 concentrations ( P ≤0.0001). E/e' was inversely related to leptin receptor levels ( P =0.0002). We observed effect modification by body weight for select associations (leptin receptor and fatty acid-binding protein 4 with left ventricular mass index, and leptin with left atrial diameter in end systole; P <0.05 for interactions). Fractional shortening was not associated with any of the adipokines. No echocardiographic trait was associated with fetuin-A or adiponectin concentrations. In our cross-sectional study of a large, young to middle-aged, relatively healthy community-based sample, key indices of subclinical cardiac remodeling were associated with higher or lower circulating concentrations of prohypertrophic and antihypertrophic adipokines in a context-specific manner. These observations may offer insights into the pathogenesis of the cardiomyopathy of obesity. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Fuglei, E; Mustonen, A-M; Nieminen, P
2004-03-01
The arctic fox (Alopex lagopus) is a medium-sized predator of the high Arctic experiencing extreme seasonal fluctuations in food availability, photoperiod and temperature. In this study, the plasma leptin, ghrelin and growth hormone (GH) concentrations of male arctic foxes were determined during a food deprivation period of 13 days and the subsequent recovery in November and May. Leptin, ghrelin and GH were present in arctic fox plasma in amounts comparable to other carnivores. The plasma leptin concentrations did not react to food deprivation unlike in humans and rodents. However, the leptin levels increased during re-feeding as an indicator of increasing energy reserves. The relatively high ghrelin-leptin ratio, decrease in the plasma ghrelin concentration, an increase in the circulating GH concentrations and the observed negative correlation between plasma ghrelin and free fatty acid levels during fasting suggest that these hormones take part in the weight-regulation and energy metabolism of this species by increasing fat utilisation during food deprivation. The results strengthen the hypothesis that the actions of these weight-regulatory hormones are species-specific and depend on seasonality and the life history of the animals.
Leptin-based Adjuvants: An Innovative Approach to Improve Vaccine Response
White, Sarah J.; Taylor, Matthew J.; Hurt, Ryan; Jensen, Michael D.; Poland, Gregory A.
2013-01-01
Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥ 30 kg/m2) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin’s role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. PMID:23370154
Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J
2014-04-15
Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.
Body fat mass, leptin and puberty.
Kiess, W; Müller, G; Galler, A; Reich, A; Deutscher, J; Klammt, J; Kratzsch, J
2000-07-01
Leptin, the ob gene product, provides a molecular basis for the lipostatic theory of the regulation of energy balance. Leptin circulates as a monomeric 16 kDa protein in rodent and human plasma and is also bound to leptin binding proteins that may form large high molecular weight complexes. Initial models of leptin action included leptin-deficient ob/ob mice and leptin-insensitive db/db mice. Peripheral or central administration of leptin reduced body weight, adiposity, and food intake in ob/ob mice but not in db/db mice. In ob/ob mice leptin treatment restored fertility. Leptin interacts with many messenger molecules in the brain. For example, leptin suppresses neuropeptide Y (NPY) expression in the arcuate nucleus. Increased NPY activity has an inhibitory effect on the gonadotropin axis and represents a direct mechanism for inhibiting sexual maturation and reproductive function in conditions of food restriction and/or energy expenditure. By modulating the hypothalamo-pituitary-gonadal axis both directly and indirectly, leptin may thus serve as the signal from fat to the brain about the adequacy of fat stores for pubertal development and reproduction. Normal leptin secretion is necessary for normal reproductive function to proceed and leptin may be a signal allowing for the point of initiation of and progression toward puberty.
Folgueira, C; Sanchez-Rebordelo, E; Barja-Fernandez, S; Leis, R; Tovar, S; Casanueva, F F; Dieguez, C; Nogueiras, R; Seoane, L M
2016-03-01
Uroguanylin (UGN) is a 16 amino acid peptide produced mainly by intestinal epithelial cells. Nutrients intake increases circulating levels of prouroguanylin that is processed and converted to UGN to activate the guanylyl cyclase 2C receptor (GUCY2C). Given that the UGN-GUCY2C system has been proposed as a novel gut-brain endocrine axis regulating energy balance, the aim of the present study was to investigate the regulation of UGN protein levels in duodenum and circulating levels in lean and obese mice under different nutritional conditions and its potential interaction with leptin. Swiss, C57BL/6 wild-type and ob/ob male adult mice under different nutritional conditions were used: fed ad libitum standard diet (control); 48 h fasting (fasted); 48 h fasting followed by 24 h of feeding (refed); and fed high-fat diet (45 %) during 10 weeks. In addition, peripheral leptin administration was performed. Intestinal uroguanylin expression was studied by Western blot analysis; plasma levels were measured by ELISA. Food deprivation significantly reduced plasma UGN levels, which were correlated with the lower protein levels of UGN in duodenum. These effects were reverted after refeeding and leptin challenge. Consistently, in ob/ob mice UGN expression was decreased, whereas leptin treatment up-regulated UGN levels in duodenum in these genetically modified mice compared to WT. Diet-induced obese mice displayed increased UGN levels in intestine and plasma in comparison with lean mice. Our findings suggest that UGN levels are correlated with energy balance status and that the regulation of UGN by nutritional status is leptin-dependent.
Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis.
Gonzalez-Gay, M A; Garcia-Unzueta, M T; Berja, A; Gonzalez-Juanatey, C; Miranda-Filloy, J A; Vazquez-Rodriguez, T R; de Matias, J M; Martin, J; Dessein, P H; Llorca, J
2009-01-01
The adipocytokine leptin regulates weight centrally and participates in the regulation of the immune and inflammatory responses. Chronic systemic inflammation is of major importance in the development of atherosclerosis in rheumatoid arthritis (RA). In the present study we investigated whether inflammation, obesity or both of these characteristics are potential determinants of circulating leptin concentrations in a group of RA patients on periodical treatment with the TNF-alpha-blocker-infliximab due to severe disease. We also assessed whether the infusion of infliximab may alter circulating leptin concentrations in patients with severe RA. We investigated 33 patients with RA on periodical treatment with infliximab. Serum leptin levels were determined immediately prior to and after infliximab infusion. There was a positive correlation between body mass index of RA patients and baseline serum level of leptin (rho=0.665, p<0.001). Apart from a significant correlation with VCAM-1 (rho=0.349, p=0.04), no significant correlations between baseline leptin levels and the age at the time of the study or at the onset of the disease, disease duration, ESR and CRP levels, DAS28, lipids, insulin sensitivity, adhesion molecules, resistin, adiponectin, ghrelin or the cumulative prednisone dose at the time of the study were found. Leptin levels did not change upon infliximab infusion (p=0.48). In RA patients on TNF-alpha blocker treatment, circulating leptin levels are unrelated to disease activity but constitute a manifestation of adiposity. The beneficial effect of anti-TNF-alpha therapy on cardiovascular mortality in RA does not seem to be mediated by reduction in serum levels of leptin.
Leptin-based adjuvants: an innovative approach to improve vaccine response.
White, Sarah J; Taylor, Matthew J; Hurt, Ryan T; Jensen, Michael D; Poland, Gregory A
2013-03-25
Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥30 kg/m(2)) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin's role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Leptin Downregulates Aggrecan through the p38-ADAMST Pathway in Human Nucleus Pulposus Cells
Liang, Jinqian; Wu, William Ka Kei; Yu, Jun; Shen, Jianxiong
2014-01-01
The mechanistic basis of obesity-associated intervertebral disc degeneration (IDD) is unclear. Aberrant expression of aggrecan and its degrading enzymes ADAMTS-4 and ADAMTS-5 is implicated in the development of IDD. Here, we investigated the effect of leptin, a hormone with increased circulating levels in obesity, on the expression of aggrecan and ADAMTSs in primary human nucleus pulposus (NP) cells. Real-time PCR and Western blots showed that leptin increased the mRNA and protein expression of ADAMTS-4 and ADAMTS-5 and reduced the level of aggrecan in NP cells, accompanied by a prominent induction of p38 phosphorylation. Treatment of NP cells with SB203580 (a p38 inhibitor) abolished the regulation of aggrecan and ADAMTSs by leptin. Knockdown of ADAMTS-4 and ADAMTS-5 by siRNAs also attenuated the degradation of aggrecan in leptin-stimulated NP cells. To conclude, we demonstrated that leptin induces p38 to upregulate ADAMTSs and thereby promoting aggrecan degradation in human NP cells. These results provide a novel mechanistic insight into the molecular pathogenesis of obesity-associated IDD. PMID:25299465
Leptin downregulates aggrecan through the p38-ADAMST pathway in human nucleus pulposus cells.
Li, Zheng; Yu, Xin; Liang, Jinqian; Wu, William Ka Kei; Yu, Jun; Shen, Jianxiong
2014-01-01
The mechanistic basis of obesity-associated intervertebral disc degeneration (IDD) is unclear. Aberrant expression of aggrecan and its degrading enzymes ADAMTS-4 and ADAMTS-5 is implicated in the development of IDD. Here, we investigated the effect of leptin, a hormone with increased circulating levels in obesity, on the expression of aggrecan and ADAMTSs in primary human nucleus pulposus (NP) cells. Real-time PCR and Western blots showed that leptin increased the mRNA and protein expression of ADAMTS-4 and ADAMTS-5 and reduced the level of aggrecan in NP cells, accompanied by a prominent induction of p38 phosphorylation. Treatment of NP cells with SB203580 (a p38 inhibitor) abolished the regulation of aggrecan and ADAMTSs by leptin. Knockdown of ADAMTS-4 and ADAMTS-5 by siRNAs also attenuated the degradation of aggrecan in leptin-stimulated NP cells. To conclude, we demonstrated that leptin induces p38 to upregulate ADAMTSs and thereby promoting aggrecan degradation in human NP cells. These results provide a novel mechanistic insight into the molecular pathogenesis of obesity-associated IDD.
Prado, Wagner L; Balagopal, P Babu; Lofrano-Prado, Mara C; Oyama, Lila M; Tenório, Thiago Ricardo; Botero, João Paulo; Hill, James O
2014-11-01
Exercise is implicated in modifying subsequent energy intake (EI) through alterations in hunger and/or satiety hormones. Our aim was to examine the effects of aerobic exercise on hunger, satiety regulatory peptides, and EI in obese adolescents. Nine obese girls (age: 13-18 years old, BMI: 33.74 ± 4.04 kg/m2) participated in this randomized controlled crossover study. Each participant randomly underwent 2 experimental protocols: control (seated for 150 min) and exercise (exercised for 30 min on a treadmill performed at ventilatory threshold [VT] intensity and then remained seated for 120 min). Leptin, peptide YY(3-36) (PYY(3-36)), and subjective hunger were measured at baseline as well as 30 min and 150 min, followed by 24-hr EI measurement. Exercise session resulted in an acute increase in PYY(3-36) (p < .01) without changes in leptin and/or hunger scores. The control session increased hunger scores (p < .01) and decreased circulating leptin levels (p = .03). There was a strong effect size for carbohydrate intake (d = 2.14) and a modest effect size for protein intake (d = 0.61) after the exercise compared with the control session. Exercise performed at VT intensity in this study appears to provoke a state of transient anorexia in obese girls. These changes may be linked to an increase in circulating PYY3-36 and maintenance of leptin levels.
Circulating glucagon to ghrelin ratio as a determinant of insulin resistance in hyperthyroidism.
Ağbaht, Kemal; Erdogan, Murat Faik; Emral, Rifat; Baskal, Nilgun; Güllü, Sevim
2014-02-01
Due to stimulated overall metabolism, a state of nutritional inadequacy often ensues, during thyrotoxicosis. We aimed to investigate circulating levels of some major components of the system that regulates energy stores, glucose, and fat metabolism, during thyrotoxicosis compared to euthyroidism. Fasting serum ghrelin, leptin, adiponectin, insulin, glucagon, glucose, as well as body fat composition were analyzed during thyrotoxicosis in 40 hyperthyroid patients (50.5 ± 15.2 years old, 22 females, 31 with Graves disease, and 9 with toxic nodular goiter). The same measurements were repeated an average 3 months later, when all patients achieved euthyroidism. Compared to euthyroidism, in thyrotoxicosis, patients had lower ghrelin and fat mass; had comparable insulin, HOMA-IR, glucagon, and leptin levels; higher levels of circulating adiponectin. Fasting serum glucose tended to be higher during thyrotoxicosis. The unique correlation of HOMA-IR was with the-glucagon to ghrelin ratio-(r = 0.801, p < 0.001) in hyperthyrodism, and with glucagon itself in euthyroidism (r = -0.844, p < 0.001). Circulating levels of ghrelin are decreased; leptin, insulin, glucagon are unchanged; adiponectin are increased during hyperthyroidism. The fasting HOMA-IR tends to be higher, despite the decreased adiposity in hyperthyroidism. The-glucagon to ghrelin ratio-strongly correlates with fasting HOMA-IR in hyperthyroidism.
Examining the Causal Role of Leptin in Alzheimer Disease: A Mendelian Randomization Study.
Romo, Matthew L; Schooling, C Mary
2017-01-01
Observational evidence regarding the role of leptin in Alzheimer disease (AD) is conflicting. We sought to determine the causal role of circulating leptin and soluble plasma leptin receptor (sOB-R) levels in AD using a separate-sample Mendelian randomization study. Single nucleotide polymorphisms (SNPs) independently and solely predictive of log-transformed leptin (rs10487505 [LEP], rs780093 [GCKR], rs900400 [CCNL1], rs6071166 [SLC32A1], and rs6738627 [COBLL1]) and of sOB-R (rs1137101 [LEPR], rs2767485 [LEPR], and rs1751492 [LEPR]) levels (ng/mL) were obtained from 2 previously reported genome-wide association studies. We obtained associations of leptin and sOB-R levels with AD using inverse variance weighting with fixed effects by combining Wald estimates for each SNP. Sensitivity analyses included using weighted median and MR-Egger methods and repeating the analyses using only SNPs of genome-wide significance. Using inverse variance weighting, genetically predicted circulating leptin levels were not associated with AD, albeit with wide confidence intervals (CIs): odds ratio (OR) 0.99 per log-transformed ng/mL; 95% CI 0.55-1.78. Similarly, the association of sOB-R with AD was null using inverse variance weighting (OR 1.08 per log-transformed ng/mL; 95% CI 0.83-1.41). Results from our sensitivity analyses confirmed our findings. In this first Mendelian randomization study estimating the causal effect of leptin on AD, we did not find an effect of genetically predicted circulating leptin and sOB-R levels on AD. As such, this study suggests that leptin is unlikely to be a major contributor to AD, although the wide CIs preclude a definitive assessment. © 2017 S. Karger AG, Basel.
Long-term leptin fluctuations in female donkeys.
Čebulj-Kadunc, N; Škibin, A; Kosec, M
2015-11-01
The interest in donkeys is growing due to their integration in the systems of ecological farming, among other reasons. Due to limited reports on leptin concentrations in donkeys, the aim of the present study was to examine age-dependent and seasonal changes in the circulating leptin concentration in female donkeys (jennies) and thus contribute to knowledge about the physiological characteristics of this species. Prospective longitudinal study. The study was performed over a year (September 2008 to September 2009) on 20 yearling and young adult (pregnant, lactating or barren) jennies aged 1-5 years at the onset of the study; the animals were kept on pasture from May to September and stabled for the rest of the year. Blood samples were taken monthly and analysed for serum leptin concentrations by a commercial radioimmunoassay kit. Circulating leptin concentrations in studied jennies were lower than those reported for donkeys and horses. Despite the tendency for lower values in yearling vs. young adult jennies, the age range of the examined animals was insufficient to confirm any age-related leptin variations. Significant seasonal leptin fluctuations with peak levels in late spring and the lowest levels in autumn months, correlated with photoperiod, were detected in yearling, barren as well as pregnant jennies. Therefore, it was impossible to identify any effects of gestation or lactation on leptin concentrations of jennies. The results of this study cannot be used as evidence of a causal relationship between the photoperiod and seasonal circulating leptin fluctuations in donkeys, but could reflect changes induced by various external or internal factors enabling adaptations of grazing animals in variable submediterranean environments. © 2014 EVJ Ltd.
García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas
2011-01-01
Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257
Quiñones, Mar; Folgueira, Cintia; Sánchez-Rebordelo, Estrella; Al-Massadi, Omar
2015-01-01
Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5) that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO) rats and leptin-deficient (ob/ob) mice), as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA). Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.
Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.
Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E
2015-12-01
Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.
Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes.
Ceci, Roberta; Sabatini, Stefania; Duranti, Guglielmo; Savini, Isabella; Avigliano, Luciana; Rossi, Antonello
2007-09-01
The product of the obesity gene (ob), leptin, has a well-recognized role in regulating energy homeostasis. During the period of weight maintenance, circulating leptin concentration reflects total body fat mass. On the other hand, overnutrition is accompanied by progressive hyperleptinemia. In overnourished animals, the elevation in circulating fatty acids results in increased uptake and excessive deposition of lipids within muscle cells. Consequently, triglicerydes overload seems to strongly correlate to the impairment of insulin signaling in skeletal muscle, the primary target for insulin stimulated glucose disposal. High levels of leptin in the course of fat storage may protect non-adipose tissues from lipid accumulation. Here, we aim to evaluate in vitro the relationship between leptin treatment and expression of acyl-CoA oxidase (ACOX), a peroxisomal key enzyme involved in fatty acid catabolism. We also evaluate the adaptive response of cells to a putative oxidative insult, resulting from H(2)O(2) production. The effects of increasing levels of leptin, at different times, were assessed on mouse C2C12 myotubes by semiquantitative PCR. Activation pathway was investigated by using extracellular signal-regulated kinase (ERK) and cytosolic phospholipase A(2) (cPLA(2)) inhibitors. Cellular adaptive response to oxidative stress was evaluated by measuring glutathione concentration, oxidized/reduced glutathione ratio and the main antioxidant enzymatic activities. A 1.8-fold increase in ACOX mRNA expression was evident at 20 ng/ml leptin, a dose comparable to that found in hyperleptinemic subjects. The induction was dose-dependent, with an increase of 3-fold at 100 ng/ml; the ability of leptin to stimulate ACOX mRNA reached a maximum at 20 min and was lost in myotubes continuously exposed for more than 1 h. ACOX enzymatic activity followed mRNA changes: it was doubled after 1 h treatment and remained elevated for 24 h. ERK and cPLA(2) pathway is involved, since their inhibitors abrogated the ACOX mRNA induction. Myotubes counteract the resulting oxidative insult by catalase and glutathione peroxidase activation, thus removing H(2)O(2) at the expenses of the reduced glutahione pool. The present study shows that acute, but not chronic, leptin treatment of C2C12 myotubes induces ACOX expression. Peroxisomal fatty acid oxidation may work together with mitochondrial beta-oxidation to remove excessive lipids from non-adipose tissues, during early stages of overnutrition and before development of leptin resistance.
Reference values for serum leptin in healthy non-obese children and adolescents.
Lausten-Thomsen, Ulrik; Christiansen, Michael; Louise Hedley, Paula; Esmann Fonvig, Cilius; Stjernholm, Theresa; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian
2016-11-01
Adipokines are biologically active, low-molecular weight peptides, which play a major role in metabolic homeostasis in humans. Leptin has gained increasing attention in pediatrics as a biomarker for various metabolic pathologies. Yet, its usefulness is hampered by the relative lack of reference values from pediatric settings. Accordingly, this study aims to evaluate serum concentrations of leptin, soluble leptin receptor (sOB-R), and free leptin index (FLI) in healthy Danish schoolchildren aged 6-18 years and subsequently to establish reference intervals across sex and age groups. A total of 1193 healthy, non-obese Danish schoolchildren (730 girls, 463 boys) aged 6-18 years (median 11.9) were examined by trained medical staff. Serum leptin and sOB-R concentrations in venous fasting blood samples were quantitated by immunoassay. Percentile curves of leptin, sOB-R, and free leptin index were calculated using the General Additive Model for Location Scale and Shape (GAMLSS). Significant age and sex-dependent differences in circulating leptin levels were found. In boys, the median leptin concentration for all ages combined was 3.35 μg/L (95%-interval: 0.71-22.47) and in girls, it was 9.89 ng/L (95%-interval: 2.06-41.49). For SOB-R, no sex-specific difference was found, and the median sOB-R concentration was 8.24 μg/L (IQR: 3.58-23.74; range: < 1.56-744.15). We demonstrated an age-dependent correlation with both serum leptin concentration and free leptin index with a gradual and significant increase in girls throughout childhood and adolescence and a significantly higher leptin concentration and free leptin index bell-shaped peak in early adolescence in boys.
Joung, Kyoung Eun; Park, Kyung-Hee; Zaichenko, Lesya; Sahin-Efe, Ayse; Thakkar, Bindiya; Brinkoetter, Mary; Usher, Nicole; Warner, Dorothy; Davis, Cynthia R.; Crowell, Judith A.
2014-01-01
Context: Early-life adversity, defined as physical, emotional, or sexual abuse and neglect before 18 years of age, is associated with metabolic syndrome, obesity, and type 2 diabetes mellitus in adult life. However, the underlying mechanism is not fully understood, and whether adipomyokines are associated with early-life adversity independent of other factors such as body mass index, psychosocial risks, and health behaviors is not known. Objectives: The objective of the study was to evaluate the association between early-life adversity and circulating the levels of the adipomyokines such as leptin, adiponectin, and irisin and the inflammatory marker, C-reactive protein (CRP). Design/Subjects/Setting: This study was a cross-sectional study of 95 adults at a university-based research center. We collected venous blood from participants and analyzed serum for leptin, adiponectin, irisin, and CRP. Results: Circulating leptin, irisin, and CRP levels were significantly higher in the highest adversity tertile group compared with low and middle tertile groups (P < .001 for leptin, P = .01 for irisin, and P = .02 for CRP). Adiponectin levels were lower in the highest tertile group compared with the low and middle tertile groups (P = .03). After adjusting for demographic variables, physical activity, diet, current mental health, and body mass index, the associations between early-life adversity leptin, irisin, and did not change. However, adiponectin and CRP levels were no longer significantly related to early life adversity. Conclusion: Early-life adversity is directly associated with elevated circulating leptin and irisin, and indirectly associated with elevated CRP and decreased adiponectin. These findings suggest that these adipomyokines may play a role in the pathogenesis of metabolic abnormality in a population with significant early life adversity. PMID:24650014
Drosos, Ioannis; Chalikias, Georgios; Pavlaki, Maria; Kareli, Dimitra; Epitropou, Grigorios; Bougioukas, Georgios; Mikroulis, Dimitrios; Konstantinou, Fotios; Giatromanolaki, Alexandra; Ritis, Konstantinos; Münzel, Thomas; Tziakas, Dimitrios; Konstantinides, Stavros; Schäfer, Katrin
2016-11-01
The factors mediating the paracrine effects of perivascular adipose tissue (PVAT) in atherosclerosis are largely unknown. The adipokine leptin has been implicated in the increased cardiovascular risk in obesity and may locally promote neointima formation independently of circulating leptin levels. In patients with established coronary artery disease, we examined the expression of leptin as well as of its possible inducers in 'cardiac' PVAT surrounding the aortic root and coronary arteries (C-PVAT), and compared it to the PVAT surrounding the internal mammary artery (IMA-PVAT), a vessel resistant to atherosclerosis. Tissue specimens collected from male patients undergoing coronary artery bypass surgery were processed for real-time PCR, ELISA, in situ hybridization, and immunohistochemistry analysis. Leptin protein expression was elevated in C-PVAT compared to IMA-PVAT, independent of serum leptin levels. Compared to IMA-PVAT, C-PVAT exhibited more pronounced angiogenesis and inflammation, as indicated by significantly higher numbers of PECAM1-positive vessels and CD68-positive macrophages, and was characterized by a greater extent of fibrosis and hypoxia. Increased expression of hypoxia-inducible factor-1α and Fos-like antigen (FOSL)2, factors known to enhance leptin gene transcription, was observed in C-PVAT. As a proof of concept, exposure of human adipocytes to chemical hypoxia resulted in significantly increased FOSL2 and leptin mRNA levels. A higher degree of local tissue hypoxia and up-regulation of leptin expression in the perivascular adipose tissue, along with increased vascularization, inflammation, and fibrosis, may contribute to the increased atherosclerotic plaque burden in the coronary arteries compared to the IMA.
Schroeter, Marco R; Leifheit-Nestler, Maren; Hubert, Astrid; Schumann, Bettina; Glückermann, Roland; Eschholz, Norman; Krüger, Nenja; Lutz, Susanne; Hasenfuss, Gerd; Konstantinides, Stavros; Schäfer, Katrin
2013-08-01
Apolipoprotein E (apoE) may act as a vasculoprotective factor by promoting plasma lipid clearance and cholesterol efflux. Moreover, apoE accumulates at sites of vascular injury and modulates the effect of growth factors on smooth muscle cells (SMCs). Experimental data suggested that hypothalamic apoE expression is reduced in obesity and associated with leptin resistance. In this study, we examined the role of apoE in mediating the effects of leptin on vascular lesion formation. Leptin was administered to apoE knockout (apoE-/-) mice via osmotic pumps to increase its circulating levels. Morphometric analysis revealed that leptin did not alter neointima formation and failed to increase α-actin- or PCNA-immunopositive SMCs after vascular injury. Similar findings were obtained after analysis of atherosclerotic lesions. Comparison of apoE-/-, wild-type, or LDL receptor-/- mice and functional analyses in aortic SMCs from WT or apoE-/- mice or human arterial SMCs after treatment with small interfering (si)RNA or heparinase revealed that leptin requires the presence of apoE, expressed, secreted and bound to the cell surface, to fully activate leptin receptor signalling and to promote SMC proliferation and neointima formation. Mechanistically, leptin induced the phosphorylation and membrane translocation of caveolin (cav)-1, and apoE down-regulation or caveolae disruption inhibited the leptin-induced p47phox activation, ROS formation and SMC proliferation. Finally, leptin failed to increase neointima formation in mice lacking cav-1. Our findings suggest that apoE mediates the effects of leptin on vascular lesion formation by stabilizing cav-1-enriched cell membrane microdomains in SMCs, thus allowing NADPH oxidase assembly and ROS-mediated mitogenic signalling.
Anastasilakis, Athanasios D.; Polyzos, Stergios A.; Skouvaklidou, Elpida C.; Kynigopoulos, Georgios; Saridakis, Zacharias G.; Apostolou, Aggeliki; Triantafyllou, Georgios A.; Karagiozoglou-Lampoudi, Thomai; Mantzoros, Christos S.
2016-01-01
Purpose Follistatin may affect lean and fat mass and be implicated in metabolic diseases. We aimed to elucidate physiological predictors of circulating follistatin variation in healthy young humans. Procedures This was an observational, cross-sectional study with two additional prospective observational arms (circadian, seasonal sub-studies) and one prospective interventional arm (mixed meal sub-study). Healthy, young individuals of both sexes (n=122) were subjected to anthropometric and body composition measurements and their eating and exercise behavior profiles were assessed by validated questionnaires. Sub-groups were subjected to standardized meal ingestion (n=36), day-night rhythm (n=20) and seasonal variation (n=20) studies. Main outcome of the study were circulating follistatin levels. Results At baseline follistatin levels were correlated with creatinine (r=0.24; p=0.01), creatine phosphokinase (rs=0.22; p=0.02), and with lean body mass (rs=0.19; p=0.04) and were higher in males than females (p=0.004) after adjustment for leptin, which was its major predictor. Follistatin levels showed a circadian (p<0.001), but not a seasonal, variation, and were also affected by the phase of menstrual cycle in females (p=0.004). Follistatin levels were not affected by dietary or exercise habits but levels increased after a standardized meal ingestion (250 kcal) (p=0.002). Conclusions In healthy young individuals circulating follistatin levels are correlated with muscle mass. Follistatin levels are associated with circulating leptin levels and display a day-night rhythm and a menstrual cycle, but not a seasonal, variation. PMID:27621181
Anastasilakis, Athanasios D; Polyzos, Stergios A; Skouvaklidou, Elpida C; Kynigopoulos, Georgios; Saridakis, Zacharias G; Apostolou, Aggeliki; Triantafyllou, Georgios A; Karagiozoglou-Lampoudi, Thomai; Mantzoros, Christos S
2016-10-01
Follistatin may affect lean and fat mass and be implicated in metabolic diseases. We aimed to elucidate physiological predictors of circulating follistatin variation in healthy young humans. This was an observational, cross-sectional study with two additional prospective observational arms (circadian, seasonal sub-studies) and one prospective interventional arm (mixed meal sub-study). Healthy, young individuals of both sexes (n=122) were subjected to anthropometric and body composition measurements and their eating and exercise behavior profiles were assessed by validated questionnaires. Sub-groups were subjected to standardized meal ingestion (n=36), day-night rhythm (n=20) and seasonal variation (n=20) studies. Main outcome of the study were circulating follistatin levels. At baseline follistatin levels were correlated with creatinine (r=0.24; p=0.01), creatine phosphokinase (rs=0.22; p=0.02), and with lean body mass (rs=0.19; p=0.04) and were higher in males than females (p=0.004) after adjustment for leptin, which was its major predictor. Follistatin levels showed a circadian (p<0.001), but not a seasonal, variation, and were also affected by the phase of menstrual cycle in females (p=0.034). Follistatin levels were not affected by dietary or exercise habits but levels increased after a standardized meal ingestion (250kcal) (p=0.002). In healthy young individuals circulating follistatin levels are correlated with muscle mass. Follistatin levels are associated with circulating leptin levels and display a day-night rhythm and a menstrual cycle, but not a seasonal, variation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hypothyroidism Compromises Hypothalamic Leptin Signaling in Mice
Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A.; Visser, Theo J.; Darras, Veerle M.; Habenicht, Andreas J.
2013-01-01
The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism. PMID:23518925
Soliman, Ashraf T; Omar, Magdi; Assem, Hala M; Nasr, Ibrahim S; Rizk, Mohamed M; El Matary, Wael; El Alaily, Rania K
2002-03-01
Although obesity is a frequent feature of type 2 diabetes mellitus (DM), many patients with type 1 DM are prone to high body mass index (BMI). We measured serum leptin concentrations in a cohort of children (n = 55) with type 1 diabetes mellitus (DM), as well as their anthropometric parameters including BMI, skin fold thickness at multiple sites, and midarm circumference. Glycemic control was assessed by blood glucose (BG) monitoring before meals, and measurement of glycated hemoglobin (HbA1c) and insulin dose/kg/d was recorded. Dietary evaluation and assessment of caloric intake (kg/d) was performed by an expert dietitian. In the newly diagnosed children (n = 10) before initiation of insulin therapy, circulating leptin concentration was significantly lower (1.1 +/- 0.8 ng/dL) versus 5 days after insulin therapy (1.45 +/- 0.7 ng/dL). The decreased leptin level appears to be related to insulinopenia in these patients. In 45 children with type 1 DM on conventional therapy (2 doses of insulin mixture (NPH and regular) subcutaneous (SC) before breakfast and dinner for more than 2 years), serum leptin concentration was significantly higher (2.15 +/- 1 ng/dL) compared with age-matched normal children (1.3 +/- 1 ng/dL). Diabetic children were further divided into 2 groups according to their HbA1c level: group 1 with HbA1C less than 7.5% (less than 2 SD above the mean for normal population) (n = 29) and group 2 with HbA1c greater than 7.5%. (greater than 2 SD above the mean for normal population) (n = 16). Patients with a higher HbA1c level (group 2) had a higher leptin concentration (2.3 +/- 0.8 ng/dL), higher BMI (17.8 +/- 1.7), and were receiving higher insulin dose/kg (0.92 +/- 0.2 U/kg/d) compared with group 1 (lower HbA1c) (1.78 +/- 0.8 ng/dL, 16.7 +/- 1.5, and 0.59 +/- 0.2 U/kg/d, respectively). Group 2 patients had a higher incidence of late morning hypoglycemia (9/29) versus group 1 patients (2/16). Analysis of dietary intake showed that patients with a higher HbA1c (group 2) consumed more calories (73.5 +/- 10.5 kcal/kg/d) versus patients with lower HbA1c (64.2 +/- 8.7 kcal/kg/d). These findings pointed to the unphysiologic nature of injecting a mixture of insulin twice daily. To cover the relatively big lunch meal (40% to 50% of the total caloric intake in the Arab countries) and prevent afternoon hyperglycemia, there is a great tendency to increase NPH dose before breakfast. This, in turn, induces late-morning hypoglycemia and increases appetite and food intake at that time. Multiple regression analysis showed that circulating leptin concentrations (the dependent variable) were best correlated with the mean skinfold thickness (SFT), BMI, and caloric intake/kg/d (together they explained 65% of the variability in leptin concentrations). It appears that oversubstitution by insulin and increased food intake stimulate fat synthesis and subsequently BMI. Increased appetite and BMI contribute to increased leptin secretion and explains the higher leptin levels in undercontrolled diabetic children (higher circulating HbA1c concentrations) who were oversubstituted by insulin. Copyright 2002 by W.B. Saunders Company
Leptin and its role in lipid metabolism.
Hynes, G R; Jones, P J
2001-06-01
Since the discovery of leptin in 1994, a considerable amount of research has focused on leptin as a central regulator of body weight. In the animal model, research has demonstrated leptin action through hypothalamic centres altering both satiety and energy expenditure. In contrast to animal studies, it is unlikely that leptin functioning in the human system exerts such a profound role in body weight regulation. Human studies suggest that leptin levels are strongly correlated with both percentage fat mass and body mass index, in accordance with the proposed 'lipostatic theory'. Current research suggests the existence of a unique inter-relationship between dietary fat, leptin expression and leptin action within the peripheral system. More specifically, it has been demonstrated that polyunsaturated fatty acid (PUFA) intake influences adipose tissue expression of leptin, and of several lipogenic enzymes and transcription factors. In addition, leptin stimulates triglyceride depletion in white adipose tissue without increasing free fatty acid release, thus favouring fatty acids versus glucose as a fuel source. Recent studies suggest that the reduction in adipose hypertrophy observed with n-3 PUFA-containing fish oil feeding might involve a leptin-specific process. A large amount of evidence supports direct functioning of leptin in peripheral lipid metabolism in vivo and in vitro. It is possible that PUFAs will maintain an efficient level of circulating leptin, thus preventing leptin insensitivity and weight gain. There has been much recent progress in clinical leptin research, from energy expenditure to leptin analogue efficacy; the purpose of the present review is to summarize our current understanding of leptin functioning.
Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency.
Davies, Jeffrey S; Gevers, Evelien F; Stevenson, Amy E; Coschigano, Karen T; El-Kasti, Muna M; Bull, Melanie J; Elford, Carole; Evans, Bronwen A J; Kopchick, John J; Wells, Timothy
2007-05-01
This study describes the previously uncharacterized ontogeny and regulation of truncal adipose reserves in the profoundly GH-deficient dwarf (dw/dw) rat. We show that, despite normal proportionate food intake, dw/dw rats develop abdominal leanness and hypoleptinemia (circulating leptin halved in dw/dw males, P < 0.05) during puberty. This contrasts with the hyperleptinemia seen in moderately GH-deficient Tgr rats (circulating leptin doubled at 6 wk of age, P < 0.05) and in GH receptor-binding protein (GHR/BP)-null mice (circulating leptin doubled; P < 0.05). This lean/hypoleptinemic phenotype was not completely normalized by GH treatment, but dw/dw rats developed abdominal obesity in response to neonatal MSG treatment or maintenance on a high-fat diet. Unlike Tgr rats, dw/dw rats did not become obese with age; plasma leptin levels and fat pad weights became similar to those in wild-type rats. In contrast with truncal leanness, tibial marrow adiposity was normal in male and doubled in female dwarves (P < 0.01), this increase being attributable to increased adipocyte number (P < 0.01). Neonatal MSG treatment and high-fat feeding elevated marrow adiposity in dw/dw rats by inducing adipocyte enlargement (P < 0.05). These results demonstrate that, despite lipolytic influence of GH, severe GH deficiency in dw/dw rats is accompanied by a paradoxical leanness. This lean/hypoleptinemic phenotype is not solely attributable to reduced GH signaling and does not appear to result from a reduction in nutrient intake or the ability of dw/dw adipocytes to accumulate lipid. Disruption of preadipocyte differentiation or adipocyte proliferation in the dw/dw rat may lead to the development of this unusually lean/hypoleptinemic phenotype.
Manzanero, Silvia; Erion, Joanna R; Santro, Tomislav; Steyn, Frederik J; Chen, Chen; Arumugam, Thiruma V; Stranahan, Alexis M
2014-05-01
Intermittent fasting (IF) is neuroprotective across a range of insults, but the question of whether extending the interval between meals alters neurogenesis after ischemia remains unexplored. We therefore measured cell proliferation, cell death, and neurogenesis after transient middle cerebral artery occlusion (MCAO) or sham surgery (SHAM) in mice fed ad libitum (AL) or maintained on IF for 3 months. IF was associated with twofold reductions in circulating levels of the adipocyte cytokine leptin in intact mice, but also prevented further reductions in leptin after MCAO. IF/MCAO mice also exhibit infarct volumes that were less than half those of AL/MCAO mice. We observed a 30% increase in basal cell proliferation in the hippocampus and subventricular zone (SVZ) in IF/SHAM, relative to AL/SHAM mice. However, cell proliferation after MCAO was limited in IF mice, which showed twofold increases in cell proliferation relative to IF/SHAM, whereas AL/MCAO mice exhibit fivefold increases relative to AL/SHAM. Attenuation of stroke-induced neurogenesis was correlated with reductions in cell death, with AL/MCAO mice exhibiting twice the number of dying cells relative to IF/MCAO mice. These observations indicate that IF protects against neurological damage in ischemic stroke, with circulating leptin as one possible mediator.
Manzanero, Silvia; Erion, Joanna R; Santro, Tomislav; Steyn, Frederik J; Chen, Chen; Arumugam, Thiruma V; Stranahan, Alexis M
2014-01-01
Intermittent fasting (IF) is neuroprotective across a range of insults, but the question of whether extending the interval between meals alters neurogenesis after ischemia remains unexplored. We therefore measured cell proliferation, cell death, and neurogenesis after transient middle cerebral artery occlusion (MCAO) or sham surgery (SHAM) in mice fed ad libitum (AL) or maintained on IF for 3 months. IF was associated with twofold reductions in circulating levels of the adipocyte cytokine leptin in intact mice, but also prevented further reductions in leptin after MCAO. IF/MCAO mice also exhibit infarct volumes that were less than half those of AL/MCAO mice. We observed a 30% increase in basal cell proliferation in the hippocampus and subventricular zone (SVZ) in IF/SHAM, relative to AL/SHAM mice. However, cell proliferation after MCAO was limited in IF mice, which showed twofold increases in cell proliferation relative to IF/SHAM, whereas AL/MCAO mice exhibit fivefold increases relative to AL/SHAM. Attenuation of stroke-induced neurogenesis was correlated with reductions in cell death, with AL/MCAO mice exhibiting twice the number of dying cells relative to IF/MCAO mice. These observations indicate that IF protects against neurological damage in ischemic stroke, with circulating leptin as one possible mediator. PMID:24549184
Wendremaire, Maeva; Mourtialon, Pascal; Goirand, Françoise; Lirussi, Frédéric; Barrichon, Marina; Hadi, Tarik; Garrido, Carmen; Le Ray, Isabelle; Dumas, Monique; Sagot, Paul; Bardou, Marc
2013-02-01
Reorganization of myometrial extracellular matrix (ECM) is essential for the uterus to achieve powerful synchronous contractions during labor. Remodeling of the ECM has been implicated in membrane rupture and cervical ripening. Because maternal obesity is associated with both delivery disorders and elevated circulating leptin levels, this study aimed to assess the ability of leptin to interfere with lipopolysaccharide (LPS)-induced myometrial ECM remodeling. Myometrial biopsy samples were obtained from women undergoing cesarean delivery before labor onset. Myometrial explants were incubated for 48 h with LPS and leptin. LPS challenge was associated with a marked decrease in collagen content and in heat shock protein (HSP) 47 expression, reflecting a disruption in collagen synthesis and an increase in matrix metalloproteinase (MMP) 2 and MMP9 activity and in MMP2, MMP9, and MMP13 expression. Leptin prevented an LPS-induced decrease in myometrial collagen content in a concentration-dependent manner. This effect was associated with an increase in HSP47 expression and a decrease in MMP2 and MMP9 activity and expression. These results show that leptin prevents LPS-induced myometrial remodeling through collagen synthesis stimulation and inhibition of MMP2 and MMP9. Our study strengthens the hypothesis that leptin plays a role in the development of obesity-related delivery disorders.
Van den Berghe, G; Wouters, P; Carlsson, L; Baxter, R C; Bouillon, R; Bowers, C Y
1998-09-01
Prolonged critical illness is characterized by feeding-resistant wasting of protein, whereas reesterification, instead of oxidation of fatty acids, allows fat stores to accrue and associate with a low-activity status of the somatotropic and thyrotropic axis, which seems to be partly of hypothalamic origin. To further unravel this paradoxical metabolic condition, and in search of potential therapeutic strategies, we measured serum concentrations of leptin; studied the relationship with body mass index, insulin, cortisol, thyroid hormones, and somatomedins; and documented the effects of hypothalamic releasing factors, in particular, GH-secretagogues and TRH. Twenty adults, critically ill for several weeks and supported with normocaloric, continuously administered parenteral and/or enteral feeding, were studied for 45 h. They had been randomized to receive one of three combinations of peptide infusions, in random order: TRH (one day) and placebo (other day); TRH + GH-releasing peptide (GHRP)-2 and GHRP-2; TRH + GHRH + GHRP-2 and GHRH + GHRP-2. Peptide infusions were started after a 1-microgram/kg bolus at 0900 h and infused (1 microgram/kg.h) until 0600 h the next morning. Serum concentrations of leptin, insulin, cortisol, T4, T3, insulin-like growth factor (IGF)-I, IGF-binding protein-3 and the acid-labile subunit (ALS) were measured at 0900 h, 2100 h, and 0600 h on each of the 2 study days. Baseline leptin levels (mean +/- SEM: 12.4 +/- 2.1 micrograms/L) were independent of body mass index (25 +/- 1 kg/m2), insulin (18.6 +/- 2.9 microIU/mL), cortisol (504 +/- 43 mmol/L), and thyroid hormones (T4: 63 +/- 5 nmol/L, T3: 0.72 +/- 0.08 nmol/L) but correlated positively with circulating levels of IGF-I [86 +/- 6 micrograms/L, determination coefficient (R2) = 0.25] and ALS (7.2 +/- 0.6 mg/L, R2 = 0.32). Infusion of placebo or TRH had no effect on leptin. In contrast, GH-secretagogues elevated leptin levels within 12 h. Infusion of GHRP-2 alone induced a maximal leptin increase of +87% after 24 h, whereas GHRH + GHRP-2 elevated leptin by up to +157% after 24 h. The increase in leptin within 12 h was related (R2 = 0.58) to the substantial rise in insulin. After 45 h, and having reached a plateau, leptin was related to the increased IGF-I (R2 = 0.37). In conclusion, circulating leptin levels during protracted critical illness were linked to the activity state of the GH/IGF-I axis. Stimulating the GH/IGF-I axis with GH-secretagogues increased leptin levels within 12 h. Because leptin may stimulate oxidation of fatty acids, and because GH, IGF-I, and insulin have a protein-sparing effect, GH-secretagogue administration may be expected to result in increased utilization of fat as preferential substrate and to restore protein content in vital tissues and, consequently, has potential as a strategy to reverse the paradoxical metabolic condition of protracted critical illness.
Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.
Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore
2012-05-15
The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body weight, and how they may vary with genetic background. Copyright © 2012 Elsevier Inc. All rights reserved.
Rinaldi, Sabina; Biessy, Carine; de la Luz Hernandez, Maria; Lajous, Martin; Ortiz-Panozo, Eduardo; Yunes, Elsa; Lopez-Ridaura, Ruy; Torres-Mejia, Gabriela; Romieu, Isabelle
2015-03-01
Obesity is a major risk factor for several cancers, including female cancers. Endogenous hormones and inflammatory factors may mediate the association between anthropometric measures and cancer risk, although these associations have been studied mainly in Caucasians. The aim of the current study was to explore the association of circulating hormones, adipokines, and inflammatory factors with obesity and overweight in premenopausal Mexican women. We conducted a cross-sectional analysis of 504 premenopausal women from the large Mexican Teachers' Cohort (MTC, ESMaestras) study to determine the association of insulin-like growth factor I (IGF-I), its major circulating binding protein (IGFBP-3), leptin, adiponectin, C-peptide, and C-reactive protein with comprehensive measures of body size. Biomarkers were measured by immunoassays. Multivariate regression analyses were performed to compare geometric mean biomarker concentrations with measured markers of body size and adiposity. Mean IGF-I and IGFBP-3 concentrations significantly increased with increasing height and leg length. Concentrations of IGF-I, adiponectin, and the IGF-I/IGFBP-3 ratio strongly decreased with increasing BMI, weight, waist and hip circumferences, waist-to-hip ratio (WHpR), and waist-to-height ratio (WHtR), while CRP, leptin, C-peptide concentrations, and the leptin/adiponectin ratio strongly increased. Adiponectin and the leptin/adiponectin ratio remained significantly related to measures of central adiposity (waist circumference, WHpR, and WHtR) after adjustment by body mass index. The results of our study suggest a strong relation between biomarkers and body size in this study population and suggest that different fat depots may have different metabolic properties.
Rezvani, Reza; Cianflone, Katherine; McGahan, John P.; Berglund, Lars; Bremer, Andrew A.; Keim, Nancy L.; Griffen, Steven C.; Havel, Peter J.; Stanhope, Kimber L.
2013-01-01
Objective We determined the effects of fructose and glucose consumption on plasma acylation stimulating protein (ASP), adiponectin, and leptin concentrations relative to energy intake, body weight, adiposity, circulating triglycerides, and insulin sensitivity. Design and Methods 32 overweight/obese adults consumed glucose- or fructose-sweetened beverages (25% energy requirement) with their ad libitum diets for 8 weeks, followed by sweetened beverage consumption for 2 weeks with a standardized, energy-balanced diet. Plasma variables were measured at baseline, 2, 8 and 10 weeks, and body adiposity and insulin sensitivity at baseline and 10 weeks. Results Fasting and postprandial ASP concentrations increased at 2 and/or 8 weeks. ASP increases correlated with changes in late-evening triglyceride concentrations. At 10 weeks, fasting adiponectin levels decreased in both groups, and decreases were inversely associated with baseline intra-abdominal fat volume. Sugar consumption increased fasting leptin concentrations; increases were associated with body weight changes. 24-h leptin profiles increased during glucose consumption and decreased during fructose consumption. These changes correlated with changes of 24-h insulin levels. Conclusions The consumption of fructose and glucose beverages induced changes in plasma concentrations of ASP, adiponectin and leptin. Further study is required to determine if these changes contribute to the metabolic dysfunction observed during fructose consumption. PMID:23512943
Zachariah, Justin P; Hwang, Susan; Hamburg, Naomi M; Benjamin, Emelia J; Larson, Martin G; Levy, Daniel; Vita, Joseph A; Sullivan, Lisa M; Mitchell, Gary F; Vasan, Ramachandran S
2016-02-01
Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid-binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid-binding protein 4, and leptin concentrations (all P<0.001) and inversely with adiponectin (P=0.002). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (P<0.002 both). In fully adjusted models, aortic stiffness was positively associated with fatty acid-binding protein 4 concentrations (P=0.02), but inversely with leptin and leptin receptor levels (P≤0.03 both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. © 2015 American Heart Association, Inc.
Diet-Induced Obesity and the Mechanism of Leptin Resistance.
Engin, Atilla
2017-01-01
Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.
Serum leptin is associated with metabolic syndrome in obese Mexican subjects.
García-Jiménez, Sara; Bernal Fernández, German; Martínez Salazar, Maria Fernanda; Monroy Noyola, Antonio; Toledano Jaimes, Cairo; Meneses Acosta, Angelica; Gonzalez Maya, Leticia; Aveleyra Ojeda, Elizabeth; Terrazas Meraz, Maria A; Boll, Marie-Catherine; Sánchez-Alemán, Miguel A
2015-01-01
The metabolic syndrome (MetS) is a cluster of metabolic abnormalities including insulin resistance, dyslipidemia, high blood pressure, and abdominal adiposity. Obese patients develop leptin resistance, and an increased waist circumference (WC) due to deposition of abdominal fat. The aim of this study was to evaluate the association between circulating leptin levels and MetS among sample adult Mexican workers. A total of 204 workers aged 20-56 were evaluated. Anthropometric index, blood pressure, fasting plasma glucose, and lipid profile were measured by spectrophotometric methods. Fasting insulin and leptin were measured by inmunoenzimatic methods. Furthermore, homeostasis model assessment for insulin resistance (HOMA-IR) was calculated. The prevalence of MetS according to the ATP-III criteria was 33.8% and leptin concentrations were 2.5 times higher in women than men. Subjects with MetS had higher levels of leptin (26.7 ± 13.7) compared with those without MetS (20.1 ± 13.9; P <0.001). Leptin increased significantly while BMI increased as well (normal 14.0 ± 8.9, overweight 22.7 ± 11.7 and obese 31.4 ± 14.6) in addition to other variables such as WC, HDL-C, insulin levels, and HOMA index. Each component of MetS was stratified by sex and submitted by linear regression with a 95% of accuracy. The 50% and 53% of the BMI is explained by the concentration of leptin in men and women, respectively (P < 0.001). This study found that leptin was associated with the MetS, especially in obesity and insulin resistance, indicating a high risk for university workers to develop hypertension, DM2, and cardiovascular disease. © 2014 Wiley Periodicals, Inc.
Intracellular leptin signaling following effective weight loss.
Sahin-Efe, Ayse; Polyzos, Stergios A; Dincer, Fadime; Zaichenko, Lesya; McGovern, Rosemary; Schneider, Benjamin; Mantzoros, Christos S
2015-08-01
To investigate the effect of ex-vivo leptin treatment before and after weight loss on key-molecules of intracellular leptin signaling in peripheral blood mononuclear cells (PBMCs) of obese women. Five healthy obese women underwent a 12-week medical nutrition treatment aiming at inducing 10% weight loss. Isolated PBMCs at baseline, and at weeks 8 and 12 were treated with increasing leptin doses (0, 25 and 75 ng/ml) for 30 min. The phosphorylation of signal transducer and activator of transcription (STAT)3, extracellular-signal-regulated kinase (ERK), protein kinase B (Akt) and 5' adenosine monophosphate-activated protein kinase (AMPK) of PBMCs was analyzed using Western blotting. Women lost 10 ± 1% and 13 ± 1% of weight at week 8 and 12, respectively. Circulating leptin and insulin significantly decreased from 39.5 ± 7.7 to 12.2 ± 2.4 ng/ml (p = 0.026) and from 13.0 ± 1.6 to 5.4 ± 0.9 μU/ml (p = 0.005) at week 12, respectively. In the ex vivo study, a significant decrease in STAT3 phosphorylation was observed in the control group after weight loss. Treatment of PBMCs with leptin 75 ng/ml increased significantly ERK, STAT3 and Akt phosphorylation, but no weight loss induced change was observed in response to leptin treatment ex vivo. A 10%-15% weight loss decreases baseline STAT3 phosphorylation ex vivo, but does not alter the effect of increasing doses of leptin on the incremental intracellular phosphorylation of STAT3, ERK, Akt and AMPK. Supraphysiologic leptin doses (75 ng/ml) result in higher protein phosphorylation compared to either physiologic doses or no treatment, before and after weight loss. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of leptin in energy homeostasis in humans
Rosenbaum, Michael; Leibel, Rudolph L
2015-01-01
The hyperphagia, low sympathetic nervous system tone, and decreased circulating concentrations of bioactive thyroid hormones that are common to states of congenital leptin deficiency and hypoleptinemia following and during weight loss suggest that the major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. In weight-reduced humans, these phenotypes together with pronounced hypometabolism and increased parasympathetic nervous system tone create the optimal circumstance for weight regain. Based on the weight loss induced by leptin administration in states of leptin deficiency (obese) and observed similarity of phenotypes in states of congenital and dietary-induced states of hypoleptinemia (reduced obese), it has been suggested that exogenous leptin could potentially be useful in initiating, promoting, and sustaining weight reduction. However, the responses of human beings to exogenous leptin administration are dependent not only on extant energy stores but also on energy balance. Leptin administration to humans at usual weight has little, if any, effect on body weight while leptin administration during weight loss mitigates hunger, especially if given in supraphysiological doses during severe caloric restriction. Leptin repletion is most effective following weight loss by dietary restriction. In this state of weight stability but reduced energy stores, leptin at least partially reverses many of the metabolic, autonomic, neuroendocrine, and behavioral adaptations that favor weight regain. The major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. Leptin, and pharmacotherapies affecting leptin signaling pathways, is likely to be most useful in sustaining weight loss. PMID:25063755
Leptin and Hormones: Energy Homeostasis.
Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S
2016-09-01
Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. Copyright © 2016 Elsevier Inc. All rights reserved.
Transport across the blood-brain barrier of pluronic leptin.
Price, Tulin O; Farr, Susan A; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Banks, William A; Kabanov, Alexander V
2010-04-01
Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (K(i)) = 0.272 +/- 0.037 microl/g x min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0-30 min, p < 0.0005; 0-2 h, p < 0.001]. These studies show that the structure based Pluronic modification of leptin increased metabolic stability, reduced food intake, and allowed BBB penetration by a mechanism-independent BBB leptin transporter.
Programming of mouse obesity by maternal exposure to concentrated ambient fine particles.
Chen, Minjie; Wang, Xiaoke; Hu, Ziying; Zhou, Huifen; Xu, Yanyi; Qiu, Lianglin; Qin, Xiaobo; Zhang, Yuhao; Ying, Zhekang
2017-06-23
Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM 2.5 ) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. To determine if maternal exposure to PM 2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM 2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. Our data indicate that maternal exposure to ambient PM 2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.
Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth; Cherñavsky, Alejandra Claudia
2017-01-01
The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research.
Almeida-Pititto, Bianca de; Ribeiro-Filho, Fernando Flexa; Barreto, Sandhi; Duncan, Bruce B; Schmidt, Maria Inês; Lotufo, Paulo A; Bensenor, Isabela M; Ferreira, Sandra R G
2016-01-01
Our aim was to describe the distribution of selected biomarkers according to age and sex, adjusted for HOMA-IR and adiposity, in a subset of middle-aged individuals of Brazilian Longitudinal Study of Adult Health-ELSA without diabetes mellitus or CVD. This cross-sectional study was conducted in 998 participants of the ELSA-Brasil without diabetes and/or cardiovascular disease. In addition to the traditional risk factors, several biomarkers concentrations were compared according to sex, age groups (35-44; 45-54 yrs) and HOMA-IR tertiles. Linear regression was used to examine independent associations of sex and age with selected novel biomarkers, adjusted for body adiposity and HOMA-IR. Fifty-five percent were women. Men had higher mean values of body mass index, waist circumference, blood pressure, plasma glucose, HOMA-IR, worse lipid profile and higher E-selectin and lower leptin concentrations than women; while women had higher levels of HDL-cholesterol and leptin than men. Mean values of waist circumference, systolic BP, plasma glucose and apolipoprotein B (Apo B) increased with age in both sexes. Leptin and E-selectin concentrations increased across HOMA-IR tertiles. Independent associations of Apo B with age were found only in male sex, while of leptin with body mass index and HOMA-IR, and of E-selectin with HOMA-IR in both sexes. In conclusion, our data indicate age, sex, adiposity and, consequently, insulin resistance, influence circulating levels of Apo B, leptin and E-selectin, suggesting that those aspects should be taken into consideration when assessing these parameters for research or clinical purposes in individuals at relatively low cardiometabolic risk.
Nüsken, Eva; Wohlfarth, Maria; Lippach, Gregor; Rauh, Manfred; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich
2016-05-01
Leptin availability in perinatal life critically affects metabolic programming. We tested the hypothesis that uteroplacental insufficiency and intrauterine stress affect perinatal leptin availability in rat offspring. Pregnant rats underwent bilateral uterine vessel ligation (LIG; n = 14), sham operation (SOP; n = 12), or no operation (controls, n = 14). Fetal livers (n = 180), placentas (n = 180), and maternal blood were obtained 4 hours (gestational day [E] 19), 24 hours (E20), and 72 hours (E22) after surgery. In the offspring, we took blood samples on E22 (n = 44), postnatal day (P) 1 (n = 29), P2 (n = 16), P7 (n = 30), and P12 (n = 30). Circulating leptin (ELISA) was significantly reduced in LIG (E22, P1, P2) and SOP offspring (E22). Postnatal leptin surge was delayed in LIG but was accelerated in SOP offspring. Placental leptin gene expression (quantitative RT-PCR) was reduced in LIG (E19, E20, E22) and SOP (E20, E22). Hepatic leptin receptor (Lepr-a, mediating leptin degradation) gene expression was increased in LIG fetuses (E20, E22) only. Surprisingly, hypoxia-inducible factors (Hif; Western blot) were unaltered in placentas and were reduced in the livers of LIG (Hif1a, E20; Hif2a, E19, E22) and SOP (Hif2a, E19) fetuses. Gene expression of prolyl hydroxylase 3, a factor expressed under hypoxic conditions contributing to Hif degradation, was increased in livers of LIG (E19, E20, E22) and SOP (E19) fetuses and in placentas of LIG and SOP (E19). In summary, reduced placental leptin production, increased fetal leptin degradation, and persistent perinatal hypoleptinemia are present in intrauterine growth restriction offspring, especially after uteroplacental insufficiency, and may contribute to perinatal programming of leptin resistance and adiposity in later life.
A leptin-regulated circuit controls glucose mobilization during noxious stimuli.
Flak, Jonathan N; Arble, Deanna; Pan, Warren; Patterson, Christa; Lanigan, Thomas; Goforth, Paulette B; Sacksner, Jamie; Joosten, Maja; Morgan, Donald A; Allison, Margaret B; Hayes, John; Feldman, Eva; Seeley, Randy J; Olson, David P; Rahmouni, Kamal; Myers, Martin G
2017-08-01
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.
Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats.
Bilbao, María Guillermina; Di Yorio, María Paula; Galarza, Rocío Alejandra; Varone, Cecilia Laura; Faletti, Alicia Graciela
2015-04-01
Leptin exerts both stimulatory and inhibitory effects on the ovulatory process. In this study, we investigated whether these opposite effects involve changes in the oxidative status in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using ovaries of immature rats primed with gonadotropins to induce ovulation. Superoxide dismutase (SOD) and catalase (CAT) activity, lipid peroxidation, glutathione (GSH) content, and reactive oxygen species (ROS) were studied as oxidative damage-related parameters. The expression of BCL2, BAX, and caspase 3 were measured by western blot as apoptosis-related biomarkers. The acute treatment with leptin, which inhibits ovulation, decreased SOD activity and increased active caspase 3 expression. No differences were found in CAT activity, lipid peroxidation, or total GSH. In contrast, the daily administration of leptin, which induces ovulation, decreased GSH content, ROS levels, and Bax and active caspase 3 expression, but caused no changes in other parameters. In addition, the daily administration of leptin induced follicular growth, measured by the number of antral follicles in ovarian sections. Using ovarian explant cultures, we found increased BCL2 expression and decreased SOD activity at low and high concentrations of leptin respectively. Thus, leptin can modulate the oxidative status of the ovarian tissue, during the ovulatory process, by acting on different targets according to its circulating levels. At low concentration, leptin seems to play a protective role against the oxidative stress, whereas at high concentrations, this protein seems to be involved in cell death. © 2015 Society for Reproduction and Fertility.
Ciardi, Christian; Jenny, Marcel; Tschoner, Alexander; Ueberall, Florian; Patsch, Josef; Pedrini, Michael; Ebenbichler, Christoph; Fuchs, Dietmar
2012-03-01
Obesity leads to the activation of pro-inflammatory pathways, resulting in a state of low-grade inflammation. Recently, several studies have shown that the exposure to lipopolysaccharide (LPS) could initiate and maintain a chronic state of low-grade inflammation in obese people. As the daily intake of food additives has increased substantially, the aim of the present study was to investigate a potential influence of food additives on the release of leptin, IL-6 and nitrite in the presence of LPS in murine adipocytes. Leptin, IL-6 and nitrite concentrations were analysed in the supernatants of murine 3T3-L1 adipocytes after co-incubation with LPS and the food preservatives, sodium sulphite (SS), sodium benzoate (SB) and the spice and colourant, curcumin, for 24 h. In addition, the kinetics of leptin secretion was analysed. A significant and dose-dependent decrease in leptin was observed after incubating the cells with SB and curcumin for 12 and 24 h, whereas SS decreased leptin concentrations after 24 h of treatment. Moreover, SS increased, while curcumin decreased LPS-stimulated secretion of IL-6, whereas SB had no such effect. None of the compounds that were investigated influenced nitrite production. The food additives SS, SB and curcumin affect the leptin release after co-incubation with LPS from cultured adipocytes in a dose- and time-dependent manner. Decreased leptin release during the consumption of nutrition-derived food additives could decrease the amount of circulating leptin to which the central nervous system is exposed and may therefore contribute to an obesogenic environment.
Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra
2016-01-01
Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 International Union of Biochemistry and Molecular Biology.
Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin
2013-07-11
The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice continue to respond to elevated circulating or cardiac leptin, which may mediate cardioprotection via LepR-induced STAT3 activation, whereas signals distinct from LepR-Tyr1138 promote cardiac hypertrophy. On the other hand, the presence of cardiac hypertrophy in obese mice with complete LepR signal disruption indicates that additional pathways also play a role.
Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J
2016-04-01
Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory effect on GHRs may be limited to enhancing transcription or mRNA stability rather than inducing full translation of functional receptors, at least within a 24-h time frame. Finally, leptin was injected IP (100ng/g and 1μg/gBW) to test the in vivo regulation of hepatic IGF-1 and GHR1 gene expression. The 100ng/g BW leptin dose significantly upregulated in vivo IGF-1 mRNA levels relative to controls after 24h of fasting, but neither dosage was effective at regulating GHR1 gene expression. These studies suggest that stimulation of growth axis component transcripts by leptin may be an important mechanism for coordinating somatic growth with nutritional state in these and perhaps other fish or vertebrates, and represent the first evidence of leptin regulating GHRs in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Guadalupe-Grau, Amelia; Ara, Ignacio; Dorado, Cecilia; Vicente-Rodríguez, German; Perez-Gomez, Jorge; Cabrero, Javier Chavarren; Serrano-Sanchez, José A; Santana, Alfredo; Calbet, Jose A L
2010-10-01
Osteocalcin is a hormone produced by osteoblasts which acts as a negative regulator of fat mass, protecting against diet induced obesity and insulin resistance in rodents. To determine if an acute increase in osteocalcin concentration is associated with opposed changes in circulating leptin levels and insulin resistance we studied 15 middle and long distance male triathletes, (age 32.1 ± 6.9 years), before and 48 h after an Olympic (OT) or an Ironman (IT) triathlon competition. Muscle power, anaerobic capacity, body composition (dual-energy X-ray absorptiometry), and serum concentrations of testosterone, dihydrotestosterone, osteocalcin, leptin, glucose, insulin and insulin resistance (HOMA) were determined pre- and post-race. Pre- and 48 h post-race total and regional lean body mass was not altered, but fat mass was similarly increased (~250 g) 48 h after the competitions. This elicited an increase in plasma leptin of 33% after the IT while it remained unchanged after the OT, likely due to a 25% increase in plasma osteocalcin which occurred only after the OT (all p < 0.05). Post-race HOMA remained unchanged in OT and IT. Performance was normalized 48 h after the competitions, with the exception of a slightly lower jumping capacity after the IT. Serum testosterone concentration tended to decrease by 10% after the IT whilst dihydrotestosterone was reduced by 24% after the IT. In conclusion, an acute increase in serum osteocalcin concentration blunts the expected increase of serum leptin concentration that should occur with fat mass gain. This study provides evidence for osteocalcin as a negative regulator of serum leptin in humans.
Mann, S; Urh, C; Sauerwein, H; Wakshlag, J J; Yepes, F A Leal; Overton, T R; Nydam, D V
2018-01-01
Adipokines-hormones produced by adipose tissue-have important regulatory functions, and their concentrations can change around the time of calving when energy balance rapidly decreases. Hence, energy balance may be an important factor in determining the circulating concentrations of adipokines, particularly adiponectin and leptin. The objective of our study was to investigate the association between the level of energy fed to prepartum Holstein cows and circulating concentrations of adiponectin and leptin before and after calving. Holstein dairy cows entering second or greater lactation were fed either a controlled-energy diet formulated to supply approximately 100% of energy requirements (n = 28) or a high-energy diet formulated to supply approximately 150% of energy requirements throughout the entire dry period (n = 28). Serum samples were analyzed for adiponectin and leptin concentrations at 56, 28, 10, and 1 d prepartum as well as on d 1, 10, 21, and 42 postpartum using ELISA. Parity was dichotomized into cows entering second versus higher parity. Average peripartum body condition score (BCS) was computed from weekly measurements and dichotomized into animals with an average BCS of ≤3.25 and >3.25. In addition, cows were classified according to the occurrence of hyperketonemia (β-hydroxybutyrate concentrations ≥1.2 mmol/L at any time between 3 and 21 d in milk). Data were analyzed using repeated-measures ANOVA. Serum leptin but not adiponectin concentrations were associated with prepartum feeding level such that leptin concentrations increased transiently during the dry period in cows overfed energy, but concentrations were not different postpartum. Cows entering second parity had higher adiponectin and lower leptin concentrations compared with cows in higher parities. Cows that developed hyperketonemia postpartum had consistently lower adiponectin concentrations during the study period. Cows with average BCS >3.25 had higher leptin concentrations during the dry period only, but adiponectin concentrations were not associated with BCS. In conclusion, prepartum energy level had only transient effects on leptin concentrations and did not lead to changes in adiponectin concentrations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Salmerón, Cristina; Johansson, Marcus; Angotzi, Anna R; Rønnestad, Ivar; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación
2015-01-01
As leptin has a key role on appetite, knowledge about leptin regulation is important in order to understand the control of energy balance. We aimed to explore the modulatory effects of adiposity on plasma leptin levels in vivo and the role of potential regulators on leptin expression and secretion in rainbow trout adipocytes in vitro. Fish were fed a regular diet twice daily ad libitum or a high-energy diet once daily at two ration levels; satiation (SA group) or restricted (RE group) to 25% of satiation, for 8weeks. RE fish had significantly reduced growth (p<0.001) and adipose tissue weight (p<0.001), and higher plasma leptin levels (p=0.022) compared with SA fish. Moreover, plasma leptin levels negatively correlated with mesenteric fat index (p=0.009). Adipocytes isolated from the different fish were treated with insulin, ghrelin, leucine, eicosapentaenoic acid or left untreated (control). In adipocytes from fish fed regular diet, insulin and ghrelin increased leptin secretion dose-dependently (p=0.002; p=0.033, respectively). Leptin secretion in control adipocytes was significantly higher in RE than in SA fish (p=0.022) in agreement with the in vivo findings, indicating that adipose tissue may contribute to the circulating leptin levels. No treatment effects were observed in adipocytes from the high-energy diet groups, neither in leptin expression nor secretion, except that leptin secretion was significantly reduced by leucine in RE fish adipocytes (p=0.025). Overall, these data show that the regulation of leptin in rainbow trout adipocytes by hormones and nutrients seems to be on secretion, rather than at the transcriptional level. Copyright © 2014 Elsevier Inc. All rights reserved.
Minireview: CNS Mechanisms of Leptin Action
Flak, Jonathan N.
2016-01-01
Leptin is an adipocytokine that circulates in proportion to body fat to signal the repletion of long-term energy stores. Leptin acts via its receptor, LepRb, on specialized neuronal populations in the brain (mainly in the hypothalamus and brainstem) to alter motivation and satiety, as well as to permit energy expenditure and appropriate glucose homeostasis. Decreased leptin, as with prolonged caloric restriction, promotes a powerful orexigenic signal, decreases energy use via a number of neuroendocrine and autonomic axes, and disrupts glucose homeostasis. Here, we review what is known about cellular leptin action and focus on the roles for specific populations of LepRb-expressing neurons for leptin action. PMID:26484582
Treatment of obesity hypoventilation syndrome and serum leptin.
Yee, Brendon J; Cheung, Jane; Phipps, Paul; Banerjee, Dev; Piper, Amanda J; Grunstein, Ronald R
2006-01-01
Leptin is a protein produced by adipose tissue that circulates to the brain and interacts with receptors in the hypothalamus to inhibit eating. In obese humans, serum leptin is up to four times higher than in lean subjects, indicating that human obesity is associated with a central resistance to the weight-lowering effects of leptin. Although the leptin-deficient mouse (ob/ob) develops obesity hypoventilation syndrome (OHS), in humans with OHS, serum leptin is a better predictor of awake hypercapnia in obesity than the body mass index (BMI). This suggests that central leptin resistance may promote the development of OHS in humans. We speculated that the reversal of OHS by regular non-invasive ventilation (NIV) therapy decreases leptin levels. The aim of this study was to investigate whether ventilatory treatment of OHS would alter circulating leptin concentrations. We measured fasting serum leptin levels, BMI, spirometry and arterial blood gases in 14 obese hypercapnic subjects undergoing a diagnostic sleep study. The average age of the subjects was (mean +/- SE) 62 +/- 13 years, BMI 40.9 +/- 2.2 kg/m(2), PaCO(2) 6.7 +/- 0.2 kPa, PaO(2 )8.9 +/- 0.4 kPa and total respiratory disturbance index 44 +/- 35 events/hour. Subjects were clinically reviewed after a median of 2.3 years (range 1.6-3) with repeat investigations. Nine patients were regular NIV users and 5 were non-users. NIV users had a significant reduction in serum leptin levels (p = 0.001), without a change in BMI. In these patients, there was a trend towards an improved daytime hypercapnia and hypoxemia, while in the 5 non-users, no changes in serum leptin, BMI or arterial blood gases occurred. Regular NIV use reduces serum leptin in OHS. Leptin may be a modulator of respiratory drive in patients with OHS.
Böhm, Anja; Ordelheide, Anna-Maria; Machann, Jürgen; Heni, Martin; Ketterer, Caroline; Machicao, Fausto; Schick, Fritz; Stefan, Norbert; Fritsche, Andreas; Häring, Hans-Ulrich; Staiger, Harald
2012-01-01
Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements) and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05) in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI) and spectroscopy (MRS). After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094) and fasting leptin concentrations (p = 0.0035) as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182) and clamp-derived insulin sensitivity (p = 0.0251). The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8). Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436), and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all). In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity, obesity-related insulin resistance, and circulating leptin levels.
Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J
2017-06-01
Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Aronis, K N; Diakopoulos, K N; Fiorenza, C G; Chamberland, J P; Mantzoros, C S
2011-09-01
Leptin has been shown to regulate angiogenesis in animal and in vitro studies by upregulating the production of several pro-angiogenic factors, but its role in regulating angiogenesis has never been studied in humans. The potential angiogenic effect of two doses of metreleptin (50 and 100 ng/ml) was evaluated in vitro, using a novel three-dimensional angiogenesis assay. Fifteen healthy, normoleptinaemic volunteers were administered both a physiological (0.1 mg/kg) and a pharmacological (0.3 mg/kg) single dose of metreleptin, in vivo, on two different inpatient admissions separated by 1-12 weeks. Serum was collected at 0, 6, 12 and 24 h after metreleptin administration. Twenty lean women, with leptin levels <5 ng/ml, were randomised in a 1:1 fashion to receive either physiological replacement doses of metreleptin (0.04-0.12 mg/kg q.d.) or placebo for 32 weeks. Serum was collected at 0, 8, 20 and 32 weeks after randomisation. Proteomic angiogenesis array analysis was performed to screen for angiogenic factors. Circulating concentrations of angiogenin, angiopoietin-1, platelet derived endothelial factor (PDGF)-AA, matrix metalloproteinase (MMP) 8 and 9, endothelial growth factor (EGF) and vascular EGF (VEGF) were also measured. Both metreleptin doses failed to induce angiogenesis in the in vitro model. Although leptin levels increased significantly in response to both short-term and long-term metreleptin administration, circulating concentrations of angiogenesis markers did not change significantly in vivo. This is the first study that examines the effect of metreleptin administration in angiogenesis in humans. Metreleptin administration does not regulate circulating angiogenesis related factors in humans. ClinicalTrials.gov NCT00140205 and NCT00130117. This study was supported by National Institutes of Health-National Center for Research Resources grant M01-RR-01032 (Harvard Clinical and Translational Science Center) and grant number UL1 RR025758. Funding was also received from the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785, 79929 and 81913, and AG032030.
Wabitsch, Martin; Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram; Kratzsch, Jürgen
2017-03-01
Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80-1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48-0.55) being distinct from normal was observed. The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. © 2017 The authors.
Ketosis and appetite-mediating nutrients and hormones after weight loss.
Sumithran, P; Prendergast, L A; Delbridge, E; Purcell, K; Shulkes, A; Kriketos, A; Proietto, J
2013-07-01
Diet-induced weight loss is accompanied by compensatory changes, which increase appetite and encourage weight regain. There is some evidence that ketogenic diets suppress appetite. The objective is to examine the effect of ketosis on a number of circulating factors involved in appetite regulation, following diet-induced weight loss. Of 50 non-diabetic overweight or obese subjects who began the study, 39 completed an 8-week ketogenic very-low-energy diet (VLED), followed by 2 weeks of reintroduction of foods. Following weight loss, circulating concentrations of glucose, insulin, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), leptin, gastrointestinal hormones and subjective ratings of appetite were compared when subjects were ketotic, and after refeeding. During the ketogenic VLED, subjects lost 13% of initial weight and fasting BHB increased from (mean±s.e.m.) 0.07±0.00 to 0.48±0.07 mmol/l (P<0.001). BHB fell to 0.19±0.03 mmol/l after 2 weeks of refeeding (P<0.001 compared with week 8). When participants were ketotic, the weight loss induced increase in ghrelin was suppressed. Glucose and NEFA were higher, and amylin, leptin and subjective ratings of appetite were lower at week 8 than after refeeding. The circulating concentrations of several hormones and nutrients which influence appetite were altered after weight loss induced by a ketogenic diet, compared with after refeeding. The increase in circulating ghrelin and subjective appetite which accompany dietary weight reduction were mitigated when weight-reduced participants were ketotic.
Llanos, Adana A M; Krok, Jessica L; Peng, Juan; Pennell, Michael L; Vitolins, Mara Z; Degraffinreid, Cecilia R; Paskett, Electra D
2014-04-01
Practical methods to reduce the risk of obesity-related breast cancer among high-risk subgroups are lacking. Few studies have investigated the effects of exercise on circulating adipokines, which have been shown to be associated with obesity and breast cancer. The aim of this study was to examine the effects of a walking intervention on serum adiponectin, leptin, and the adiponectin-to-leptin ratio (A/L). Seventy-one overweight and obese postmenopausal women at increased risk of developing breast cancer were stratified by BMI (25-30 kg/m(2) or >30 kg/m(2)) and randomized to a 12-week, two-arm walking intervention administered through interactive voice response (IVR) and mobile devices. The intervention arms were IVR + coach and IVR + no-coach condition. Pre-post changes in serum adiponectin, leptin, and the A/L ratio were examined using mixed regression models, with ratio estimates (and 95 % confidence intervals [CI]) corresponding to postintervention adipokine concentrations relative to preintervention concentrations. While postintervention effects included statistically significant improvements in anthropometric measures, the observed decreases in adiponectin and leptin (ratio = 0.86, 95 % CI 0.74-1.01, and ratio = 0.94, 95 % CI 0.87-1.01, respectively) and increase in A/L ratio = 1.09, 95 % CI 0.94-1.26) were not significant. Thus, these findings do not support significant effects of the walking intervention on circulating adipokines among overweight and obese postmenopausal women. Additional studies are essential to determine the most effective and practical lifestyle interventions that can promote beneficial modification of serum adipokine concentrations, which may prove useful for obesity-related breast cancer prevention.
Llanos, Adana A.M.; Krok, Jessica L.; Peng, Juan; Pennell, Michael L.; Vitolins, Mara Z.; Degraffinreid, Cecilia R.; Paskett, Electra D.
2014-01-01
Practical methods to reduce the risk of obesity-related breast cancer among high-risk subgroups are lacking. Few studies have investigated the effects of exercise on circulating adipokines, which have been shown to be associated with obesity and breast cancer. The aim of this study was to examine the effects of a walking intervention on serum adiponectin, leptin and the adiponectin-to-leptin ratio (A/L). Seventy-one overweight and obese postmenopausal women at increased risk of developing breast cancer were stratified by BMI (25-30 kg/m2 or >30 kg/m2) and randomized to a 12-week, 2-arm walking intervention administered through interactive voice response (IVR) and mobile devices. The intervention arms were: IVR + coach and IVR + no coach condition. Pre-post changes in serum adiponectin, leptin and the A/L ratio were examined using mixed regression models, with ratio estimates (and 95% confidence intervals [CI]) corresponding to post-intervention adipokine concentrations relative to pre-intervention concentrations. While post-intervention effects included statistically significant improvements in anthropometric measures, the observed decreases in adiponectin and leptin (Ratio=0.86, 95% CI 0.74-1.01 and Ratio=0.94, 95% CI 0.87-1.01, respectively) and increase in A/L (Ratio=1.09, 95% CI 0.94-1.26) were not significant. Thus, these findings do not support significant effects of the walking intervention on circulating adipokines among overweight and obese postmenopausal women. Additional studies are essential to determine the most effective and practical lifestyle interventions that can promote beneficial modification of serum adipokine concentrations, which may prove useful for obesity-related breast cancer prevention. PMID:24435584
Leptin inhibits testosterone secretion from adult rat testis in vitro.
Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E
1999-05-01
Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed adult rats. In addition, 10(-9) M leptin inhibited LH and FSH secretion by incubated hemi-pituitaries from fasted adult males, whereas, at all doses tested, it was ineffective in modulating PRL release. Our results show that leptin, depending on the state of sexual maturation, is able to inhibit testosterone secretion acting at the testicular level. Furthermore, the present data suggest that the actions of leptin on the reproductive system are complex and are probably carried out at different levels of the hypothalamic-pituitary-gonadal axis.
Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth
2017-01-01
Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515
Diakowska, Dorota; Krzystek-Korpacka, Malgorzata; Markocka-Maczka, Krystyna; Diakowski, Witold; Matusiewicz, Malgorzata; Grabowski, Krzysztof
2010-08-01
We investigated the association between esophageal cancer and cachexia-anorexia syndrome (CAS) of the alimentary tract and leptin, an adipocytokine crucial for body weight regulation, a modulator of inflammatory/immune response, implication of which in cancer and CAS development remains debatable. Circulating leptin was measured in 135 esophageal cancer patients (51 non-cachectic and 84 cachectic) and 83 controls (63 non-cachectic and 20 cachectic) and referred to cancer stage, CAS, and inflammatory and nutritional indices. Leptin was down-regulated in cancer patients and cachectic controls as compared to non-cachectic controls, with more pronounced hypoleptinemia in advanced cancers. Leptin correlated directly with BMI, TNF-alpha, albumin, and hemoglobin and indirectly with IL-6, IL-8, and hsCRP. The correlations, except for hsCRP, were more pronounced in females. BMI alone (females) and BMI and hsCRP (males) were independent predictors of leptin explaining over 60% of its variability. Following adjustment for BMI and gender, cancer-related CAS but not cancer itself negatively affected leptin. Leptin and BMI were independently associated with cancer-related and non-malignant CAS with diagnostic accuracy of 93% in identifying subjects with CAS. Pro-inflammatory, angiogenic and mitogenic properties of leptin do not seem to be important for esophageal cancer development but hypoleptinemia, independently from co-occurring reduction of adiposity, appears to be strongly associated with esophageal cancer-related CAS and non-malignant CAS of the alimentary tract. Copyright 2010 Elsevier Ltd. All rights reserved.
Transport across the Blood-Brain Barrier of Pluronic Leptin
Price, Tulin O.; Farr, Susan A.; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Kabanov, Alexander V.
2010-01-01
Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (Ki) = 0.272 ± 0.037 μl/g · min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0–30 min, p < 0.0005; 0–2 h, p < 0.001]. These studies show that the structure based Pluronic modification of leptin increased metabolic stability, reduced food intake, and allowed BBB penetration by a mechanism-independent BBB leptin transporter. PMID:20053933
Xie, Yao; Potter, Claire M.F.; Le Bras, Alexandra; Nowak, Witold N.; Gu, Wenduo; Bhaloo, Shirin Issa; Zhang, Zhongyi; Hu, Yanhua; Zhang, Li
2017-01-01
Objective— Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1+ vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1+ progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Approach and Results— Sca-1+ progenitor cells from the vessel wall of Lepr+/+ and Lepr−/− mice were cultured and purified. The migration of Lepr+/+ Sca-1+ progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal–regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1+ progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP+ cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1+ cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr−/− mice 2 weeks post-surgery. However, transplantation of Lepr+/+ Sca-1+ progenitor cells into the adventitial side of injured artery in Lepr−/− mice significantly enhanced neointimal formation. Conclusions— Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1+ progenitor cells via leptin receptor–dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal–regulated kinase)-FAK pathways, which enhanced neointimal formation. PMID:28935755
Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin
2017-09-01
Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the cardiovascular risk factor obesity may have relevant therapeutic implications. © 2017 American Heart Association, Inc.
Xie, Yao; Potter, Claire M F; Le Bras, Alexandra; Nowak, Witold N; Gu, Wenduo; Bhaloo, Shirin Issa; Zhang, Zhongyi; Hu, Yanhua; Zhang, Li; Xu, Qingbo
2017-11-01
Leptin is an adipokine initially thought to be a metabolic factor. Recent publications have shown its roles in inflammation and vascular disease, to which Sca-1 + vascular progenitor cells within the vessel wall may contribute. We sought to elucidate the effects of leptin on Sca-1 + progenitor cells migration and neointimal formation and to understand the underlying mechanisms. Sca-1 + progenitor cells from the vessel wall of Lepr +/+ and Lepr -/- mice were cultured and purified. The migration of Lepr +/+ Sca-1 + progenitor cells in vitro was markedly induced by leptin. Western blotting and kinase assays revealed that leptin induced the activation of phosphorylated signal transducer and activator of transcription 3, phosphorylated extracellular signal-regulated kinases 1/2, pFAK (phosphorylated focal adhesion kinase), and Rac1 (ras-related C3 botulinum toxin substrate 1)/Cdc42 (cell division control protein 42 homolog). In a mouse femoral artery guidewire injury model, an increased expression of leptin in both injured vessels and serum was observed 24 hours post-surgery. RFP (red fluorescent protein)-Sca-1 + progenitor cells in Matrigel were applied to the adventitia of the injured femoral artery. RFP + cells were observed in the intima 24 hours post-surgery, subsequently increasing neointimal lesions at 2 weeks when compared with the arteries without seeded cells. This increase was reduced by pre-treatment of Sca-1 + cells with a leptin antagonist. Guidewire injury could only induce minor neointima in Lepr -/- mice 2 weeks post-surgery. However, transplantation of Lepr +/+ Sca-1 + progenitor cells into the adventitial side of injured artery in Lepr -/- mice significantly enhanced neointimal formation. Upregulation of leptin levels in both the vessel wall and the circulation after vessel injury promoted the migration of Sca-1 + progenitor cells via leptin receptor-dependent signal transducer and activator of transcription 3- Rac1/Cdc42-ERK (extracellular signal-regulated kinase)-FAK pathways, which enhanced neointimal formation. © 2017 The Authors.
Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis
Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.
2015-01-01
Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072
The Effects of Leptin Replacement on Neural Plasticity
Paz-Filho, Gilberto J.
2016-01-01
Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function. PMID:26881138
The Effects of Leptin Replacement on Neural Plasticity.
Paz-Filho, Gilberto J
2016-01-01
Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function.
Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram
2016-01-01
Context and aims Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. Methods An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. Results In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80–1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48–0.55) being distinct from normal was observed. Conclusions The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. PMID:28007844
Intestinal microbiota determine severity of myocardial infarction in rats
Lam, Vy; Su, Jidong; Koprowski, Stacy; Hsu, Anna; Tweddell, James S.; Rafiee, Parvaneh; Gross, Garrett J.; Salzman, Nita H.; Baker, John E.
2012-01-01
Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 μg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 μg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.—Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J. S., Rafiee, P., Gross, G. J., Salzman, N. H., Baker, J. E. Intestinal microbiota determine severity of myocardial infarction in rats. PMID:22247331
Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists.
Liu, Tao; Zhang, Yong; Liu, Yan; Wang, Ying; Jia, Haiqun; Kang, Mingchao; Luo, Xiaozhou; Caballero, Dawna; Gonzalez, Jose; Sherwood, Lance; Nunez, Vanessa; Wang, Danling; Woods, Ashley; Schultz, Peter G; Wang, Feng
2015-02-03
On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.
Rational Design of Dual Agonist-Antibody Fusions as Long-acting Therapeutic Hormones.
Liu, Yan; Wang, Ying; Zhang, Yong; Liu, Tao; Jia, Haiqun; Zou, Huafei; Fu, Qiangwei; Zhang, Yuhan; Lu, Lucy; Chao, Elizabeth; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng
2016-11-18
Recent studies have suggested that modulation of two or more signaling pathways can achieve substantial weight loss and glycemic stability. We have developed an approach to the generation of bifunctional antibody agonists that activate leptin receptor and GLP-1 receptor. Leptin was fused into the complementarity determining region 3 loop of the light chain alone, or in combination with exendin-4 (EX4) fused at the N-terminus of the heavy chain of Herceptin. The antibody fusions exhibit similar or increased in vitro activities on their cognate receptors, but 50-100-fold longer circulating half-lives in rodents compared to the corresponding native peptides/proteins. The efficacy of the leptin/EX4 dual antibody fusion on weight loss, especially fat mass loss, was enhanced in ob/ob mice and DIO mice compared to the antibody fusion of either EX4 or leptin alone. This work demonstrates the versatility of this combinatorial fusion strategy for generating dual antibody agonists with long half-lives.
Douros, Jonathan D; Baltzegar, David A; Breves, Jason P; Lerner, Darren T; Seale, Andre P; Gordon Grau, E; Borski, Russell J
2014-10-01
The present study identifies regulatory interactions between leptin A (LepA) and the pituitary hormone prolactin (PRL). In order to measure tilapia (Oreochromis mossambicus) LepA, an enzyme-linked immunosorbent assay (ELISA) utilizing a rabbit polyclonal antibody specific to tilapia LepA was first developed. The antibody shows strong cross reactivity to recombinant tilapia LepA (rtLepA), and a corresponding 16kDa protein in both tilapia and striped bass plasma, but not to recombinant human leptin (rhLep). The assay has a linear detection range of 0.25-1000nM, with intra- and interassay variability of 9% and 16%, respectively. Plasma LepA levels measured in tilapia ranged from 0.8 to 3.9nM, similar to that found for other vertebrates. Hypophysectomy (Hx) increased circulating LepA and lepa mRNA levels in the liver, the dominant source of hormone production. Adminstration of ovine PRL (oPRL, 5μg/g BW) to Hx fish restored circulating LepA and hepatic lepa mRNA levels to those of control fish. Additionally, oPRL reduced lepa mRNA levels in a dose-dependent fashion in cultured hepatocytes following an 18h incubation. Previous work in our lab indicates that rhLep stimulates PRL release in vitro from tilapia pituitaries. Here, both rtLepA and rhLep (0.5μg/g BW) increased mRNA expression of tilapia prolactin mRNAs (prl1, prl2) in the pituitary in vivo. These results demonstrate that LepA enhances pituitary prolactin synthesis and release, while PRL in turn inhibits hepatic leptin secretion and synthesis in teleosts. We postulate this regulatory interaction may be necessary for mobilizing energy reserves during acute hyperosmotic adaptation. Copyright © 2014 Elsevier Inc. All rights reserved.
Serum Concentrations of Leptin and Adiponectin in Dogs with Myxomatous Mitral Valve Disease.
Kim, H-S; Kang, J-H; Jeung, E-B; Yang, M-P
2016-09-01
The concentrations of circulating adipokines in dogs with myxomatous mitral valve disease (MMVD) have not been investigated in detail. To determine whether serum concentrations of adipokines differ between healthy dogs and dogs with MMVD and whether circulating concentrations depend on the severity of heart failure resulting from MMVD. In the preliminary study, 30 healthy dogs and 17 client-owned dogs with MMVD, and in the subsequent study, 30 healthy dogs and 46 client-owned dogs with MMVD. Prospective case-controlled observational study. In the preliminary study, serum concentrations of leptin, adiponectin, resistin, visfatin, interleukin (IL)-1β, IL-6, IL-10, IL-18, and tumor necrosis factor-α were measured. In the subsequent study, MMVD dogs were divided into three groups according to the International Small Animal Cardiac Health Council (ISACHC) classification, and serum concentrations of leptin and adiponectin were measured. In the preliminary study, serum leptin and adiponectin concentrations differed significantly between dogs with MMVD and healthy dogs. Serum leptin (P = .0013) concentrations were significantly higher in dogs with MMVD than in healthy dogs, whereas adiponectin (P = .0009) concentrations were significantly lower in dogs with MMVD. However, we observed no significant differences in the other variables. In the subsequent study, dogs classified as ISACHC class 3 had higher serum concentrations of leptin (P = .0022) than healthy dogs but ISACHC class 1 or 2 dogs did not. Serum adiponectin concentrations were significantly lower in ISACHC class 1 (P < .0001) dogs than in healthy dogs, whereas adiponectin concentrations in ISACHC class 3 dogs were significantly higher than in ISACHC class 1 dogs (P = .0081). Circulating concentrations of leptin and adiponectin might be altered in dogs with MMVD. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Alzamendi, Ana; Castrogiovanni, Daniel; Gaillard, Rolf C; Spinedi, Eduardo; Giovambattista, Andrés
2010-09-01
An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.
Hamnvik, Ole-Petter Riksfjord; Thakkar, Bindiya; Chamberland, John; Aronis, Konstantinos; Schneider, Benjamin; Mantzoros, Christos S
2015-02-01
To study the day-night variation of omentin-1 levels and assess whether leptin and/or short- and long-term energy deprivation alter circulating omentin-1 levels via cytokines. Omentin-1 levels were measured hourly in serum samples from six healthy men to evaluate for day-night variation. To study effects of acute energy deprivation and of leptin administration, eight healthy subjects were studied in the fasting state for 72 h with administration of either placebo or metreleptin (recombinant human leptin) in physiologic replacement doses. We evaluated the effect of leptin in pharmacologic doses on serum omentin-1 and cytokine levels, as well as on omentin-1 levels in ex vivo omental adipose tissue, in 15 healthy volunteers. To study the effect of chronic energy deprivation and weight loss on omentin-1 levels, we followed 18 obese subjects for 12 months who underwent bariatric surgery. There is no day-night variation in omentin-1 levels. Short-term and chronic energy deprivation, as well as ex vivo leptin administration and physiologic replacement doses of leptin, do not alter omentin-1 levels; pharmacologic doses of metreleptin reduce omentin-1 levels, whereas levels of tumor necrosis factor-α receptor II and interleukin-6 tend to increase. Omentin-1 levels are reduced by pharmacologic doses of metreleptin independent of effects on cytokine levels.
Haleem, Darakhshan J; Inam, Qurrat-Ul-Aen; Haider, Saida; Perveen, Tahira; Haleem, Muhammad Abdul
2015-12-01
Leptin, identified as an antiobesity hormone, also has important role in responses to stress and processing of memory. This study was designed to determine effects of academic examination stress-induced changes in serum leptin and its impact on academic performance. Eighty five healthy female students (age 19-21 years; BMI 21.9 ± 1.6) were recruited for the study. Serum leptin and cortisol were monitored at base line (beginning of academic session) and on the day of examination; using a standardized ELISA kit. Acute perception of academic examination stress was determined with the help of a questionnaire derived from Hamilton Anxiety Scale and self report of stress perception. Academic performance was evaluated by the percentage of marks obtained in the examination. Serum cortisol levels were positively correlated (p < 0.01) with the subjective perception of examination stress but not with academic performance. There was an inverted U-shape relationship between level of stress and academic performance. Leptin increased in all stress groups and correlated (p < 0.01) positively with academic performance. There was an inverted U-shape relationship between level of stress and circulating leptin. The findings suggest the peptide hormone, leptin, is a biomarker of stress perception and a mediator of facilitating effects of stress on cognition.
Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana
2009-01-01
Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.
Alshaker, Heba; Sacco, Keith; Alfraidi, Albandri; Muhammad, Aun; Winkler, Mathias; Pchejetski, Dmitri
2015-11-03
The prevalence of global obesity is increasing. Obesity is associated with general cancer-related morbidity and mortality and is a known risk factor for development of specific cancers. A recent large systematic review of 24 studies based on meta-analysis of 11,149 patients with prostate cancer showed a significant correlation between obesity and the risk of advanced prostate cancer. Further, a sustained reduction in BMI correlates with a decreased risk of developing aggressive disease. On the other hand, the correlation between consuming different products and prostate cancer occurrence/risk is limited.Here, we review the role of adipose tissue from an endocrine perspective and outline the effect of adipokines on cancer metabolism, with particular focus on leptin. Leptin exerts its physiological and pathological effects through modification of intracellular signalling, most notably activating the Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway and recently shown sphingolipid pathway. Both high levels of leptin in circulation and leptin receptor mutation are associated with prostate cancer risk in human patients; however, the in vivo mechanistic evidence is less conclusive.Given the complexity of metabolic cancer pathways, it is possible that leptin may have varying effects on prostate cancer at different stages of its development, a point that may be addressed by further epidemiological studies.
Mela, Virginia; Jimenez, Sara; Freire-Regatillo, Alejandra; Barrios, Vicente; Marco, Eva-María; Lopez-Rodriguez, Ana-Belén; Argente, Jesús; Viveros, María-Paz; Chowen, Julie A
2016-12-01
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5mg/kg, s.c.) from PND 5 to 9 and killed at PND102-103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.
Leptin Levels and Nutritional Status of Indigenous Tepehuán and Mestizo Subjects in Durango, Mexico
Delgadillo Guzmán, Dealmy; Marchat Marchau, Laurence Annie; Reyes, José L.; Loera Castañeda, Verónica; Sosa Macías, Martha; García Vivas, Jessica; Asseff, Ismael Lares
2014-01-01
The aim of this study was to assess differences in nutritional status and their association with circulating leptin levels in the indigenous Tepehuán people of Mezquital Durango and Mestizo populations of Durango City, Mexico. A group of 128 volunteers aged 18 through 59 years were recruited for the study: 60 indigenous Tepehuán from Mezquital and 68 Mestizo individuals from Durango City. The classification of nutritional status was through body mass index (BMI). Clinical evaluations, including anthropometry and lipid profiles, were performed to ascertain the health of the participants. Circulating leptin levels were determined in blood samples after at 08 hours of fasting. The healthy subjects were classified according to BMI: 32 Tepehuán and 30 Mestizo subjects were of normal weight (NW), and 28 Tepehuán and 38 Mestizo subjects were overweight or obese (OW/O). Both NW and OW/O Tepehuán subjects showed lower leptin concentrations than the comparable Mestizo subjects. Statistical analysis showed a negative Pearson's correlation (r = −0.5; P < 0.05) between BMI and leptin levels in NW Tepehuán subjects, but no significant correlation was found in other groups. The differences found in Tepehuán compared with Mestizo subjects might be explained by poor nutritional status, which leads to scarce adipose tissue and low levels of leptin synthesis. Leptin concentration and its relationship to BMI are associated with ethnicity. PMID:24825928
Leptin levels and nutritional status of indigenous Tepehuán and Mestizo subjects in Durango, Mexico.
Guzmán, Dealmy Delgadillo; Marchau, Laurence Annie Marchat; Reyes, José L; Castañeda, Verónica Loera; Macías, Martha Sosa; Vivas, Jessica García; Asseff, Ismael Lares
2014-01-01
The aim of this study was to assess differences in nutritional status and their association with circulating leptin levels in the indigenous Tepehuán people of Mezquital Durango and Mestizo populations of Durango City, Mexico. A group of 128 volunteers aged 18 through 59 years were recruited for the study: 60 indigenous Tepehuán from Mezquital and 68 Mestizo individuals from Durango City. The classification of nutritional status was through body mass index (BMI). Clinical evaluations, including anthropometry and lipid profiles, were performed to ascertain the health of the participants. Circulating leptin levels were determined in blood samples after at 08 hours of fasting. The healthy subjects were classified according to BMI: 32 Tepehuán and 30 Mestizo subjects were of normal weight (NW), and 28 Tepehuán and 38 Mestizo subjects were overweight or obese (OW/O). Both NW and OW/O Tepehuán subjects showed lower leptin concentrations than the comparable Mestizo subjects. Statistical analysis showed a negative Pearson's correlation (r = -0.5; P < 0.05) between BMI and leptin levels in NW Tepehuán subjects, but no significant correlation was found in other groups. The differences found in Tepehuán compared with Mestizo subjects might be explained by poor nutritional status, which leads to scarce adipose tissue and low levels of leptin synthesis. Leptin concentration and its relationship to BMI are associated with ethnicity.
USDA-ARS?s Scientific Manuscript database
OBJECTIVE: The effects of fructose and glucose consumption on plasma acylation stimulating protein (ASP), adiponectin, and leptin concentrations relative to energy intake, body weight, adiposity, circulating triglycerides, and insulin sensitivity were determined. DESIGN AND METHODS: Thirty two over...
Leptin Deficiency Promotes Central Sleep Apnea in Patients With Heart Failure
Cundrle, Ivan; Somers, Virend K.; Singh, Prachi; Johnson, Bruce D.; Scott, Christopher G.; van der Walt, Christelle
2014-01-01
Background: Leptin-deficient animals hyperventilate. Leptin expression by adipocytes is attenuated by atrial natriuretic peptide (ANP). Increased circulating natriuretic peptides (NPs) are associated with an increased risk of central sleep apnea (CSA). This study tested whether serum leptin concentration is inversely correlated to NP concentration and decreased in patients with heart failure (HF) and CSA. Methods: Subjects with HF (N = 29) were studied by measuring leptin, NPs, CO2 chemosensitivity (Δminute ventilation [V.e]/Δpartial pressure of end-tidal CO2 [Petco2]), and ventilatory efficiency (V.e/CO2 output [V.co2]) and were classified as CSA or no sleep-disordered breathing by polysomnography. CSA was defined as a central apnea-hypopnea index ≥ 15. The Student t test, Mann-Whitney U test, and logistic regression were used for analysis, and data were summarized as mean ± SD; P < .05 was considered significant. Results: Subjects with CSA had higher ANP and brain natriuretic peptide (BNP) concentrations (P < .05), ΔV.e/ΔPetco2 (2.39 ± 1.03 L/min/mm Hg vs 1.54 ± 0.35 L/min/mm Hg, P = .01), and V.e/V.co2 (43 ± 9 vs 34 ± 7, P < .01) and lower leptin concentrations (8 ± 10.7 ng/mL vs 17.1 ± 8.8 ng/mL, P < .01). Logistic regression analysis (adjusted for age, sex, and BMI) demonstrated leptin (OR = 0.07; 95% CI, 0.01-0.71; P = .04) and BNP (OR = 4.45; 95% CI, 1.1-17.9; P = .05) to be independently associated with CSA. Conclusions: In patients with HF and CSA, leptin concentration is low and is inversely related to NP concentration. Counterregulatory interactions of leptin and NP may be important in ventilatory control in HF. PMID:24030529
Tvarijonaviciute, A; Jaillardon, L; Cerón, J J; Siliart, B
2013-04-01
Hypothyroidism in dogs is accompanied by changes in intermediary metabolism including alterations in bodyweight (BW), insulin resistance, and lipid profile. In this study, changes in selected adipokines (adiponectin, leptin), butyrylcholinesterase (BChE), and acute phase proteins, including C-reactive protein, haptoglobin (Hp) and serum amyloid A (SAA), were studied in dogs with hypothyroidism under thyroxin therapy. Blood samples were collected when hypothyroidism was diagnosed (before treatment) and after treatment with thyroxin. Twenty-eight of 39 dogs exhibited a good therapeutic response (group A), whereas the remainder were considered to have been insufficiently treated (group B). Following treatment, group A dogs demonstrated a statistically significant decrease in canine thyroid stimulating hormone (c-TSH) (P<0.001) and an increase in free thyroxine (fT4) (P<0.001) concentrations, associated with a significant decrease in BW (P<0.05), leptin (P<0.01), and adiponectin, (P<0.001) and an increase in BChE (P<0.01) and Hp (P<0.05). Group B dogs showed no statistically significant changes in c-TSH, but had a significant increase in fT4 (P<0.001) accompanied by a significant decrease in adiponectin (P<0.05) of lower magnitude than group A. No significant changes in the mean circulating levels of APPs were observed in both groups, with the exception of an increase in Hp (P<0.05) in group A. In summary, the successful treatment of hypothyroidism reduces circulating levels of adiponectin and leptin, while increasing BChE activity in dogs. The mean increase in Hp values and decrease in SAA for some of the dogs after treatment warrants further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.
1997-01-01
The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128
McEwen, Hayden J. L.; Inglis, Megan A.; Quennell, Janette H.; Grattan, David R.
2016-01-01
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. PMID:27383590
McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M
2016-07-06
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. Copyright © 2016 the authors 0270-6474/16/367142-12$15.00/0.
Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun
2017-03-01
Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The role of Ad-36 as a risk factor in males with gynecomastia.
Kocazeybek, Bekir; Saribas, Suat; Ergin, Sevgi
2015-12-01
Gynecomastia is highly prevalent worldwide and Adenovirus-36 (Ad-36), recently implicated in increased adipose tissue deposition due to its affinity for adipose tissue, is a potential etiological agent in the development of obesity and therefore we hypothesized that Ad-36 may also play a role in the development of gynecomastia by possibly accompanying increased regional adiposity. To support our hypothesis, we conducted a study that included 33 adult males with gynecomastia (PG) and 15 adult males as the patient control group (HCG). Leptin and adiponectin levels were monitored using ELISA. A significant difference in Ad-36 antibody positivity was found between the groups (p<0.05). Average leptin levels were found to be higher, but average adiponectin levels were found to be lower in Ad-36 Ab(+) patient group. No Ad-36 DNA was detected in any tissue samples. In conclusion, we hypothesize that low-grade chronic inflammation, which was caused by Ad-36 infection, possibly caused an increase in circulating leptin. This in turn may have caused an increase in local or circulating estrogens and/or the estrogen/androgen ratio by stimulating the aromatase enzyme activity in adipose stromal cells and breast tissues. We suggest that gynecomastia may develop following an increase in aromatase enzyme activity, by which more oestrogen is produced and the estrogen-androgen balance disrupted. Also, regional adipose tissue enlargements may cause the excessive production of estrogens leading to gynecomastia. Adipose tissue has been recognized as a major endocrine organ in recent years. Another plausible explanation is excessive aromatization of androgens to estrogens by peripheral adipose tissue may promote gynecomastia in males. Moreover, our results suggest that there might be a relationship between Ad-36 and gynecomastia. Copyright © 2015 Elsevier Ltd. All rights reserved.
The impact of leptin on perinatal development and psychopathology.
Valleau, Jeanette C; Sullivan, Elinor L
2014-11-01
Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin's role and profile during development is examined in available human studies, and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where high leptin levels have been correlated with symptomatology. Schizophrenia is also associated with both low and high leptin levels. However, as anti-psychotics pharmacotherapy induces weight gain, which elevates leptin levels, drug-naïve populations are needed for further studies. Elevated circulating leptin is consistently found in childhood neurodevelopmental disorders including autism spectrum disorders and Rhett disorder. Further, studies on the impact of leptin and leptin resistance on psychopathology and neurodevelopmental disorders are important directions for future research. Studies examining the mechanisms by which exposure to maternal obesity and hyperleptinemia during fetal development impact brain development and behavior are critical for the health of future generations. Copyright © 2014 Elsevier B.V. All rights reserved.
Energy homeostasis in leptin deficient Lepob/ob mice.
Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A
2017-01-01
Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.
Depressive symptoms in patients with obstructive sleep apnea: biological mechanistic pathways.
Chirinos, Diana A; Gurubhagavatula, Indira; Broderick, Preston; Chirinos, Julio A; Teff, Karen; Wadden, Thomas; Maislin, Greg; Saif, Hassam; Chittams, Jesse; Cassidy, Caitlin; Hanlon, Alexandra L; Pack, Allan I
2017-12-01
This study examined the association between depressive symptoms, as well as depressive symptom dimensions, and three candidate biological pathways linking them to Obstructive sleep apnea (OSA): (1) inflammation; (2) circulating leptin; and (3) intermittent hypoxemia. Participants included 181 obese adults with moderate-to-severe OSA enrolled in the Cardiovascular Consequences of Sleep Apnea (COSA) trial. Depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II). We assessed inflammation using C-reactive protein levels (CRP), circulating leptin by radioimmunoassay using a double antibody/PEG assay, and intermittent hypoxemia by the percentage of sleep time each patient had below 90% oxyhemoglobin saturation. We found no significant associations between BDI-II total or cognitive scores and CRP, leptin, or percentage of sleep time below 90% oxyhemoglobin saturation after controlling for relevant confounding factors. Somatic symptoms, however, were positively associated with percentage of sleep time below 90% saturation (β = 0.202, P = 0.032), but not with CRP or circulating leptin in adjusted models. Another significant predictor of depressive symptoms included sleep efficiency (β BDI Total = -0.230, P = 0.003; β cognitive = -0.173, P = 0.030 (β somatic = -0.255, P = 0.001). In patients with moderate-to-severe OSA, intermittent hypoxia may play a role in somatic rather than cognitive or total depressive symptoms.
Chamberland, John P; Berman, Reena L; Aronis, Konstantinos N; Mantzoros, Christos S
2013-10-01
Chemerin is an adipocyte-secreted hormone and has recently been associated with obesity and the metabolic syndrome. Although studies in rodents have outlined the aspects of chemerin's function and expression, its physiology and expression patterns are still to be elucidated in humans. To evaluate for any day/night variation in chemerin secretion, we analyzed hourly serum samples from six females in the fed state. To examine whether energy deprivation affects chemerin levels, and whether this could be mediated through leptin, we analyzed samples from the same subjects in the fasting state while administering either placebo or leptin. To evaluate for any potential dose-effect relationship between leptin and chemerin, we administered increasing metreleptin doses to five females. A tissue array was used to study the expression of chemerin in different human tissues. Ex vivo treatment of human fat explants from three subjects with leptin was carried out to evaluate for any direct effect of leptin on adipocyte chemerin secretion. Chemerin does not display a day/night variation, while acute energy deprivation resulted in a significant drop in circulating chemerin levels by ∼42%. The latter was unaltered by metreleptin administration, and leptin administration did not affect the secretion of chemerin by human adipose tissue studied ex vivo. Chemerin was expressed primarily in the pancreas and liver. Chemerin receptor showed increased expression in the lymph nodes and the spleen. We outline for the first time chemerin expression and physiology in humans, which are different from those in mice.
Chamberland, John P.; Berman, Reena L.; Aronis, Konstantinos N.; Mantzoros, Christos S.
2013-01-01
Objective Chemerin is an adipocyte-secreted hormone, recently associated with obesity and the metabolic syndrome. Although studies in rodents have outlined aspects of chemerin’s function and expression, its physiology and expression patterns are still to be elucidated in humans. Methods To evaluate for any day/night variation in chemerin secretion we analyzed hourly serum samples from six females in the fed state. To examine whether energy deprivation affects chemerin levels, and whether this could be mediated through leptin, we analyzed samples from the same subjects in the fasting state while we were administering either placebo or leptin. To evaluate for any potential dose-effect relationship between leptin and chemerin, we administered increasing metreleptin doses to five females. A tissue array was utilized to study the expression of chemerin in different human tissues. Ex vivo treatment of human fat explants from 3 subjects with leptin was performed to evaluate for any direct effect of leptin on adipocyte chemerin secretion. Results Chemerin does not display a day/night variation, while acute energy deprivation resulted in a significant drop in circulating chemerin levels by ~42%. The latter was unaltered by metreleptin administration and leptin administration did not affect secretion of chemerin by human adipose tissue studied ex vivo. Chemerin was expressed primarily in the adrenal gland and liver. Chemerin receptor showed increased expression in lymph nodes and the spleen. Conclusions We outline for the first time chemerin expression and physiology in humans which is different from mice. PMID:23904282
Hill, Neil E; Fallowfield, Joanne L; Delves, Simon K; Ardley, Christian; Stacey, Michael; Ghatei, Mohammad; Bloom, Stephen R; Frost, Gary; Brett, Stephen J; Wilson, Duncan R; Murphy, Kevin G
2015-03-01
Understanding the mechanisms that drive weight loss in a lean population may elucidate systems that regulate normal energy homeostasis. This prospective study of British military volunteers investigated the effects of a 6-month deployment to Afghanistan on energy balance and circulating concentrations of specific appetite-regulating hormones. Measurements were obtained twice in the UK (during the Pre-deployment period) and once in Afghanistan, at Mid-deployment. Body mass, body composition, food intake, and appetite-regulatory hormones (leptin, active and total ghrelin, PYY, PP, GLP-1) were measured. Repeated measures analysis of 105 volunteers showed body mass decreased by 4.9% ± 3.7% (P < 0.0001) during the first half of the deployment. Leptin concentrations were significantly correlated with percentage body fat at each time point. The reduction in percentage body fat between Pre-deployment and Mid-deployment was 8.6%, with a corresponding 48% decrease in mean circulating leptin. Pre-deployment leptin and total and active ghrelin levels correlated with subsequent change in body mass; however. no changes were observed in the anorectic gut hormones GLP-1, PP, or PYY. These data suggest that changes in appetite-regulating hormones in front line military personnel occur in response to, but do not drive, reductions in body mass. © 2015 The Obesity Society.
The Impact of Leptin on Perinatal Development and Psychopathology
Valleau, Jeanette C.; Sullivan, Elinor L.
2014-01-01
Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin’s role and profile during development is examined in available human studies and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where both high and low leptin levels have been correlated with symptomatology. Schizophrenia is also associated with both low and high leptin levels. However, as antipsychotics pharmacotherapy induces weight gain, which elevates leptin levels, drug-naïve populations are needed for further studies. Elevated circulating leptin is consistently found in childhood neurodevelopmental disorders including Autism Spectrum Disorders and Rhett disorder. Further studies on the impact of leptin and leptin resistance on psychopathology and neurodevelopmental disorders are important directions for future research. Studies examining the mechanisms by which exposure to maternal obesity and hyperleptinemia during fetal development impact brain development and behavior are critical for the health of future generations. PMID:24862904
A new perspective on adiposity in a naturally obese mammal
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Noren, D. P.; Litz, B.; Ortiz, C. L.
2001-01-01
Many mammals seasonally reduce body fat due to inherent periods of fasting, which is associated with decreased leptin concentrations. However, no data exist on the correlation between fat mass (FM) and circulating leptin in marine mammals, which have evolved large fat stores as part of their adaptation to periods of prolonged fasting. Therefore, FM was estimated (by tritiated water dilution), and serum leptin and cortisol were measured in 40 northern elephant seal (Mirounga angustirostris) pups early (<1 wk postweaning) and late (6-8 wk postweaning) during their natural, postweaning fast. Body mass (BM) and FM were reduced late; however, percent FM (early: 43.9 +/- 0.5, late: 45.5 +/- 0.5%) and leptin [early: 2.9 +/- 0.1 ng/ml human equivalents (HE), late: 3.0 +/- 0.1 ng/ml HE] did not change. Cortisol increased between early (9.2 +/- 0.5 microg/dl) and late (16.3 +/- 0.9 microg/dl) periods and was significantly and negatively correlated with BM (r = 0.426; P < 0.0001) and FM (r = 0.328; P = 0.003). FM and percent FM were not correlated (P > 0.10) with leptin at either period. The present study suggests that these naturally obese mammals appear to possess a novel cascade for regulating body fat that includes cortisol. The lack of a correlation between leptin and FM may reflect the different functions of fat between terrestrial and marine mammals.
Circulating leptin moderates the effect of stress on snack intake independent of body mass.
Appelhans, Bradley M
2010-08-01
Prior studies have demonstrated influences of leptin on hunger and satiety, the processing of food reward, and taste and palatability perception. This pilot study tested whether leptin accounts for variability in stress-induced changes in snack intake, and explored potential mechanisms underlying this effect. Thirty-four normal weight and class I obese women were exposed to a 30-minute mental stressor and a non-stressful control task in counterbalanced order on consecutive days. Higher serum leptin concentrations predicted decreases in snack intake following the stressor relative to the control condition. Leptin was not a significant predictor of overall hunger or stress-induced changes in hunger, but was associated with greater perceived palatability of one of the four snacks. Overall, findings suggest that leptin may moderate the effect of stress on energy intake through non-homeostatic mechanisms. 2010 Elsevier Ltd. All rights reserved.
Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K
2015-10-01
Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during the transition period. These novel findings demonstrate that the transition from pregnancy to lactation is a stronger determinant of circulating gut hormone concentrations than dietary lipid in transition dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory
2005-07-01
Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.
Leptin–cytokine crosstalk in breast cancer
Newman, Gale; Gonzalez-Perez, Ruben Rene
2013-01-01
Despite accumulating evidence suggesting a positive correlation between leptin levels, obesity, post-menopause and breast cancer incidence, our current knowledge on the mechanisms involved in these relationships is still incomplete. Since the cloning of leptin in 1994 and its receptor (OB-R) 1 year later by Friedman’s laboratory (Zhang et al., 1994) and Tartaglia et al. (Tartaglia et al., 1995), respectively, more than 22,000 papers related to leptin functions in several biological systems have been published (Pubmed, 2012). The ob gene product, leptin, is an important circulating signal for the regulation of body weight. Additionally, leptin plays critical roles in the regulation of glucose homeostasis, reproduction, growth and the immune response. Supporting evidence for leptin roles in cancer has been shown in more than 1000 published papers, with almost 300 papers related to breast cancer (Pubmed, 2012). Specific leptin-induced signaling pathways are involved in the increased levels of inflammatory, mitogenic and pro-angiogenic factors in breast cancer. In obesity, a mild inflammatory condition, deregulated secretion of proinflammatory cytokines and adipokines such as IL-1, IL-6, TNF-α and leptin from adipose tissue, inflammatory and cancer cells could contribute to the onset and progression of cancer. We used an in silico software program, Pathway Studio 9, and found 4587 references citing these various interactions. Functional crosstalk between leptin, IL-1 and Notch signaling (NILCO) found in breast cancer cells could represent the integration of developmental, proinflammatory and pro-angiogenic signals critical for leptin-induced breast cancer cell proliferation/migration, tumor angiogenesis and breast cancer stem cells (BCSCs). Remarkably, the inhibition of leptin signaling via leptin peptide receptor antagonists (LPrAs) significantly reduced the establishment and growth of syngeneic, xenograft and carcinogen-induced breast cancer and, simultaneously decreased the levels of VEGF/VEGFR2, IL-1 and Notch. Inhibition of leptin–cytokine crosstalk might serve as a preventative or adjuvant measure to target breast cancer, particularly in obese women. This review is intended to present an update analysis of leptin actions in breast cancer, highlighting its crosstalk to inflammatory cytokines and growth fact ors essential for tumor development, angiogenesis and potential role in BCSC. PMID:23562747
Fetal metabolic influences of neonatal anthropometry and adiposity.
Donnelly, Jean M; Lindsay, Karen L; Walsh, Jennifer M; Horan, Mary; Molloy, Eleanor J; McAuliffe, Fionnuala M
2015-11-10
Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring. Data from the ROLO [Randomised COntrol Trial of LOw Glycaemic Index in Pregnancy] study were analysed in the ROLO Kids study. Neonatal anthropometric and skinfold measurements were compared with fetal leptin and C-peptide results from cord blood in 185 cases. Analyses were performed to examine the association between these metabolic factors and birthweight, anthropometry and markers of central and generalised adiposity. Fetal leptin was found to correlate with birthweight, general adiposity and multiple anthropometric measurements. On multiple regression analysis, fetal leptin remained significantly associated with adiposity, independent of gender, maternal BMI, gestational age or study group assignment, while fetal C-peptide was no longer significant. Fetal leptin may be an important predictor of regional neonatal adiposity. Interventional studies are required to assess the impact of neonatal adiposity on the subsequent risk of childhood obesity and to determine whether interventions which reduce circulating leptin levels have a role to play in improving neonatal adiposity measures.
Leptin: A Novel Therapeutic Strategy for Alzheimer's Disease
Tezapsidis, Nikolaos; Johnston, Jane M.; Smith, Mark A.; Ashford, J. Wesson; Casadesus, Gemma; Robakis, Nikolaos K.; Wolozin, Benjamin; Perry, George; Zhu, Xiongwei; Greco, Steven J.; Sarkar, Sraboni
2010-01-01
Adipocyte-derived leptin appears to regulate a number of features defining Alzheimer's disease (AD) at the molecular and physiological level. One activity of leptin is the control of AMP-dependent kinase (AMPK). In addition to maintaining lipid levels, AMPK regulates glycogen synthase kinase-3, which modulates tau phosphorylation. Leptin has been shown to reduce the amount of extracellular amyloid-β, both in cell culture and animal models of AD, as well as reduce tau phosphorylation in neuronal cells. Importantly, chronic administration of leptin resulted in a significant improvement in the cognitive performance of transgenic animal models of AD. In humans, weight loss often precedes the onset of dementia in AD and the level of circulating leptin is inversely proportional to the severity of dementia among AD patients. It is speculated that a deficiency in leptin levels or function may contribute to systemic and central nervous system abnormalities leading to AD, suggesting that a leptin replacement therapy may be beneficial for AD. This may be an attractive alternative to the drugs that are currently under development. PMID:19387109
Perakakis, Nikolaos; Upadhyay, Jagriti; Ghaly, Wael; Chen, Joyce; Chrysafi, Pavlina; Anastasilakis, Athanasios D; Mantzoros, Christos S
2018-05-09
We have previously demonstrated that the adipose tissue derived hormone leptin controls reproductive function by regulating the hypothalamic-pituitary-gonadal axis in response to energy deficiency. Here, we evaluate the activins-follistatins-inhibins (AFI) axis during acute (short-term fasting in healthy people) and chronic energy deficiency (women with hypothalamic amenorrhea due to strenuous exercise [HA]) and investigate their relation to leptin and reproductive function in healthy subjects and subjects with HA. The AFI axis was investigated in: a) A double-blinded study in healthy subjects having three randomly assigned admissions, each time for four days: in the isocaloric fed state, complete fasting with placebo treatment, complete fasting with leptin replacement, b) A case-control study comparing women with HA vs healthy controls, c) An open-label interventional study investigating leptin treatment in women with HA over a period of up to three months, d) A randomized interventional trial investigating leptin treatment vs placebo in women with HA for nine months. The circulating levels of activin A, activin B, follistatin and follistatin-like 3 change robustly in response to acute and chronic energy deficiency. Leptin replacement in acute energy deprivation does not affect the levels of these hormones suggesting an independent regulation by these two hormonal pathways. In chronic energy deficiency, leptin replacement restores only activin B levels, which are in turn associated with an increase in the number of dominant follicles. We demonstrate for the first time that the AFI axis is affected both by acute and chronic energy deficiency. Partial restoration of a component of the axis, i.e. activin B only, through leptin replacement is associated with improved reproductive function in women with HA. Copyright © 2018. Published by Elsevier Inc.
Kasai, Chika; Sugimoto, Kazushi; Moritani, Isao; Tanaka, Junichiro; Oya, Yumi; Inoue, Hidekazu; Tameda, Masahiko; Shiraki, Katsuya; Ito, Masaaki; Takei, Yoshiyuki; Takase, Kojiro
2016-10-04
Helicobacter pylori (H. pylori) infection and eradication therapy have been known to influence gastric ghrelin and leptin secretion, which may lead to weight gain. However, the exact relationship between plasma ghrelin/leptin levels and H. pylori infection has remained controversial. The aim of this study was to investigate plasma ghrelin and leptin levels in H. pylori-positive and -negative patients, to compare the two levels of the hormones before and after H. pylori eradication, and to examine the correlation between body mass index (BMI) and active ghrelin or leptin levels, as well as that between atrophic pattern and active ghrelin or leptin levels. Seventy-two H. pylori-positive patients who underwent upper gastrointestinal endoscopy, 46 diagnosed as having peptic ulcer and 26 as atrophic gastritis, were enrolled. Control samples were obtained from 15 healthy H. pylori-negative volunteers. The extent of atrophic change of the gastric mucosa was assessed endoscopically. Body weight was measured and blood was collected before and 12 weeks after H. pylori eradication therapy. Blood samples were taken between 8 and 10 AM after an overnight fast. Plasma ghrelin levels were significantly lower in H. pylori-positive patients than in H. pylori-negative patients. In particular, plasma active ghrelin levels were significantly lower in patients with gastritis compared with patients with peptic ulcer. Plasma ghrelin levels decreased after H. pylori eradication in both peptic ulcer and gastritis patients, while plasma leptin levels increased only in peptic ulcer patients. Plasma leptin levels and BMI were positively correlated, and active ghrelin levels and atrophic pattern were weakly negatively correlated in peptic ulcer patients. H. pylori infection and eradication therapy may affect circulating ghrelin/leptin levels. This finding suggests a relationship between gastric mucosal injury induced by H. pylori infection and changes in plasma ghrelin and leptin levels.
Nourshahi, Maryam; Hedayati, Mehdi; Ranjbar, Kamal
2012-01-10
The effect of leptin as stimulant angiogenic factor has been studied. But the association of leptin levels and exercise-induced angiogenesis has not been studied. Accordingly, the researchers investigated whether there were any differences in circulating serum VEGF, MMP-2 and MMP-9 among high and low resting leptin individuals at rest or in response to submaximal exercise. For this purpose the researchers defined two groups with high and low resting leptin levels. Fifteen subjects with high resting leptin (23.57±9.14ng/ml and Vo(2) max=29.46±3.62ml/kg.min) and fifteen subjects with low resting leptin level (1.04±0.49ng/ml and Vo(2) max=37.99±4.63ml/kgmin) exercised for 1h (1h) at 70% of Vo(2) max. Antecubital vein blood was collected at rest, immediately and 2h post exercise. Serum VEGF, MMP-2 and MMP-9 was measured by ELISA method. Results of the study showed that the resting serum levels of VEGF, MMP-2 and MMP-9 didn't have any correlation with basic levels of leptin. In low leptin group the levels of VEGF and MMP-2 in immediately post exercise decreased significantly, but in high leptin group, only VEGF decreased significantly. 2h post exercise; the VEGF level in the low resting leptin group was significantly lower than that of its basal level. Beside, MMP-2 in the high and low basic levels of leptin groups were significantly increased compared to that of immediately post exercise. But the amount of MMP-9 did not change significantly in response to exercise in two groups. There were not any differences in the changes of VEGF, MMP-2 and MMP-9 in response to exercise between two groups. Furthermore, resting leptin had a significant correlation with V0(2) max. The obtained results showed that the serum VEGF, MMP-2 and MMP-9 did not have any correlation with basic levels of leptin. In addition, it was concluded that levels of different resting leptin is ineffective on serum levels of VEGF, MMP-2 and MMP-9 at rest and in response to exercise in normal healthy subjects. Copyright © 2011 Elsevier B.V. All rights reserved.
Endocannabinoids selectively enhance sweet taste.
Yoshida, Ryusuke; Ohkuri, Tadahiro; Jyotaki, Masafumi; Yasuo, Toshiaki; Horio, Nao; Yasumatsu, Keiko; Sanematsu, Keisuke; Shigemura, Noriatsu; Yamamoto, Tsuneyuki; Margolskee, Robert F; Ninomiya, Yuzo
2010-01-12
Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.
The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin.
Francois, Fritz; Roper, Jatin; Joseph, Neal; Pei, Zhiheng; Chhada, Aditi; Shak, Joshua R; de Perez, Asalia Z Olivares; Perez-Perez, Guillermo I; Blaser, Martin J
2011-04-14
Appetite and energy expenditure are regulated in part by ghrelin and leptin produced in the gastric mucosa, which may be modified by H. pylori colonization. We prospectively evaluated the effect of H. pylori eradication on meal-associated changes in serum ghrelin and leptin levels, and body weight. Veterans referred for upper GI endoscopy were evaluated at baseline and ≥8 weeks after endoscopy, and H. pylori status and body weight were ascertained. During the first visit in all subjects, and during subsequent visits in the initially H. pylori-positive subjects and controls, blood was collected after an overnight fast and 1 h after a standard high protein meal, and levels of eight hormones determined. Of 92 enrolled subjects, 38 were H. pylori-negative, 44 H. pylori-positive, and 10 were indeterminate. Among 23 H. pylori-positive subjects who completed evaluation after treatment, 21 were eradicated, and 2 failed eradication. After a median of seven months following eradication, six hormones related to energy homeostasis showed no significant differences, but post-prandial acylated ghrelin levels were nearly six-fold higher than pre-eradication (p=0.005), and median integrated leptin levels also increased (20%) significantly (p<0.001). BMI significantly increased (5 ± 2%; p=0.008) over 18 months in the initially H. pylori-positive individuals, but was not significantly changed in those who were H. pylori-negative or indeterminant at baseline. Circulating meal-associated leptin and ghrelin levels and BMI changed significantly after H. pylori eradication, providing direct evidence that H. pylori colonization is involved in ghrelin and leptin regulation, with consequent effects on body morphometry. © 2011 Francois et al; licensee BioMed Central Ltd.
The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin
2011-01-01
Background Appetite and energy expenditure are regulated in part by ghrelin and leptin produced in the gastric mucosa, which may be modified by H. pylori colonization. We prospectively evaluated the effect of H. pylori eradication on meal-associated changes in serum ghrelin and leptin levels, and body weight. Methods Veterans referred for upper GI endoscopy were evaluated at baseline and ≥8 weeks after endoscopy, and H. pylori status and body weight were ascertained. During the first visit in all subjects, and during subsequent visits in the initially H. pylori-positive subjects and controls, blood was collected after an overnight fast and 1 h after a standard high protein meal, and levels of eight hormones determined. Results Of 92 enrolled subjects, 38 were H. pylori-negative, 44 H. pylori-positive, and 10 were indeterminate. Among 23 H. pylori-positive subjects who completed evaluation after treatment, 21 were eradicated, and 2 failed eradication. After a median of seven months following eradication, six hormones related to energy homeostasis showed no significant differences, but post-prandial acylated ghrelin levels were nearly six-fold higher than pre-eradication (p = 0.005), and median integrated leptin levels also increased (20%) significantly (p < 0.001). BMI significantly increased (5 ± 2%; p = 0.008) over 18 months in the initially H. pylori-positive individuals, but was not significantly changed in those who were H. pylori-negative or indeterminant at baseline. Conclusions Circulating meal-associated leptin and ghrelin levels and BMI changed significantly after H. pylori eradication, providing direct evidence that H. pylori colonization is involved in ghrelin and leptin regulation, with consequent effects on body morphometry. PMID:21489301
Long-term persistence of hormonal adaptations to weight loss.
Sumithran, Priya; Prendergast, Luke A; Delbridge, Elizabeth; Purcell, Katrina; Shulkes, Arthur; Kriketos, Adamandia; Proietto, Joseph
2011-10-27
After weight loss, changes in the circulating levels of several peripheral hormones involved in the homeostatic regulation of body weight occur. Whether these changes are transient or persist over time may be important for an understanding of the reasons behind the high rate of weight regain after diet-induced weight loss. We enrolled 50 overweight or obese patients without diabetes in a 10-week weight-loss program for which a very-low-energy diet was prescribed. At baseline (before weight loss), at 10 weeks (after program completion), and at 62 weeks, we examined circulating levels of leptin, ghrelin, peptide YY, gastric inhibitory polypeptide, glucagon-like peptide 1, amylin, pancreatic polypeptide, cholecystokinin, and insulin and subjective ratings of appetite. Weight loss (mean [±SE], 13.5±0.5 kg) led to significant reductions in levels of leptin, peptide YY, cholecystokinin, insulin (P<0.001 for all comparisons), and amylin (P=0.002) and to increases in levels of ghrelin (P<0.001), gastric inhibitory polypeptide (P=0.004), and pancreatic polypeptide (P=0.008). There was also a significant increase in subjective appetite (P<0.001). One year after the initial weight loss, there were still significant differences from baseline in the mean levels of leptin (P<0.001), peptide YY (P<0.001), cholecystokinin (P=0.04), insulin (P=0.01), ghrelin (P<0.001), gastric inhibitory polypeptide (P<0.001), and pancreatic polypeptide (P=0.002), as well as hunger (P<0.001). One year after initial weight reduction, levels of the circulating mediators of appetite that encourage weight regain after diet-induced weight loss do not revert to the levels recorded before weight loss. Long-term strategies to counteract this change may be needed to prevent obesity relapse. (Funded by the National Health and Medical Research Council and others; ClinicalTrials.gov number, NCT00870259.).
2012-01-01
Introduction The current markers of disease activity in Takayasu arteritis (TA) are insufficient for proper assessment. We investigated circulating levels of unacylated and acylated ghrelin, leptin and adiponectin and their relationships with disease activity in patients with TA. Methods This study included 31 patients with TA and 32 sex-, age- and body mass index-matched healthy controls. Disease activity was assessed in TA patients using various tools, including Kerr's criteria, disease extent index-Takayasu, physician's global assessment, radiological parameters, and laboratory markers. Plasma unacylated and acylated ghrelin, and serum leptin and adiponectin levels were measured using an enzyme-linked immunosorbent assay. Results Unacylated and acylated ghrelin levels were found to be significantly lower in TA patients than that in healthy controls. Patients with active disease had lower unacylated ghrelin levels than those with inactive disease and had lower acylated ghrelin levels than healthy controls. Ghrelin levels were negatively correlated with various parameters of disease activity. The leptin/ghrelin ratio was significantly higher in TA patients than controls. It was positively correlated with disease activity. There was a positive correlation between unacylated and acylated ghrelin and a negative correlation between leptin and ghrelin. There was no statistical difference in adiponectin levels between TA patients and controls. The radiological activity markers were positively correlated with other parameters of disease activity. Conclusions This study suggests that plasma unacylated and acylated ghrelin levels may be useful in monitoring disease activity and planning treatment strategies for patients with TA. The serum leptin level and leptin/ghrelin ratio may also be used to help assess the disease activity. PMID:23259466
Llanos, Adana Am; Krok, Jessica L; Peng, Juan; Pennell, Michael L; Olivo-Marston, Susan; Vitolins, Mara Z; Degraffinreid, Cecilia R; Paskett, Electra D
2014-01-01
The most effective dietary pattern for breast cancer prevention has been greatly debated in recent years. Studies have examined hypocaloric diets, with particular emphasis on macronutrient composition, yielding inconclusive data. The objective of this study was to examine the effects of calorie-restricted low-fat and low-carbohydrate diets (LFD and LCD, respectively) on circulating adipokines among overweight and obese premenopausal women. Seventy-nine overweight and obese premenopausal women were randomized to either LFD or LCD, with increased physical activity, for 52 weeks. Serum adiponectin, leptin and the adiponectin-to-leptin ratio (A/L) were measured at baseline, and at weeks 34 and 52 to assess intervention effects. While there were no significant changes in serum adiponectin concentrations following the LCD and LFD interventions, leptin concentrations significantly decreased by week 34 of the intervention period (LCD: 35.3%, P = 0.004; LFD: 30.0%, P = 0.01), with no difference by intervention arm. At week 52, these reductions were statistically non-significant, indicating a return to baseline levels by the end of the intervention. While there were non-significant increases in the A/L ratio following the LCD and LFD intervention arms, the overall trend, across groups, was marginally significant (P = 0.05) with increases of 16.2% and 35.1% at weeks 34 and 52, respectively. These findings suggest that caloric-restricted LCD and LFD dietary patterns favorably modify leptin and possibly the A/L ratio, and lend support to the hypothesis that these interventions may be effective for obesity-related breast cancer prevention through their effects on biomarkers involved in metabolic pathways. NCT01559194.
Personality traits and leptin.
Sutin, Angelina R; Zonderman, Alan B; Uda, Manuela; Deiana, Barbara; Taub, Dennis D; Longo, Dan L; Ferrucci, Luigi; Schlessinger, David; Cucca, Francesco; Terracciano, Antonio
2013-06-01
Personality traits related to high neuroticism and low conscientiousness are consistently associated with obesity. Hormones implicated in appetite and metabolism, such as leptin, may also be related to personality and may contribute to the association between these traits and obesity. The present research examined the association between leptin and Five Factor Model personality traits. A total of 5214 participants (58% women; mean [standard deviation] age = 44.42 [15.93] years; range, 18-94 years) from the SardiNIA project completed the Revised NEO Personality Inventory, a comprehensive measure of personality traits, and their blood samples were assayed for leptin. As expected, lower conscientiousness was associated with higher circulating levels of leptin (r = -0.05, p < .001), even after controlling for body mass index, waist circumference, or inflammatory markers (r = -0.05, p < .001). Neuroticism, in contrast, was unrelated to leptin (r = 0.01, p = .31). Individuals who are impulsive and lack discipline (low conscientiousness) may develop leptin resistance, which could be one factor that contributes to obesity, whereas the relation between a proneness to anxiety and depression (high neuroticism) and obesity may be mediated through other physiological and/or behavioral pathways.
Leptin regulates dopamine responses to sustained stress in humans.
Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar
2012-10-31
Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.
Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A.; Viveros, Maria-Paz
2015-01-01
Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238
Thyroid and sympathetic influences on plasma leptin in hypothyroidism and hyperthyroidism.
Pinkney, J H; Goodrick, S J; Katz, J R; Johnson, A B; Lightman, S L; Coppack, S W; Medbak, S; Mohamed-Ali, V
2000-06-01
To determine the dependence of plasma leptin concentrations upon circulating noradrenaline (NA) and thyroid hormones (TH) in humans. Cross-sectional study in 40 newly diagnosed untreated patients with primary thyroid disease, and 69 lean and obese euthyroid control subjects. Plasma leptin, NA, free T3 (fT3) and TSH in the fasting state. Anthropometry and % body fat (electrical bioimpedance). Leptin levels were highest in 37 obese euthyroid and 22 hypothyroid (median [interquartiles]31.5 [19.0- 48.0], 19.2 [11.5-31.5] ng ml(-1)), and lowest in 32 lean euthyroid and 18 hyperthyroid subjects (6.6 [3.9-14.4], 8.9 [5.5-11.1]; ANOVA, P< 0.0001). Plasma NA was similar in all groups (P= n.s.). In obese controls, TSH correlated with % body fat and leptin (r= 0.67, r= 0.61; P< 0.001). Treatment of hypothyroidism (n= 10) with T4 reduced leptin from 20.8 [11.8-31.6] to 12.9[4.6-21.2] (P= 0.005) with no change in BMI. Thyroid status modifies leptin secretion independently of adiposity and NA. The data suggest leptin-thyroid interactions at hypothalamic and adipocyte level.
Regulation of metabolism and body fat mass by leptin.
Baile, C A; Della-Fera, M A; Martin, R J
2000-01-01
The relative stability of body weight over the long term and under a variety of environmental conditions that alter short-term energy intake and expenditure provides strong evidence for the regulation of body energy content. The lipostatic theory of energy balance regulation proposed 40 years ago that circulating factors, generated in proportion to body fat stores, acted as signals to the brain, eliciting changes in energy intake and expenditure. The discovery of leptin and its receptors has now provided a molecular basis for this theory. Leptin functions as much more than an adipocyte-derived signal of lipid stores, however. Although suppression of food intake is an important centrally mediated effect of leptin, considerable evidence indicates that leptin also functions both directly and indirectly, via the brain, to orchestrate complex metabolic changes in a number of organs and tissues, altering nutrient flux to favor energy expenditure over energy storage.
Foo, Joo-Pin; Polyzos, Stergios A; Anastasilakis, Athanasios D; Chou, Sharon; Mantzoros, Christos S
2014-11-01
Recombinant leptin (metreleptin) treatment restores bone mineral density in women with hypothalamic amenorrhea (HA), a condition characterized by hypoleptinemia, which has adverse impact on bone health. The objective of the study was to investigate how metreleptin exerts its positive effect on bone metabolism in humans. This was a randomized, double-blinded, placebo-controlled study. The study was conducted at Beth Israel Deaconess Medical Center (Boston, Massachusetts). Women (n = 18) with HA and hypoleptinemia for at least 6 months were randomized to receive either metreleptin or placebo for 36 weeks. Serum samples were obtained at baseline and 12, 24, and 36 weeks of treatment. Circulating levels of leptin, intact PTH (iPTH), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), sclerostin, dickkopf-1, and fibroblast growth factor-23. Metreleptin administration significantly increased leptin levels throughout the treatment period (P = .001). iPTH decreased over the 36 weeks of treatment (P = .01). There was a trend toward a decrease in serum RANKL and increase in serum OPG in the metreleptin-treated group. The RANKL to OPG ratio was significantly decreased within the metreleptin (P = .04) but not the placebo group. Metreleptin had no effect on serum sclerostin, dickkopf-1, and fibroblast growth factor-23. Metreleptin treatment over 36 weeks decreases iPTH and RANKL to OPG ratio levels in hypoleptinemic women with HA.
Blüher, Matthias; Mantzoros, Christos S
2015-01-01
This year marks the 20th anniversary of the discovery of leptin, which has tremendously stimulated translational obesity research. The discovery of leptin has led to realizations that have established adipose tissue as an endocrine organ, secreting bioactive molecules including hormones now termed adipokines. Through adipokines, the adipose tissue influences the regulation of several important physiological functions including but not limited to appetite, satiety, energy expenditure, activity, insulin sensitivity and secretion, glucose and lipid metabolism, fat distribution, endothelial function, hemostasis, blood pressure, neuroendocrine regulation, and function of the immune system. Adipokines have a great potential for clinical use as potential therapeutics for obesity, obesity related metabolic, cardiovascular and other diseases. After 20 years of intense research efforts, recombinant leptin and the leptin analog metreleptin are already available for the treatment of congenital leptin deficiency and lipodystrophy. Other adipokines are also emerging as promising candidates for urgently needed novel pharmacological treatment strategies not only in obesity but also other disease states associated with and influenced by adipose tissue size and activity. In addition, prediction of reduced type 2 diabetes risk by high circulating adiponectin concentrations suggests that adipokines have the potential to be used as biomarkers for individual treatment success and disease progression, to monitor clinical responses and to identify non-responders to anti-obesity interventions. With the growing number of adipokines there is an increasing need to define their function, molecular targets and translational potential for the treatment of obesity and other diseases. In this review we present research data on adipose tissue secreted hormones, the discovery of which followed the discovery of leptin 20 years ago pointing to future research directions to unravel mechanisms of action for adipokines. Copyright © 2015 Elsevier Inc. All rights reserved.
Microarray profiling of human white adipose tissue after exogenous leptin injection.
Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M
2006-03-01
Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.
Leptin resistance and diet-induced obesity: central and peripheral actions of leptin.
Sáinz, Neira; Barrenetxe, Jaione; Moreno-Aliaga, María J; Martínez, José Alfredo
2015-01-01
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Lindahl, Magnus S; Olovsson, Matts; Nyberg, Sigrid; Thorsen, Kim; Olsson, Tommy; Sundström Poromaa, Inger
2007-01-01
To assess the hypothalamic-pituitary-adrenal (HPA) axis at all levels, to determine the origin of the previously reported hypercortisolism in patients with functional hypothalamic amenorrhea. A secondary aim was to evaluate factors outside the central nervous system which are known to affect the HPA axis, i.e., circulating levels of interleukin-6 (IL-6), interleukin-1 receptor antagonist (IL-1Ra), and fat mass-adjusted leptin levels, in patients with functional hypothalamic amenorrhea and healthy controls. Cross-sectional study. Umeå University Hospital, Umeå, Sweden. Fifteen subjects with hypothalamic amenorrhea, and 14 age- and weight-matched controls. None. We collected blood samples four times during a 24-hour interval for analysis of cortisol, leptin, IL-1Ra, and IL-6 levels. We performed a low-dose oral dexamethasone test and a low-dose ACTH test. We measured body-fat percentage using a dual-energy X-ray absorptiometer. Patients with hypothalamic amenorrhea had increased diurnal cortisol levels (P<.001). The cortisol response to intravenous low-dose ACTH was increased in functional hypothalamic amenorrhea patients compared to control subjects (P<.01), but they had similar rates of dexamethasone suppression. Patients with hypothalamic amenorrhea also had decreased diurnal leptin (P<.05), and decreased diurnal IL-1Ra levels (P<.05), compared to controls. Body-fat percentage was the main predictor of leptin levels. The present study suggests novel links for the development of functional hypothalamic amenorrhea, including increased adrenal responsiveness and impairments in proinflammatory cytokine pathways.
Dubins, Jeffrey S; Sanchez-Alavez, Manuel; Zhukov, Victor; Sanchez-Gonzalez, Alejandro; Moroncini, Gianluca; Carvajal-Gonzalez, Santos; Hadcock, John R; Bartfai, Tamas; Conti, Bruno
2012-10-01
The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15°C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916±952 pg/mL vs. 23474±1507 pg/mL, P<.01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Leptin promotes wound healing in the oral mucosa.
Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito
2014-01-01
Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.
Haleem, Darakhshan Jabeen; Sheikh, Shehnaz; Fawad, Asher; Haleem, Muhammad A
2017-06-01
A large number of diabetes patients suffer from major depression and are at high risk of mortality. In view of a role of leptin in diabetes, depression and energy homeostasis, the present study concerns circulating levels of leptin in different BMI groups of un-depressed and depressed diabetes patients. Six hundred thirty male and female patients with a primary diagnosis of diabetes were grouped according to BMI and with or without clinical symptoms of depression. Age matched healthy, normal weight male and female volunteers without clinical symptoms of depression or diabetes were taken as controls. Blood samples were obtained after an overnight fast of 12 h. Serum was stored for the determination of leptin and glucose. We found that there were more female than male diabetes patients with comorbid depression. Fasting leptin was higher in normal weight non-diabetes women than men; but comparable in normal weight men and women diabetes patients. Fasting glucose levels were higher in diabetes than non diabetes groups; values were comparable in men and women. Depression was associated with a decrease and increase in leptin respectively in normal-overweight and obese men and women diabetes patients. Glucose levels were also higher in obese depressed than un-depressed diabetes patients. The results suggested that the female gender is at greater risk to comorbid diabetes with depression. Adipo-insular axis plays an important role in diabetes, associated depression and in the greater risk of the female gender to comorbid diabetes with depression.
2013-01-01
BACKGROUND Although pregnancies associated with hyperinsulinemia and altered placental angiogenic and inflammatory factors are at increased risk for developing preeclampsia, the effects of euglycemic hyperinsulinemia on placental factors and blood pressure regulation during pregnancy are unclear. We hypothesized that chronic hyperinsulinemia results in increased placental soluble fms-like tyrosine kinase 1(sFlt-1) and tumor necrosis factor α (TNF- α) levels and hypertension in pregnant rats. METHODS On gestational day (GD) 14, Sprague-Dawley rats were assigned as normal pregnant or pregnant + insulin. Insulin was infused subcutaneously by osmotic minipump for 5 days at a dose of 1.5 mU/kg/min. Those rats receiving insulin were supplemented with 20% glucose in drinking water to maintain euglycemia. On GD 19, mean arterial pressure (MAP) and heart rate (HR) were assessed in conscious rats by indwelling carotid catheters, followed by collections of blood, placentas, and fetuses. In addition to pl acental sFlt-1 and TNF-α levels, circulating insulin, glucose, leptin, cholesterol, triglyceride, and free fatty acid concentrations were measured. RESULTS MAP was higher in pregnant + insulin vs. normal pregnant rats; however, HR was similar between groups. Although litter size and placental weight were comparable, fetuses from pregnant + insulin rats were heavier. Importantly, circulating insulin concentration was elevated in the pregnant + insulin group, with no change in glucose level. Moreover, circulating leptin, cholesterol, triglyceride, and free fatty acid concentrations were increased in the pregnant + insulin group. There were no differences in placental sFlt-1 and TNF-α concentrations between groups. CONCLUSIONS In summary, sustained euglycemic hyperinsulinemia, comparable with insulin levels in preeclamptic women, can raise blood pressure in pregnancy independent of recognized placental factors associated with preeclampsia. PMID:23955606
Huang, Wan-Yu; Chang, Chia-Chu; Chen, Dar-Ren; Kor, Chew-Teng; Chen, Ting-Yu; Wu, Hung-Ming
2017-01-01
Hot flashes have been postulated to be linked to the development of metabolic disorders. This study aimed to evaluate the relationship between hot flashes, adipocyte-derived hormones, and insulin resistance in healthy, non-obese postmenopausal women. In this cross-sectional study, a total of 151 women aged 45-60 years were stratified into one of three groups according to hot-flash status over the past three months: never experienced hot flashes (Group N), mild-to-moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, fasting levels of circulating glucose, lipid profiles, plasma insulin, and adipocyte-derived hormones. Multiple linear regression analysis was used to evaluate the associations of hot flashes with adipocyte-derived hormones, and with insulin resistance. The study was performed in a hospital medical center. The mean (standard deviation) of body-mass index was 22.8(2.7) for Group N, 22.6(2.6) for Group M, and 23.5(2.4) for Group S, respectively. Women in Group S displayed statistically significantly higher levels of leptin, fasting glucose, and insulin, and lower levels of adiponectin than those in Groups M and N. Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with higher leptin levels, lower adiponectin levels, and higher leptin-to-adiponectin ratio. Univariate linear regression analysis revealed that hot-flash severity was strongly associated with a higher HOMA-IR index (% difference, 58.03%; 95% confidence interval, 31.00-90.64; p < 0.001). The association between hot flashes and HOMA-IR index was attenuated after adjusting for leptin or adiponectin and was no longer significant after simultaneously adjusting for leptin and adiponectin. The present study provides evidence that hot flashes are associated with insulin resistance in postmenopausal women. It further suggests that hot flash association with insulin resistance is dependent on the combination of leptin and adiponectin variables.
Neonatal immune challenge does not affect body weight regulation in rats.
Spencer, Sarah J; Mouihate, Abdeslam; Galic, Michael A; Ellis, Shaun L; Pittman, Quentin J
2007-08-01
The perinatal environment plays a crucial role in programming many aspects of adult physiology. Myriad stressors during pregnancy, from maternal immune challenge to nutritional deficiency, can alter long-term body weight set points of the offspring. In light of the increasing concern over body weight issues, such as obesity and anorexia, in modern societies and accumulating evidence that developmental stressors have long-lasting effects on other aspects of physiology (e.g., fever, pain), we explored the role of immune system activation during neonatal development and its impact on body weight regulation in adulthood. Here we present a thorough evaluation of the effects of immune system activation (LPS, 100 microg/kg ip) at postnatal days 3, 7, or 14 on long-term body weight, adiposity, and body weight regulation after a further LPS injection (50 microg/kg ip) or fasting and basal and LPS-induced circulating levels of the appetite-regulating proinflammatory cytokine leptin. We show that neonatal exposure to LPS at various times during the neonatal period has no long-term effects on growth, body weight, or adiposity. We also observed no effects on body weight regulation in response to a short fasting period or a further exposure to LPS. Despite reductions in circulating leptin levels in response to LPS during the neonatal period, no long-term effects on leptin were seen. These results convincingly demonstrate that adult body weight and weight regulation are, unlike many other aspects of adult physiology, resistant to programming by a febrile-dose neonatal immune challenge.
A physiological role of breast milk leptin in body weight control in developing infants.
Miralles, Olga; Sánchez, Juana; Palou, Andreu; Picó, Catalina
2006-08-01
Leptin, a hormone that regulates food intake and energy metabolism, is present in breast milk. The aim of this study was to determine whether milk leptin concentration is correlated with maternal circulating leptin and BMI and with body weight gain of infants. A group of 28 non-obese women (BMI between 16.3 and 27.3 kg/m(2)) who breast-fed their infants for at least 6 months and their infants were studied. Venous blood and milk samples were obtained from mothers at 1, 3, 6, and 9 months of lactation, and leptin concentration was determined. Infant body weight and height were followed until 2 years of age. During the whole lactation period, milk leptin concentration correlated positively with maternal plasma leptin concentration and with maternal BMI. In addition, milk leptin concentration at 1 month of lactation was negatively correlated with infant BMI at 18 and 24 months of age. A better negative correlation was also found between log milk leptin concentration at 1 and at 3 months of lactation and infant BMI from 12 to 24 months of age. We concluded that, in a group of non-obese mothers, infant body weight during the first 2 years may be influenced by milk leptin concentration during the first stages of lactation. Thus, moderate milk-borne maternal leptin appears to provide moderate protection to infants from an excess of weight gain. These results seem to point out that milk leptin is an important factor that could explain, at least partially, the major risk of obesity of formula-fed infants with respect to breast-fed infants.
Weight homeostasis & its modulators in hyperthyroidism before & after treatment with carbimazole.
Dutta, Pinaki; Bhansali, Anil; Walia, Rama; Khandelwal, Niranjan; Das, Sambit; Masoodi, Shariq Rashid
2012-08-01
Hyperthyroidism is associated with increased food intake, energy expenditure and altered body composition. This study was aimed to evaluate the role of adipocytokines in weight homeostasis in patients with hyperthyroidism. Patients (n=27, 11men) with hyperthyroidism (20 Graves' disease, 7 toxic multinodular goiter) with mean age of 31.3±4.2 yr and 28 healthy age and body mass index (BMI) matched controls were studied. They underwent assessment of lean body mass (LBM) and total body fat (TBF) by dual energy X-ray absorptiometer (DXA) and blood sample was taken in the fasting state for measurement of leptin, adiponectin, ghrelin, insulin, glucose and lipids. Patients were re-evaluated after 3 months of treatment as by that time all of them achieved euthyroid state with carbimazole therapy. The LBM was higher (P<0.001) in healthy controls as compared to hyperthyroid patients even after adjustment for body weight (BW), whereas total body fat was comparable between the two groups. Serum leptin levels were higher in patients with hyperthyroidism than controls (22.3±3.7 and 4.1±0.34 ng/ml, P<0.001), whereas adiponectin levels were comparable. Plasma acylated ghrelin was higher in patients than in controls (209.8±13.3 vs 106.2±8.2 pg/ml, P<0.05). Achievement of euthyroidism was associated with significant weight gain (P<0.001) and significant increase in lean body mass (P<0.001). The total body fat also increased but insignificantly from 18.4±1.8 to 19.9±1.8 kg. There was significant decrease (P<0.05) in serum leptin and acylated ghrelin but adiponectin levels remained unaltered after treatment. Serum leptin positively correlated with TBF and this correlation persisted even after adjustment for BW, BMI, gender and age (r=0.62, P=0.001). However, serum leptin and acylated ghrelin did not correlate with the presence or absence of hyperphagia. Patients with hyperthyroidism predominantly had decreased lean body mass which increased after achievement of euthyroidism with carbimazole. The hyperphagia and the alterations in weight homeostasis associated with hyperthyroidism were independent of circulating leptin and ghrelin levels.
Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor–Deficient Mice
McGee-Lawrence, Meghan E.; Wenger, Karl H.; Misra, Sudipta; Davis, Catherine L.; Pollock, Norman K.; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M.; Hamrick, Mark W.; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P.; Cutler, Roy G.; Yu, Jack C.
2017-01-01
Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor–deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes. PMID:28323991
Yarrow, Joshua F.; Toklu, Hale Z.; Balaez, Alex; Phillips, Ean G.; Otzel, Dana M.; Chen, Cong; Wronski, Thomas J.; Aguirre, J. Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J.
2016-01-01
Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12 weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8 weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23–34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that “westernized” HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. PMID:26855373
Yarrow, Joshua F; Toklu, Hale Z; Balaez, Alex; Phillips, Ean G; Otzel, Dana M; Chen, Cong; Wronski, Thomas J; Aguirre, J Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J
2016-04-01
Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. Published by Elsevier Inc.
Serum leptin is correlated to high turnover in osteoporosis.
Hipmair, Gunter; Böhler, Nikolaus; Maschek, Wilma; Soriguer, Federico; Rojo-Martínez, Gemma; Schimetta, Wolfgang; Pichler, Robert
2010-01-01
Clinical data have suggested that obesity protects against osteoporosis. Leptin, mainly secreted by white adipose tissue, might be involved by mediating an effect on bone metabolism. This study was conducted to investigate a possible relationship of leptin and bone turn-over in postmenopausal women with osteoporosis. We measured bone mineral density (BMD), serum leptin levels and markers of bone metabolism, including osteocalcin and cross-laps in 44 patients with osteoporosis. The main group consisted of 32 postmenopausal women. Mean serum leptin was 13.1 microg/L and showed no statistically significant difference to the levels measured in a collective of normal persons adjusted for age and BMI. When related to serum cross-laps as markers of bone resorption, a positive correlation (p<0.05) was observed, whereas no correlation with osteocalcin could be seen. A dual control of bone formation by leptin is assumed: This involves local mechanisms acting on osteoblasts and a central inhibitory effect on bone metabolism via a hypothalamic relay. Our data indicate that the net effect of circulating leptin may cause bone loss and is significantly related to high-turnover serum bone markers, at least in postmenopausal women with osteoporosis.
Holsen, Laura M.; Jackson, Benita
2017-01-01
Objective The role of leptin in mesolimbic signaling non-food-related reward has been well established at the pre-clinical level, yet studies in humans are lacking. The present investigation explored the association between hedonic capacity and leptin dynamics, and whether this association differed by BMI class. Methods In this cross-sectional study of 75 women (42 with lean BMIs, 33 with obese BMIs), we measured serum leptin before/after meal consumption. Reward capacity was assessed using the Snaith-Hamilton Pleasure Scale (SHAPS). Multiple regression tested whether reward capacity was associated with leptin AUC, with an interaction term to test differences between lean (LN) and obese (OB) groups. Results The interaction of SHAPS by BMI group was robust (β=−.40, p=.005); among women with obesity, greater SHAPS score was associated with lower leptin AUC (β=−.35, p=.002, adjusted R-squared=.66). Among the lean group, the association was not statistically significant (β=−.16, p=.252, adjusted R-squared=.22). Findings were above and beyond BMI and age. Conclusions In this sample a robust, negative association between reward capacity and circulating leptin was stronger in women with obesity compared to lean counterparts. These findings suggest that despite likely leptin resistance, inhibitory leptin functioning related to non-food reward may be spared in women with obesity. PMID:28722317
Higher Circulating Leukocytes in Women with PCOS is Reversed by Aerobic Exercise
Covington, Jeffrey D.; Tam, Charmaine S.; Pasarica, Magdalena; Redman, Leanne M.
2014-01-01
Polycystic ovary syndrome (PCOS) is characterized by insulin resistance, elevated circulating leukocytes, and hypothesized to have higher adipose tissue inflammation. Aerobic exercise reduces circulating leukocytes and improves insulin sensitivity in obese individuals, but the effect of exercise on inflammation in PCOS is not known. We investigated circulating leukocytes, insulin sensitivity by euglycemic-hyperinsulinemic clamp, serum pro- and anti-inflammatory markers (hsCRP, TNF-α, total and high molecular weight adiponectin), and abdominal subcutaneous adipose tissue (SAT) gene expression of proinflammatory markers in 8 PCOS women and 8 obese control females matched for BMI. Additionally, in a prospective study, the 8 women with PCOS underwent a 16-week aerobic exercise regimen with the same measures performed post-intervention. Compared to controls, white blood cell counts (WBC) were 30% higher (p = 0.04) and circulating total adiponectin levels were 150% lower (p = 0.03) in women with PCOS at baseline/pre-exercise conditions. SAT gene expression of macrophage migration inhibitory factor (MIF, p < 0.01) and interleukin-6 (IL-6, p < 0.05) were also lower in women with PCOS. In response to 16 weeks of aerobic exercise, insulin sensitivity improved (p < 0.01) and WBC counts decreased (p = 0.02). The exercise-induced change in WBC and circulating neutrophils correlated inversely with changes in glucose disposal rate (r= -0.73, p=0.03; and r= -0.82, p=0.01, respectively). Aerobic exercise reduced serum leptin (p < 0.05) after 4 weeks, trended to reduce the ratio of leptin-to-high molecular weight adiponectin (p < 0.1) by the 8th week, and significantly increased serum dehydroepiandrosterone sulfate (DHEA-S, p < 0.001) after 16 weeks. In conclusion, women with PCOS have higher circulating leukocytes compared to controls, which can be reversed by aerobic exercise and is associated with improvements in insulin sensitivity. PMID:25446648
Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats.
Alzamendi, Ana; Giovambattista, Andrés; Raschia, Agustina; Madrid, Viviana; Gaillard, Rolf C; Rebolledo, Oscar; Gagliardino, Juan J; Spinedi, Eduardo
2009-04-01
We have currently studied the changes induced by administration of a fructose-rich diet (FRD) to normal rats in the mass and the endocrine function of abdominal (omental) adipose tissue (AAT). Rats were fed ad libitum a standard commercial chow and tap water, either alone (control diet, CD) or containing fructose (10%, w/vol) (FRD). Three weeks after treatment, circulating metabolic markers and leptin release from adipocytes of AAT were measured. Plasma free fatty acids (FFAs), leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in FRD than in CD rats. AAT mass was greater in FRD than in CD rats and their adipocytes were larger, they secreted more leptin and showed impaired insulin sensitivity. While leptin mRNA expression increased in AAT from FRD rats, gene expression of insulin receptor substrate, IRS1 and IRS2 was significantly reduced. Our study demonstrates that administration of a FRD significantly affects insulin sensitivity and several AAT endocrine/metabolic functions. These alterations could be part of a network of interacting abnormalities triggered by FRD-induced oxidative stress at the AAT level. In view of the impaired glucose tolerance observed in FRD rats, these alterations could play a key role in both the development of metabolic syndrome (MS) and beta-cell failure.
Cooper, JA; Watras, AC; Paton, CM; Wegner, FH; Adams, AK; Schoeller, DA
2014-01-01
Objective To compare the effects of both dietary fatty acid composition and exercise vs. sedentary conditions on circulating levels of hunger and satiety hormones. Eight healthy males were randomized in a 2×2 crossover design. The four treatments were 3 days of HF diets (50% of energy) containing high saturated fat (22% of energy) with exercise (SE) or sedentary (SS) conditions, and high monounsaturated fat (30% of energy) with exercise (UE) or sedentary (US) conditions. Cycling exercise was completed at 45% of VO2max for 2h daily. On the third HF day, 20 blood specimens were drawn over a 24h period for each hormone (leptin, insulin, ghrelin, and peptide YY (PYY)). A visual analog scale (VAS) was completed hourly between 0800 and 2200. Average 24h leptin and insulin levels were lower while 24h PYY was higher during exercise vs sedentary conditions. FA composition did not differentially affect 24h hormone values. VAS scores for hunger and fullness did not differ between any treatment but did correlate with ghrelin, leptin, and insulin. High saturated or unsaturated fat diets did not differ with respect to markers of hunger or satiety. Exercise decreased 24h leptin and insulin while increasing PYY regardless of FA composition. PMID:21035513
Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; D'Attoma, Benedetta; Linsalata, Michele; Orlando, Antonella; De Carne, Massimo; Cariola, Filomena; Semeraro, Francesco P; Pepe, Gabriella; Riezzo, Giuseppe
2013-12-01
OBJECTIVE. The role of adipokines such as resistin, leptin, and adiponectin could be pivotal in the molecular crosstalk between the inflamed intestine and the surrounding mesenteric adipose tissue. Our aims were to a) evaluate their circulating concentrations in patients with active celiac disease (ACD) and compare them to those in patients with diarrhea-predominant irritable bowel syndrome (IBS-d) and healthy subjects; b) establish the impact of genetic variability in resistin; and c) evaluate whether a 1-year gluten-free diet (GFD) modifies circulating concentrations of resistin, leptin, and adiponectin in celiac patients. MATERIAL AND METHODS. The study included 34 ACD patients, 29 IBS-d patients, and 27 healthy controls. Circulating concentrations of resistin, leptin, adiponectin, IL-6, and IL-8 were evaluated at the time of enrollment. Resistin +299 G/A polymorphism was also analysed. In CD patients, biochemical measurements were repeated after a 1-year GFD. RESULTS. Along with higher IL-6 and IL-8 plasma levels, higher resistin and adiponectin concentrations were found in ACD and IBS-d patients compared with controls (p: 0.0351 and p: 0.0020, respectively). Resistin values proved to be predictable from a linear combination of IL-8 and +299 polymorphism. GFD affected resistin (p: 0.0009), but not leptin and adiponectin concentrations. CONCLUSIONS. Our data suggest that these adipokines are involved in modulating inflammatory processes in both CD and IBS-d patients. Alterations in the adipokine profile as well as the higher prevalence of the resistin +299 G/A SNP A allele compared to controls support the hypothesis that, at least in well-defined cases of IBS, a genetic component may also be supposed.
Effect of Testosterone Treatment on Adipokines and Gut Hormones in Obese Men on a Hypocaloric Diet.
Ng Tang Fui, Mark; Hoermann, Rudolf; Grossmann, Mathis
2017-04-01
In obese men with lowered testosterone levels, testosterone treatment augments diet-associated loss of body fat. We hypothesized that testosterone treatment modulates circulating concentrations of hormonal mediators of fat mass and energy homeostasis in obese men undergoing a weight loss program. Prespecified secondary analysis of a randomized, double-blind, placebo-controlled trial. Tertiary referral center. Obese men (body mass index ≥30 kg/m 2 ) with a repeated total testosterone level ≤12 nmol/L. One hundred participants mean age 53 years (interquartile range 47 to 60 years) receiving 10 weeks of a very low-energy diet followed by 46 weeks of weight maintenance were randomly assigned at baseline to 56 weeks of intramuscular testosterone undecanoate (cases, n = 49) or matching placebo (controls, n = 51). Eighty-two men completed the study. Between-group differences in leptin, adiponectin, ghrelin, glucagon like peptide-1, gastric inhibitory polypeptide, peptide YY, pancreatic polypeptide, and amylin levels. At study end, compared with controls, cases had greater reductions in leptin [mean adjusted difference (MAD), -3.6 ng/mL (95% CI, -5.3 to -1.9); P < 0.001]. The change in leptin levels between cases and controls was dependent on baseline fat mass, as the between-group difference progressively increased with increasing fat mass [MAD, -0.26 ng/mL (95% CI, -0.31 to -0.26); P = 0.001 per 1 kg of baseline fat mass]. Weight loss-associated changes in other hormones persisted during the weight maintenance phase but were not modified by testosterone treatment. Testosterone treatment led to reductions in leptin beyond those achieved by diet-associated weight loss. Testosterone treatment may reduce leptin resistance in obese men.
Foo, Joo-Pin; Polyzos, Stergios A.; Anastasilakis, Athanasios D.; Chou, Sharon
2014-01-01
Context: Recombinant leptin (metreleptin) treatment restores bone mineral density in women with hypothalamic amenorrhea (HA), a condition characterized by hypoleptinemia, which has adverse impact on bone health. Objective: The objective of the study was to investigate how metreleptin exerts its positive effect on bone metabolism in humans. Design: This was a randomized, double-blinded, placebo-controlled study. Setting: The study was conducted at Beth Israel Deaconess Medical Center (Boston, Massachusetts). Patients and Interventions: Women (n = 18) with HA and hypoleptinemia for at least 6 months were randomized to receive either metreleptin or placebo for 36 weeks. Serum samples were obtained at baseline and 12, 24, and 36 weeks of treatment. Main Outcome Measures: Circulating levels of leptin, intact PTH (iPTH), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), sclerostin, dickkopf-1, and fibroblast growth factor-23. Results: Metreleptin administration significantly increased leptin levels throughout the treatment period (P = .001). iPTH decreased over the 36 weeks of treatment (P = .01). There was a trend toward a decrease in serum RANKL and increase in serum OPG in the metreleptin-treated group. The RANKL to OPG ratio was significantly decreased within the metreleptin (P = .04) but not the placebo group. Metreleptin had no effect on serum sclerostin, dickkopf-1, and fibroblast growth factor-23. Conclusions: Metreleptin treatment over 36 weeks decreases iPTH and RANKL to OPG ratio levels in hypoleptinemic women with HA. PMID:25148234
Farimani, Azam Rezaei; Hariri, Mitra; Azimi-Nezhad, Mohsen; Borji, Abasalt; Zarei, Sadegh; Hooshmand, Elham
2018-02-16
N-3 PUFAs can potentially influence levels of inflammatory and non-inflammatory adipokines. Given the contradictory effects of n-3 PUFAs on serum levels of adipokines in type 2 diabetes, we conducted a systematic review and meta-analysis study of randomized placebo-controlled clinical trials that examined the effects of n-3 PUFAs on serum levels of leptin and adiponectin in patients with type 2 diabetes. The electronic databases, without regard to language restrictions including PubMed/Medline, Google Scholar, SCOPUS and ISI Web of Science until August 2017, were used to identify randomized controlled trials that assessed the effect of n-3 PUFAs on serum leptin and adiponectin concentrations in type 2 diabetes. Outcomes were extracted based on the mean ± SD as effect size at baseline and end of the intervention. Between-study heterogeneity was evaluated by the I 2 estimates and their 95% CIs. Funnel plot asymmetry was used to investigate the existence of publication bias. Stata software and Review Manager were used for statistical data analysis. Data from 10 eligible articles involved 494 subjects with type 2 diabetes mellitus (intervention groups = 254 and control groups = 240), with age between 44 and 70 years, treated with doses of 0.52-7.4 g/day n-3 PUFAs. Adiponectin concentration nonsignificantly increased by a MD = 0.17 µg/mL (95% CI - 0.11, 0.44). Also, leptin concentration nonsignificantly reduced by a MD = - 0.31 ng/mL (95% CI - 0.69, 0.07). Plant and marine sources of n-3 PUFAs can modify serum leptin and adiponectin levels by increasing adiponectin and decreasing leptin levels in patients with type 2 diabetes. Due to some limitations in this study, further studies are needed to reach a definitive conclusion about the effect of n-3 PUFAs on the levels of leptin and adiponectin in T2DM.
García-Cardona, M C; Huang, F; García-Vivas, J M; López-Camarillo, C; Del Río Navarro, B E; Navarro Olivos, E; Hong-Chong, E; Bolaños-Jiménez, F; Marchat, L A
2014-11-01
Epigenetic alterations have been suggested to be associated with obesity and related metabolic disorders. Here we examined the correlation between obesity and insulin resistance with the methylation frequency of the leptin (LEP) and adiponectin (ADIPOQ) promoters in obese adolescents with the aim to identify epigenetic markers that might be used as tools to predict and follow up the physiological alterations associated with the development of the metabolic syndrome. One hundred and six adolescents were recruited and classified according to body mass index and homeostasis model of assessment-insulin resistance index. The circulating concentrations of leptin, adiponectin and of several metabolic markers of obesity and insulin resistance were determined by standard methods. The methylation frequency of the LEP and ADIPOQ promoters was determined by methylation-specific PCR (MS-PCR) in DNA obtained from peripheral blood samples. Obese adolescents without insulin resistance showed higher and lower circulating levels of, respectively, leptin and adiponectin along with increased plasmatic concentrations of insulin and triglycerides. They also exhibited the same methylation frequency than lean subjects of the CpG sites located at -51 and -31 nt relative to the transcription start site of the LEP gene. However, the methylation frequency of these nucleotides dropped markedly in obese adolescents with insulin resistance. We found the same inverse relationship between the combined presence of obesity and insulin resistance and the methylation frequency of the CpG site located at -283 nt relative to the start site of the ADIPOQ promoter. These observations sustain the hypothesis that epigenetic modifications might underpin the development of obesity and related metabolic disorders. They also validate the use of blood leukocytes and MS-PCR as a reliable and affordable methodology for the identification of epigenetic modifications that could be used as molecular markers to predict and follow up the physiological changes associated with obesity and insulin resistance.
Clinical and Molecular Genetic Spectrum of Congenital Deficiency of the Leptin Receptor
Farooqi, I. Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M.; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T.; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A.; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E.; O'Rahilly, Stephen
2009-01-01
BACKGROUND A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. METHODS We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. RESULTS Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations — 7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. CONCLUSIONS The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. PMID:17229951
Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor.
Farooqi, I Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E; O'Rahilly, Stephen
2007-01-18
A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations--7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. Copyright 2007 Massachusetts Medical Society.
Responses of gut microbiota to diet composition and weight loss in lean and obese mice.
Ravussin, Yann; Koren, Omry; Spor, Ayme; LeDuc, Charles; Gutman, Roee; Stombaugh, Jesse; Knight, Rob; Ley, Ruth E; Leibel, Rudolph L
2012-04-01
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.
Repletion of TNFα or leptin in calorically restricted mice suppresses post-restriction hyperphagia
Hambly, Catherine; Duncan, Jacqueline S.; Archer, Zoë A.; Moar, Kim M.; Mercer, Julian G.; Speakman, John R.
2012-01-01
SUMMARY The causes of post-restriction hyperphagia (PRH) represent a target for drug-based therapies to prevent obesity. However, the factors causing PRH are poorly understood. We show that, in mice, the extent of PRH was independent of the time under restriction, but depended on its severity, suggesting that PRH was driven by signals from altered body composition. Signals related to fat mass were important drivers. Circulating levels of leptin and TNFα were significantly depleted following caloric restriction (CR). We experimentally repleted their levels to match those of controls, and found that in both treatment groups the level of PRH was significantly blunted. These data establish a role for TNFα and leptin in the non-pathological regulation of energy homeostasis. Signals from adipose tissue, including but not limited to leptin and TNFα, regulate PRH and might be targets for therapies that support people engaged in CR to reduce obesity. PMID:21954068
Huang, Wan-Yu; Chang, Chia-Chu; Chen, Dar-Ren; Kor, Chew-Teng; Chen, Ting-Yu; Wu, Hung-Ming
2017-01-01
Introduction Hot flashes have been postulated to be linked to the development of metabolic disorders. This study aimed to evaluate the relationship between hot flashes, adipocyte-derived hormones, and insulin resistance in healthy, non-obese postmenopausal women. Participants and design In this cross-sectional study, a total of 151 women aged 45–60 years were stratified into one of three groups according to hot-flash status over the past three months: never experienced hot flashes (Group N), mild-to-moderate hot flashes (Group M), and severe hot flashes (Group S). Variables measured in this study included clinical parameters, hot flash experience, fasting levels of circulating glucose, lipid profiles, plasma insulin, and adipocyte-derived hormones. Multiple linear regression analysis was used to evaluate the associations of hot flashes with adipocyte-derived hormones, and with insulin resistance. Settings The study was performed in a hospital medical center. Results The mean (standard deviation) of body-mass index was 22.8(2.7) for Group N, 22.6(2.6) for Group M, and 23.5(2.4) for Group S, respectively. Women in Group S displayed statistically significantly higher levels of leptin, fasting glucose, and insulin, and lower levels of adiponectin than those in Groups M and N. Multivariate linear regression analysis revealed that hot-flash severity was significantly associated with higher leptin levels, lower adiponectin levels, and higher leptin-to-adiponectin ratio. Univariate linear regression analysis revealed that hot-flash severity was strongly associated with a higher HOMA-IR index (% difference, 58.03%; 95% confidence interval, 31.00–90.64; p < 0.001). The association between hot flashes and HOMA-IR index was attenuated after adjusting for leptin or adiponectin and was no longer significant after simultaneously adjusting for leptin and adiponectin. Conclusion The present study provides evidence that hot flashes are associated with insulin resistance in postmenopausal women. It further suggests that hot flash association with insulin resistance is dependent on the combination of leptin and adiponectin variables. PMID:28448547
[Ghrelin: beyond hunger regulation].
Milke García, Maria del Pilar
2005-01-01
Man ingests food to mitigate hunger (mediated by physiological and biochemical signals), satisfy appetite (subjective sensation) and because of psychosocial reasons. Satiation biomarkers (stop feeding) are gastric distention and hormones (CCK, GLP-1) and satiety biomarkers (induce feeding) are food-induced thermogenesis, body temperature, glycaemia and also hormones (insulin, leptin and ghrelin). Oxidative metabolism/body composition, tryptophan/serotonin and proinflammatory cytokines are also implicated on hunger physiology. At the present time, ghrelin is the only known circulating orexigenic with potential on hunger/body weight regulation. It is a neuropeptide (endogenous ligand for the GH secretagogue) recently isolated from the oxyntic mucosa and synthesized mainly in the stomach. Its blood concentration depends on diet, hyperglucemia and adiposity/leptin. It is secreted 1-2 hours preprandially and its concentration decreases drastically during the postprandium. Ghrelin acts on the lateral hypothalamus and theoretically inhibits proinflammatory cytokine secretion and antagonizes leptin. Ghrelin physiologically increases food intake and stimulates adipogenesis, gastrointestinal motility and gastric acid secretion, and has other hormonal and cardiovascular functions. Ghrelin blood concentration is reduced in massive obesity, non-alcoholic steatohepatitis, polycystic ovary syndrome, acromegaly, hypogonadism, ageing, short bowel syndrome and rheumatoid arthritis; and increased in primary or secondary anorexia, starvation, chronic liver disease and celiac disease. Cerebral and peritoneal ghrelin administration (rats) and systemic administration (rats and healthy volunteers, cancer patients or patients on peritoneal dialysis) promotes food consumption and increases adiposity, of utmost importance in the treatment of patients with anorexia.
Arnardottir, Erna S.; Maislin, Greg; Jackson, Nick; Schwab, Richard J.; Benediktsdottir, Bryndis; Teff, Karen; Juliusson, Sigurdur; Pack, Allan I.; Gislason, Thorarinn
2012-01-01
Objectives To assess whether sleep apnea severity has an independent relationship with leptin levels in blood after adjusting for different measures of obesity and whether the relationship between OSA severity and leptin levels differs depending on obesity level. Methods Cross-sectional study of 452 untreated obstructive sleep apnea (OSA) patients (377 males and 75 females), in the Icelandic Sleep Apnea Cohort (ISAC), age 54.3±10.6 (mean±SD), BMI 32.7±5.3 kg/m2 and apnea-hypopnea index (AHI) 40.2 ± 16.1 events/hour. A sleep study and magnetic resonance imaging of abdominal visceral and subcutaneous fat volume were performed as well as fasting serum morning leptin levels measured. Results Leptin levels were more highly correlated with body mass index (BMI), total abdominal and subcutaneous fat volume than visceral fat volume per se. No relationship was found between sleep apnea severity and leptin levels, assessed within three BMI groups (BMI<30, BMI 30–35 and BMI>35 kg/m2). In a multiple linear regression model, adjusted for gender, BMI explained 38.7% of the variance in leptin levels, gender explained 21.2% but OSA severity did not have a significant role and no interaction was found between OSA severity and BMI on leptin levels. However, hypertension had a significant effect on the interaction between OSA severity and obesity (p=0.04). In post-hoc analysis for nonhypertensive OSA subjects (n=249), the association between leptin levels and OSA severity explained a minor but significant variance (3.2%) in leptin levels. This relationship was greatest for nonobese nonhypertensive subjects (significant interaction with obesity level). No relationship of OSA severity and leptin levels was found for hypertensive subjects (n=199). Conclusion Obesity and gender are the dominant determinants of leptin levels. OSA severity is not related to leptin levels except to a minor degree in nonhypertensive nonobese OSA subjects. PMID:22964793
Vila, Greisa; Hopfgartner, Judith; Grimm, Gabriele; Baumgartner-Parzer, Sabina M; Kautzky-Willer, Alexandra; Clodi, Martin; Luger, Anton
2015-10-28
Breast-feeding is associated with maternal hormonal and metabolic changes ensuring adequate milk production. In this study, we investigate the impact of breast-feeding on the profile of changes in maternal appetite-regulating hormones 3-6 months postpartum. Study participants were age- and BMI-matched lactating mothers (n 10), non-lactating mothers (n 9) and women without any history of pregnancy or breast-feeding in the previous 12 months (control group, n 10). During study sessions, young mothers breast-fed or bottle-fed their babies, and maternal blood samples were collected at five time points during 90 min: before, during and after feeding the babies. Outcome parameters were plasma concentrations of ghrelin, peptide YY (PYY), leptin, adiponectin, prolactin, cortisol, insulin, glucose and lipid values. At baseline, circulating PYY concentrations were significantly increased in lactating mothers (100·3 (se 6·7) pg/ml) v. non-lactating mothers (73·6 (se 4·9) pg/ml, P=0·008) and v. the control group (70·2 (se 9) pg/ml, P=0·021). We found no differences in ghrelin, leptin and adiponectin values. Baseline prolactin concentrations were over 4-fold higher in lactating mothers (P<0·001). Lactating women had reduced TAG levels and LDL-cholesterol:HDL-cholesterol ratio, but increased waist circumference, when compared with non-lactating women. Breast-feeding sessions further elevated circulating prolactin (P<0·001), but induced no acute effects on appetite-regulating hormones. In summary, one single breast-feeding session did not acutely modulate circulating appetite-regulating hormones, but increased baseline PYY concentrations are associated with prolonged lactation. PYY might play a role in the coordination of energy balance during lactation, increasing fat mobilisation from maternal depots and ensuring adequate milk production for the demands of the growing infant.
Wu, Zhaofei; Martinez, M. Elena; St. Germain, Donald L.
2017-01-01
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3−/− brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3−/− mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3−/− mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3−/− mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3−/− mice. PMID:27911598
Wu, Zhaofei; Martinez, M Elena; St Germain, Donald L; Hernandez, Arturo
2017-02-01
The role of thyroid hormones (THs) in the central regulation of energy balance is increasingly appreciated. Mice lacking the type 3 deiodinase (DIO3), which inactivates TH, have decreased circulating TH levels relative to control mice as a result of defects in the hypothalamic-pituitary-thyroid axis. However, we have shown that the TH status of the adult Dio3-/- brain is opposite that of the serum, exhibiting enhanced levels of TH action. Because the brain, particularly the hypothalamus, harbors important circuitries that regulate metabolism, we aimed to examine the energy balance phenotype of Dio3-/- mice and determine whether it is associated with hypothalamic abnormalities. Here we show that Dio3-/- mice of both sexes exhibit decreased adiposity, reduced brown and white adipocyte size, and enhanced fat loss in response to triiodothyronine (T3) treatment. They also exhibit increased TH action in the hypothalamus, with abnormal expression and T3 sensitivity of genes integral to the leptin-melanocortin system, including Agrp, Npy, Pomc, and Mc4r. The normal to elevated serum levels of leptin, and elevated and repressed expression of Agrp and Pomc, respectively, suggest a profile of leptin resistance. Interestingly, Dio3-/- mice also display elevated locomotor activity and increased energy expenditure. This occurs in association with expanded nighttime activity periods, suggesting a disrupted circadian rhythm. We conclude that DIO3-mediated regulation of TH action in the central nervous system influences multiple critical determinants of energy balance. Those influences may partially compensate each other, with the result likely contributing to the decreased adiposity observed in Dio3-/- mice. Copyright © 2017 by the Endocrine Society.
Jastreboff, Ania M.; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A.; Giannini, Cosimo; Savoye, Mary; Constable, R. Todd; Sherwin, Robert S.
2014-01-01
OBJECTIVE In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation’s youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which promote food craving and high-calorie food (HCF) consumption. It is not known whether these metabolic changes affect neural responses in the adolescent brain during a crucial period for establishing healthy eating behaviors. RESEARCH DESIGN AND METHODS Twenty-five obese (BMI 34.4 kg/m2, age 15.7 years) and fifteen lean (BMI 20.96 kg/m2, age 15.5 years) adolescents underwent functional MRI during exposure to HCF, low-calorie food (LCF), and nonfood (NF) visual stimuli 2 h after isocaloric meal consumption. RESULTS Brain responses to HCF relative to NF cues increased in obese versus lean adolescents in striatal-limbic regions (i.e., putamen/caudate, insula, amygdala) (P < 0.05, family-wise error [FWE]), involved in motivation-reward and emotion processing. Higher endogenous leptin levels correlated with increased neural activation to HCF images in all subjects (P < 0.05, FWE). CONCLUSIONS This significant association between higher circulating leptin and hyperresponsiveness of brain motivation-reward regions to HCF images suggests that dysfunctional leptin signaling may contribute to the risk of overconsumption of these foods, thus further predisposing adolescents to the development of obesity and T2D. PMID:25139883
Jastreboff, Ania M; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A; Giannini, Cosimo; Savoye, Mary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia; Sinha, Rajita
2014-11-01
In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation's youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which promote food craving and high-calorie food (HCF) consumption. It is not known whether these metabolic changes affect neural responses in the adolescent brain during a crucial period for establishing healthy eating behaviors. Twenty-five obese (BMI 34.4 kg/m2, age 15.7 years) and fifteen lean (BMI 20.96 kg/m2, age 15.5 years) adolescents underwent functional MRI during exposure to HCF, low-calorie food (LCF), and nonfood (NF) visual stimuli 2 h after isocaloric meal consumption. Brain responses to HCF relative to NF cues increased in obese versus lean adolescents in striatal-limbic regions (i.e., putamen/caudate, insula, amygdala) (P < 0.05, family-wise error [FWE]), involved in motivation-reward and emotion processing. Higher endogenous leptin levels correlated with increased neural activation to HCF images in all subjects (P < 0.05, FWE). This significant association between higher circulating leptin and hyperresponsiveness of brain motivation-reward regions to HCF images suggests that dysfunctional leptin signaling may contribute to the risk of overconsumption of these foods, thus further predisposing adolescents to the development of obesity and T2D. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna
2017-12-01
Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.
Therapeutic potential of flurbiprofen against obesity in mice.
Hosoi, Toru; Baba, Sachiko; Ozawa, Koichiro
2014-06-20
Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.
Leptin in the interplay of inflammation, metabolism and immune system disorders.
Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste
2017-02-01
Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.
Weight homeostasis & its modulators in hyperthyroidism before & after treatment with carbimazole
Dutta, Pinaki; Bhansali, Anil; Walia, Rama; Khandelwal, Niranjan; Das, Sambit; Masoodi, Shariq Rashid
2012-01-01
Background & objectives: Hyperthyroidism is associated with increased food intake, energy expenditure and altered body composition. This study was aimed to evaluate the role of adipocytokines in weight homeostasis in patients with hyperthyroidism. Methods: Patients (n=27, 11men) with hyperthyroidism (20 Graves’ disease, 7 toxic multinodular goiter) with mean age of 31.3±4.2 yr and 28 healthy age and body mass index (BMI) matched controls were studied. They underwent assessment of lean body mass (LBM) and total body fat (TBF) by dual energy X-ray absorptiometer (DXA) and blood sample was taken in the fasting state for measurement of leptin, adiponectin, ghrelin, insulin, glucose and lipids. Patients were re-evaluated after 3 months of treatment as by that time all of them achieved euthyroid state with carbimazole therapy. Results: The LBM was higher (P<0.001) in healthy controls as compared to hyperthyroid patients even after adjustment for body weight (BW), whereas total body fat was comparable between the two groups. Serum leptin levels were higher in patients with hyperthyroidism than controls (22.3±3.7 and 4.1±0.34 ng/ml, P<0.001), whereas adiponectin levels were comparable. Plasma acylated ghrelin was higher in patients than in controls (209.8±13.3 vs 106.2±8.2 pg/ml, P<0.05). Achievement of euthyroidism was associated with significant weight gain (P<0.001) and significant increase in lean body mass (P<0.001). The total body fat also increased but insignificantly from 18.4±1.8 to 19.9±1.8 kg. There was significant decrease (P<0.05) in serum leptin and acylated ghrelin but adiponectin levels remained unaltered after treatment. Serum leptin positively correlated with TBF and this correlation persisted even after adjustment for BW, BMI, gender and age (r=0.62, P=0.001). However, serum leptin and acylated ghrelin did not correlate with the presence or absence of hyperphagia. Interpretation & conclusion: Patients with hyperthyroidism predominantly had decreased lean body mass which increased after achievement of euthyroidism with carbimazole. The hyperphagia and the alterations in weight homeostasis associated with hyperthyroidism were independent of circulating leptin and ghrelin levels. PMID:22960891
Wang, Lixin; Goebel-Stengel, Miriam; Yuan, Pu-Qing; Stengel, Andreas; Taché, Yvette
2017-01-01
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.
Santucci, Natalia; D'Attilio, Luciano; Kovalevski, Leandro; Bozza, Verónica; Besedovsky, Hugo; del Rey, Adriana; Bay, María Luisa; Bottasso, Oscar
2011-01-01
Our study investigated the circulating levels of factors involved in immune-inflammatory-endocrine-metabolic responses in patients with tuberculosis with the aim of uncovering a relation between certain immune and hormonal patterns, their clinical status and in vitro immune response. The concentration of leptin, adiponectin, IL-6, IL-1β, ghrelin, C-reactive protein (CRP), cortisol and dehydroepiandrosterone (DHEA), and the in vitro immune response (lymphoproliferation and IFN-γ production) was evaluated in 53 patients with active untreated tuberculosis, 27 household contacts and 25 healthy controls, without significant age- or sex-related differences. Patients had a lower body mass index (BMI), reduced levels of leptin and DHEA, and increased concentrations of CRP, IL-6, cortisol, IL-1β and nearly significant adiponectin values than household contacts and controls. Within tuberculosis patients the BMI and leptin levels were positively correlated and decreased with increasing disease severity, whereas higher concentrations of IL-6, CRP, IL-1β, cortisol, and ghrelin were seen in cases with moderate to severe tuberculosis. Household contacts had lower DHEA and higher IL-6 levels than controls. Group classification by means of discriminant analysis and the k-nearest neighbor method showed that tuberculosis patients were clearly different from the other groups, having higher levels of CRP and lower DHEA concentration and BMI. Furthermore, plasma leptin levels were positively associated with the basal in vitro IFN-γ production and the ConA-driven proliferation of cells from tuberculosis patients. Present alterations in the communication between the neuro-endocrine and immune systems in tuberculosis may contribute to disease worsening. PMID:22022605
Regulation of leptin production in humans.
Fried, S K; Ricci, M R; Russell, C D; Laferrère, B
2000-12-01
Serum levels of the adipocyte hormone leptin are increased in proportion to body fat stores as a result of increased production in enlarged fat cells from obese subjects. In vitro studies indicate that insulin and glucocorticoids work directly on adipose tissue to upregulate in a synergistic manner leptin mRNA levels and rates of leptin secretion in human adipose tissue over the long term. Thus, the increased leptin expression observed in obesity could result from the chronic hyperinsulinemia and increased cortisol turnover. Superimposed upon the long-term regulation, nutritional status can influence serum leptin over the short term, independent of adiposity. Fasting leads to a gradual decline in serum leptin that is probably attributable to the decline in insulin and the ability of catecholamines to decrease leptin expression, as observed in both in vivo and in vitro studies. In addition, increases in serum leptin occur approximately 4-7 h after meals. Increasing evidence indicates that insulin, in concert with permissive effects of cortisol, can increase serum leptin over this time frame and likely contributes to meal-induced increases in serum leptin. Further research is required to elucidate the cellular and molecular mechanisms underlying short- and long-term nutritional and hormonal regulation of leptin production and secretion.
Circulating leptin concentrations do not distinguish menstrual status in exercising women.
Corr, M; De Souza, M J; Toombs, R J; Williams, N I
2011-03-01
Low concentrations of leptin secondary to low body fat or other modulators are thought to be a key signal whereby an energy deficit suppresses the reproductive axis in exercising women resulting in functional hypothalamic amenorrhea (FHA). The purpose of this study was to first examine leptin concentrations in exercising women with and without FHA to address whether there is a threshold concentration of leptin below which reproductive function is suppressed. Secondly, we examined the role of adiposity and other possible modulators of leptin to ascertain whether leptin regulation differs depending on reproductive status. This study assessed 50 exercising, premenopausal women (aged 18-30 years) over the course of one menstrual cycle (eumenorrheic women) or one 28-day monitoring period (amenorrheic women). Quantification of daily urinary ovarian steroids and menstrual history were used to determine menstrual status. Body composition was assessed using dual energy X-ray absorptiometry, and leptin was determined by enzyme-linked immunoassay. Key modulators of leptin such as serum insulin concentration, carbohydrate intake, glucose availability, indirect indices of sympathetic nervous activity and other factors were assessed using linear regression. Percentage body fat (%BF) (21.0 ± 1.0 versus 26.8 ± 0.7%; P < 0.001) and leptin concentration (4.8 ± 0.8 versus 9.6 ± 0.9 ng/ml; P < 0.001) were lower in the exercising women with amenorrhea (ExAmen; n = 24) compared with the exercising ovulatory women (ExOvul; n = 26). However, the ranges in leptin were similar for each group (ExAmen: 0.30-16.98 ng/ml; ExOvul: 2.57-18.28 ng/ml), and after adjusting for adiposity the difference in leptin concentration was no longer significant. Significant predictors of log leptin in ExAmen included %BF (β = 0.826, P < 0.001), log insulin (β = 0.308, P = 0.012) and log glycerol (β = 0.258, P = 0.030), but in ExOvul only %BF predicted leptin. CONCLUSIONS These data suggest that leptin concentrations per se are not associated with FHA in exercising women, but the modulation of leptin concentrations may differ depending on reproductive status.
Leptin and leptin receptor-related monogenic obesity.
Dubern, Beatrice; Clement, Karine
2012-10-01
The studies based on candidate genes and encoded proteins known to cause severe obesity in rodents, have shown that these genes also contribute to human early-onset obesity especially for those involved in the leptin pathway: the leptin (LEP) and leptin receptor (LEPR) genes. Since 1997, less than 20 individuals carrying a LEP gene mutation have been identified. Patients are mostly characterized by severe early-onset obesity with severe hyperphagia and associated phenotype such hypogonadotrophic hypogonadism, high rate of infection associated with a deficiency in T cell and abnormalities of sympathetic nerve function. Therapeutic option (subcutaneous daily injection of leptin) is available for patients with LEP deficiency. It results in weight loss, mainly of fat mass, with a major effect on reducing food intake and on other dysfunctions including immunity and induction of puberty even in adults. In LEPR deficient subjects, phenotypic similarities with the LEP-deficient subjects were noticed, especially the exhibited rapid weight gain in the first few months of life, with severe hyperphagia and the endocrine abnormalities (hypogonadotrophic hypogonadism, insufficient somatotrophic or thyreotropic secretion). Leptin treatment is useless in the LEPR deficient subjects. Factors that could possibly bypass normal leptin delivery systems are being developed but are not yet currently available for the treatment of these patients. Measurement of circulating leptin may help for the diagnosis of such obesity: it is undetectable in LEP mutation carriers or extremely elevated in LEPR mutation carriers. Thus, LEPR gene screening might be also considered in subjects with the association of severe obesity with endocrine dysfunctions such as hypogonadism and with leptin related to corpulence level. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Serum leptin levels and the risk of stroke: The Framingham Study
Saber, Hamidreza; Himali, Jayandra J.; Shoamanesh, Ashkan; Beiser, Alexa; Pikula, Alexandra; Harris, Tamara B.; Roubenoff, Ronenn; Romero, Jose Rafael; Kase, Carlos S.; Vasan, Ramachandran S.; Seshadri, Sudha
2015-01-01
Background and Purpose Leptin is a major adipokine that regulates weight balance and energy homeostasis. There is inconsistent evidence linking circulating leptin levels to risk of stroke. We tested the hypothesis that leptin levels are associated with risk of incident stroke in an elderly community-based sample. Methods Serum leptin levels were assayed in 757 stroke-free individuals (mean age 79 years, 62% women) from the Framingham Original cohort at the 22nd examination cycle (1990–1994). Incidence of all-stroke and ischemic stroke were prospectively ascertained. Results During a mean follow-up of 10 years, 119 individuals developed stroke (99 ischemic stroke). In multivariable Cox regression models, log-leptin levels were not associated with incidence of all-stroke or ischemic stroke (hazard ratios[HR] per standard deviation(SD) increment in log-leptin 0.9 [0.73–1.09] and 0.89 [0.72–1.11], respectively). The results were suggestive for potential effect modification by waist-hip ratio(WHR) for the association between leptin and stroke (P=0.03). Adjusting for age, sex and established stroke risk factors, analysis stratified by WHR quartiles revealed a lower incidence of first-ever all-stroke and ischemic stroke associated with higher leptin levels among only subjects in the top WHR quartile (HR, 0.64 [0.43, 0.95] versus 0.98 [0.77, 1.25], for incident all-stroke and 0.61 [0.39, 0.95] versus 0.96 [0.74, 1.26] for ischemic stroke). Conclusions Leptin levels were not directly related to risk of incident stroke overall but there was an inverse association with stroke in the top WHR quartile. Further investigations are required to confirm these findings and explore possible mechanisms for the observed association. PMID:26337973
Higher circulating leukocytes in women with PCOS is reversed by aerobic exercise.
Covington, Jeffrey D; Tam, Charmaine S; Pasarica, Magdalena; Redman, Leanne M
2016-05-01
Polycystic ovary syndrome (PCOS) is characterized by insulin resistance, elevated circulating leukocytes, and hypothesized to have higher adipose tissue inflammation. Aerobic exercise reduces circulating leukocytes and improves insulin sensitivity in obese individuals, but the effect of exercise on inflammation in PCOS is not known. We investigated circulating leukocytes, insulin sensitivity by euglycemic-hyperinsulinemic clamp, serum pro- and anti-inflammatory markers (hsCRP, TNF-α, total and high molecular weight adiponectin), and abdominal subcutaneous adipose tissue (SAT) gene expression of proinflammatory markers in 8 PCOS women and 8 obese control females matched for BMI. Additionally, in a prospective study, the 8 women with PCOS underwent a 16-week aerobic exercise regimen with the same measures performed post-intervention. Compared to controls, white blood cell counts (WBC) were 30% higher (p = 0.04) and circulating total adiponectin levels were 150% lower (p = 0.03) in women with PCOS at baseline/pre-exercise conditions. SAT gene expression of macrophage migration inhibitory factor (MIF, p < 0.01) and interleukin-6 (IL-6, p < 0.05) were also lower in women with PCOS. In response to 16 weeks of aerobic exercise, insulin sensitivity improved (p < 0.01) and WBC counts decreased (p = 0.02). The exercise-induced change in WBC and circulating neutrophils correlated inversely with changes in glucose disposal rate (r = -0.73, p = 0.03; and r = -0.82, p = 0.01, respectively). Aerobic exercise reduced serum leptin (p < 0.05) after 4 weeks, trended to reduce the ratio of leptin-to-high molecular weight adiponectin (p < 0.1) by the 8th week, and significantly increased serum dehydroepiandrosterone sulfate (DHEA-S, p < 0.001) after 16 weeks. In conclusion, women with PCOS have higher circulating leukocytes compared to controls, which can be reversed by aerobic exercise and is associated with improvements in insulin sensitivity. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Does leptin cause an increase in blood pressure in animals and humans?
Simonds, Stephanie E; Pryor, Jack T; Cowley, Michael A
2017-01-01
Cardiovascular diseases (CVDs) are the number one cause of death globally. The risk for the development of CVDs is significantly increased in obesity. Leptin, the product of white adipose tissue, appears to contribute to the development of CVDs in obesity. Here, we discuss the premise that leptin engages the sympathetic nervous system and contributes to elevated blood pressure (BP) developing in obesity. The long-term regulation of BP is dependent on the activity of the autonomic nervous system and specifically the sympathetic nervous system. Sympathetic nerve activity is significantly increased in obese rodents and humans. Leptin increases sympathetic nerve activity in rodents and humans; however, leptin only consistently increases BP chronically in rodents. The ability of leptin to increase BP in rodents is via both hypothalamic and extrahypothalamic regions. In leptin-deficient and leptin receptor-deficient humans, leptin appears to be the key reason for decreased systolic BP. However, in other research conducted in humans, chronic administration of leptin does not elevate BP. Further research into the role of leptin in the development of CVDs, especially in humans, needs to be conducted.
Thompson, Henry J; Sedlacek, Scot M; Wolfe, Pamela; Paul, Devchand; Lakoski, Susan G; Playdon, Mary C; McGinley, John N; Matthews, Shawna B
2015-06-26
Women who are obese at the time of breast cancer diagnosis have higher overall mortality than normal weight women and some evidence implicates adiponectin and leptin as contributing to prognostic disadvantage. While intentional weight loss is thought to improve prognosis, its impact on these adipokines is unclear. This study compared the pattern of change in plasma leptin and adiponectin in overweight-to-obese post-menopausal breast cancer survivors during weight loss. Given the controversies about what dietary pattern is most appropriate for breast cancer control and regulation of adipokine metabolism, the effect of a low fat versus a low carbohydrate pattern was evaluated using a non-randomized, controlled study design. Anthropometric data and fasted plasma were obtained monthly during the six-month weight loss intervention. While leptin was associated with fat mass, adiponectin was not, and the lack of correlation between leptin and adiponectin concentrations throughout weight loss implies independent mechanisms of regulation. The temporal pattern of change in leptin but not adiponectin was affected by magnitude of weight loss. Dietary pattern was without effect on either adipokine. Mechanisms not directly related to dietary pattern, weight loss, or fat mass appear to play dominant roles in the regulation of circulating levels of these adipokines.
Tillman, Erik J.; Morgan, Donald A.; Rahmouni, Kamal; Swoap, Steven J.
2014-01-01
High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat). Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation. PMID:25211467
Thompson, Henry J.; Sedlacek, Scot M.; Wolfe, Pamela; Paul, Devchand; Lakoski, Susan G.; Playdon, Mary C.; McGinley, John N.; Matthews, Shawna B.
2015-01-01
Women who are obese at the time of breast cancer diagnosis have higher overall mortality than normal weight women and some evidence implicates adiponectin and leptin as contributing to prognostic disadvantage. While intentional weight loss is thought to improve prognosis, its impact on these adipokines is unclear. This study compared the pattern of change in plasma leptin and adiponectin in overweight-to-obese post-menopausal breast cancer survivors during weight loss. Given the controversies about what dietary pattern is most appropriate for breast cancer control and regulation of adipokine metabolism, the effect of a low fat versus a low carbohydrate pattern was evaluated using a non-randomized, controlled study design. Anthropometric data and fasted plasma were obtained monthly during the six-month weight loss intervention. While leptin was associated with fat mass, adiponectin was not, and the lack of correlation between leptin and adiponectin concentrations throughout weight loss implies independent mechanisms of regulation. The temporal pattern of change in leptin but not adiponectin was affected by magnitude of weight loss. Dietary pattern was without effect on either adipokine. Mechanisms not directly related to dietary pattern, weight loss, or fat mass appear to play dominant roles in the regulation of circulating levels of these adipokines. PMID:26132992
Counterregulation of insulin by leptin as key component of autonomic regulation of body weight
Borer, Katarina T
2014-01-01
A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239
Viitasalo, Anna; Atalay, Mustafa; Pihlajamäki, Jussi; Jääskeläinen, Jarmo; Korkmaz, Ayhan; Kaminska, Dorota; Lindi, Virpi; Lakka, Timo A
2015-07-01
There are no previous data on the association of PNPLA3 I148M polymorphism (rs738409) with circulating adipokines and myokines in children. Subjects were a population sample of 481 Caucasian children aged 6-8 years. We assessed circulating levels of irisin together with IL-6, TNF-α, leptin, high molecular weight (HMW)-adiponectin, alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) while the subjects were stratified according to PNPLA3 I148M variants. The PNPLA3 rs738409 polymorphism had a linear relationship with plasma levels of irisin after adjustment for age, sex and body height (p=0.007) but it was not associated with circulating levels of interleukin- 6 (IL-6), tumor-necrosis factor α (TNF-α), leptin or HMW-adiponectin. PNPLA3 148M allele carriers had higher plasma levels of irisin than the non-carriers. This might be due to compensatory mechanism to limit early steatotic and inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.
García, A P; Palou, M; Priego, T; Sánchez, J; Palou, A; Picó, C
2010-05-01
We aimed to characterize the developmental programming effects of moderate caloric restriction during early pregnancy on factors involved in hypothalamic control of energy balance. Twenty-five-days-old offspring Wistar rats from 20% caloric restricted dams (from 1 to 12 days of pregnancy) (CR) and from control dams were studied under fed and 12 h fasting conditions. Morphometric studies on arcuate nucleus (ARC) and determinations of circulating parameters and hypothalamic levels of neuropeptide Y (NPY), proopiomelanocortin (POMC), long-form leptin receptor (ObRb), insulin receptor (InsR) and suppressor of cytokine signalling-3 (SOCS-3) mRNA were performed. CR animals did not show different body weight with respect to their controls, but presented higher food intake. They exhibited lower neuropeptide Y- and alpha-melanocyte-stimulating hormone-neurons (decreases of 18 and 13% in males, and 10 and 18% in females respectively) and lower total cells (decrease of 3% in males and 18% in females) in ARC. Under fed conditions, CR animals presented lower circulating leptin and ghrelin levels (decreases of 37 and 43% in males, and 15 and 34% in females respectively); furthermore, hypothalamic POMC, NPY (only in females), ObRb and InsR mRNA levels were reduced (39, 16 and 26% in males, and 112, 33, 61 and 56% in females), and those of SOCS-3 were increased (86% in males and 74% in females). Unlike control animals, under fasting conditions, ObRb, InsR and POMC mRNA levels did not decrease in CR females, and NPY mRNA decreased instead of increase in CR males. Moderate caloric restriction during gestation affects offspring hypothalamic structure and function, impairing its response to fed/fasting conditions, which suggests a predisposition to insulin and leptin resistance.
Finger, Beate C; Dinan, Timothy G; Cryan, John F
2012-06-01
Chronic stress and diet can independently or in concert influence the body's homeostasis over time. Thus, it is crucial to investigate the interplay of these parameters to gain insight into the evolution of stress-induced metabolic and eating disorders. C57BL/6J mice were subjected to chronic psychosocial (mixed model of social defeat and overcrowding) stress in combination with either a high- or low-fat diet for three or six weeks. To determine the evolution of stress and dietary effects, changes in body weight, caloric intake and caloric efficiency were determined as well as circulating leptin, insulin, glucose and corticosterone levels and social avoidance behaviour. Exposure to stress for three weeks caused an increase in weight gain, in caloric intake and in caloric efficiency only in mice on a low-fat diet. However, after six weeks, only stressed mice on a high-fat diet displayed a pronounced inhibition of body weight gain, accompanied by reduced caloric intake and caloric efficiency. Stress decreased circulating leptin levels in mice on a low-fat diet after three weeks and in mice on a high-fat diet after three and six weeks of exposure. Plasma levels of insulin and markers of insulin resistance were blunted in mice on high-fat diet following six weeks of stress exposure. Social avoidance following chronic stress was present in all mice after three and six weeks. This study describes the evolution of the chronic effects of social defeat/overcrowding stress in combination with exposure to high- or low-fat diet. Most importantly, we demonstrate that a six week chronic exposure to social defeat stress prevents the metabolic effects of high-fat diet, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance as well as in plasma leptin and insulin levels. This study highlights the importance of considering the chronic aspects of both parameters and their time-dependent interplay. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I
2015-03-01
Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.
Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery
Shroff, M.R.; Holzman, C.; Tian, Y.; Evans, R. W.; Sikorskii, A.
2014-01-01
Summary Objective Maternal blood leptin levels are positively associated with adiposity. Recent studies suggest that leptin is also abundantly produced by the placenta and may function as a regulator of fetal growth. Our goal was to examine mid-pregnancy levels of leptin in maternal blood in relation to birthweight for gestational age (BW/GA) and timing of delivery after accounting for maternal pre-pregnancy body mass index (prepreg-BMI) and pregnancy complications. Patients Data were from 1,304 sub-cohort mother/infant pairs who participated in the Pregnancy Outcomes and Community Health (POUCH) Study (1998–2004). Measurements Leptin levels, measured at 16–27 weeks’ gestation, were log-transformed. Geometric mean (GMean) leptin levels were estimated by weighted linear regression with gestational age at blood draw as a covariate. GMean was re-transformed to the original scale for reporting. Results Using the GMeans leptin in mothers of term appropriate-for-gestational age (AGA) neonates as the referent (25.2 μg/L), we observed lower levels in mothers of preterm AGA (21.9 μg/L), term small-for-gestational age (SGA) (20.3 μg/L), and preterm SGA neonates (21.7 μg/L). Results were largely unchanged after adjustment for prepreg-BMI. Leptin levels were higher in mothers who delivered large-for-gestational age (LGA) neonates, both preterm (33.6 μg/L) and term (29.1 μg/L), but the GMeans were markedly attenuated after adjustment for prepreg-BMI. Conclusion The association between BW/GA and maternal leptin levels after adjustment for prepreg-BMI may represent: 1) a residual effect of maternal adiposity that is not fully captured by BMI; and/or 2) variation in placental leptin levels entering the maternal circulation. In conclusion, mid-pregnancy maternal blood leptin levels may be an early indicator of fetal growth status. PMID:22934578
Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery.
Shroff, Monal R; Holzman, Claudia; Tian, Yan; Evans, Rhobert W; Sikorskii, Alla
2013-04-01
Maternal blood leptin levels are positively associated with adiposity. Recent studies suggest that leptin is also abundantly produced by the placenta and may function as a regulator of foetal growth. Our goal was to examine mid-pregnancy levels of leptin in maternal blood in relation to birthweight for gestational age (BW/GA) and timing of delivery after accounting for maternal prepregnancy body mass index (prepreg-BMI) and pregnancy complications. Data were from 1304 subcohort mother/infant pairs who participated in the Pregnancy Outcomes and Community Health (POUCH) Study (1998-2004). Leptin levels, measured at 16-27 weeks' gestation, were log-transformed. Geometric mean (GMean) leptin levels were estimated by weighted linear regression with gestational age at blood draw as a covariate. GMean was re-transformed to the original scale for reporting. Using the GMeans leptin in mothers of term appropriate-for-gestational age (AGA) neonates as the referent (25·2 μg/l), we observed lower levels in mothers of preterm-AGA (21·9 μg/l), term small-for-gestational age (SGA) (20·3 μg/l) and preterm-SGA neonates (21·7 μg/l). Results were largely unchanged after adjustment for prepreg-BMI. Leptin levels were higher in mothers who delivered large-for-gestational age (LGA) neonates, both preterm (33·6 μg/l) and term (29·1 μg/l), but the GMeans were markedly attenuated after adjustment for prepreg-BMI. The association between BW/GA and maternal leptin levels after adjustment for prepreg-BMI may represent: (i) a residual effect of maternal adiposity that is not fully captured by BMI; and/or (ii) variation in placental leptin levels entering the maternal circulation. In conclusion, mid-pregnancy maternal blood leptin levels may be an early indicator of foetal growth status. © 2012 Blackwell Publishing Ltd.
Grizzanti, John; Lee, Hyoung-Gon; Camins, Antoni; Pallas, Merce; Casadesus, Gemma
2017-01-01
Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non–insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease. PMID:27923524
Obesity-related hypertension: is there a role for selective leptin resistance?
Correia, Marcelo L G; Haynes, William G
2004-06-01
Obesity is a risk factor for cardiovascular diseases, in particular for hypertension. Serum leptin levels and sympathetic nerve activity are both increased in obesity. Leptin has been demonstrated to increase sympathetic nerve activity. Thus, leptin-dependent sympathoactivation might contribute to obesity-related hypertension. However, leptin resistance occurs in obesity. One possibility is that leptin resistance is selective to the metabolic effects of leptin, sparing its sympathoexcitatory actions. In this article, we review experimental evidence supporting the novel concept of selective leptin resistance. We also discuss the sympathetic actions of leptin that are relevant to blood pressure modulation and potential mechanisms of leptin resistance. Disruption of leptin intracellular signaling pathways and resistance of specific leptin-responsive neural networks provide theoretic models of selective leptin resistance. However, most information about leptin-sympathetic actions and leptin-resistance mechanisms derive from in vitro and animal studies. Future research in humans is widely awaited.
Vickers, M H; Reddy, S; Ikenasio, B A; Breier, B H
2001-08-01
Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.
Derous, Davina; Mitchell, Sharon E; Green, Cara L; Chen, Luonan; Han, Jing-Dong J; Wang, Yingchun; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex
2016-04-01
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Green, Cara L.; Chen, Luonan; Han, Jing‐Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex
2016-01-01
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti‐ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin‐like growth factor 1 (IGF‐1), insulin, and tumor necrosis factor alpha (TNF‐α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF‐α, leptin and IGF‐1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes. PMID:26945906
Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.
Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang
2015-11-15
Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. Copyright © 2015 the American Physiological Society.
Leptin decreases heart rate associated with increased ventricular repolarization via its receptor
Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H.; Hull, Robert; Davis, Mary
2015-01-01
Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1–30 μg/kg) decreased resting heart rate; at high doses (150–300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03–0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. PMID:26408544
Diet-induced obese mice retain endogenous leptin action.
Ottaway, Nickki; Mahbod, Parinaz; Rivero, Belen; Norman, Lee Ann; Gertler, Arieh; D'Alessio, David A; Perez-Tilve, Diego
2015-06-02
Obesity is characterized by hyperleptinemia and decreased response to exogenous leptin. This has been widely attributed to the development of leptin resistance, a state of impaired leptin signaling proposed to contribute to the development and persistence of obesity. To directly determine endogenous leptin activity in obesity, we treated lean and obese mice with a leptin receptor antagonist. The antagonist increased feeding and body weight (BW) in lean mice, but not in obese models of leptin, leptin receptor, or melanocortin-4 receptor deficiency. In contrast, the antagonist increased feeding and BW comparably in lean and diet-induced obese (DIO) mice, an increase associated with decreased hypothalamic expression of Socs3, a primary target of leptin. These findings demonstrate that hyperleptinemic DIO mice retain leptin suppression of feeding comparable to lean mice and counter the view that resistance to endogenous leptin contributes to the persistence of DIO in mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Leptin is an effective treatment for hypothalamic amenorrhea
Chou, Sharon H.; Chamberland, John P.; Liu, Xiaowen; Matarese, Giuseppe; Gao, Chuanyun; Stefanakis, Rianna; Brinkoetter, Mary T.; Gong, Huizhi; Arampatzi, Kalliopi; Mantzoros, Christos S.
2011-01-01
Hypothalamic amenorrhea (HA) is associated with dysfunction of the hypothalamic-pituitary-peripheral endocrine axes, leading to infertility and bone loss, and usually is caused by chronic energy deficiency secondary to strenuous exercise and/or decreased food intake. Energy deficiency also leads to hypoleptinemia, which has been proposed, on the basis of observational studies as well as an open-label study, to mediate the neuroendocrine abnormalities associated with this condition. To prove definitively a causal role of leptin in the pathogenesis of HA, we performed a randomized, double-blinded, placebo-controlled trial of human recombinant leptin (metreleptin) in replacement doses over 36 wk in women with HA. We assessed its effects on reproductive outcomes, neuroendocrine function, and bone metabolism. Leptin replacement resulted in recovery of menstruation and corrected the abnormalities in the gonadal, thyroid, growth hormone, and adrenal axes. We also demonstrated changes in markers of bone metabolism suggestive of bone formation, but no changes in bone mineral density were detected over the short duration of this study. If these data are confirmed, metreleptin administration in replacement doses to normalize circulating leptin levels may prove to be a safe and effective therapy for women with HA. PMID:21464293
Leptin is an effective treatment for hypothalamic amenorrhea.
Chou, Sharon H; Chamberland, John P; Liu, Xiaowen; Matarese, Giuseppe; Gao, Chuanyun; Stefanakis, Rianna; Brinkoetter, Mary T; Gong, Huizhi; Arampatzi, Kalliopi; Mantzoros, Christos S
2011-04-19
Hypothalamic amenorrhea (HA) is associated with dysfunction of the hypothalamic-pituitary-peripheral endocrine axes, leading to infertility and bone loss, and usually is caused by chronic energy deficiency secondary to strenuous exercise and/or decreased food intake. Energy deficiency also leads to hypoleptinemia, which has been proposed, on the basis of observational studies as well as an open-label study, to mediate the neuroendocrine abnormalities associated with this condition. To prove definitively a causal role of leptin in the pathogenesis of HA, we performed a randomized, double-blinded, placebo-controlled trial of human recombinant leptin (metreleptin) in replacement doses over 36 wk in women with HA. We assessed its effects on reproductive outcomes, neuroendocrine function, and bone metabolism. Leptin replacement resulted in recovery of menstruation and corrected the abnormalities in the gonadal, thyroid, growth hormone, and adrenal axes. We also demonstrated changes in markers of bone metabolism suggestive of bone formation, but no changes in bone mineral density were detected over the short duration of this study. If these data are confirmed, metreleptin administration in replacement doses to normalize circulating leptin levels may prove to be a safe and effective therapy for women with HA.
Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?
Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C
2016-03-01
Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. © Georg Thieme Verlag KG Stuttgart · New York.
Llanos, Adana A.; Peng, Juan; Pennell, Michael L.; Krok, Jessica L.; Vitolins, Mara Z.; Degraffinreid, Cecilia R.
2014-01-01
Context: Breast cancer risk among postmenopausal women increases as body mass index increases. Practical preventive methods to reduce risk of breast cancer are lacking. Few studies have investigated the effects of carotenoids and isoflavones on circulating adipokines in postmenopausal women. Objective: The aim was to examine the effects of lycopene- and isoflavone-rich diets on serum adipokines. Design: This was a 26-week, two-arm, longitudinal crossover trial. Setting: Participants were recruited from clinics at The Ohio State University Comprehensive Cancer Center. Participants: Seventy postmenopausal women at increased breast cancer risk participated in the study. The mean age and body mass index of participants was 57.2 years and 30.0 kg/m2, respectively; the study was comprised of 81.4% whites. Interventions: The interventions included 10 weeks of consumption of a tomato-based diet (≥25 mg lycopene daily) and 10 weeks of consumption of a soy-based diet (≥40 g of soy protein daily), with a 2-week washout in between. Main Outcome Measures: Changes in serum adiponectin, leptin, and the adiponectin to leptin ratio were examined for each intervention through linear mixed models, with ratio estimates corresponding to postintervention adipokine concentrations relative to preintervention concentrations. Results: After the tomato intervention, among all women, adiponectin concentration increased (ratio 1.09, 95% confidence interval (CI) 1.00–1.18), with a stronger effect observed among nonobese women (ratio 1.13, 95% CI 1.02–1.25). After the soy intervention, adiponectin decreased overall (ratio 0.91, 95% CI 0.84–0.97), with a larger reduction observed among nonobese women (ratio 0.89, 95% CI 0.81–0.98). Overall, no significant changes in leptin or the adiponectin to leptin ratio were observed after either intervention. Conclusions: Increasing dietary consumption of tomato-based foods may beneficially increase serum adiponectin concentrations among postmenopausal women at increased breast cancer risk, especially those who are not obese. Additional studies are essential to confirm these effects and to elucidate the specific mechanisms that may make phytonutrients found in tomatoes practical as breast cancer chemopreventive agents. PMID:24423335
Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.
2014-01-01
ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. PMID:24759787
Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L
2014-06-01
Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. © 2014 by the Society for the Study of Reproduction, Inc.
[Contribution of leptin in the development of insulin resistance in pregnant women with obesity].
Tarasenko, K
2014-03-01
The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.
Xiang, Lan; Murai, Atsushi; Muramatsu, Tatsuo
2005-12-01
To investigate whether in vivo gene transfer causes leptin-antagonistic effects on food intake, animal body weight and fat tissue weight, the R128Q mutated-leptin gene, an R to Q substitution at position 128 of mouse leptin, was transferred into mouse liver and leg muscle by electroporation and hydrodynamics-based gene delivery. Mutated-leptin gene transfer by electroporation caused significant increases in body weight at 5 days and after (5.4% increase relative to control; p<0.05). Hydrodynamics-based gene delivery of the mutated-leptin gene also caused an increase in body weight (3.0% increase relative to control; p<0.05). Mutated-leptin gene transfer by electroporation significantly increased the tissue weight of epididymal white fat and neuropeptide Y mRNA expression in the hypothalamus compared with those of the control group 3 weeks after gene transfer (p<0.05). These results suggest that mutated-leptin gene transfer successfully produced leptin-antagonistic effects by modulating the central regulator of energy homeostasis. Also, the extent of leptin-antagonistic effects by electroporation was much higher than hydrodynamics-based gene delivery, with at least single gene transfer.
Yan, Dan; Avtanski, Dimiter; Saxena, Neeraj K.; Sharma, Dipali
2012-01-01
Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells. PMID:22270359
Short-Term Plasticity of Gray Matter Associated with Leptin Deficiency and Replacement
Berman, Steven M.; Chakrapani, Shruthi; Delibasi, Tuncay; Monterosso, John; Erol, H. Kutlu; Paz-Filho, Gilberto; Wong, Ma-Li; Licinio, Julio
2011-01-01
Context: Leptin affects neurogenesis, neuronal growth, and viability. We previously reported that leptin supplementation increased gray matter (GM) concentration in the anterior cingulate gyrus (ACG), cerebellum, and inferior parietal lobule, areas that are also involved in food intake. Objective: The aim of this study was to report the changes in brain structure at different states of leptin supplementation. Design: We conducted a nonrandomized trial. Setting and Patients: We studied three adults with congenital leptin deficiency due to a mutation in the leptin gene. Intervention: Patients received treatment with recombinant methionyl human leptin, with annual 11- to 36-d periods of treatment withholding followed by treatment restoration over 3 yr. Main Outcome Measures: GM concentration (by voxel-based morphometry analysis of magnetic resonance scans) was correlated with body mass index (BMI) and leptin supplementation. Results: Annually withholding leptin supplementation for several weeks increased BMI and reversed the original effects of leptin in the cerebellum and ACG. The changes in the ACG were consistent with an indirect effect of leptin mediated through increased BMI. In the cerebellum, where leptin receptors are most dense, GM changes appeared to be direct effects of leptin. Leptin restoration did not lead to recovery of GM in the short term but did lead to an unexpected GM increase in the posterior half of the left thalamus, particularly the pulvinar nucleus. Conclusion: These findings provide the first in vivo evidence of remarkably plastic, reversible, and regionally specific effects of leptin on human brain morphology. They suggest that leptin may have therapeutic value in modulating plasticity-dependent brain functions. PMID:21613360
Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; ...
2006-01-01
Background . The adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results . A panel of mouse models including mice lacking angiotensinogen, Agt ( Agt -KO), mice expressing Agt solely in adipose tissue (aP2- Agt/Agt -KO), and mice overexpressing Agt in adipose tissue (aP2- Agt ) was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt -KO mice, while plasma adiponectin levels were increased. aP2- Agt mice exhibited increased adiposity andmore » plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2- Agt mice. Conclusion . These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.« less
Tao, Ming; Yu, Peng; Nguyen, Binh T; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D; Virmani, Renu; Hao, Shuai; Ozaki, C Keith; Schneiderman, Jacob
2013-02-01
Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aortic aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor, as well as mRNA for matrix metalloproteinases (MMP)-9 and MMP-12. Leptin and leptin receptor antigen were evident in all AAAs, and leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched nondilated controls. To simulate in vivo local leptin synthesis, ApoE(-/-) mice were subjected to a paravisceral periaortic application of low-dose leptin. Leptin-treated aortas exhibited decreased transforming growth factor-β and increased MMP-9 mRNA levels 5 days after surgery, and leptin receptor mRNA was upregulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12, and periadventitial macrophage clustering. Furthermore, the combination of local periaortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Leptin is locally synthesized in human AAA wall. Paravisceral aortic leptin in ApoE(-/-) mice induces local medial degeneration and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation.
Changes in environmental temperature influence leptin responsiveness in low- and high-fat-fed mice.
Harris, Ruth B S; Mitchell, Tiffany D; Kelso, Emily W; Flatt, W P
2007-07-01
Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18 degrees C, 23 degrees C, 27 degrees C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23 degrees C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.
Harris, Ruth B S; Desai, Bhavna N
2016-12-01
Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus. In a dose response study 14-day infusions of increasing doses of leptin showed significant hypophagia, weight loss, and increased hypothalamic p-STAT3 in rats receiving at least 0.9 μg leptin/day. In a second study 0.6 μg leptin/day transiently inhibited food intake and reduced carcass fat, but had no significant effect on energy expenditure. In a final study, we identified the localization of STAT3 activation in the hypothalamus of rats receiving 0, 0.3, or 1.2 μg leptin/day. The high dose of leptin, which caused weight loss in the first experiment, increased p-STAT3 in the ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. The low dose that increased brown fat UCP1 but did not affect body composition in the first experiment had little effect on hypothalamic p-STAT3. We propose that hindbrain leptin increases the precision of control of energy balance by lowering the threshold for leptin signaling in the forebrain. Further studies are needed to directly test this hypothesis. Copyright © 2016 the American Physiological Society.
Peotta, Veronica; Rahmouni, Kamal; Segar, Jeffrey L; Morgan, Donald A; Pitz, Kate M; Rice, Olivia M; Roghair, Robert D
2016-08-01
Neonatal growth restriction (nGR) leads to leptin deficiency and increases the risk of hypertension. Previous studies have shown nGR-related hypertension is normalized by neonatal leptin (nLep) and exacerbated by psychological stress. With recent studies linking leptin and angiotensin signaling, we hypothesized that nGR-induced nLep deficiency increases adult leptin sensitivity; leading to leptin- or stress-induced hypertension, through a pathway involving central angiotensin II type 1 receptors. We randomized mice with incipient nGR, by virtue of their presence in large litters, to vehicle or physiologic nLep supplementation (80 ng/g/d). Adult caloric intake and arterial pressure were monitored at baseline, during intracerebroventricular losartan infusion and during systemic leptin administration. nGR increased leptin-triggered renal sympathetic activation and hypertension with increased leptin receptor expression in the arcuate nucleus of the hypothalamus; all of those nGR-associated phenotypes were normalized by nLep. nGR mice also had stress-related hyperphagia and hypertension, but only the stress hypertension was blocked by central losartan infusion. nGR leads to stress hypertension through a pathway that involves central angiotensin II receptors, and nGR-associated leptin deficiency increases leptin-triggered hypertension in adulthood. These data suggest potential roles for preservation of neonatal growth and nLep supplementation in the prevention of nGR-related hypertension.
Hoffmann, Marta; Fiedor, Elżbieta; Ptak, Anna
2016-11-01
Accumulating evidence suggests that leptin is expressed at higher levels in obese women and stimulates cell migration in epithelial cancers. However, the biology of ovarian cancer is different from others, mainly due to the production of estrogens because of the involvement of ovarian tissue, which is the main source of estrogens; as a result, the levels are at least 100- to 1000-fold higher than normal circulating levels. Thus, ovarian cancer tissues are exposed to 17β-estradiol, which promotes ovarian cancer cell migration and may modulate the effect of other hormones. Therefore, this study investigated the effects of 17β-estradiol (1 nmol/L) with leptin (1-40 ng/mL) at physiological levels, on the migration of OVCAR-3 and SKOV-3 ovarian cancer cells, and the expression levels and activity of metalloproteinases (MMPs) 2 and 9. Here, we found that leptin stimulated ovarian cancer cell line migration, which is mediated via the expression and activity of MMP-9 in the OVCAR-3 but not in the SKOV-3 cells. After the administration of 17β-estradiol and leptin, we observed antagonistic effects of 17β-estradiol on leptin-induced OVCAR-3 cell migration and MMP-9 expression and activity. Moreover, the antagonistic effect of 17β-estradiol on leptin-induced cancer cell migration was reversed by pretreatment of the cells with the phosphatidylinositol 3-kinase (PI3K) pathway inhibitor. Taken together, our results, for the first time, show that in ovarian cancer cells ObR + /ER + , 17β-estradiol has an antagonistic effect on leptin-induced cell migration as well as MMP-9 expression and activity, which is mediated by the PI3K pathway. © The Author(s) 2016.
Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.
Joslin, P M N; Bell, R K; Swoap, S J
2017-10-01
Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Increased leptin levels in preeclampsia: associations with BMI, estrogen and SHBG levels.
Acromite, Michael; Ziotopoulou, Mary; Orlova, Christine; Mantzoros, Christos
2004-01-01
Leptin is secreted mainly by the white adipose tissue but is also synthesized in several non-adipose tissue organs including the placenta. Serum leptin levels are increased in normal pregnancies and are higher in preeclamptic than normal pregnant women. There is, however, a lack of empirical evidence of an independent association of serum leptin levels and preeclamsia. We have studied cross-sectionally 18 3rd trimester preeclamptic women, 28 3rd trimester and 30 2nd trimester control women to confirm the reported increase of serum leptin in preeclampsia and to assess whether elevated leptin levels in preeclampsia increase the variance explained by body mass index (BMI), androgens, estrogens and/or sex hormone binding globulin (SHBG). Anthropometric, demographic and hormonal data were analyzed using linear and logistic regression models. Leptin is significantly increased in preeclampsia by univariate analysis, but use of multivariate analysis indicates that the elevated leptin levels are not associated with preeclampsia independently from BMI, estrogens and SHBG. This study confirms that leptin levels are higher in women with preeclampsia than in controls and demonstrates that serum leptin levels do not add to the prediction of preeclampsia after accounting for BMI, estrogen and SHBG levels of preeclamptic women.
Besbas, Nesrin; Ozaltin, Fatih; Coşkun, Turgay; Ozalp, Sila; Saatçi, Umit; Bakkaloğlu, Aysin; El Nahas, A Meguid
2003-12-01
Malnutrition is prevalent in patients with end-stage renal disease (ESRD). Elevated serum leptin levels were thought to contribute to the anorexia and poor nutrition in renal failure. However, studies of the relationship between nutritional status and leptin concentration in chronic renal failure have yielded conflicting results. Plasma insulin-like growth factor I (IGF-I) level has been used as an indicator of nutritional status in patients with renal failure. The relationship between leptin and IGF-I is controversial. The present study was conducted with the aim of assessing the relationship between nutritional status, hyperleptinemia, and serum IGF-I. Seventeen ESRD patients (8 male, 9 female), aged 8-18 years (mean 15.3+/-3.3 years) and undergoing standard hemodialysis for 58.8+/-23.1 months were enrolled. Nine age-matched healthy children served as controls. In all patients, energy and protein intakes were 40-70 kcal/kg per day and 1-1.54 g/kg per day, respectively. Predialysis serum leptin and IGF-I levels were measured by radioimmunoassay. Body mass index was decreased in 13 (76%) patients. Triceps skinfold thickness (TST) was reduced (below the 5th percentile) in 7 (41%), whereas mid arm circumference and mid arm muscle circumference were reduced in 14 (82.5%) and 13 (76.5%), respectively. The median serum leptin level was significantly higher in patients than in controls [13.7 interquartile range (IQR) 30.50 pg/ml vs. 6.50 IQR 8.65 pg/ml, P=0.01]. The median serum IGF-I level was lower in the patients (205.1 ng/ml IQR 194.4 ng/l) than controls (418.0 ng/l IQR 310.5 ng/ml) ( P=0.01). IGF-I levels were more decreased in patients with severe malnutrition, defined according to TST (145.0 ng/ml IQR 125.5 ng/l) than patients without malnutrition (301.2 ng/l IQR 218.8 ng/ml) ( P=0.03) and healthy children ( P=0.002). Although statistically not significant, IGF-I levels tended to be decreased, while leptin levels were increased. The median plasma insulin concentration was 15 microU/ml (1.63-45.80) and did not correlate with leptin and IGF-I levels. In conclusion, the results of this study confirm the presence of high circulating plasma leptin levels, which may be one of the many factors involved in the pathogenesis of the malnutrition in children on hemodialysis.
Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Frago, Laura M; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente
2015-11-05
Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia induced by central insulin. Leptin also decreased hepatic phosphoenolpyruvate carboxykinase levels and increased insulin's ability to phosphorylate insulin receptor substrate-1, Akt and glycogen synthase kinase on Ser9 and to stimulate glucose transporter 2 and glycogen levels. Peripheral leptin treatment reproduced some of these changes, but to a lesser extent. Our data indicate that leptin increases the hepatic response to a rise in insulin, suggesting that pharmacological manipulation of leptin targets may be of interest for controlling glycemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ueda, Hidenori; Nakai, Taketo; Konishi, Tatsuya; Tanaka, Keiichi; Sakazaki, Fumitoshi; Min, Kyong-Son
2014-01-01
Leptin is an adipose-derived hormone that primarily regulates energy balance in response to nutrition. Human placental cells produce leptin, whereas murine placental cells produce soluble leptin receptors (Ob-R). However, the roles of these proteins during pregnancy have not been elucidated completely. As an essential metal, zinc (Zn) is central to insulin biosynthesis and energy metabolism. In the present study, the effects of Zn deficiency and supplementation on maternal plasma leptin and soluble Ob-R regulation in pregnant mice placentas were examined using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blotting. Nutritional Zn deficiency significantly reduced plasma insulin concentrations and fetal and placental weights in pregnant mice. Plasma leptin concentrations in pregnant mice also increased 20- to 40-fold compared with those in non-pregnant mice. Although dietary Zn deficiency and supplementation did not affect plasma leptin concentrations in non-pregnant mice, Zn-deficient pregnant mice had significantly reduced plasma leptin concentrations and adipose leptin mRNA expression. In contrast, Zn-supplemented pregnant mice had increased plasma leptin concentrations without increased adipose leptin mRNA expression. Placental soluble Ob-R mRNA expression also decreased in Zn-deficient mice and tended to increase in Zn-supplemented mice. These results indicate that Zn influences plasma leptin concentrations by modulating mRNA expression of soluble Ob-R in the placenta, and leptin in visceral fat during pregnancy. These data suggest that both adipose and placenta-derived leptin system are involved in the regulation of energy metabolism during fetal growth.
Huby, Anne-Cécile; Antonova, Galina; Groenendyk, Jake; Gomez-Sanchez, Celso E; Bollag, Wendy B; Filosa, Jessica A; Belin de Chantemèle, Eric J
2015-12-01
In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart. © 2015 American Heart Association, Inc.
Obesity induces functional astrocytic leptin receptors in hypothalamus
Hsuchou, Hung; He, Yi; Kastin, Abba J.; Tu, Hong; Markadakis, Emily N.; Rogers, Richard C.; Fossier, Paul B.
2009-01-01
The possible role of astrocytes in the regulation of feeding has been overlooked. It is well-established that the endothelial cells constituting the blood–brain barrier transport leptin from blood to brain and that hypothalamic neurons respond to leptin to induce anorexic signaling. However, few studies have addressed the role of astrocytes in either leptin transport or cellular activation. We recently showed that the obese agouti viable yellow mouse has prominent astrocytic expression of the leptin receptor. In this study, we test the hypothesis that diet-induced obesity increases astrocytic leptin receptor expression and function in the hypothalamus. Double-labelling immunohistochemistry and confocal microscopic analysis showed that all astrocytes in the hypothalamus express leptin receptors. In adult obese mice, 2 months after being placed on a high-fat diet, there was a striking increase of leptin receptor (+) astrocytes, most prominent in the dorsomedial hypothalamus and arcuate nucleus. Agouti viable yellow mice with their adult-onset obesity showed similar changes, but the increase of leptin receptor (+) astrocytes was barely seen in ob/ob or db/db mice with their early-onset obesity and defective leptin systems. The marked leptin receptor protein expression in the astrocytes, shown with several antibodies against different receptor epitopes, was supported by RT–PCR detection of leptin receptor-a and -b mRNAs in primary hypothalamic astrocytes. Unexpectedly, the protein expression of GFAP, a marker of astrocytes, was also increased in adult-onset obesity. Real-time confocal imaging showed that leptin caused a robust increase of calcium signalling in primary astrocytes from the hypothalamus, confirming their functionality. The results indicate that metabolic changes in obese mice can rapidly alter leptin receptor expression and astrocytic activity, and that leptin receptor is responsible for leptin-induced calcium signalling in astrocytes. This novel and clinically relevant finding opens new avenues in astrocyte biology. PMID:19293246
Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaffly, J.; Michaelides, M.; Wang, G-J.
2010-06-01
Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2Rmore » binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.« less
Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.
Legiran, Siswo; Brandi, Maria Luisa
2012-09-01
Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.
Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S
2008-07-01
States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.
Gerriets, Valerie A.; Danzaki, Keiko; Kishton, Rigel J.; Eisner, William; Nichols, Amanda G.; Saucillo, Donte C.; Shinohara, Mari L.; MacIver, Nancie J.
2016-01-01
Upon activation, T cells require energy for growth, proliferation and function. Effector T cells (Teff), such as Th1 and Th17, utilize high levels of glucose uptake and glycolysis to fuel proliferation and function. In contrast, Treg instead require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg metabolism is altered in settings of malnutrition, when nutrients are limited and circulating leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff number, function, and glucose metabolism, but did not alter Treg metabolism or suppressive function. Using the autoimmune model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff, but not Treg, glucose metabolism and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg. PMID:27222115
Effects of a low-fat versus a low-carbohydrate diet on adipocytokines in obese adults.
de Luis, D A; Aller, R; Izaola, O; Gonzalez Sagrado, M; Bellioo, D; Conde, R
2007-01-01
There are few studies addressing the effect of weight loss on circulating levels of adipocytokines. The aim of our study was to determine whether different diets would have different weight loss effects and to examine the changes in adipocytokine levels. A population of 90 obesity non-diabetic outpatients was analyzed in a prospective way. The patients were randomly allocated to two groups: (a) diet I (low-fat diet), and (b) diet II (low-carbohydrate diet). At baseline and after 3 months on the diet, adipocytokines were evaluated. 43 patients were randomized to group I and 47 patients to diet group II. No differences were detected between weight loss in either group (3.3 +/- 0.51 vs. 4.4 +/- 0.6 kg; n.s.). In group I, a significant decrease in leptin levels was found. In group II, leptin and C-reactive protein (CRP) levels also decreased. The decrease in leptin levels was lower with diet I than II (16.4 vs. 22.8%; p < 0.05). The serum leptin concentration decreased due to the 3-month intervention with low-fat and low-carbohydrate diets, without changes in other adipocytokines. The decrease in leptin and CRP levels were higher with a low-carbohydrate diet than a low-fat diet. Copyright 2007 S. Karger AG, Basel.
High fat diet blunts the effects of leptin on ventilation and on carotid body activity.
Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V
2017-12-22
Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca 2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
[Adipocytokines: potential biomarkers for childhood obesity and anorexia nervosa].
Leoni, M C; Pizzo, D; Marchi, A
2010-04-01
Adipose tissue is now considered an important endocrine organ that secretes a large number of physiologically active peptides affecting metabolic homeostasis of human body: they are collectively referred to as adipocytokines. Leptin is a key hormone in the regulation of food intake, energy expenditure, neuroendocrine and immune function. Leptin is related with obesity and its metabolic disorders; starvation-induced depletion of fat stores is accompanied by alterations of circulating adipocytokines that may have potential repercussions in the pathophysiology of anorexia nervosa. Adiponectin enhances insulin sensitivity, controls body weight, prevents atherosclerosis and negatively regulates immune functions. Plasma adiponectin relates inversely to adiposity and reflects the sequelae of accumulation of excess adiposity. Resistin is a protein hormone produced both by adipocytes and immunocompetent cells that affect fuel homeostasis and insulin action. Plasma resistin levels are decreased in anorectic patients, while plasma adiponectin levels are increased. Plasma ghrelin levels present opposite changes in obesity and anorexia nervosa, suggesting that ghrelin is a good marker of nutritional status. Visfatin shows to correlate with visceral fat mass in patients with obesity. Its possible role in patients with anorexia nervosa is unknown. In conclusion, obesity is defined as a state of low-grade inflammation, which is associated with increased leptin, resistin and ghrelin levels and decreased adiponectin levels; anorexia nervosa is characterized by opposite changes. Finally, plasma adipocytokines levels can represent a sensitive parameter of nutritional status that reflects changes in the level of body fat in children and adolescents with obesity and anorexia nervosa.
Tao, Ming; Yu, Peng; Nguyen, Binh T.; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D.; Virmani, Renu; Hao, Shuai; Ozaki, C. Keith; Schneiderman, Jacob
2013-01-01
Objective Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aorta aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Methods and Results Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor (ObR), as well as mRNA for matrix metalloproteinases (MMP)-9, and MMP-12. Leptin and ObR antigen were evident in all AAAs, and, leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched non-dilated controls. To simulate in vivo local leptin synthesis, ApoE-/- mice were subjected to a para-visceral peri-aortic application of low-dose leptin. Leptin-treated aortas exhibited decreased TGFβ and increased MMP-9 mRNA levels 5 days after surgery, and ObR mRNA was up-regulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12 and peri-adventitial macrophage clustering. Furthermore, the combination of local peri-aortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Conclusions Leptin is locally synthesized in human AAA wall. Para-visceral aortic leptin in ApoE-/- mice induces local medial degeneration, and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation. PMID:23220275
Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição
2017-05-01
Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.
Antipsychotic-Induced Changes in Blood Levels of Leptin in Schizophrenia: A Meta-Analysis
Potvin, Stéphane; Zhornitsky, Simon; Stip, Emmanuel
2015-01-01
Objectives: Weight gain is a major side effect of antipsychotics (APs), which contributes to poor treatment adherence and significant morbidity. The mechanisms involved in AP-induced weight gain are incompletely understood. Recently, it has been proposed that changes in leptin, an cadipocyte-derived hormone exerting anorexigenic effects, may be involved in AP-induced weight gain. Thus far, studies on leptin changes during AP treatment have produced inconsistent results, prompting our group to perform a meta-analysis. Method: A search of the literature was performed using PubMed and Embase. Studies were included only if reporting peripheral levels of leptin before and after AP treatment in schizophrenia. Effect size estimates were calculated with Hedges g and were aggregated using a random effects model as results were heterogeneous (P < 0.10). Meta-regression analyses were performed using study length and changes in body mass index (BMI) as moderator variables. Results: Twenty-eight studies were retrieved, including 39 comparisons. A moderate and positive effect size was observed across studies. Olanzapine, clozapine, and quetiapine produced moderate leptin elevations, whereas haloperidol and risperidone were associated with small (nonsignificant) leptin changes. Across studies, BMI changes were significantly associated with increases in leptin levels. There was no effect of sex on AP-induced changes in leptin. Conclusions: A physiological role of leptin in AP-induced weight gain is supported because the most significant leptin increases were observed with APs inducing the most weight gain and because of the observed association between leptin increases and BMI changes. The overall increase in leptin levels suggests that leptin acts as a negative feedback signal in the event of fat increase. PMID:25886677
Enriori, Pablo J; Sinnayah, Puspha; Simonds, Stephanie E; Garcia Rudaz, Cecilia; Cowley, Michael A
2011-08-24
Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Conversely, obese leptin-deficient ob/ob mice have lower iBAT temperature. Additionally, leptin increased SNA in obese (DIO and ob/ob) and control mice, despite DIO mice being resistant to anorectic action of leptin. We demonstrated that neurons in the dorsomedial hypothalamus (DMH) of DIO mice mediate the thermogenic responses to hyperleptinemia in obese mammals because blockade of leptin receptors in the DMH prevented the thermogenic effects of leptin. Peripheral Melotan II (MTII) injection increased iBAT temperature, but it was blunted by blockade of DMH melanocortin receptors (MC4Rs) by injecting agouti-related peptide (AgRP) directly into the DMH, suggesting a physiological role of the DMH on temperature regulation in animals with normal body weight. Nevertheless, obese mice without a functional melanocortin system (MC4R KO mice) have an increased sympathetic outflow to iBAT compared with their littermates, suggesting that higher leptin levels drive sympathoexcitation to iBAT by a melanocortin-independent pathway. Because the sympathetic nervous system contributes in regulating blood pressure, heart rate, and hepatic glucose production, selective leptin resistance may be a crucial mechanism linking adiposity and metabolic syndrome.
Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.
Afifi, M M; Abbas, Amr M
2011-06-01
We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.
Melanin-concentrating hormone in peripheral circulation in the human.
Naufahu, J; Alzaid, F; Fiuza Brito, M; Doslikova, B; Valencia, T; Cunliffe, A; Murray, J F
2017-03-01
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5-1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5-55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role. © 2017 Society for Endocrinology.
Leptin Mediates the Increase in Blood Pressure Associated with Obesity
Simonds, Stephanie E.; Pryor, Jack T.; Ravussin, Eric; Greenway, Frank L.; Dileone, Ralph; Allen, Andrew M.; Bassi, Jaspreet; Elmquist, Joel K.; Keogh, Julia M.; Henning, Elana; Myers, Martin G.; Licinio, Julio; Brown, Russell D.; Enriori, Pablo J.; O’Rahilly, Stephen; Sternson, Scott M.; Grove, Kevin L.; Spanswick, David C.; Farooqi, I. Sadaf; Cowley, Michael A.
2014-01-01
Summary Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin’s effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species. PMID:25480301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar
Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation,more » protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein radical and 3-nitrotyrosine formation. ► BDCM exposure in obesity activates Kupffer cells and NADPH oxidase. ► BDCM/leptin synergy promotes necrotic cell-death and augments steatohepatitis.« less
A role for leptin in sexual maturation and puberty?
Kiess, W; Reich, A; Meyer, K; Glasow, A; Deutscher, J; Klammt, J; Yang, Y; Müller, G; Kratzsch, J
1999-01-01
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine. Copyright 1999 S. Karger AG, Basel
Koltes, D A; Spurlock, M E; Spurlock, D M
2017-10-01
Proper regulation of lipid metabolism is critical for preventing the development of metabolic diseases. It is clear that leptin plays a critical role in the regulation of energy homeostasis by regulating energy intake. However, leptin can also regulate energy homeostasis by inducing lipolysis in adipocytes, but it is unclear how the major lipases are involved in leptin-stimulated lipolysis. Therefore, the objectives of this study were to determine if (1) leptin acts directly to induce lipolysis in bovine adipocytes, (2) the potential lipases involved in leptin-induced lipolysis in bovine adipocytes, and (3) increases translocation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) during leptin-stimulated lipolysis in bovine stromal vascular cell-derived adipocytes. As hypothesized, leptin induced a lipolytic response (P = 0.02) in isolated adipocytes which was accompanied by an increase in phosphorylation of signal transducer and activator of transcription (STAT)3 (P = 0.03), a well-documented secondary messenger of leptin, and ATGL protein abundance (P < 0.01). Protein abundance of STAT3, perilipin, HSL, and phosphorylation of HSL by PKA and AMPK were not altered during leptin-stimulated lipolysis (P > 0.05). Immunostaining techniques were employed to determine the location of HSL and ATGL. Both lipases translocated to the lipid droplet after 2 h of exposure to isoproterenol (P < 0.02). However, only ATGL was translocated to the lipid droplet during leptin-stimulated lipolysis (P = 0.04), indicating ATGL may be the active lipase in leptin-stimulated lipolysis. In summary, leptin stimulates lipolysis in bovine adipocytes. The lack of phosphorylated HSL and translocation of HSL to the lipid droplet during leptin-stimulated lipolysis suggest minimal activity by PKA. Interestingly, leptin-stimulated lipolysis is accompanied by an increase in ATGL protein abundance and translocation to the lipid droplet, indicating its involvement in leptin-stimulated lipolysis either due to an increase in protein abundance or through a novel lipolytic cascade. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Gender Dimorphism in Skeletal Muscle Leptin Receptors, Serum Leptin and Insulin Sensitivity
Guerra, Borja; Fuentes, Teresa; Delgado-Guerra, Safira; Guadalupe-Grau, Amelia; Olmedillas, Hugo; Santana, Alfredo; Ponce-Gonzalez, Jesus Gustavo; Dorado, Cecilia; Calbet, José A. L.
2008-01-01
To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1±6.8 yr) and thirty-three women (age = 26.7±6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17β-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = −0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles. PMID:18941624
Aronis, Konstantinos N; Kilim, Holly; Chamberland, John P; Breggia, Anne; Rosen, Clifford; Mantzoros, Christos S
2011-10-01
Preadipocyte factor 1 (pref-1) is increased in anorexia nervosa and is associated negatively with bone mineral density (BMD). No previous studies exist on pref-1 in women with exercise-induced hypothalamic amenorrhea (HA), which similar to anorexia nervosa, is an energy-deficiency state associated with hypoleptinemia. Our objective was to evaluate whether pref-1 levels are also elevated and associated with low BMD and to assess whether leptin regulates pref-1 levels in women with HA. Study 1 was a double-blinded, placebo-controlled randomized clinical trial of metreleptin administration in women with HA. Study 2 was an open-label study of metreleptin administration in low physiological, supraphysiological, and pharmacological doses in healthy women volunteers. At Beth Israel Deaconess Medical Center, 20 women with HA and leptin levels higher than 5 ng/ml and nine healthy control women participated in study 1, and five healthy women participated in study 2. For study 1, 20 HA subjects were randomized to receive either 0.08 mg/kg metreleptin (n = 11) or placebo (n = 9). For study 2, five healthy subjects received 0.01, 0.1, and 0.3 mg/kg metreleptin in both fed and fasting conditions for 1 and 3 d, respectively. Circulating pref-1 and leptin levels were measured. Pref-1 was significantly higher in HA subjects vs. controls (P = 0.035) and negatively associated with BMD (ρ = -0.38; P < 0.01) and bone mineral content (ρ = -0.32; P < 0.05). Metreleptin administration did not alter pref-1 levels in any study reported herein. Pref-1 is higher in HA subjects than controls. Metreleptin administration at low physiological, supraphysiological, and pharmacological doses does not affect pref-1 levels, suggesting that hypoleptinemia is not responsible for higher pref-1 levels and that leptin does not regulate pref-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong
2014-05-15
Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1more » expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.« less
Demas, Gregory E
2010-04-01
Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity. (c) 2009 Elsevier Inc. All rights reserved.
Leptin actions on food intake and body temperature are mediated by IL-1.
Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J
1999-06-08
Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.
Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows.
Ehrhardt, Richard A; Foskolos, Andreas; Giesy, Sarah L; Wesolowski, Stephanie R; Krumm, Christopher S; Butler, W Ronald; Quirk, Susan M; Waldron, Matthew R; Boisclair, Yves R
2016-05-01
Mammals meet the increased nutritional demands of lactation through a combination of increased feed intake and a collection of adaptations known as adaptive metabolism (e.g., glucose sparing via insulin resistance, mobilization of endogenous reserves, and increased metabolic efficiency via reduced thyroid hormones). In the modern dairy cow, adaptive metabolism predominates over increased feed intake at the onset of lactation and develops concurrently with a reduction in plasma leptin. To address the role of leptin in the adaptive metabolism of early lactation, we asked which adaptations could be countered by a constant 96-h intravenous infusion of human leptin (hLeptin) starting on day 8 of lactation. Compared to saline infusion (Control), hLeptin did not alter energy intake or milk energy output but caused a modest increase in body weight loss. hLeptin reduced plasma glucose by 9% and hepatic glycogen content by 73%, and these effects were associated with a 17% increase in glucose disposal during an insulin tolerance test. hLeptin attenuated the accumulation of triglyceride in the liver by 28% in the absence of effects on plasma levels of the anti-lipolytic hormone insulin or plasma levels of free fatty acids, a marker of lipid mobilization from adipose tissue. Finally, hLeptin increased the plasma concentrations of T4 and T3 by nearly 50% without affecting other neurally regulated hormones (i.e., cortisol and luteinizing hormone (LH)). Overall these data implicate the periparturient reduction in plasma leptin as one of the signals promoting conservation of glucose and energy at the onset of lactation in the energy-deficient dairy cow. © 2016 Society for Endocrinology.
Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake
Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J.; Wang, Yuping; Ouyang, Suidong; Pan, Weihong
2014-01-01
Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of 125I-leptin and the reference substance 131I-albumin. The degradation pattern of 125I-leptin in serum and brain homogenates at different time points between 10-60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of 125I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity. PMID:23359322
Endothelial cell leptin receptor mutant mice have hyperleptinemia and reduced tissue uptake.
Hsuchou, Hung; Jayaram, Bhavaani; Kastin, Abba J; Wang, Yuping; Ouyang, Suidong; Pan, Weihong
2013-07-01
Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of (125) I-leptin and the reference substance (131) I-albumin. The degradation pattern of (125) I-leptin in serum and brain homogenates at different time points between 10 and 60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of (125) I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity. Copyright © 2013 Wiley Periodicals, Inc.
The important role of sleep in metabolism.
Copinschi, Georges; Leproult, Rachel; Spiegel, Karine
2014-01-01
Both reduction in total sleep duration with slow-wave sleep (SWS) largely preserved and alterations of sleep quality (especially marked reduction of SWS) with preservation of total sleep duration are associated with insulin resistance without compensatory increase in insulin secretion, resulting in impaired glucose tolerance and increased risk of type 2 diabetes. When performed under rigorously controlled conditions of energy intake and physical activity, sleep restriction is also associated with a decrease in circulating levels of leptin (an anorexigenic hormone) and an increase in circulating levels of ghrelin (an orexigenic hormone), hunger and appetite. Furthermore, sleep restriction is also associated with a stimulation of brain regions sensitive to food stimuli, indicating that sleep loss may lead to obesity through the selection of high-calorie food. There is also evidence that sleep restriction could provide a permissive environment for the activation of genes that promote obesity. Indeed, the heritability of body mass index is increased in short sleepers. Thus, chronic sleep curtailment, which is on the rise in modern society, including in children, is likely to contribute to the current epidemics of type 2 diabetes and obesity. © 2014 S. Karger AG, Basel.
Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend
2017-01-01
Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Leptin as a potential treatment for obesity: progress to date.
Bell-Anderson, Kim S; Bryson, Janet M
2004-01-01
Despite significant reductions in the consumption of dietary fat, the prevalence of obesity is steadily rising in western civilization. Of particular concern is the recent epidemic of childhood obesity, which is expected to increase the incidence of obesity-related disorders. The obese gene (ob) protein product leptin is a hormone that is secreted from adipocytes and functions to suppress appetite and increase energy expenditure. Leptin is an attractive candidate for the treatment of obesity as it is an endogenous protein and has been demonstrated to have potent effects on bodyweight and adiposity in rodents. Whereas leptin has been successfully used in the treatment of leptin-deficient obese patients, trials in hyperleptinemic obese patients have yielded variable results. Long-acting leptins have been tried but with no greater success. Other strategies including the use of leptin analogs and other factors that bypass normal leptin delivery systems are being developed. Identifying the mechanisms at the molecular level by which leptin functions will create new avenues for pharmaceutical targeting to simulate the intracellular effects of leptin.
Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich
2016-01-01
Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850
Tseng, Hsiu-Ting; Park, Young Joo; Lee, Yoon Kwang; Moore, David D
2015-05-08
Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.
Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R.; Burris, Dara L.; Xu, Xiaohua; Sun, Qinghua; Killilea, David W.; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A.; Failla, Mark L.; Knoell, Daren L.
2013-01-01
Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5–1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8–9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity. PMID:23700340
Nutritional effects on T-cell immunometabolism
Cohen, Sivan; Danzaki, Keiko; MacIver, Nancie J.
2017-01-01
T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism. PMID:28054344
Leptin to adiponectin ratio in preeclampsia.
Khosrowbeygi, A; Ahmadvand, H
2013-04-01
The aim of the present study was to assess leptin/adiponectin ratio in preeclamptic patients compared with normal pregnant women. A cross-sectional study was designed. The study population consisted of 30 preeclamptic patients and 30 healthy pregnant women. Serum levels of total leptin and adiponectin were assessed using commercially available enzyme-linked immunosorbent assay methods. The one-way ANOVA and Student's t tests and Pearson's correlation analysis were used for statistical calculations. Levels of leptin and adiponectin were also adjusted for BMI. A p-value < 0.05 was considered statistically significant. The leptin/adiponectin ratio was increased significantly in preeclamptic patients. The leptin/adiponectin ratio was significantly higher in severe preeclamptic patient than in mild preeclampsia. Adjusted leptin/adiponectin ratio was also significantly increased in preeclamptic patients than in normal pregnant women. The findings of the present study suggest that the leptin/adiponectin ratio was increased in preeclamsia and imbalance between the adipocytokines could be involved in the pathogenesis of preeclampsia.
Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.
Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang
2017-08-01
Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metlakunta, Anantha S; Sahu, Maitrayee; Yasukawa, Hideo; Dhillon, Sandeep S; Belsham, Denise D; Yoshimura, Akihiko; Sahu, Abhiram
2011-05-01
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.
Metlakunta, Anantha S.; Sahu, Maitrayee; Yasukawa, Hideo; Dhillon, Sandeep S.; Belsham, Denise D.; Yoshimura, Akihiko
2011-01-01
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30–120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity. PMID:21325649
Leptin in human physiology and pathophysiology
Magkos, Faidon; Brinkoetter, Mary; Sienkiewicz, Elizabeth; Dardeno, Tina A.; Kim, Sang-Yong; Hamnvik, Ole-Petter R.; Koniaris, Anastasia
2011-01-01
Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical applications of leptin or its analogs in human therapeutics. PMID:21791620
Meta-Chlorophenylpiperazine enhances leptin sensitivity in diet-induced obese mice
USDA-ARS?s Scientific Manuscript database
Most forms of human obesity are characterized by impaired leptin sensitivity and, therefore, the effectiveness of anti-obesity leptin therapy in these leptin-resistant obese patients is marginal. Hence, the development of strategies to increase leptin sensitivity is of high priority in the field of ...
Fenton, Jenifer I; Birmingham, Janette M
2010-01-01
Obesity results in increased circulating levels of specific adipokines which are associated with colon cancer risk. The disease state is associated with increased leptin, insulin, IGF-1, and IL-6. Conversely, adiponectin levels are decreased in obese individuals. Previously, we demonstrated adipokine-enhanced cell proliferation in preneoplastic, but not normal, colon epithelial cells, demonstrating a differential effect of adipokines on colon cancer progression in vitro. Using a model of late stage carcinoma cancer cell, namely murine MC-38 colon carcinoma cells, we compared the effect of obesity-associated adipokines (leptin, insulin and IGF-1 and IL-6) on MC-38 cell proliferation and determined whether adiponectin (full length or globular) could modulate adipokine-induced cell proliferation. We show that insulin and IL-6, but not leptin and IGF-1, induce proliferation in MC-38 cells. Adiponectin treatment of MC-38 cells did not inhibit insulin-induced cell proliferation but did inhibit IL-6-induced cell proliferation by decreasing STAT-3 phosphorylation and activation. Nitric oxide (NO) production was increased in MC-38 cells treated with IL-6; co-treatment with adiponectin blocked IL-6 induced iNOS and subsequent NO production. These data are compared to previously reported findings from our laboratory using the YAMC (model normal colon epithelial cells) and IMCE (model preneoplastic) cells. The cell lines are utilized to construct a model summarizing the hormonal consequences of obesity and the impact on the differential regulation of colon epithelial cells along the continuum to carcinoma. These data, taken together, highlight mechanisms involved in obesity-associated cancers and may lead to potential targeted therapies. PMID:20564347
Lower serum leptin levels in female students of the nutritional sciences with eating disorders.
Frey, Joachim; Neuhäuser-Berthold, Monika; Elis, Stefanie A; Duncker, Simone; Rose, Frederike; Blum, Werner F; Remschmidt, Helmut; Geller, Frank; Hebebrand, Johannes
2003-06-01
Evidence has accumulated that in both acutely ill and recovered patients with either anorexia or bulimia nervosa circulating leptin levels (LL) are lower than in controls matched for body mass index (BMI; kg/m(2)). It is unknown if these lower leptin levels represent a state or trait marker. We aimed to confirm the lowered leptin levels in eating disordered females and to identify underlying mechanisms. We screened 181 female students of the nutritional sciences for eating disorders with the respective module of the M-Composite International Diagnostic Interview and the Cognitive Restraint scale of the Three Factor Eating Questionnaire. The physical assessment included determinations of BMI, body composition and LL. Each case fulfilling lifetime DSM-IV criteria for an eating disorder was BMI matched to two controls. We used a multivariate mixed regression model to evaluate if the observed difference in lg(10)-leptin level between cases and controls is actually due to the influence of restrained eating and/or previous weight loss after adjustment for BMI and percent body fat. In accordance with our hypothesis the 32 (17.7 %) cases had a lower serum lg(10)-leptin level than the 64 BMI matched controls (one-sided p < 0.001). We were not able to detect an influence of restrained eating or previous weight loss. We confirm that females with a lifetime history of an eating disorder have lower LL. We were not able to identify an underlying mechanism. Similar to most previous studies we found a high rate of eating disorders among female students of nutritional sciences.
Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice.
Turner, Russell T; Philbrick, Kenneth A; Kuah, Amida F; Branscum, Adam J; Iwaniec, Urszula T
2017-06-01
Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth. © 2017 Society for Endocrinology.
Habeeballah, H; Alsuhaymi, N; Stebbing, M J; Badoer, E
2017-08-01
Similar to leptin, resistin acts centrally to increase renal sympathetic nerve activity (RSNA). In high-fat fed animals, the sympatho-excitatory effects of leptin are retained, in contrast to the reduced actions of leptin on dietary intake. In the present study, we investigated whether the sympatho-excitatory actions of resistin were influenced by a high-fat diet. Further, because resistin and leptin combined can induce a greater sympatho-excitatory response than each alone in rats fed a normal chow diet, we investigated whether a high-fat diet (22%) could influence this centrally-mediated interaction. Mean arterial pressure (MAP), heart rate (HR) and RSNA were recorded before and for 3 hours after i.c.v. saline (control; n=5), leptin (7 μg; n=4), resistin (7 μg; n=5) and leptin and resistin combined (n=6). Leptin alone and resistin alone significantly increased RSNA (71±16%, 62±4%, respectively). When leptin and resistin were combined, there was a significantly greater increase in RSNA (195±41%) compared to either hormone alone. MAP and HR responses were not significantly different between hormones. When the responses in high-fat fed rats were compared to normal chow fed rats, there were no significant differences in the maximum RSNA responses. The findings indicate that sympatho-excitatory effects of resistin on RSNA are not altered by high-fat feeding, including the greater increase in RSNA observed when resistin and leptin are combined. Our results suggest that diets rich in fat do not induce resistance to the increase in RSNA induced by resistin alone or in combination with leptin. © 2017 British Society for Neuroendocrinology.
Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen
2012-01-01
The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases.
Schaab, Michael; Kausch, Henriette; Klammt, Juergen; Nowicki, Marcin; Anderegg, Ulf; Gebhardt, Rolf; Rose-John, Stefan; Scheller, Juergen; Thiery, Joachim; Kratzsch, Juergen
2012-01-01
Background The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity. Methodology/Principal Findings To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding. Conclusions Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases. PMID:22545089
Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.
Noh, Minsoo
2012-03-01
Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.
Obesity-Induced Hypertension: Brain Signaling Pathways
da Silva, Alexandre A.; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E. P.; Hall, John E.
2017-01-01
Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review high-lights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997
A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity
Hilzendeger, Aline M.; Morgan, Donald A.; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L.; Rahmouni, Kamal; Sigmund, Curt D.
2012-01-01
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake. PMID:22610169
A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity.
Hilzendeger, Aline M; Morgan, Donald A; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D; Mark, Allyn L
2012-07-15
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.
Central Effects of Leptin on Glucose Homeostasis are Modified during Pregnancy in the Rat.
Ladyman, S R; Grattan, D R
2016-10-01
Despite increased leptin concentrations during pregnancy, fat mass and food intake are increased. The satiety response to central leptin is suppressed, indicating a state of leptin insensitivity in the hypothalamus. Although the regulation of food intake is a major function of leptin, this hormone also influences a wide range of functions within the body. These actions include the regulation of glucose homeostasis, which undergoes major adaptation in the maternal body to generate optimal conditions for foetal development and growth. The present study aimed to investigate the effects of central leptin treatment on glucose homeostasis in pregnant rats to determine whether pregnancy-induced leptin insensitivity is functionally specific, and to further investigate changes in glucose homeostasis during pregnancy. After an overnight fast, nonpregnant and day 14 pregnant rats received an i.c.v. injection of leptin (100 ng or 4 μg) or vehicle then underwent a glucose tolerance test (GTT). Further groups of nonpregnant and day 14 pregnant rats were killed 30 min after leptin (doses ranging from 40 ng-4 μg) or vehicle i.c.v. injections for western blot analysis of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-Akt in various hypothalamic nuclei. Central leptin injection prior to a GTT lead to lowered basal insulin concentrations and impaired glucose tolerance in nonpregnant female rats, whereas the same doses of leptin had no significant effect on glucose tolerance in day 14 pregnant rats, indicating that, similar to the satiety actions of leptin, the effects of leptin on glucose homeostasis are suppressed during pregnancy. Furthermore, in the arcuate nucleus and ventromedial and dorsomedial nuclei of the hypothalamus, comprising three leptin-sensitive areas, there was no evidence that leptin induced Akt phosphorylation despite significant increases in phospho-STAT3, suggesting that leptin does not act through phospho-Akt in these areas in female rats. © 2016 British Society for Neuroendocrinology.
Progranulin is increased in human and murine lipodystrophy.
Miehle, Konstanze; Ebert, Thomas; Kralisch, Susan; Hoffmann, Annett; Kratzsch, Jürgen; Schlögl, Haiko; Stumvoll, Michael; Fasshauer, Mathias
2016-10-01
Lipodystrophies (LD) are genetic or acquired disorders sharing the symptom of partial or complete adipose tissue deficiency and a dysregulation of adipokines including leptin and adiponectin. Progranulin, an adipokine with proinflammatory and insulin resistance-inducing characteristics, has not been investigated in LD so far. Circulating progranulin was determined in LD patients (N=37) and in age-, gender-, and body mass index-matched healthy control subjects (N=37). Additionally, we investigated progranulin expression in an LD mouse model as compared to wild-type mice. Moreover, we elucidated circulating progranulin before and during metreleptin supplementation in 10 patients with LD. Median [interquartile range] circulating progranulin was increased in patients with LD (82.9 [25.9] μg/l) as compared to controls (73.6 [22.8] μg/l) (p=0.005). C-reactive protein (CRP) remained an independent and positive predictor of progranulin in multivariate analysis. Progranulin mRNA was significantly upregulated in all adipose tissue depots, i.e. visceral, subcutaneous, and brown adipose tissue, and in muscle of LD animals versus wild-type mice. Progranulin levels did not significantly change during metreleptin supplementation. Progranulin serum concentration is increased in patients with LD, and shows an independent and positive correlation with CRP. Different adipose tissue depots and muscle might be potential origins of elevated progranulin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Murata, Tsugihiro; Asanuma, Kiyotaka; Ara, Nobuyuki; Iijima, Katsunori; Hatta, Waku; Hamada, Shin; Asano, Naoki; Koike, Tomoyuki; Imatani, Akira; Masamune, Atsushi; Shimosegawa, Tooru
2018-05-01
Leptin, produced primarily by the adipose tissue, acts as a pro-inflammatory modulator, thereby contributing to the development of obesity-related disease. Although high levels of leptin in the obese are closely related to gastroesophageal reflux disease, the mechanism by which leptin influences esophageal inflammation remains unknown. Macrophage migration inhibitory factor (MIF) is produced by immune cells, such as T lymphocytes and macrophages, and MIF is known to induce the production of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). We therefore investigated the mechanism whereby leptin aggravates reflux esophagitis, by focusing on esophageal tissue levels of MIF and CD3+ T lymphocytes, both of which are crucial for the reflux-induced epithelial damage. Esophageal inflammation was surgically induced in male Wistar rats by ligating the forestomach and narrowing the duodenum to facilitate gastroesophageal reflux, followed by administration of leptin or vehicle with an osmotic pump system for 1 week. We demonstrated that the administration of leptin exacerbated the reflux esophagitis with the apparent infiltration of CD3+ T lymphocytes and caused the significant increase in the esophageal tissue levels of MIF. Moreover, the leptin caused increases in the esophageal tissue levels of TNF-α, IL-1β and IL-6, downstream targets of MIF. Importantly, the increases in these pro-inflammatory cytokines were accompanied by increased protein levels of phospho-STAT3 and phospho-AKT, pivotal molecules of leptin signaling pathways. In conclusion, through enhancing the MIF-induced inflammatory signaling, leptin could contribute to the development of gastroesophageal reflux disease.
2009-01-01
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans. PMID:19878575
Serum adipokine concentrations in dogs with diabetes mellitus: a pilot study
Kim, Ah Young; Kim, Hye-Sun; Yang, Mhan-Pyo
2015-01-01
This study was conducted to determine whether serum adipokine concentrations differed between healthy dogs and dogs with diabetes mellitus (DM). To accomplish this, 19 dogs with newly diagnosed DM were compared to 20 otherwise healthy dogs. The serum concentrations of visfatin, leptin, IL-1β, IL-6, IL-18, and TNF-α were significantly higher in diabetic dogs than in healthy dogs, whereas the serum adiponectin concentrations were lower in diabetic dogs. However, there were no significant differences in the IL-10 and resistin levels between groups. The serum leptin concentrations in diabetic dogs with and without concurrent disorders differed significantly. Treatment with insulin induced a significant decrease in IL-6 in diabetic dogs without concurrent disorders. These results show that the clinical diabetic state of dogs could modulate the circulating visfatin and adiponectin concentrations directly, while upregulation of leptin was probably a result of concurrent disorders rather than an effect of persistent hyperglycemia as a result of DM. PMID:25643799
Circulating endothelial progenitor cells in obese children and adolescents.
Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel
2015-01-01
This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Percentage of REM Sleep is Associated with Overnight Change in Leptin
Olson, Christy A.; Hamilton, Nancy A.; Somers, Virend K.
2016-01-01
Sleep contributes importantly to energy homeostasis, and may impact hormones regulating appetite, such as leptin, an adipocyte derived hormone. There is increasing evidence that sleep duration, and reduced REM sleep, are linked to obesity. Leptin has central neural effects beyond modulation of appetite alone. As sleep is not a unifrom process, interactions between leptin and sleep stages including REM sleep may play a role in the relationship between sleep and obesity. This study examined the relationship between serum leptin and REM sleep in a sample of healthy adults. Participants were 58 healthy adults who underwent polysomnography. Leptin was measured before and after sleep. We hypothesized that lower percentage of REM sleep would be related to lower leptin levels during sleep. The relationship between percentage of REM sleep and leptin was analyzed using hierarchical linear regression. Increased percentage of REM sleep was related to a greater reduction in leptin during sleep even when controlling for age, gender, percent body fat and total sleep time. A greater percentage of REM sleep was accompanied by more marked reductions in leptin. Studies examining the effects of selective REM sleep deprivation on leptin levels, and hence on energy homeostasis in humans, are needed. PMID:26919408
Briffa, Jessica F.; O'Dowd, Rachael; Moritz, Karen M.; Romano, Tania; Jedwab, Lisa R.; McAinch, Andrew J.; Hryciw, Deanne H.
2017-01-01
Key points Uteroplacental insufficiency compromises maternal mammary development, milk production and pup organ development; this is ameliorated by cross‐fostering, which improves pup growth and organ development and prevents adult diseases in growth‐restricted (Restricted) offspring by enhancing postnatal nutrition.Leptin is transported to the fetus from the mother by the placenta; we report reduced plasma leptin concentrations in Restricted fetuses associated with sex‐specific alterations in placental leptin transporter expression.Pup plasma leptin concentrations were also reduced during suckling, which may suggest reduced milk leptin transport or leptin reabsorption.Mothers suckled by Restricted pups had impaired mammary development and changes in milk fatty acid composition with no alterations in milk leptin; cross‐fostering restored pup plasma leptin concentrations, which may be correlated to improved milk composition and intake.Increased plasma leptin and altered milk fatty acid composition in Restricted pups suckling mothers with normal lactation may improve postnatal growth and prevent adult diseases. Abstract Uteroplacental insufficiency reduces birth weight and adversely affects fetal organ development, increasing adult disease risk. Cross‐fostering improves postnatal nutrition and restores these deficits. Mothers with growth‐restricted pups have compromised milk production and composition; however, the impact cross‐fostering has on milk production and composition is unknown. Plasma leptin concentrations peak during the completion of organogenesis, which occurs postnatally in rats. Leptin is transferred to the fetus via the placenta and to the pup via the lactating mammary gland. This study investigated the effect of uteroplacental insufficiency on pup plasma leptin concentrations and placental leptin transporters. We additionally examined whether cross‐fostering improves mammary development, milk composition and pup plasma leptin concentrations. Fetal growth restriction was induced by bilateral uterine vessel ligation surgery on gestation day 18 in Wistar Kyoto rats (termed uteroplacental insufficiency surgery mothers). Growth‐restricted (Restricted) fetuses had reduced plasma leptin concentrations, persisting throughout lactation, and sex‐specific alterations in placental leptin transporters. Mothers suckled by Restricted pups had impaired mammary development, altered milk fatty acid composition and increased plasma leptin concentrations, despite no changes in milk leptin. Milk intake was reduced in Restricted pups suckling uteroplacental insufficiency surgery mothers compared to Restricted pups suckling sham‐operated mothers. Cross‐fostering Restricted pups onto a sham‐operated mother improved postnatal growth and restored plasma leptin concentrations compared to Restricted pups suckling uteroplacental insufficiency surgery mothers. Uteroplacental insufficiency alters leptin homeostasis. This is ameliorated with cross‐fostering and enhanced milk fatty acid composition and consumption, which may protect the pups from developing adverse health conditions in adulthood. PMID:28369926
Schaab, Michael; Kratzsch, Juergen
2015-10-01
The adipokine leptin realizes signal transduction via four different leptin receptor (OB-R) isoforms. The amount of functionally active OB-R, however, is affected by constitutive shedding of the extracellular domain. The product of the cleavage process, the so-called soluble leptin receptor (sOB-R), is the main binding protein for leptin in human blood and modulates its bioavailability. Concentrations of sOB-R are differentially regulated in metabolic disorders, such as type 1 diabetes mellitus or obesity, and can, therefore, enhance or reduce leptin sensitivity. Lipotoxicity and apoptosis increase OB-R cleavage via ADAM10-dependent mechanisms. In contrast, although increased sOB-R concentrations seem to directly inhibit leptin effects, reduced amounts of sOB-R may reflect decreased membrane expression of OB-R. These findings, in part, explain alterations of leptin sensitivity that are associated with changes in serum sOB-R concentrations seen in metabolic disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang
2017-08-01
The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.
Gahete, Manuel D; Córdoba-Chacón, Jose; Salvatori, Roberto; Castaño, Justo P; Kineman, Rhonda D; Luque, Raul M
2010-04-12
Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.
Leptin Protects Host Cells from Entamoeba histolytica Cytotoxicity by a STAT3-Dependent Mechanism
Verkerke, Hans P.; Paul, Shom N.; Mackey, Aaron J.; Petri, William A.
2012-01-01
The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P < 1E−05), supporting the hypothesis that leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection. PMID:22331430
Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M
2016-10-01
Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura
2012-01-01
Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway. PMID:23056265
Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus.
Qiu, Chunfang; Williams, Michelle A; Vadachkoria, Surab; Frederick, Ihunnaya O; Luthy, David A
2004-03-01
Emerging evidence suggests that leptin, an adipocyte-derived hormone, may have independent direct effects on both insulin secretion and action, in addition to its well documented effects on appetite and energy expenditure. Some, but not all, previously published studies suggest that maternal leptin concentrations may be increased in pregnancies complicated by gestational diabetes mellitus (GDM). We examined the association between plasma leptin concentration and GDM risk. Women were recruited before 16 weeks of gestation and were followed up until delivery. Maternal plasma leptin concentrations (collected at 13 weeks of gestation) were measured by using immunoassay. We used generalized linear models to estimate relative risks and 95% confidence intervals. GDM developed in 5.7% of the cohort (47 of 823). Elevated leptin concentrations were positively associated with GDM risk (P for trend <.001). After adjusting for maternal prepregnancy adiposity and other confounders, women with leptin concentrations of 31.0 ng/mL or higher experienced a 4.7-fold increased risk of GDM (95% confidence interval 1.2, 18.0) as compared with women who had concentrations of 14.3 ng/mL or lower. We noted a strong linear component of trend in risk of GDM with increasing maternal plasma leptin concentration. Each 10-ng/mL increase in the leptin concentration was associated with a 20% increase in GDM risk (relative risk 1.2; 95% confidence interval 1.0, 1.3). Hyperleptinemia, independent of maternal adiposity, in early pregnancy appears to be predictive of an increased risk of GDM later in pregnancy. Additional larger prospective cohort studies are needed to confirm and more precisely assess the etiologic importance of hyperleptinemia in pregnancy. II-2
Adipocyte iron regulates leptin and food intake
Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.
2015-01-01
Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810
Ding, Xiaomeng; Kou, Xinxin; Zhang, Ye; Zhang, Xiaoli; Cheng, Guomei; Jia, Tianming
2017-10-30
Leptin has been found to be involved in the ovarian granulosa cell apoptosis and steroidogenesis. Loss of neuropeptide Y (NPY) can correct the obesity syndrome of mutant mice lacking of leptin (ob/ob). However, the association of NPY and leptin in ovarian granulosa cells and ovarian steroidogenesis has not been investigated. Here, C57BL/6J ob/ob mice and C57BL/6J (control) mice were intraperitoneally injected with PBS, leptin (0.4μg/g bodyweight) or BIIE0246 (NPY2 receptor [NPY2R] antagonist, 30μg/kg bodyweight) every day for 15days. We found that NPY2R mRNA expression in mouse ovary was suppressed by leptin treatment, but increased by leptin deficiency. Leptin or BIIE0246 treatment significantly increased E2, but notably decreased progesterone in both mice. A lower level of E2 and a higher level of progesterone was observed in ob/ob mice than in control mice. Further, we then knocked down leptin expression in human ovarian granulosa cells by siRNA transfection and treated the cells with DMSO or BIIE0246. In vitro experiments confirmed the findings in mice. siLeptin treatment decreased the secretion of E2, anti-Mullerian hormone (AMH), insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β, and the cell proliferation, but increased the secretion of progesterone and cell apoptosis. Western blotting analysis of PCNA, Bcl-2 and Bax confirmed the results of cell proliferation and apoptosis. Activation of JAK2 and STAT3 was also suppressed by knocking down leptin. All the effects of siLeptin on ovarian granulosa cells were partially reversed by BIIE0246. In conclusion, knockdown of leptin significantly affected ovarian steroidogenesis and ovarian function through NPY. siLeptin transfection impaired the activation of JAK2/STAT3 and contributed to ovarian granulosa cell apoptosis partially through up-regulating NPY2R expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Yarandi, Shadi S.; Hebbar, Gautam; Sauer, Cary G.; Cole, Conrad R.; Ziegler, Thomas R.
2011-01-01
Objective Leptin was discovered in 1994 as a hormone produced by adipose tissue with a modulatory effect on feeding behavior and weight control. Recently, the stomach has been identified as an important source of leptin and growing evidence has shown diverse functions for leptin in the gastrointestinal tract. Methods Using leptin as a keyword in PubMed, more than 17 000 articles were identified, of which more than 500 articles were related to the role of leptin in the gastrointestinal tract. Available abstracts were reviewed and more than 200 original articles were reviewed in detail. Results The available literature demonstrated that leptin can modulate several important functions of the gastrointestinal tract. Leptin interacts with the vagus nerve and cholecystokinin to delay gastric emptying and has a complex effect on motility of the small bowel. Leptin modulates absorption of macronutrients in the gastrointestinal tract differentially in physiologic and pathologic states. In physiologic states, exogenous leptin has been shown to decrease carbohydrate absorption and to increase the absorption of small peptides by the PepT1 di-/tripeptide transporter. In certain pathologic states, leptin has been shown to increase absorption of carbohydrates, proteins, and fat. Leptin has been shown to be upregulated in the colonic mucosa in patients with inflammatory bowel disease. Leptin stimulates gut mucosal cell proliferation and inhibits apoptosis. These functions have led to speculation about the role of leptin in tumorigenesis in the gastrointestinal tract, which is complicated by the multiple immunoregulatory effects of leptin. Conclusion Leptin is an important modulator of major aspects of gastrointestinal tract functions, independent of its more well-described roles in appetite regulation and obesity. PMID:20947298
Hyperphagia and central mechanisms for leptin resistance during pregnancy.
Trujillo, M L; Spuch, C; Carro, E; Señarís, R
2011-04-01
The purpose of this work was to study the central mechanisms involved in food intake regulation and leptin resistance during gestation in the rat. Sprague Dawley rats of 7, 13, and 18 d of pregnancy [days of gestation (G) 7, G13, and G18] were used and compared with nonpregnant animals in diestrus-1. Food intake was already increased in G7, before hyperleptinemia and central leptin resistance was established in midpregnancy. Leptin resistance was due to a reduction in leptin transport through the blood-brain barrier (BBB) and to alterations in leptin signaling within the hypothalamus based on an increase in suppressor of cytokine signaling 3 levels and a blockade of signal transducer and activator of transcription-3 phosphorylation (G13), followed by a decrease in LepRb and of Akt phosphorylation (G18). In early gestation (G7), no change in hypothalamic neuropeptide Y (NPY), agouti-related peptide (AgRP), or proopiomelanocortin (POMC) expression was shown. Nevertheless, an increase in NPY and AgRP and a decrease in POMC mRNA were observed in G13 and G18 rats, probably reflecting the leptin resistance. To investigate the effect of maternal vs. placental hormones on these mechanisms, we used a model of pseudogestation. Rats of 9 d of pseudogestation were hyperphagic, showing an increase in body and adipose tissue weight, normoleptinemia, and normal responses to iv/intracerebroventricular leptin on hypothalamic leptin signaling, food intake, and body weight. Leptin transport through the BBB, and hypothalamic NPY, AgRP and POMC expression were unchanged. Finally, the transport of leptin through the BBB was assessed using a double-chamber culture system of choroid plexus epithelial cells or brain microvascular endothelial cells. We found that sustained high levels of prolactin significantly reduced leptin translocation through the barrier, whereas progesterone and β-estradiol did not show any effect. Our data demonstrate a dual mechanism of leptin resistance during mid/late-pregnancy, which is not due to maternal hormones and which allows the maintenance of hyperphagia in the presence of hyperleptinemia driven by an increase in NPY and AgRP and a decrease in POMC mRNA. By contrast, in early pregnancy maternal hormones induce hyperphagia without the regulation of hypothalamic NPY, AgRP, or POMC and in the absence of leptin resistance.
Strong, Amy L; Ohlstein, Jason F; Biagas, Brandi A; Rhodes, Lyndsay V; Pei, Dorothy T; Tucker, H Alan; Llamas, Claire; Bowles, Annie C; Dutreil, Maria F; Zhang, Shijia; Gimble, Jeffrey M; Burow, Matthew E; Bunnell, Bruce A
2015-08-19
The steady increase in the incidence of obesity among adults has been paralleled with higher levels of obesity-associated breast cancer. While recent studies have suggested that adipose stromal/stem cells (ASCs) isolated from obese women enhance tumorigenicity, the mechanism(s) by which this occurs remains undefined. Evidence suggests that increased adiposity results in increased leptin secretion from adipose tissue, which has been shown to increased cancer cell proliferation. Previously, our group demonstrated that ASCs isolated from obese women (obASCs) also express higher levels of leptin relative to ASCs isolated from lean women (lnASCs) and that this obASC-derived leptin may account for enhanced breast cancer cell growth. The current study investigates the impact of inhibiting leptin expression in lnASCs and obASCs on breast cancer cell (BCC) growth and progression. Estrogen receptor positive (ER+) BCCs were co-cultured with leptin shRNA lnASCs or leptin shRNA obASCs and changes in the proliferation, migration, invasion, and gene expression of BCCs were investigated. To assess the direct impact of leptin inhibition in obASCs on BCC proliferation, MCF7 cells were injected alone or mixed with control shRNA obASCs or leptin shRNA obASCs into SCID/beige mice. ER+ BCCs were responsive to obASCs during direct co-culture, whereas lnASCs were unable to increase ER(+) BCC growth. shRNA silencing of leptin in obASCs negated the enhanced proliferative effects of obASC on BCCs following direct co-culture. BCCs co-cultured with obASCs demonstrated enhanced expression of epithelial-to-mesenchymal transition (EMT) and metastasis genes (SERPINE1, MMP-2, and IL-6), while BCCs co-cultured with leptin shRNA obASCs did not display similar levels of gene induction. Knockdown of leptin significantly reduced tumor volume and decreased the number of metastatic lesions to the lung and liver. These results correlated with reduced expression of both SERPINE1 and MMP-2 in tumors formed with MCF7 cells mixed with leptin shRNA obASCs, when compared to tumors formed with MCF7 cells mixed with control shRNA obASCs. This study provides mechanistic insight as to how obesity enhances the proliferation and metastasis of breast cancer cells; specifically, obASC-derived leptin contributes to the aggressiveness of breast cancer in obese women.
Leptin sustains spontaneous remyelination in the adult central nervous system
Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide
2017-01-01
Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609
Cohen, Sarah S.; Fowke, Jay H.; Cai, Qiuyin; Buchowski, Maciej S.; Signorello, Lisa B.; Hargreaves, Margaret K.; Zheng, Wei; Blot, William J.; Matthews, Charles E.
2012-01-01
Background/Aims Leptin may be an important link between obesity and many high-burden diseases, including cancer and cardiovascular disease, but leptin levels and correlates in individuals of diverse racial backgrounds have not been well characterized despite racial differences in incidence and mortality patterns for many obesity-related diseases. Methods In a cross-sectional study of 915 white and 892 black women enrolled in the Southern Community Cohort Study (age 40–79 years, half postmenopausal), serum leptin levels were compared between the race groups and across categories of body mass index (BMI). Potential correlates of leptin were assessed via race-stratified linear regression models. Results Blacks had higher unadjusted leptin levels than whites (geometric mean 22.4 vs. 19.0 ng/ml; p < 0.0001). Leptin increased with increasing BMI, and racial differences in leptin were most pronounced in women with BMI ≥25. Significant correlates of leptin included BMI, age, alcohol consumption, cigarette smoking, diabetes (both races) and fat consumption (black women only). Leptin remained higher in black women (22.7 vs. 18.8 ng/ml) after adjustment for these factors. Conclusions Persistent racial differences in leptin concentrations exist after adjustment for BMI and other factors. Leptin assessment may be informative in future studies that investigate racial differences in the development of obesity-related diseases. PMID:22353927
Zheng, Juan; Fang, Ji; Yin, Yuan-Jun; Wang, Xiao-Chen; Ren, An-Jing; Bai, Jie; Sun, Xue-Jun; Yuan, Wen-Jun; Lin, Li
2010-10-01
1. Leptin, an important adipose-derived hormone, can be associated with cardiac pathophysiology; however, the role of leptin in cardiomyocyte apoptosis is poorly understood. The present study examines serum-deprivation-induced apoptosis in primary cultured cardiomyocytes treated with leptin. 2. Cardiomyocytes were subjected to serum deprivation in the presence or absence of leptin (5 or 50 nmol/L) for 48 h. Apoptosis was determined by Hoechst 33258 and Annexin V-FITC/propidium iodide dual staining. Cell viability, malondialdehyde (MDA) content, caspase 3 activation, and the expression and enzyme activity of superoxide dismutase (SOD) were measured. Small interference RNA (siRNA) targeting SOD1 and SOD2 were used to knockdown their expression and measure apoptosis. 3. Serum deprivation caused nearly 30% of apoptosis in cardiomyocytes, and an approximately 60% decrease in cell viability. The mRNA levels and the activated form of caspase 3 were greatly increased. In the presence of leptin, the apoptotic rate was reduced to approximately 15%, cell viability was increased and the activation of caspase 3 was partially inhibited. Additionally, the augmented lipid peroxidation (MDA formation) was abolished, and the impaired activities of SOD1 and SOD2 were restored by leptin. The mRNA expression of SOD2, but not SOD1, was stimulated by leptin. Transfection with siRNA that cause deficiency of either SOD1 or SOD2 attenuated the anti-apoptotic effects of leptin. 4. The results suggest that leptin inhibits serum-deprivation-induced apoptosis in cardiomyocytes by activating SOD. The present study outlines the direct actions of leptin in cardiac disorders that are related to elevated leptin levels. © 2010 The Authors. Clinical and Experimental Pharmacology and Physiology © 2010 Blackwell Publishing Asia Pty Ltd.
Amrock, Stephen M; Weitzman, Michael
2014-09-01
Leptin and C-reactive protein (CRP) have each been linked to adverse cardiovascular events, and prior cross-sectional research suggests that increased levels of both biomarkers pose an even greater risk. The effect of increased levels of both leptin and CRP on mortality has not, however, been previously assessed. We used data from the third National Health and Nutrition Examination Survey (NHANES III) to estimate the mortality effect of high leptin and high CRP levels. Outcomes were compared with the use of inverse-probability-weighting adjustment. Among 6259 participants included in the analysis, 766 were in their sex-specific, population-weighted highest quartiles of both leptin and CRP. Median follow-up time was 14.3 years. There was no significant difference in adjusted all-cause mortality between the groups (risk ratio 1.22, 95% confidence interval [CI], 0.97-1.54). Similar results were noted with the use of several different analytic methods and in many subgroups, though high leptin and CRP levels may increase all-cause mortality in males (hazard ratio, 1.80, 95% CI, 1.32-2.46; P for interaction, 0.011). A significant difference in cardiovascular mortality was also noted (risk ratio, 1.54, 95% CI, 1.08-2.18), though that finding was not confirmed in all sensitivity analyses.. In this observational study, no significant difference in overall all-cause mortality rates in those with high leptin and high CRP levels was found, though high leptin and CRP levels appear associated with increased mortality in males. High leptin and CRP levels also likely increase risk for cardiovascular death.. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Leptin and zinc relation: In regulation of food intake and immunity
Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim
2012-01-01
Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD+4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497
Multifaceted Leptin network: the molecular connection between obesity and breast cancer
Saxena, Neeraj K.; Sharma, Dipali
2016-01-01
High plasma levels of leptin, a major adipocytokine produced by adipocytes, are correlated with increased fat mass in obese state. Leptin is emerging as a key candidate molecule linking obesity with breast cancer. Acting via endocrine, paracrine, and autocrine manner, leptin impacts various stages of breast tumorigenesis from initiation and primary tumor growth to metastatic progression. Leptin also modulates the tumor microenvironment mainly through supporting migration of endothelial cells, neo-angiogenesis and sustaining recruitment of macrophage and monocytes. Various studies have shown that hyperactive leptin-signaling network leads to concurrent activation of multiple oncogenic pathways resulting in enhanced proliferation, decreased apoptosis, acquisition of mesenchymal phenotype, potentiated migration and enhanced invasion potential of tumor cells. Furthermore, the capability of leptin to interact with other molecular effectors of obese state including, estrogen, IGF-1, insulin, VEGF and inflammatory cytokines further increases its impact on breast tumor progression in obese state. This article presents an overview of the studies investigating the involvement of leptin in breast cancer. PMID:24214584
Dehydroascorbic acid-induced endoplasmic reticulum stress and leptin resistance in neuronal cells.
Thon, Mina; Hosoi, Toru; Ozawa, Koichiro
2016-09-16
Due to its anti-obesity effects, an adipocyte-derived hormone, leptin, has become important for the treatment of obesity. However, most obese subjects are in a state of leptin resistance, and endoplasmic reticulum (ER) stress is suggested to be involved in the pathophysiology of leptin resistance. Dehydroascorbic acid (DHAA), an oxidized form of vitamin C, was found to be increased in diabetes. In the present study, we investigated the possible effects of DHAA on the activation of ER stress and leptin resistance. A human neuroblastoma cell line, stably transfected with the Ob-Rb leptin receptor (SH-SY5Y-ObRb), was treated with DHAA. We found that DHAA upregulated ER stress-related genes such as GRP78, CHOP, and spliced XBP1. Moreover, leptin-induced STAT3 phosphorylation was hindered by DHAA. These results suggested that increases in the levels of DHAA might be harmful to neurons, contributing to defective leptin-responsive signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Schram, Kristin; Ganguly, Riya; No, Eun Kyung; Fang, Xiangping; Thong, Farah S L; Sweeney, Gary
2011-05-01
Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.
The relationship between leptin level and oxidative status parameters in hemodialysis patients.
Horoz, Mehmet; Aslan, Mehmet; Koylu, Ahmet O; Bolukbas, Cengiz; Bolukbas, Filiz F; Selek, Sahbettin; Erel, Ozcan
2009-01-01
Both serum leptin level and oxidative stress are increased in hemodialysis (HD) patients. In the present study, we aimed to investigate whether there is association between oxidative status and leptin level in HD patients. Thirty-five HD patients and 25 healthy controls were enrolled in the present study. Serum leptin level, total peroxide (TP) level, total antioxidant capacity (TAC), and oxidative stress index (OSI) were determined. Serum leptin level, TP level, and OSI were significantly higher in HD patients than controls (all P < 0.001) while TAC was lower (P < 0.001). In HD patients, serum leptin level was significantly correlated with TP level and OSI (r = 0.372, P < 0.001 and r = 0.409, P < 0.001, respectively). The correlation of serum leptin level with TP level and OSI remained statistically significant after adjusting for age, gender, and body-fat percentage (r = 0.446, P < 0.001 and r = 0.463, P < 0.001, respectively). Hyperleptinemia seems to be associated with increased oxidative stress in HD patients, and this association may provide better understanding about the disorders related to either elevated serum leptin levels and/or increased oxidative stress in HD patients.
Emerging role of leptin in rheumatoid arthritis
Tian, G; Liang, J-N; Wang, Z-Y; Zhou, D
2014-01-01
Numerous studies have suggested the importance of leptin against autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS) and psoriasis. To summarize our current understanding of the role of leptin in inflammatory responses and rheumatoid arthritis (RA), a systematic review was conducted to assess the discrepancy of leptin in RA and its effect on immunity according to different studies. Recently, emerging data have indicated that leptin is involved in the pathological function of RA, which is common in autoimmune disorders. This review discusses the possible consequences of leptin levels in RA. Blocking the key signal pathways of leptin and inhibiting the leptin activity-like leptin antagonist may be a promising way for potential therapeutic treatment of RA at risk of detrimental effects. However, leptin was increased in patients with RA and may also regulate joint damage. Thus, more understanding of the mechanism of leptin in RA would be advantageous in the future. PMID:24802245
Gossai, Anala; Lesseur, Corina; Farzan, Shohreh; Marsit, Carmen; Karagas, Margaret R; Gilbert-Diamond, Diane
2015-01-01
Leptin is an important pleiotropic hormone involved in the regulation of nutrient intake and energy expenditure, and is known to influence body weight in infants and adults. High maternal levels of arsenic have been associated with reduced infant birth weight, but the mechanism of action is not yet understood. This study aimed to investigate the association between in utero arsenic exposure and infant cord blood leptin concentrations within 156 mother-infant pairs from the New Hampshire Birth Cohort Study (NHBCS) who were exposed to low to moderate levels of arsenic through well water and diet. In utero arsenic exposure was obtained from maternal second trimester urinary arsenic concentration, and plasma leptin levels were assessed through immunoassay. Results indicate that urinary arsenic species concentrations were predictive of infant cord blood leptin levels following adjustment for creatinine, infant birth weight for gestational age percentile, infant sex, maternal pregnancy-related weight gain, and maternal education level amongst 149 white mother-infant pairs in multivariate linear regression models. A doubling or 100% increase in total urinary arsenic concentration (iAs+MMA+DMA) was associated with a 10.3% (95% CI: 0.8-20.7%) increase in cord blood leptin levels. A 100% increase in either monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA) was also associated with an 8.3% (95% CI: -1.0-18.6%) and 10.3% (95% CI: 1.2-20.2%) increase in cord blood leptin levels, respectively. The association between inorganic arsenic (iAs) and cord blood leptin was of similar magnitude and direction as other arsenic species (a 100% increase in iAs was associated with a 6.5% (95% CI: -3.4-17.5%) increase in cord blood leptin levels), albeit not significant. These results suggest in utero exposure to low levels of arsenic influences cord blood leptin concentration and presents a potential mechanism by which arsenic may impact early childhood growth. Copyright © 2014 Elsevier Inc. All rights reserved.
List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J
2014-05-01
GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.
IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.
Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel
2018-01-01
We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.
Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle
2015-01-01
Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R. PMID:25946034
Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P
2016-12-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.
Frihauf, Jennifer B.; Fekete, Éva M.; Nagy, Tim R.; Levin, Barry E.
2016-01-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. PMID:27654396
Toda, Chitoku; Shiuchi, Tetsuya; Kageyama, Haruaki; Okamoto, Shiki; Coutinho, Eulalia A.; Sato, Tatsuya; Okamatsu-Ogura, Yuko; Yokota, Shigefumi; Takagi, Kazuyo; Tang, Lijun; Saito, Kumiko; Shioda, Seiji; Minokoshi, Yasuhiko
2013-01-01
Leptin is a key regulator of glucose metabolism in mammals, but the mechanisms of its action have remained elusive. We now show that signaling by extracellular signal–regulated kinase (ERK) and its upstream kinase MEK in the ventromedial hypothalamus (VMH) mediates the leptin-induced increase in glucose utilization as well as its insulin sensitivity in the whole body and in red-type skeletal muscle of mice through activation of the melanocortin receptor (MCR) in the VMH. In contrast, activation of signal transducer and activator of transcription 3 (STAT3), but not the MEK-ERK pathway, in the VMH by leptin enhances the insulin-induced suppression of endogenous glucose production in an MCR-independent manner, with this effect of leptin occurring only in the presence of an increased plasma concentration of insulin. Given that leptin requires 6 h to increase muscle glucose uptake, the transient activation of the MEK-ERK pathway in the VMH by leptin may play a role in the induction of synaptic plasticity in the VMH, resulting in the enhancement of MCR signaling in the nucleus and leading to an increase in insulin sensitivity in red-type muscle. PMID:23530005
Prior, Larissa J; Eikelis, Nina; Armitage, James A; Davern, Pamela J; Burke, Sandra L; Montani, Jean-Pierre; Barzel, Benjamin; Head, Geoffrey A
2010-04-01
The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (P<0.05), after 3 weeks of HFD. Renal sympathetic nerve activity was 48% higher (P<0.05) in HFD compared with control diet rabbits and was correlated to plasma leptin (r=0.87; P<0.01). Intracerebroventricular leptin administration (5 to 100 microg) increased mean arterial pressure similarly in both groups, but renal sympathetic nerve activity increased more in HFD-fed rabbits. By contrast, intracerebroventricular leptin produced less neurons expressing c-Fos in HFD compared with control rabbits in regions important for appetite and sympathetic actions of leptin (arcuate: -54%, paraventricular: -69%, and dorsomedial hypothalamus: -65%). These results suggest that visceral fat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.
Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il
2014-01-01
The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) –bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior. PMID:25060362
do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E
2011-05-01
Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.
Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung
2007-07-15
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.
Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph
2014-01-01
Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors localized to the pontine reticular formation significantly alter nociception. PMID:24976513
Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress.
Kawakami, Akio; Okada, Nobukazu; Rokkaku, Kumiko; Honda, Kazufumi; Ishibashi, Shun; Onaka, Tatsushi
2008-09-01
Metabolic conditions affect hypothalamo-pituitary-adrenal responses to stressful stimuli. Here we examined effects of food deprivation, leptin and ghrelin upon noradrenaline release in the hypothalamic paraventricular nucleus (PVN) and plasma adrenocorticotropic hormone (ACTH) concentrations after stressful stimuli. Food deprivation augmented both noradrenaline release in the PVN and the increase in plasma ACTH concentration following electrical footshocks (FSs). An intracerebroventricular injection of leptin attenuated the increases in hypothalamic noradrenaline release and plasma ACTH concentrations after FSs, while ghrelin augmented these responses. These data suggest that leptin inhibits and ghrelin facilitates neuroendocrine stress responses via noradrenaline release and indicate that a decrease in leptin and an increase in ghrelin release after food deprivation might contribute to augmentation of stress-induced ACTH release in a fasting state.
Nepal, Saroj; Kim, Mi Jin; Hong, Jin Tae; Kim, Sang Hyun; Sohn, Dong-Hwan; Lee, Sung Hee; Song, Kyung; Choi, Dong Young; Lee, Eung Seok; Park, Pil-Hoon
2015-01-01
Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production. PMID:25704884
Florant, Gregory L; Porst, Heather; Peiffer, Aubrey; Hudachek, Susan F; Pittman, Chris; Summers, Scott A; Rajala, Michael W; Scherer, Philipp E
2004-11-01
Leptin and adiponectin are proteins produced and secreted from white adipose tissue and are important regulators of energy balance and insulin sensitivity. Seasonal changes in leptin and adiponectin have not been investigated in mammalian hibernators in relationship to changes in fat cell and fat mass. We sought to determine the relationship between serum leptin and adiponectin levels with seasonal changes in lipid mass. We collected serum and tissue samples from marmots (Marmota flaviventris) in different seasons while measuring changes in fat mass, including fat-cell size. We found that leptin is positively associated with increasing fat mass and fat-cell size, while adiponectin is negatively associated with increasing lipid mass. These findings are consistent with the putative roles of these adipokines: leptin increases with fat mass and is involved in enhancing lipid oxidation while adiponectin appears to be higher in summer when hepatic insulin sensitivity should be maintained since the animals are eating. Our data suggest that during autumn/winter animals have switched from a lipogenic condition to a lipolytic state, which may include leptin resistance.
Leptin regulates bone formation via the sympathetic nervous system
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard
2002-01-01
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice.
Chapnik, Nava; Solomon, Gili; Genzer, Yoni; Miskin, Ruth; Gertler, Arieh; Froy, Oren
2013-06-01
Transgenic alpha murine urokinase-type plasminogen activator (αMUPA) mice are resistant to obesity and their locomotor activity is altered. As these mice have high leptin levels, our objective was to test whether leptin is responsible for these characteristics. αMUPA, their genetic background control (FVB/N), and C57BL mice were injected s.c. every other day with 20 mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA) for 6 weeks. We tested the effect of PEG-SMLA on body weight, locomotion, and bone health. The antagonist led to a rapid increase in body weight and subsequent insulin resistance in all treated mice. Food intake of PEG-SMLA-injected animals increased during the initial period of the experiment but then declined to a similar level to that of the control animals. Interestingly, αMUPA mice were found to have reduced bone volume (BV) than FVB/N mice, although PEG-SMLA increased bone mass in both strains. In addition, PEG-SMLA led to disrupted locomotor activity and increased corticosterone levels in C57BL but decreased levels in αMUPA or FVB/N mice. These results suggest that leptin is responsible for the lean phenotype and reduced BV in αMUPA mice; leptin affects corticosterone levels in mice in a strain-specific manner; and leptin alters locomotor activity, a behavior determined by the central circadian clock.
Activities for leptin in bovine trophoblast cells.
Hughes, C K; Xie, M M; McCoski, S R; Ealy, A D
2017-01-01
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested. In conclusion, leptin supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but leptin increases CSH2 and MMP2 transcript abundance. Both of these factors are involved with peri-implantation and postimplantation placental development and function, and this implicates leptin as a potential mediator of early placental development and function in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.
Aronis, Konstantinos N.; Kilim, Holly; Chamberland, John P.; Breggia, Anne; Rosen, Clifford
2011-01-01
Context: Preadipocyte factor 1 (pref-1) is increased in anorexia nervosa and is associated negatively with bone mineral density (BMD). No previous studies exist on pref-1 in women with exercise-induced hypothalamic amenorrhea (HA), which similar to anorexia nervosa, is an energy-deficiency state associated with hypoleptinemia. Objective: Our objective was to evaluate whether pref-1 levels are also elevated and associated with low BMD and to assess whether leptin regulates pref-1 levels in women with HA. Design: Study 1 was a double-blinded, placebo-controlled randomized clinical trial of metreleptin administration in women with HA. Study 2 was an open-label study of metreleptin administration in low physiological, supraphysiological, and pharmacological doses in healthy women volunteers. Setting and Patients: At Beth Israel Deaconess Medical Center, 20 women with HA and leptin levels higher than 5 ng/ml and nine healthy control women participated in study 1, and five healthy women participated in study 2. Intervention: For study 1, 20 HA subjects were randomized to receive either 0.08 mg/kg metreleptin (n = 11) or placebo (n = 9). For study 2, five healthy subjects received 0.01, 0.1, and 0.3 mg/kg metreleptin in both fed and fasting conditions for 1 and 3 d, respectively. Main Outcome Measures: Circulating pref-1 and leptin levels were measured. Results: Pref-1 was significantly higher in HA subjects vs. controls (P = 0.035) and negatively associated with BMD (ρ = −0.38; P < 0.01) and bone mineral content (ρ = −0.32; P < 0.05). Metreleptin administration did not alter pref-1 levels in any study reported herein. Conclusions: Pref-1 is higher in HA subjects than controls. Metreleptin administration at low physiological, supraphysiological, and pharmacological doses does not affect pref-1 levels, suggesting that hypoleptinemia is not responsible for higher pref-1 levels and that leptin does not regulate pref-1. PMID:21795455
Sámano, Reyna; Martínez-Rojano, Hugo; Chico-Barba, Gabriela; Godínez-Martínez, Estela; Sánchez-Jiménez, Bernarda; Montiel-Ojeda, Diana; Tolentino, Maricruz
2017-09-27
Introduction : Gestational weight gain is an important modifiable factor known to influence fetal outcomes including birth weight and adiposity. Leptin is normally correlated with adiposity and is also known to increase throughout pregnancy, as the placenta becomes a source of leptin synthesis. Several studies have reported positive correlations between cord blood leptin level and either birthweight or size for gestational age, as well as body mass index (BMI). Objective : To determine the correlation of prenatal leptin concentration in pregnant adolescents with their gestational weight gain, postpartum weight retention, and weight/length of their newborn. Methods : A cohort study was conducted on pregnant Mexican adolescents from Gestational Week 26-28 to three months postpartum ( n = 168 mother-child dyads). An anthropometric assessment was made of each pregnant adolescent, and the serum level of leptin and the intake of energy were determined. The newborn was evaluated each month during postpartum. Clinical records were reviewed to obtain sociodemographic data. Bivariate correlations, tests for repeating measurements and logistic regression models were performed. Results : Leptin concentration gradually increased during the third trimester of pregnancy. At Gestation Week 36, leptin level correlated with gestational weight gain. When comparing adolescents that had the lowest and highest concentration of leptin, the former presented a mean of 6 kg less in gestational weight gain (inter-subject leptin concentration, p = 0.001; inter-subject energy intake, p = 0.497). Leptin concentration and gestational weight gain exerted an effect on the weight of the newborn (inter-subject leptin concentration for Week 32, p = 0.024; inter-subject gestational weight gain, p = 0.011). Newborn length was associated with leptin concentration at Week 28 (leptin effect, p = 0.003; effect of gestational weight gain, p = 0.722). Conclusions : Pregnant adolescents with leptin concentration over 20 ng/mL showed a greater gestational weight gain. Leptin concentration correlated with length and weight of the newborn.
Sámano, Reyna; Martínez-Rojano, Hugo; Godínez-Martínez, Estela; Sánchez-Jiménez, Bernarda; Montiel-Ojeda, Diana; Tolentino, Maricruz
2017-01-01
Introduction: Gestational weight gain is an important modifiable factor known to influence fetal outcomes including birth weight and adiposity. Leptin is normally correlated with adiposity and is also known to increase throughout pregnancy, as the placenta becomes a source of leptin synthesis. Several studies have reported positive correlations between cord blood leptin level and either birthweight or size for gestational age, as well as body mass index (BMI). Objective: To determine the correlation of prenatal leptin concentration in pregnant adolescents with their gestational weight gain, postpartum weight retention, and weight/length of their newborn. Methods: A cohort study was conducted on pregnant Mexican adolescents from Gestational Week 26–28 to three months postpartum (n = 168 mother–child dyads). An anthropometric assessment was made of each pregnant adolescent, and the serum level of leptin and the intake of energy were determined. The newborn was evaluated each month during postpartum. Clinical records were reviewed to obtain sociodemographic data. Bivariate correlations, tests for repeating measurements and logistic regression models were performed. Results: Leptin concentration gradually increased during the third trimester of pregnancy. At Gestation Week 36, leptin level correlated with gestational weight gain. When comparing adolescents that had the lowest and highest concentration of leptin, the former presented a mean of 6 kg less in gestational weight gain (inter-subject leptin concentration, p = 0.001; inter-subject energy intake, p = 0.497). Leptin concentration and gestational weight gain exerted an effect on the weight of the newborn (inter-subject leptin concentration for Week 32, p = 0.024; inter-subject gestational weight gain, p = 0.011). Newborn length was associated with leptin concentration at Week 28 (leptin effect, p = 0.003; effect of gestational weight gain, p = 0.722). Conclusions: Pregnant adolescents with leptin concentration over 20 ng/mL showed a greater gestational weight gain. Leptin concentration correlated with length and weight of the newborn. PMID:28953229
Gan, Xiaohong Tracey; Zhao, Ganjian; Huang, Cathy X.; Rowe, Adrianna C.; Purdham, Daniel M.; Karmazyn, Morris
2013-01-01
The recently-identified fat mass and obesity-associated (FTO) protein is associated with various physiological functions including energy and body weight regulation. Ubiquitously expressed, FTO was identified in heart homogenates although its function is unknown. We studied whether FTO is specifically expressed within the cardiac myocyte and its potential role pertaining to the hypertrophic effect of the adipokine leptin. Most experiments were performed using cultured neonatal rat cardiomyocytes which showed nuclei-specific FTO expression. Leptin significantly increased FTO expression which was associated with myocyte hypertrophy although both events were abrogated by FTO knockdown with siRNA. Administration of a leptin receptor antibody to either normal or obese rats significant reduced myocardial FTO protein expression. Responses in cardiomyocytes were accompanied by JAK2/STAT3 activation whereas JAK2/STAT3 inhibition abolished these effects. Expression of the cut-like homeobox 1(CUX1) transcriptional factor was significantly increased by leptin although this was restricted to the cathepsin L-dependent, proteolytically-derived shorter p110CUX1 isoform whereas the longer p200CUX1 protein was not significantly affected. Cathepsin L expression and activity were both significantly increased by leptin whereas a cathepsin L peptide inhibitor or siRNA specific for CUX1 completely prevented the leptin-induced increase in FTO expression. The cathepsin L peptide inhibitor or siRNA-induced knockdown of either CUX1 or FTO abrogated the hypertrophic response to leptin. Two other pro-hypertrophic factors, endothelin-1 or angiotensin II had no effect on FTO expression and FTO knockdown did not alter the hypertrophic response to either agent. This study demonstrates leptin-induced FTO upregulation in cardiomyocytes via JAK2/STAT3- dependent CUX1 upregulation and suggests an FTO regulatory function of leptin. It also demonstrates for the first time a functional role of FTO in the cardiomyocyte. PMID:24019958
Gan, Xiaohong Tracey; Zhao, Ganjian; Huang, Cathy X; Rowe, Adrianna C; Purdham, Daniel M; Karmazyn, Morris
2013-01-01
The recently-identified fat mass and obesity-associated (FTO) protein is associated with various physiological functions including energy and body weight regulation. Ubiquitously expressed, FTO was identified in heart homogenates although its function is unknown. We studied whether FTO is specifically expressed within the cardiac myocyte and its potential role pertaining to the hypertrophic effect of the adipokine leptin. Most experiments were performed using cultured neonatal rat cardiomyocytes which showed nuclei-specific FTO expression. Leptin significantly increased FTO expression which was associated with myocyte hypertrophy although both events were abrogated by FTO knockdown with siRNA. Administration of a leptin receptor antibody to either normal or obese rats significant reduced myocardial FTO protein expression. Responses in cardiomyocytes were accompanied by JAK2/STAT3 activation whereas JAK2/STAT3 inhibition abolished these effects. Expression of the cut-like homeobox 1(CUX1) transcriptional factor was significantly increased by leptin although this was restricted to the cathepsin L-dependent, proteolytically-derived shorter p110CUX1 isoform whereas the longer p200CUX1 protein was not significantly affected. Cathepsin L expression and activity were both significantly increased by leptin whereas a cathepsin L peptide inhibitor or siRNA specific for CUX1 completely prevented the leptin-induced increase in FTO expression. The cathepsin L peptide inhibitor or siRNA-induced knockdown of either CUX1 or FTO abrogated the hypertrophic response to leptin. Two other pro-hypertrophic factors, endothelin-1 or angiotensin II had no effect on FTO expression and FTO knockdown did not alter the hypertrophic response to either agent. This study demonstrates leptin-induced FTO upregulation in cardiomyocytes via JAK2/STAT3- dependent CUX1 upregulation and suggests an FTO regulatory function of leptin. It also demonstrates for the first time a functional role of FTO in the cardiomyocyte.
Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism.
Philbrick, Kenneth A; Wong, Carmen P; Branscum, Adam J; Turner, Russell T; Iwaniec, Urszula T
2017-03-01
Leptin, the protein product of the ob gene, is essential for normal bone growth, maturation and turnover. Peripheral actions of leptin occur at lower serum levels of the hormone than central actions because entry of leptin into the central nervous system (CNS) is limited due to its saturable transport across the blood-brain barrier (BBB). We performed a study in mice to model the impact of leptin production associated with different levels of adiposity on bone formation and compared the response with well-established centrally mediated actions of the hormone on energy metabolism. Leptin was infused (0, 4, 12, 40, 140 or 400 ng/h) for 12 days into 6-week-old female ob/ob mice (n = 8/group) using sc-implanted osmotic pumps. Treatment resulted in a dose-associated increase in serum leptin. Bone formation parameters were increased at EC 50 infusion rates of 7-17 ng/h, whereas higher levels (EC 50 , 40-80 ng/h) were required to similarly influence indices of energy metabolism. We then analyzed gene expression in tibia and hypothalamus at dose rates of 0, 12 and 140 ng/h; the latter dose resulted in serum leptin levels similar to WT mice. Infusion with 12 ng/h leptin increased the expression of genes associated with Jak/Stat signaling and bone formation in tibia with minimal effect on Jak/Stat signaling and neurotransmitters in hypothalamus. The results suggest that leptin acts peripherally to couple bone acquisition to energy availability and that limited transport across the BBB insures that the growth-promoting actions of peripheral leptin are not curtailed by the hormone's CNS-mediated anorexigenic actions. © 2017 Society for Endocrinology.
The thymoprotective function of leptin is indirectly mediated via suppression of obesity.
Sreenivasan, Jayasree; Schlenner, Susan; Franckaert, Dean; Dooley, James; Liston, Adrian
2015-09-01
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus. © 2015 John Wiley & Sons Ltd.
Leptin controls ketone body utilization in hypothalamic neuron.
Narishima, Ryota; Yamasaki, Masahiro; Hasegawa, Shinya; Yoshida, Saki; Tanaka, Shinya; Fukui, Tetsuya
2011-03-03
Leptin is an appetite-controlling peptide secreted from adipose tissue. Previously, we showed that the gene expression of acetoacetyl-CoA synthetase (AACS), the ketone body-utilizing enzyme for lipid synthesis, was suppressed by leptin deficiency-induced obesity in white adipose tissue. In this study, to clarify the effects of leptin on ketone body utilization in the central nervous system, we examined the effects of leptin signaling on AACS expression. In situ hybridization analysis of ob/ob and db/db mice revealed that AACS mRNA level was reduced by leptin deficiency in the arcuate nucleus (Arc) and ventromedial hypothalamic nucleus (VMH) in hypothalamus but not in other brain regions. Moreover, AACS mRNA level was increased by leptin treatment both in primary cultured neural cells and in N41 neural-like cells. In N41 cells, AACS level was decreased by AMPK inducer but increased by AMPK inhibitor. These results suggest that the up-regulation of AACS expression by leptin is due to the suppression of AMPK activity via neural leptin signaling and that the deficiency of this regulation may be responsible for neurological disorders in central appetite control. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Thieme, Karina; Oliveira-Souza, Maria
2015-01-01
The role of hyperleptinemia in cardiovascular diseases is well known; however, in the renal tissue, the exact site of leptin’s action has not been established. This study was conducted to assess the effect of leptin treatment for 7 and 28 days on renal function and morphology and the participation of angiotensin II (Ang II), through its AT1 receptor. Rats were divided into four groups: sham, losartan (10 mg/kg/day, s.c.), leptin (0.5 mg/kg/day for the 7 days group and 0.25 mg/kg/day for the 28 days group) and leptin plus losartan. Plasma leptin, Ang II and endothelin 1 (ET-1) levels were measured using an enzymatic immuno assay. The systolic blood pressure (SBP) was evaluated using the tail-cuff method. The renal plasma flow (RPF) and the glomerular filtration rate (GFR) were determined by p-aminohippuric acid and inulin clearance, respectively. Urinary Na+ and K+ levels were also analyzed. Renal morphological analyses, desmin and ED-1 immunostaining were performed. Proteinuria was analyzed by silver staining. mRNA expression of renin-angiotensin system (RAS) components, TNF-α and collagen type III was analyzed by quantitative PCR. Our results showed that leptin treatment increased Ang II plasma levels and progressively increased the SBP, achieving a pre-hypertension state. Rats treated with leptin 7 days showed a normal RPF and GFR, but increased filtration fraction (FF) and natriuresis. However, rats treated with leptin for 28 showed a decrease in the RPF, an increase in the FF and no changes in the GFR or tubular function. Leptin treatment-induced renal injury was demonstrated by: glomerular hypertrophy, increased desmin staining, macrophage infiltration in the renal tissue, TNF-α and collagen type III mRNA expression and proteinuria. In conclusion, our study demonstrated the progressive renal morphological changes in experimental hyperleptinemia and the interaction between leptin and the RAS on these effects. PMID:25793389
Leptin regulates ACE activity in mice.
Hilzendeger, Aline Mourao; Morais, Rafael Leite; Todiras, Mihail; Plehm, Ralph; da Costa Goncalves, Andrey; Qadri, Fatimunnisa; Araujo, Ronaldo Carvalho; Gross, Volkmar; Nakaie, Clovis Ryuichi; Casarini, Dulce Elena; Carmona, Adriana Karaoglanovic; Bader, Michael; Pesquero, João Bosco
2010-09-01
Leptin is a hormone related to metabolism. It also influences blood pressure, but the mechanisms triggered in this process are not yet elucidated. Angiotensin-I converting enzyme (ACE) regulates cardiovascular functions and recently has been associated with metabolism control and obesity. Here, we used ob/ob mice, a model lacking leptin, to answer the question whether ACE and leptin could interact to influence blood pressure, thereby linking the renin-angiotensin system and obesity. These mice are obese and diabetic but have normal 24 h mean arterial pressure. Our results show that plasma and lung ACE activities as well as ACE mRNA expression were significantly decreased in ob/ob mice. In agreement with these findings, the hypotensive effect produced by enalapril administration was attenuated in the obese mice. Plasma renin, angiotensinogen, angiotensin I, bradykinin, and angiotensin 1-7 were increased, whereas plasma angiotensin II concentration was unchanged in obese mice. Chronic infusion of leptin increased renin activity and angiotensin II concentration in both groups and increased ACE activity in ob/ob mice. Acute leptin infusion restored ACE activity in leptin-deficient mice. Moreover, the effect of an ACE inhibitor on blood pressure was not changed in ob/+ mice during leptin treatment but increased four times in obese mice. In summary, our findings show that the renin-angiotensin system is altered in ob/ob mice, with markedly reduced ACE activity, which suggests a possible connection between the renin-angiotensin system and leptin. These results point to an important interplay between the angiotensinergic and the leptinergic systems, which may play a role in the pathogenesis of obesity, hypertension, and metabolic syndrome.
West, Jane; Wright, John; Fairley, Lesley; Sattar, Naveed; Whincup, Peter; Lawlor, Debbie A
2014-01-01
Background There is evidence that South Asian individuals have higher fat mass for a given weight than Europeans. One study reported that the greater fatness for a given birthweight may increase with increasing birthweight, suggesting that any attempt to increase mean birthweight in South Asians would markedly increase their fatness. Objective Our objective was to examine whether differences in cord leptin values between White British and Pakistani infants vary by birthweight category. Method We examined the difference in cord leptin levels between 659 White British and 823 Pakistani infants recruited to the Born in Bradford cohort study, by clinical categories and thirds of the birthweight distribution. Results Pakistani infants had a lower mean birthweight but higher cord leptin levels than White British infants [ratio of geometric mean (RGM) of cord leptin adjusted for birthweight = 1.36 (95% CI 1.26, 1.46)]. Birthweight was positively associated with cord leptin levels in both groups, with no evidence that the regression lines in the two groups diverged from each other with increasing birthweight. The relative ethnic difference in cord leptin was similar in low (<2500 g), normal and high (≥4000 g) birthweight infants (P-value for interaction = 0.91). It was also similar across thirds of the birthweight distribution [RGM (95% CI) in lowest, mid and highest thirds were 1.37 (1.20, 1.57), 1.36 (1.20, 1.54) and 1.31 (1.16, 1.52), respectively, P-interaction = 0.51]. Conclusions We found marked differences in cord leptin levels between Pakistani and White British infants but no evidence that this difference increases with increasing birthweight. PMID:24291804
West, Jane; Wright, John; Fairley, Lesley; Sattar, Naveed; Whincup, Peter; Lawlor, Debbie A
2014-02-01
There is evidence that South Asian individuals have higher fat mass for a given weight than Europeans. One study reported that the greater fatness for a given birthweight may increase with increasing birth weight, suggesting that any attempt to increase mean birth weight in South Asians would markedly increase their fatness. Our objective was to examine whether differences in cord leptin values between White British and Pakistani infants vary by birth weight category. We examined the difference in cord leptin levels between 659 White British and 823 Pakistani infants recruited to the Born in Bradford cohort study, by clinical categories and thirds of the birth weight distribution. Pakistani infants had a lower mean birthweight but higher cord leptin levels than White British infants [ratio of geometric mean(RGM) of cord leptin adjusted for birth weight = 1.36 (95% CI 1.26,1.46)]. Birthweight was positively associated with cord leptin levels in both groups, with no evidence that the regression lines in the two groups diverged from each other with increasing birthweight.The relative ethnic difference in cord leptin was similar in low (<2500 g), normal and high (≥4000 g) birthweight infants(P-value for interaction = 0.91). It was also similar across thirds of the birthweight distribution [RGM (95% CI) in lowest, mid and highest thirds were 1.37 (1.20, 1.57), 1.36 (1.20, 1.54) and 1.31 (1.16, 1.52), respectively, P-interaction = 0.51]. We found marked differences in cord leptin levels between Pakistani and White British infants but no evidence that this difference increases with increasing birthweight.
Dietary fructose and metabolic syndrome and diabetes.
Bantle, John P
2009-06-01
Studies in both healthy and diabetic subjects demonstrated that fructose produced a smaller postprandial rise in plasma glucose and serum insulin than other common carbohydrates. Substitution of dietary fructose for other carbohydrates produced a 13% reduction in mean plasma glucose in a study of type 1 and type 2 diabetic subjects. However, there is concern that fructose may aggravate lipemia. In 1 study, day-long plasma triglycerides in healthy men were 32% greater while they consumed a high-fructose diet than while they consumed a high-glucose diet. There is also concern that fructose may be a factor contributing to the growing worldwide prevalence of obesity. Fructose stimulates insulin secretion less than does glucose and glucose-containing carbohydrates. Because insulin increases leptin release, lower circulating insulin and leptin after fructose ingestion might inhibit appetite less than consumption of other carbohydrates and lead to increased energy intake. However, there is no convincing experimental evidence that dietary fructose actually does increase energy intake. There is also no evidence that fructose accelerates protein glycation. High fructose intake has been associated with increased risk of gout in men and increased risk of kidney stones. Dietary fructose appears to have adverse effects on postprandial serum triglycerides, so adding fructose in large amounts to the diet is undesirable. Glucose may be a suitable replacement sugar. The fructose that occurs naturally in fruits and vegetables provides only a modest amount of dietary fructose and should not be of concern.
Fan, Yingchao; Gan, Yu; Shen, Yuling; Cai, Xiaojin; Song, Yanfang; Zhao, Fangyu; Yao, Ming; Gu, Jianren; Tu, Hong
2015-06-30
Emerging evidence has suggested that leptin, an adipokine related to energy homeostasis, plays a role in cancer growth and metastasis. However, its impact on pancreatic cancer is rarely studied. In this study, we found that leptin's functional receptor Ob-Rb was expressed in pancreatic cancer cell lines. Treatment with leptin enhanced the migration and invasion of pancreatic cancer cells but did not affect the proliferation of human pancreatic cancer cells. Leptin up-regulated the expression of matrix metalloproteinase-13 (MMP-13) via the JAK2/STAT3 signaling pathway. The overexpression of leptin was shown to significantly promote tumor growth and lymph node metastasis in a subcutaneous model and an orthotopic model of human pancreatic cancer, respectively. Furthermore, in human pancreatic cancer tissues, the expression of Ob-Rb was positively correlated with the MMP-13 level. The increased expression of either Ob-Rb or MMP-13 was significantly associated with lymph node metastasis and tended to be associated with the TNM stage in patients with pancreatic cancer. Our findings suggest that leptin enhances the invasion of pancreatic cancer through the increase in MMP-13 production, and targeting the leptin/MMP-13 axis could be an attractive therapeutic strategy for pancreatic cancer.
Shen, Yuling; Cai, Xiaojin; Song, Yanfang; Zhao, Fangyu; Yao, Ming; Gu, Jianren; Tu, Hong
2015-01-01
Emerging evidence has suggested that leptin, an adipokine related to energy homeostasis, plays a role in cancer growth and metastasis. However, its impact on pancreatic cancer is rarely studied. In this study, we found that leptin's functional receptor Ob-Rb was expressed in pancreatic cancer cell lines. Treatment with leptin enhanced the migration and invasion of pancreatic cancer cells but did not affect the proliferation of human pancreatic cancer cells. Leptin up-regulated the expression of matrix metalloproteinase-13 (MMP-13) via the JAK2/STAT3 signaling pathway. The overexpression of leptin was shown to significantly promote tumor growth and lymph node metastasis in a subcutaneous model and an orthotopic model of human pancreatic cancer, respectively. Furthermore, in human pancreatic cancer tissues, the expression of Ob-Rb was positively correlated with the MMP-13 level. The increased expression of either Ob-Rb or MMP-13 was significantly associated with lymph node metastasis and tended to be associated with the TNM stage in patients with pancreatic cancer. Our findings suggest that leptin enhances the invasion of pancreatic cancer through the increase in MMP-13 production, and targeting the leptin/MMP-13 axis could be an attractive therapeutic strategy for pancreatic cancer. PMID:25948792
Rajendran, Karthick; Devarajan, Nalini; Ganesan, Manohar; Ragunathan, Malathi
2012-08-14
Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD) including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI) patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product) is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6) and high sensitivity - C reactive protein (hs-CRP). Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.
Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance
Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony
2011-01-01
SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G.
Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix glamore » protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.« less
Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.
Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie
2015-10-06
The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.
Ibrahim, Hisham Saleh; Froemming, Gabrielle Ruth Anisah; Omar, Effat; Singh, Harbindar Jeet
2014-11-01
This study investigates the effect of ACE2 activation on leptin-induced changes in systolic blood pressure (SBP), proteinuria, endothelial activation and ACE2 expression during pregnancy in Sprague-Dawley rats. Pregnant rats were given subcutaneous injection of either saline, or leptin, or leptin plus xanthenone (ACE2 activator), or xanthenone (XTN) alone. SBP, serum ACE, ACE2, endothelin-1, E-selectin and ICAM-1 levels were estimated; also their gene expressions were determined in the kidney and aorta respectively. Compared to control, SBP was higher in the leptin-only treated group (P<0.001) and lower in rats treated with xanthenone alone (P<0.01). Proteinuria, markers of endothelial activation were significantly higher than controls in leptin-only treated rats (P<0.05). ACE2 activity and expression were lower in leptin-only treated rats when compared to controls (P<0.05). It seems, leptin administration during pregnancy significantly increases SBP, proteinuria, endothelial activation, but decreases ACE2 level and expression. These effects are prevented by concurrent administration of xanthenone. Copyright © 2014 Elsevier Inc. All rights reserved.
Hervey, Harris, and the parabiotic search for lipostatic signals.
Smith, Gerard P
2013-02-01
This paper is an introduction to the papers by Hervey and Harris that describe their experimental use of parabiosis in rats and mice to search for circulating lipostatic signals. Beginning in 1959 with Hervey's foundational paper, they detected three parabiotic signals: the Hervey signal decreases food intake and fat mass in rats; the antilipogenic factor (ALF) decreased fat mass, but not food intake in rats; and the leptin-dependent signal in lean partners of ob/ob mice decreased fat mass, but not food intake. The known lipostatic signals, leptin and insulin, have been candidates for the Hervey and ALF signals, but insulin has been excluded and the evidence for leptin is inconclusive. The site of production of the three parabiotic signals and their molecular structure are not known and specific mechanisms of their lipostatic control are incompletely understood. Given their potential importance for understanding the physiology of lipostatic controls and for developing new therapies for obesity, Hervey and Harris make a strong argument for further research on the three parabiotic signals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption.
Lostao, M P; Urdaneta, E; Martínez-Ansó, E; Barber, A; Martínez, J A
1998-02-27
Leptin is involved in food intake and thermogenesis regulation. Since leptin receptor expression has been found in several tissues including small intestine, a possible role of leptin in sugar absorption by the intestine was investigated. Leptin inhibited D-galactose uptake by rat small intestinal rings 33% after 5 min of incubation. The inhibition increased to 56% after 30 min. However, neither at 5 min nor at 30 min did leptin prevent intracellular galactose accumulation. This leptin effect was accompanied by a decrease of the active sugar transport apparent Vmax (20 vs. 4.8 micromol/g wet weight 5 min) and apparent Km (15.8 vs. 5.3 mM) without any change in the phlorizin-resistant component. On the other hand, immunohistochemical experiments using anti-leptin monoclonal antibodies recognized leptin receptors in the plasma membrane of immune cells located in the lamina propria. These results indicate for the first time that leptin has a rapid inhibitory effect on sugar absorption and demonstrate the presence of leptin receptors in the intestinal mucosa.
Stroe-Kunold, Esther; Buckert, Magdalena; Friederich, Hans-Christoph; Wesche, Daniela; Kopf, Stefan; Herzog, Wolfgang; Wild, Beate
2016-01-01
Leptin, a hormone secreted by adipose tissue, appears to play a major role in the homeostasis of body weight and psychobiological processes associated with anorexia nervosa (AN). However, there is scarce data on its exact influence on this disorder, in particular data over time. The present study addresses whether leptin changes during inpatient treatment play a role for treatment outcome and psychological factors in underweight AN patients. In order to understand whether leptin's role differs in relation to AN severity, data were assessed from 11 patients with a very low BMI and a higher chronicity (high severity group; HSS; mean BMI at the beginning of the study = 13.6; mean duration of illness = 5.1 years) vs. nine with less severe symptoms (LSS; mean BMI = 16.2; mean duration of illness = 3.7 years). During the course of treatment, serum leptin concentrations were assessed weekly while weight (BMI) was assessed twice per week. Concomitantly, psychological variables were obtained by means of electronic diaries. Unconditional linear growth models were calculated to evaluate the temporal course of leptin in relation to BMI. For HSS patients, two phases of treatment (BMI < 16 and BMI ≥ 16 kg/m2) were investigated. Leptin increased significantly with BMI in both groups of patients. For HSS patients, the increase of leptin in the first treatment phase did not predict later increases in BMI. Furthermore, the relationship of leptin and psychological factors was modulated by symptom severity. In HSS patients, higher leptin levels were associated with greater feelings of depression, anxiety, and stress whereas in LSS patients a higher leptin level showed the trend to be associated with lower psychological symptom burden. Our results suggest that leptin changes are differently associated with weight gain and psychological symptoms depending on the severity of starvation.
Watson, S L; Watson, C J; Baghdoyan, H A; Lydic, R
2014-09-05
Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n=14) mice and leptin-deficient, obese B6.Cg-Lep(ob)/J (obese, n=10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A₁ receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A₁ receptor agonist N(6)-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p=0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p=0.0003) concentration-dependent increase in %MPE. SPA also significantly (p<0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of SMLA into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A₁ receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A₁ receptors localized to the pontine reticular formation significantly alter nociception. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J
2017-01-01
Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings indicate LepA gene expression and secretion increases with fasting, consistent with the hormones function in promoting energy expenditure during catabolic stress. It would also appear that LepA might play an important role in stimulating GHR and IGFs to potentially spare declines in these factors during catabolism. Evidence also suggests for the first time in teleosts that GH may exert important regulatory effects on hepatic LepA production, insofar as physiological levels (0.05-1 nM) suppresse lepa mRNA accumulation. Leptin A, may in turn exert negative feedback effects on basal GH mRNA abundance, but not secretion. Copyright © 2016 Elsevier Inc. All rights reserved.
Serum Leptin and Loss of Control Eating in Children and Adolescents
Miller, Rachel; Tanofsky-Kraff, Marian; Shomaker, Lauren B.; Field, Sara E.; Hannallah, Louise; Reina, Samantha A.; Mooreville, Mira; Sedaka, Nicole; Brady, Sheila M.; Condarco, Tania; Reynolds, James C.; Yanovski, Susan Z.; Yanovski, Jack A.
2014-01-01
Background Both insufficiency and resistance to the actions of the adipocyte-derived hormone leptin promote hunger, increased food intake, and greater body weight. Some studies suggest adults reporting binge eating have increased serum leptin compared to those without binge eating, even after adjusting for the greater adiposity that characterizes binge eaters. Pediatric binge or loss of control (LOC) eating are prospective risk factors for excessive weight gain and may predict development of metabolic abnormalities, but whether LOC eating is associated with higher leptin among children is unknown. We therefore examined leptin and LOC eating in a pediatric cohort. Methods A convenience sample of 506 lean and obese youth (7–18y) was recruited from Washington, DC and its suburbs. Serum leptin was collected after an overnight fast. Adiposity was measured by dual-energy x-ray absorptiometry or air displacement plethysmography. LOC eating was assessed by interview methodology. Results Leptin was strongly associated with fat mass (r=.79, p<.001). However, even after adjusting for adiposity and other relevant covariates, youth with LOC eating had higher serum leptin compared to those without LOC episodes (15.42±1.05 vs. 12.36±1.04 ng/mL, p<.001). Neither reported amount of food consumed during a recent LOC episode nor number of LOC episodes in the previous month accounted for differences in leptin (ps>.05). The relationship between LOC eating and leptin appeared to be significant for females only (p=0.002). Conclusions Reports of LOC eating were associated with higher fasting leptin in youth, beyond the contributions of body weight. Prospective studies are required to elucidate if LOC eating promotes greater leptin or if greater leptin resistance may promote LOC eating. PMID:23835660
Stjernholm, Theresa; Ommen, Pernille; Langkilde, Ane; Johansen, Claus; Iversen, Lars; Rosada, Cecilia; Stenderup, Karin
2017-04-01
Leptin is an adipocyte-derived cytokine secreted mostly by adipose tissue. Serum leptin levels are elevated in obese individuals and correlate positively with body mass index (BMI). Interestingly, serum leptin levels are also elevated in patients with psoriasis and correlate positively with disease severity. Psoriasis is associated with obesity; patients with psoriasis have a higher incidence of obesity, and obese individuals have a higher risk of developing psoriasis. Additionally, obese patients with psoriasis experience a more severe degree of psoriasis. In this study, we hypothesised that leptin may link psoriasis and obesity and plays an aggravating role in psoriasis. To investigate leptin's role in psoriasis, we applied the widely accepted imiquimod (IMQ)-induced psoriasis-like skin inflammation mouse model on leptin-deficient (ob/ob) mice and evaluated psoriasis severity. Moreover, we stimulated human keratinocytes with leptin and investigated the effect on proliferation and expression of pro-inflammatory proteins. In ob/ob mice, clinical signs of erythema, infiltration and scales in dorsal skin and inflammation in ear skin, as measured by ear thickness, were attenuated and compared with wt mice. Moreover, IL-17A and IL-22 mRNA expression levels, as well as increased epidermal thickness, were significantly less induced. In vitro, the effect of leptin stimulation on human keratinocytes demonstrated increased proliferation and induced secretion of several pro-inflammatory proteins; two hallmarks of psoriasis. In conclusion, leptin deficiency attenuated IMQ-induced psoriasis-like skin inflammation in a mouse model, and leptin stimulation induced a pro-inflammatory phenotype in human keratinocytes, thus, supporting an aggravating role of leptin in psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nishii, Naohito; Nodake, Hiroyuki; Takasu, Masaki; Soe, Okkar; Ohba, Yasunori; Maeda, Sadatoshi; Ohtsuka, Yoshihiko; Honjo, Tsutomu; Saito, Masayuki; Kitagawa, Hitoshi
2006-12-01
To evaluate postprandial changes in the leptin concentration of CSF in dogs during development of obesity. 4 male Beagles. Weight gain was induced and assessments were made when the dogs were in thin, optimal, and obese body conditions (BCs). The fat area at the level of the L3 vertebra was measured via computed tomography to assess the degree of obesity. Dogs were evaluated in fed and unfed states. Dogs in the fed state received food at 9 AM. Blood and CSF samples were collected at 8 AM, 4 PM, and 10 PM. Baseline CSF leptin concentrations in the thin, optimal, and obese dogs were 24.3 +/- 2.7 pg/mL, 86.1 +/- 14.7 pg/mL, and 116.2 +/- 47.3 pg/mL, respectively. In the thin BC, CSF leptin concentration transiently increased at 4 PM. In the optimal BC, baseline CSF leptin concentration was maintained until 10 PM. In the obese BC, CSF leptin concentration increased from baseline value at 4 PM and 10 PM. Correlation between CSF leptin concentration and fat area was good at all time points. There was a significant negative correlation between the CSF leptin concentration-to-serum leptin concentration ratio and fat area at 4 PM; this correlation was not significant at 8 AM and 10 PM. Decreased transport of leptin at the blood-brain barrier may be 1 mechanism of leptin resistance in dogs. However, leptin resistance at the blood-brain barrier may not be important in development of obesity in dogs.
Pérez-González, Rocío; Antequera, Desiree; Vargas, Teo; Spuch, Carlos; Bolós, Marta; Carro, Eva
2011-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with senile amyloid-β (Aβ) plaques, neuronal death, and cognitive decline. Neurogenesis in the adult hippocampus, which is notably affected by progressive neurodegeneration and Aβ pathology, is implicated in learning and memory regulation. Human postmortem brains of AD patients and AβPP/PS1 double transgenic mice show increased neurodegeneration. Leptin, an adipose-derived hormone, promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the AD brain is still unknown. Thus, we sought to determine if leptin stimulated the proliferation of neuronal precursors in AβPP/PS1 mice. We estimated the number proliferating hippocampal cells after intracerebroventricular administration of a lentiviral vector encoding leptin. After 3 months of treatment with leptin we observed an increase in the number of BrdU-positive cells in the subgranular zone of the dentate gyrus, as shown by morphometric analysis. This increase resulted mainly from an increased proliferation of neuronal precursors. Additionally, leptin led to an attenuation of Aβ-induced neurodegeneration, as revealed by Fluoro-Jade staining. Our results suggest that in AβPP/PS1 mice, leptin exerts changes resembling acute neurotrophic and neuroprotective effects. These effects could serve as the basis for the design of future treatment strategies in AD.
Hypothalamic PKA regulates leptin sensitivity and adiposity
Yang, Linghai; McKnight, G. Stanley
2015-01-01
Mice lacking the RIIβ regulatory subunit of cyclic AMP-dependent protein kinase A (PKA) display reduced adiposity and resistance to diet-induced obesity. Here we show that RIIβ knockout (KO) mice have enhanced sensitivity to leptin's effects on both feeding and energy metabolism. After administration of a low dose of leptin, the duration of hypothalamic JAK/STAT3 signalling is increased, resulting in enhanced POMC mRNA induction. Consistent with the extended JAK/STAT3 activation, we find that the negative feedback regulator of leptin receptor signalling, Socs3, is inhibited in the hypothalamus of RIIβ KO mice. During fasting, RIIβ–PKA is activated and this correlates with an increase in CREB phosphorylation. The increase in CREB phosphorylation is absent in the fasted RIIβ KO hypothalamus. Selective inhibition of PKA activity in AgRP neurons partially recapitulates the leanness and resistance to diet-induced obesity of RIIβ KO mice. Our findings suggest that RIIβ–PKA modulates the duration of leptin receptor signalling and therefore the magnitude of the catabolic response to leptin. PMID:26381935
Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward.
Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L
2016-12-06
The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Lepr flox/flox mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR.
Halverson, Schuyler J; Warhoover, Tracy; Mencio, Gregory A; Lovejoy, Steven A; Martus, Jeffrey E; Schoenecker, Jonathan G
2017-05-17
Slipped capital femoral epiphysis (SCFE) is strongly associated with childhood obesity, yet the prevalence of obesity is orders of magnitude greater than the prevalence of SCFE. Therefore, it is hypothesized that obesity is not, by itself, a sufficient condition for SCFE, but rather one component of a multifactorial process requiring preexisting physeal pathology. Leptin elevation is seen to varying degrees in patients with obesity, and as leptin has been shown to cause physeal pathology similar to the changes seen in SCFE, we propose that leptin may be a factor distinguishing between patients with SCFE and equally obese children without hip abnormalities. Serum leptin levels were obtained from 40 patients with SCFE and 30 control patients with approximate body mass index (BMI) matching. BMI percentiles were calculated according to Centers for Disease Control and Prevention population data by patient age and sex. Patients were compared by demographic characteristics, leptin levels, odds of leptin elevation, and odds of SCFE. The odds of developing SCFE was increased by an odds ratio of 4.9 (95% confidence interval [CI], 1.31 to 18.48; p < 0.02) in patients with elevated leptin levels, regardless of obesity status, sex, and race. When grouping patients by their obesity status, non-obese patients with SCFE showed elevated median leptin levels at 5.8 ng/mL compared with non-obese controls at 1.7 ng/mL (p = 0.006). Similarly, obese patients with SCFE showed elevated median leptin levels at 17.9 ng/mL compared with equally obese controls at 10.5 ng/mL (p = 0.039). Serum leptin levels increased in association with obesity (p < 0.001), with an increase in leptin of 0.17 ng/mL (95% CI, 0.07 to 0.27 ng/mL) per BMI percentile point. To our knowledge, this study is the first to clinically demonstrate an association between elevated serum leptin levels and SCFE, regardless of BMI. This adds to existing literature suggesting that SCFE is a multifactorial process and that leptin levels may have profound physiological effects on the development of various disease states. Despite a strong association with adiposity, leptin levels vary between patients of equal BMI and may be a vital resource in prognostication of future obesity-related comorbidities. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Dattaroy, Diptadip; Pourhoseini, Sahar; Das, Suvarthi; Alhasson, Firas; Seth, Ratanesh Kumar; Nagarkatti, Mitzi; Michelotti, Gregory A; Diehl, Anna Mae; Chatterjee, Saurabh
2015-02-15
Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-β signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-β, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-β signaling and fibrogenesis in experimental and human NASH. Copyright © 2015 the American Physiological Society.
Increased serum leptin and insulin concentrations in canine hypothyroidism.
Mazaki-Tovi, Michal; Feuermann, Yonatan; Segev, Gilad; Klement, Eyal; Yas-Natan, Einat; Farkas, Amnon; Kol, Amir; Shamay, Avi
2010-01-01
Serum concentrations of leptin and insulin were compared between gender-matched hypothyroid (n=25) and healthy (n=25) client-owned dogs within comparable age and body condition score (BCS) ranges. Fasted blood samples were collected from each dog and analysed for glucose, cholesterol, triglyceride, leptin and insulin concentrations. Leptin and insulin concentrations were significantly higher in the hypothyroid compared to normal dogs (P=0.006 and P=0.001, respectively) following adjustment for potential confounders. A nearly significant (P=0.051) interaction with BCS was found in the association between hypothyroidism and leptin. Leptin concentrations were significantly higher in hypothyroid dogs compared to normal dogs, in separate analyses for BCS 6 (P=0.036) and 7 (P=0.049). There was no significant difference in glucose concentration between the hypothyroid and normal groups (P=0.84) following adjustment for BCS. This study showed that canine hypothyroidism is associated with increased serum leptin and insulin concentrations, neither of which may be attributed to obesity alone. Copyright 2008 Elsevier Ltd. All rights reserved.
Leptin is influenced both by predisposition to obesity and diet composition.
Raben, A; Astrup, A
2000-04-01
(1) To investigate whether plasma leptin concentrations differ between subjects with and without the genetic predisposistion to obesity, and (2) to investigate the effect of dietary manipulations on plasma leptin in these subjects. Fasting and postprandial plasma leptin concentrations were measured before and after 14 days' ad libitum intake of a fat-rich (FAT), starch-rich (STARCH) or sucrose-rich (SUCROSE) diet. On day 15 ad libitum breakfast and lunch were given and blood sampled regularly until 6 p.m. Eight normal-weight, post-obese women and 10 matched controls (body mass index, 23.5+/-0.5 and 22.9 +/- 0.3 kg/m2). Leptin, glucose, insulin, appetite ratings, dietary intake, body weight and composition. Fasting leptin concentration on day 1 or 15 did not differ between post-obese and controls. However, after meal intake leptin increased in post-obese compared with controls on all three diets. In both groups fasting and postprandial leptin concentrations were greater after SUCROSE compared with FAT and STARCH. A larger postprandial leptin concentration was observed in post-obese subjects than in controls. This may be related to greater insulin sensitivity in adipose tissue in the post-obese. Furthermore, increased leptin concentrations were found after a sucrose-rich diet in both groups, possibly related to larger postprandial insulin peaks on this diet. Both contentions should, however, be validated by further studies.
Simpson, Norah S; Banks, Siobhan; Dinges, David F
2010-07-01
We evaluated the effects of sleep restriction on leptin levels in a large, diverse sample of healthy participants, while allowing free access to food. Prospective experimental design. After 2 nights of baseline sleep, 136 participants (49% women, 56% African Americans) received 5 consecutive nights of 4 hours time in bed (TIB). Additionally, one subset of participants received 2 additional nights of either further sleep restriction (n = 27) or increased sleep opportunity (n = 37). Control participants (n = 9) received 10 hr TIB on all study nights. Plasma leptin was measured between 10:30 a.m. and 12:00 noon following baseline sleep, after the initial sleep-restriction period, and after 2 nights of further sleep restriction or recovery sleep. Leptin levels increased significantly among sleep-restricted participants after 5 nights of 4 hr TIB (Z = -8.43, p < .001). Increases were significantly greater among women compared to men (Z = -4.77, p < .001) and among participants with higher body mass index (BMI) compared to those with lower (Z = -2.09, p = .036), though participants in all categories (sex, race/ethnicity, BMI, and age) demonstrated significant increases. There was also a significant effect of allowed TIB on leptin levels following the 2 additional nights of sleep restriction (p < .001). Participants in the control condition showed no significant changes in leptin levels. These findings suggest that sleep restriction with ad libitum access to food significantly increases morning plasma leptin levels, particularly among women.
Leptin - a link between obesity and osteoarthritis. applications for prevention and treatment.
Vuolteenaho, Katriina; Koskinen, Anna; Moilanen, Eeva
2014-01-01
Osteoarthritis (OA) is the most common cause of musculoskeletal disability and pain in the world. The current drug treatment for OA is symptom relieving, and there is an urgent need for treatments that could retard, prevent or repair cartilage destruction in OA. Obesity is a major risk factor for OA. Traditionally, it has been thought to contribute to the development of OA by increasing the load on weight-bearing joints. However, this appears to be an over-simplification, because obesity is also linked to OA in the hand and finger joints. Recent studies have shown that adipocytokine leptin is a possible link between obesity and OA: Leptin levels in synovial fluid are increased in obese patients, leptin receptor (Ob-R) is expressed in cartilage, and leptin induces the production of matrix metalloproteinases (MMPs), pro-inflammatory mediators and nitric oxide (NO) in chondrocytes. Furthermore, according to the very recent findings, not only leptin levels in the joint but also leptin sensitivity in the cartilage are enhanced in obese OA patients. The findings supporting leptin as a causative link between obesity and OA offer leptin as a potential target to the development of disease-modifying drugs for osteoarthritis (DMOAD), especially for obese patients. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
Leptin influences estrogen metabolism and accelerates prostate cell proliferation.
Habib, Christine N; Al-Abd, Ahmed M; Tolba, Mai F; Khalifa, Amani E; Khedr, Alaa; Mosli, Hisham A; Abdel-Naim, Ashraf B
2015-01-15
The present study was designed to investigate the effect of leptin on estrogen metabolism in prostatic cells. Malignant (PC-3) and benign (BPH-1) human prostate cells were treated with 17-β-hydroxyestradiol (1 μM) alone or in combination with leptin (0.4, 4, 40 ng/ml) for 72 h. Cell proliferation assay, immunocytochemical staining of estrogen receptor (ER), liquid chromatography-tandem mass spectrometry method (LC-MS) and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) were used. Cell proliferation assay demonstrated that leptin caused significant growth potentiation in both cells. Immunocytochemical staining showed that leptin significantly increased the expression of ER-α and decreased that of ER-β in PC-3 cells. LC-MS method revealed that leptin increased the concentration 4-hydroxyestrone and/or decreased that of 2-methoxyestradiol, 4-methoxyestradiol and 2-methoxyestrone. Interestingly, RT-PCR showed that leptin significantly up-regulated the expression of aromatase and cytochrome P450 1B1 (CYP1B1) enzymes; however down-regulated the expression of catechol-o-methyltransferase (COMT) enzyme. These data indicate that leptin-induced proliferative effect in prostate cells might be partly attributed to estrogen metabolism. Thus, leptin might be a novel target for therapeutic intervention in prostatic disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Recombinant human leptin in women with hypothalamic amenorrhea.
Welt, Corrine K; Chan, Jean L; Bullen, John; Murphy, Robyn; Smith, Patricia; DePaoli, Alex M; Karalis, Aspasia; Mantzoros, Christos S
2004-09-02
Disruptions in hypothalamic-gonadal and other endocrine axes due to energy deficits are associated with low levels of the adipocyte-secreted hormone leptin and may result in hypothalamic amenorrhea. We hypothesized that exogenous recombinant leptin replacement would improve reproductive and neuroendocrine function in women with hypothalamic amenorrhea. Eight women with hypothalamic amenorrhea due to strenuous exercise or low weight were studied for one month before receiving recombinant human leptin and then while receiving treatment for up to three months. Six control subjects with hypothalamic amenorrhea received no treatment and were studied for a mean (+/-SD) of 8.5+/-8.1 months. Luteinizing hormone (LH) pulsatility, body weight, ovarian variables, and hormone levels did not change significantly over time in the controls and during a one-month control period before recombinant leptin therapy in the treated subjects. In contrast, recombinant leptin treatment increased mean LH levels and LH pulse frequency after two weeks and increased maximal follicular diameter, the number of dominant follicles, ovarian volume, and estradiol levels over a period of three months. Three patients had an ovulatory menstrual cycle (P<0.05 for the comparison with an expected rate of spontaneous ovulation of 10 percent); two others had preovulatory follicular development and withdrawal bleeding during treatment (P<0.05). Recombinant leptin significantly increased levels of free triiodothyronine, free thyroxine, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, bone alkaline phosphatase, and osteocalcin but not cortisol, corticotropin, or urinary N-telopeptide. Leptin administration for the relative leptin deficiency in women with hypothalamic amenorrhea appears to improve reproductive, thyroid, and growth hormone axes and markers of bone formation, suggesting that leptin, a peripheral signal reflecting the adequacy of energy stores, is required for normal reproductive and neuroendocrine function. Copyright 2004 Massachusetts Medical Society
Dubinion, John H; do Carmo, Jussara M; Adi, Ahmad; Hamza, Shereen; da Silva, Alexandre A; Hall, John E
2013-05-01
Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre). Oxygen consumption (Vo2), carbon dioxide respiration (Vco2), motor activity, heat production, food intake, and MAP were measured 24 hours/d. After baseline measurements, leptin was infused (4 μg/kg per min, IP) for 7 days. Stat3(flox/flox)/POMC-Cre mice were hyperphagic, heavier, and had increased respiratory quotients compared with control Stat3(flox/flox) mice. Baseline MAP was not different between the groups, and chronic leptin infusion reduced food intake similarly in both groups (27 versus 29%). Vo2, Vco2, and heat production responses to leptin were not significantly different in control and Stat3(flox/flox)/POMC-Cre mice. However, leptin-mediated increases in MAP were completely abolished, and blood pressure responses to acute air-jet stress were attenuated in male Stat3(flox/flox)/POMC-Cre mice. These results indicate that Stat3 signaling in POMC neurons is essential for leptin-mediated increases in MAP, but not for anorexic or thermogenic effects of leptin.
Martínez-Martínez, Ernesto; Jurado-López, Raquel; Valero-Muñoz, María; Bartolomé, María Visitación; Ballesteros, Sandra; Luaces, María; Briones, Ana María; López-Andrés, Natalia; Miana, María; Cachofeiro, Victoria
2014-05-01
Leptin acts as a cardiac profibrotic factor. However, the mechanisms underlying this effect are unclear. Therefore, we sought to elucidate the mediators involved in this process and the potential role of leptin in cardiac fibrosis associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 33.5% fat), or a standard diet (3.5% fat) for 6 weeks. HFD animals show cardiac hypertrophy, fibrosis and an increase in O2- production as evaluated by dihydroethidium. Echocardiographic parameters of cardiac structure and systolic function were similar in both groups. Cardiac levels of leptin, collagen I, galectin-3 and transforming growth factor β (TGF-β) were higher in HFD than in controls. In cardiac myofibroblasts, leptin (10-100 ng/ml) increased O2-, collagen I, galectin-3, TGF-β and connective tissue growth factor production (CTGF). These effects were prevented by the presence of either melatonin (10 mmol/l) or the inhibitor of mTOR, rapamycin (10 mmol/l). Blockage of galectin-3 activity by N-acetyllactosamine (LacNac 10 mmol/l) reduced both collagen I and O2(*-) production induced by leptin. The p70S6 kinase activation/phosphorylation, the downstream mediator of mTOR, induced by leptin was not modified by melatonin. Leptin reduced the metalloproteinase (MMP) 2 activity and the presence of melatonin, rapamycin or LacNac were unable to prevent it. The data suggest that leptin locally produced in the heart could participate in the fibrosis observed in HFD by affecting collagen turnover. Collagen synthesis induced by leptin seems to be mediated by the production of galectin-3, TGF-β and CTGF through oxidative stress increased by activation of mTOR pathway.
Tsai, Yung-Chieh; Lee, Yen-Mei; Hsu, Chih-Hsiung; Leu, Sy-Ying; Chiang, Hsiao-Yen; Yen, Mao-Hsiung; Cheng, Pao-Yun
2015-08-28
Leptin is a peptide hormone, which has a central role in the regulation of body weight; it also exerts many potentially atherogenic effects. Ferulic acid ethyl ester (FAEE) has been approved for antioxidant properties. The aim of this study was to investigate whether FAEE can inhibit the atherogenic effects of leptin and the possible molecular mechanism of its action. Both of cell proliferation and migration were measured when the aortic smooth muscle cell (A10 cell) treated with leptin and/or FAEE. Phosphorylated p44/42MAPK, cell cycle-regulatory protein (for example, cyclin D1, p21, p27), β-catenin and matrix metalloproteinase-9 (MMP-9) proteins levels were also measured. Results demonstrated that leptin (10, 100 ng ml(-1)) significantly increased the proliferation of cells and the phosphorylation of p44/42MAPK in A10 cells. The proliferative effect of leptin was significantly reduced by the pretreatment of U0126 (0.5 μM), a MEK inhibitor, in A10 cells. Meanwhile, leptin significantly increased the protein expression of cyclin D1, p21, β-catenin and decreased the expression of p27 in A10 cells. In addition, leptin (10 ng ml(-1)) significantly increased the migration of A10 cells and the expression of MMP-9 protein. Above effects of leptin were significantly reduced by the pretreatment of FAEE (1 and 10 μM) in A10 cells. In conclusion, FAEE exerts multiple effects on leptin-induced cell proliferation and migration, including the inhibition of p44/42MAPK phosphorylation, cell cycle-regulatory proteins and MMP-9, thereby suggesting that FAEE may be a possible therapeutic approach to the inhibition of obese vascular disease.
Tsai, Yung-Chieh; Lee, Yen-Mei; Hsu, Chih-Hsiung; Leu, Sy-Ying; Chiang, Hsiao-Yen; Yen, Mao-Hsiung; Cheng, Pao-Yun
2015-01-01
Leptin is a peptide hormone, which has a central role in the regulation of body weight; it also exerts many potentially atherogenic effects. Ferulic acid ethyl ester (FAEE) has been approved for antioxidant properties. The aim of this study was to investigate whether FAEE can inhibit the atherogenic effects of leptin and the possible molecular mechanism of its action. Both of cell proliferation and migration were measured when the aortic smooth muscle cell (A10 cell) treated with leptin and/or FAEE. Phosphorylated p44/42MAPK, cell cycle-regulatory protein (for example, cyclin D1, p21, p27), β-catenin and matrix metalloproteinase-9 (MMP-9) proteins levels were also measured. Results demonstrated that leptin (10, 100 ng ml−1) significantly increased the proliferation of cells and the phosphorylation of p44/42MAPK in A10 cells. The proliferative effect of leptin was significantly reduced by the pretreatment of U0126 (0.5 μM), a MEK inhibitor, in A10 cells. Meanwhile, leptin significantly increased the protein expression of cyclin D1, p21, β-catenin and decreased the expression of p27 in A10 cells. In addition, leptin (10 ng ml−1) significantly increased the migration of A10 cells and the expression of MMP-9 protein. Above effects of leptin were significantly reduced by the pretreatment of FAEE (1 and 10 μM) in A10 cells. In conclusion, FAEE exerts multiple effects on leptin-induced cell proliferation and migration, including the inhibition of p44/42MAPK phosphorylation, cell cycle-regulatory proteins and MMP-9, thereby suggesting that FAEE may be a possible therapeutic approach to the inhibition of obese vascular disease. PMID:26315599
Leptin regulates energy metabolism in MCF-7 breast cancer cells.
Blanquer-Rosselló, Mª Del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar
2016-03-01
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lungu, Andreea O; Zadeh, Elika Safar; Goodling, Anne; Cochran, Elaine; Gorden, Phillip
2012-02-01
The lipodystrophies (LD) are characterized by metabolic abnormalities (insulin resistance, hypertriglyceridemia, and diabetes) and a polycystic ovarian syndrome (PCOS) phenotype. Therapeutic administration of leptin improves insulin sensitivity and the metabolic features. The objective of the study was to investigate whether the PCOS features are corrected by increasing insulin sensitivity as a function of leptin treatment. This was a prospective, open-label trial using leptin replacement in various forms of lipodystrophy. The study was performed at the Clinical Center at the National Institutes of Health. Twenty-three female patients with LD were enrolled in a leptin replacement trial from 2000 to the present. Different parameters were assessed at baseline and after 1 yr of therapy. Patients were treated with leptin for at least 1 yr. We evaluated free testosterone, SHBG, and IGF-I at baseline and after 1 yr of leptin. Testosterone levels decreased from 3.05 ±0.6 ng/ml at baseline to 1.7 ±0.3 ng/ml (P = 0.02). SHBG increased from 14.5 ±2 to 25 ±3.5 nmol/liter after 1 yr of leptin therapy. There were no significant changes in the levels of gonadotropins and ovarian size as a result of leptin replacement therapy. IGF-I increased significantly after leptin therapy from 150 ±14 to 195 ±17. There was a significant decrease in triglycerides and glycosylated hemoglobin in the context of reduced insulin requirements. In the present study, we show that LD may be a model for the common forms of PCOS and that the endocrine features are corrected by leptin therapy, which reduces insulin resistance.
Foo, Joo-Pin; Aronis, Konstantinos N; Chamberland, John P; Thakkar, Bindiya; Hamnvik, Ole-Petter; Brinkoetter, Mary; Zaichenko, Lesya; Mantzoros, Christos S
2013-12-01
Undercarboxylated osteocalcin (ucOC) is a bone marker with potent metabolic effects. Leptin regulates Esp gene expression and osteocalcin carboxylation in animal models. We aim to elucidate day/night patterns of ucOC levels, whether short-term and/or chronic energy deprivation alters ucOC levels, and whether leptin may mediate these changes in humans. Twelve healthy males and females were studied for 72 h in the fed state to study day/night pattern of ucOC. The six female subjects were also studied in a crossover interventional study in the fasting state for 72 h with administration of either placebo or metreleptin in physiological doses. Blood samples were obtained hourly from 0800 a.m. on day 3 until 0800 a.m. on day 4. In a separate study, eleven obese subjects who underwent bariatric surgery were followed for 24 weeks to examine the effects of postsurgery weight loss on ucOC levels. Males have higher ucOC levels compared to females. There is no day/night variation pattern of circulating ucOC in humans. Short-term and chronic energy deprivation or leptin administrations do not alter ucOC levels. The hypothesis that ucOC plays a role in energy homeostasis or of leptin in regulating ucOC in humans is not supported. Copyright © 2013 The Obesity Society.
Redondo, M J; Rodriguez, L M; Haymond, M W; Hampe, C S; Smith, E O; Balasubramanyam, A; Devaraj, S
2014-12-01
Obesity increases the risk of cardiovascular disease and diabetic complications in type 1 diabetes. Adipokines, which regulate obesity-induced inflammation, may contribute to this association. We compared serum adipokines and inflammatory cytokines in obese and lean children with new-onset autoimmune type 1 diabetes. We prospectively studied 32 lean and 18 obese children (age range: 2-18 yr) with new-onset autoimmune type 1 diabetes and followed them for up to 2 yr. Serum adipokines [leptin, total and high molecular weight (HMW) adiponectin, omentin, resistin, chemerin, visfatin], cytokines [interferon (IFN)-gamma, interleukin (IL)-10, IL-12, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha] and C-reactive protein (CRP) were measured at a median of 7 wk after diagnosis (range: 3-16 wk). Lean children were 71.9% non-Hispanic White, 21.9% Hispanic, and 6.3% African-American, compared with 27.8, 55.6, and 16.7%, respectively, for obese children (p = 0.01). Compared with lean children, obese children had significantly higher serum leptin, visfatin, chemerin, TNF-alpha and CRP, and lower total adiponectin and omentin after adjustment for race/ethnicity and Tanner stage. African-American race was independently associated with higher leptin among youth ≥10 yr (p = 0.007). Leptin levels at onset positively correlated with hemoglobin A1c after 1-2 yr (p = 0.0001) independently of body mass index, race/ethnicity, and diabetes duration. Higher TNF-alpha was associated with obesity and female gender, after adjustment for race/ethnicity (p = 0.0003). Obese children with new-onset autoimmune type 1 diabetes have a proinflammatory profile of circulating adipokines and cytokines that may contribute to the development of cardiovascular disease and diabetic complications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Metabolic state defines the response of rabbit ovarian cells to leptin.
Harrath, Abdel Halim; Østrup, Olga; Rafay, Jan; Koničková Florkovičová, Iveta; Laurincik, Jozef; Sirotkin, Alexander V
2017-03-01
Leptin is a hormone that mediates the effect of the metabolic state on several biological functions, including reproduction. Leptin affects reproductive functions via alterations in the release of hormonal regulators. However, the extent to which caloric restriction (CR) can affect the complex processes of reproduction by other mechanisms, such as altering ovarian functions via direct binding/response to leptin, is unknown. Therefore, the aim of the present study was to show basic ovarian cell functions and CR on the response of ovarian cells to leptin. Female rabbits were subjected to 50% CR restriction for 10days before ovulation. On the day of ovulation, both control and CR animals were sacrificed. Isolated granulosa cells were cultured for 2days with and without leptin (100ng/ml), and the accumulation of various markers was evaluated using immunocytochemistry; i.e., cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA), and IGF-I. In addition, the release of IGF-I and estradiol (E 2 ) by cells cultured with and without leptin (1, 10, 100, 1000, or 10,000ng/ml) was assessed by radioimmunoassay (RIA). In the granulosa cells of control animals, leptin promoted cyclin B1, MAPK, and PKA accumulation, but not that of PCNA, and reduced bax and IGF-I accumulation. These cells responded to leptin by increased IGF-I, but not E 2 release. In cells of CR animals, leptin increased cyclin B1 accumulation, but decreased PCNA, MAPK, and IGF-I expression. Bax and PKA were not affected. Leptin resulted in a decrease in IGF-I release. CR modulated the influence of leptin on E 2 release dose dependently, i.e., E 2 increased at 10 and decreased at 10,000ng/ml. Therefore, CR modified the influence of leptin on PCNA, E 2 , bax, PKA, MAPK, and IGF-I release, but it did not change the effect of leptin on cyclin B1 and IGF-I accumulation within the cells. Our data showed that leptin directly affected proliferation, apoptosis, and hormone release by ovarian cells, probably via PKA- and MAPK-dependent pathways. Furthermore, it was demonstrated that nutrition could influence reproduction by affecting the response of ovarian cells to leptin. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Lancha, Andoni; Burgos-Ramos, Emma; Gómez-Ambrosi, Javier; Frühbeck, Gema
2012-01-01
Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4. PMID:22253718
Modulation and transmission of sweet taste information for energy homeostasis.
Sanematsu, Keisuke; Horio, Nao; Murata, Yoshihiro; Yoshida, Ryusuke; Ohkuri, Tadahiro; Shigemura, Noriatsu; Ninomiya, Yuzo
2009-07-01
Perception of sweet taste is important for animals to detect external energy source of calories. In mice, sweet-sensitive cells possess a leptin receptor. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. Data from our recent studies indicate that leptin may also modulate sweet taste sensation in humans with a diurnal variation in sweet sensitivity. This leptin modulation of sweet taste information to the brain may influence individuals' preference and ingestive behavior, thereby playing important roles in regulation of energy homeostasis.
Leptin signaling and apoptotic effects in human prostate cancer cell lines.
Samuel-Mendelsohn, Sigal; Inbar, Michal; Weiss-Messer, Esther; Niv-Spector, Leonora; Gertler, Arieh; Barkey, Ronnie J
2011-06-15
Prostate cancer (PCa) progression is often associated with transactivation of the androgen receptor (AR) by endogenous hormones/growth factors. One such factor affecting growth, proliferation, and apoptostis (pro-/anti-) in various cancers is the adipokine leptin. This research studied leptin-induced signaling and apoptosis in androgen sensitive (LNCaP, PC3/AR) and insensitive (PC3, DU145) PCa cell lines. Signaling was studied by immunoblotting in cells overexpressing leptin receptors (LRb), Janus kinase 2 (JAK2), and kinase negative-HER2-YFP cDNAs. Apoptosis was measured by immunoblotting of apoptotic proteins and by Hoechst staining of condensed DNA. Leptin rapidly induced activation of JAK2, STAT3, and MAPK (ERK1/2) signaling cascades; it may also induce HER2 transactivation via leptin-induced phospho-JAK2. Leptin was then shown to exert clear pro-apoptotic effects, increasing levels of caspase 3, cleavage of its substrate, poly (ADP-ribose) polymerase (PARP) to cleaved PARP(89) , levels of CK 18, a cytoskeletal protein formed during apoptosis, and DNA condensation. Kinase inhibitors indicated that leptin-induced apoptosis is probably mediated by balanced activation of JAK2/STAT3, p38 MAPK, and PKC pathways in PCa cells. A human leptin mutein LRb antagonist, L39A/D40A/F41A, fully inhibited leptin-induced phosphorylation of JAK2, ERK1/2, and Akt/PKB, and partially abrogated effects on apoptotic proteins. In LNCaP and PC3/AR cells, leptin increased AR protein levels in correlation with raised apoptotic markers. Thus, AR may mediate, at least partly, the leptin-induced apoptotic response. Leptin can clearly induce apoptosis in human PCa cell lines. These findings could lead to development of new leptin agonists with enhanced pro-apoptotic effects and targeted for use in human PCa. Copyright © 2010 Wiley-Liss, Inc.
Leptin's effect on taste bud calcium responses and transmitter secretion.
Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D
2015-05-01
Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Horio, Nao; Jyotaki, Masafumi; Yoshida, Ryusuke; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo
2010-01-01
The ability to perceive sweet compounds is important for animals to detect an external carbohydrate source of calories and has a critical role in the nutritional status of animals. In mice, a subset of sweet-sensitive taste cells possesses leptin receptors. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. The data from recent studies indicate that leptin may also act as a modulator of sweet taste sensation in humans with a diurnal variation in sweet sensitivity. The plasma leptin level and sweet taste sensitivity are proposed to link with post-ingestive plasma glucose level. This leptin modulation of sweet taste sensitivity may influence an individual's preference, ingestive behavior, and absorption of nutrients, thereby playing important roles in regulation of energy homeostasis.
Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age.
Morrison, Christopher D; White, Christy L; Wang, Zhong; Lee, Seung-Yub; Lawrence, David S; Cefalu, William T; Zhang, Zhong-Yin; Gettys, Thomas W
2007-01-01
Animals at advanced ages exhibit a reduction in central leptin sensitivity. However, changes in growth, metabolism, and obesity risk occur much earlier in life, particularly during the transition from youth to middle age. To determine when initial decreases in central leptin sensitivity occur, leptin-dependent suppression of food intake was tested in 8-, 12-, and 20-wk-old male, chow-fed Sprague Dawley rats. Intracerebroventricular leptin injection (3 microg) suppressed 24-h food intake in 8- and 12-wk-old rats (P < 0.05) but not 20-wk-old rats. To identify potential cellular mediators of this resistance, we focused on protein tyrosine phosphatase 1B (PTP1B), a recently described inhibitor of leptin signaling. PTP1B protein levels, as determined by Western blot, were significantly higher in mediobasal hypothalamic punches collected from 20-wk-old rats, compared with 8-wk-old rats (P < 0.05). When 20-wk-old rats were fasted for 24 h, levels of hypothalamic PTP1B decreased (P < 0.05), coincident with a restoration of leptin sensitivity. To directly test whether inhibition of PTP1B restores leptin sensitivity, 20-wk-old chow-fed rats were pretreated with a pharmacological PTP1B inhibitor 1 h before leptin, and 24-h food intake was recorded. As expected, leptin alone produced a small but nonsignificant reduction in food intake. However, pretreatment with the PTP1B inhibitor resulted in a marked improvement in leptin-dependent suppression of food intake (P < 0.05). These data are consistent with the hypothesis that increases in PTP1B contribute to hypothalamic leptin resistance as rats transition into middle age.
Wu, Lihong; Chen, Guoxiong; Liu, Wen; Yang, Xuechao; Gao, Jie; Huang, Liwen; Guan, Hongbing; Li, Zhengmao; Zheng, Zhichao; Li, Meiling; Gu, Weiwang; Ge, Linhu
2017-10-01
Obesity, diabetes and fatty liver disease are extremely common in leptin-resistant patients. Dysfunction of leptin or its receptor is associated with obesity. The present study aimed to assess the effects of intramuscular injection of exogenous leptin or its receptor on fat deposition and leptin-insulin feedback regulation. Forty-five 40-day old female Sprague Dawley (SD) rats were injected thrice with leptin or its receptor intramuscularly. Adiposity and fat deposition were assessed by assessing the Lee's index, body weight, food intake, and total cholesterol, high density lipoprotein, low density lipoprotein, and triglyceride levels, as well as histological properties (liver and adipose tissue). Serum glucose, leptin, and insulin amounts were evaluated, and glucose tolerance assessed to monitor glucose metabolism in SD rats; pancreas specimens were analyzed immunohistochemically. Hypothalamic phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphatidylinositol-3-kinase (PI3K) signaling, and hepatic sterol regulatory element binding protein-1 (SREBP-1) were qualified by Western blotting. Leptin receptor immunogen reduced fat deposition, increased appetite, and lowered serum leptin levels, enhancing STAT3 signaling in hypothalamus and down-regulating hepatic SREBP-1. In contrast, SD rats administered leptin immunogen displayed significantly increased body weight and fat deposition, with up-regulated SREBP-1, indicating adiposity occurrence. SD rats administered leptin immunogen also showed glucose intolerance, β- cell reduction in the pancreas, and deregulation of JAK2-STAT3/PI3K signaling, indicating that Lep rats were at risk of diabetes. In conclusion, intramuscular injection of exogenous leptin or its receptor, a novel rat model approach, can be used in obesity pathogenesis and therapeutic studies. Copyright © 2017. Published by Elsevier Inc.
Structure, production and signaling of leptin
Münzberg, Heike; Morrison, Christopher D.
2014-01-01
The cloning of leptin in 1994 was an important milestone in obesity research. In those days obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause morbid obesity, and it is now appreciated that obesity is caused by a dysregulation of central neuronal circuits. From the first discovery of the leptin deficient obese mouse (ob/ob), to the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, much has been learned about leptin and its action in the central nervous system. The initial high hopes that leptin would cure obesity were quickly dampened by the discovery that most obese humans have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint for distinct neuronal circuits that control energy homeostasis. A better understanding of the regulation and interconnection of these circuits will further guide and improve the development of safe and effective interventions to treat obesity. This review will highlight our current knowledge about the hormone leptin, its signaling pathways and its central actions to mediate distinct physiological functions. PMID:25305050
Individual Differences in Diabetes Risk: Role of Sleep Disturbances
2008-08-01
Automated Neuropsychological Assessment Metrics (ANAM) software, a commercial version of the Walter Reed Army Institute for Research battery of...ghrelin levels, decreased levels of leptin and increased hunger and appetite. We also review cross-sectional epidemiologic studies associating...Leptin is a satiety factor: high leptin levels inhibit and low leptin levels stimulate hunger and food intake. The data shown in Figure 4
Leptin and Cancer: From Cancer Stem Cells to Metastasis (Preprint)
2011-01-01
obesity. J Clin Invest 96 1658-1663. Friedman JM 2009 Leptin at 14 y of age: an ongoing story. Am J Clin Nutr 89 973S-979S. Garofalo C, Koda M, Cascio S...Sulkowska M, Kanczuga- Koda L, Golaszewska J, Russo A, Sulkowski S & Surmacz E 2006 Increased expression of leptin and the leptin receptor as a
Sakar, Yassine; Nazaret, Corinne; Lettéron, Philippe; Ait Omar, Amal; Avenati, Mathilde; Viollet, Benoît; Ducroc, Robert; Bado, André
2009-01-01
Background and Aims The small intestine is the major site of absorption of dietary sugars. The rate at which they enter and exit the intestine has a major effect on blood glucose homeostasis. In this study, we determine the effects of luminal leptin on activity/expression of GLUT2 and GLUT5 transporters in response to sugars intake and analyse their physiological consequences. Methodology Wistar rats, wild type and AMPKα2 −/− mice were used. In vitro and in vivo isolated jejunal loops were used to quantify transport of fructose and galactose in the absence and the presence of leptin. The effects of fructose and galactose on gastric leptin release were determined. The effects of leptin given orally without or with fructose were determined on the expression of GLUT2/5, on some gluconeogenesis and lipogenic enzymes in the intestine and the liver. Principal Findings First, in vitro luminal leptin activating its receptors coupled to PKCβII and AMPKα, increased insertion of GLUT2/5 into the brush-border membrane leading to enhanced galactose and fructose transport. Second in vivo, oral fructose but not galactose induced in mice a rapid and potent release of gastric leptin in gastric juice without significant changes in plasma leptin levels. Moreover, leptin given orally at a dose reproducing comparable levels to those induced by fructose, stimulated GLUT5-fructose transport, and potentiated fructose-induced: i) increase in blood glucose and mRNA levels of key gluconeogenesis enzymes; ii) increase in blood triglycerides and reduction of mRNA levels of intestinal and hepatic Fasting-induced adipocyte factor (Fiaf) and iii) increase in SREBP-1c, ACC-1, FAS mRNA levels and dephosphorylation/activation of ACC-1 in liver. Conclusion/Significance These data identify for the first time a positive regulatory control loop between gut leptin and fructose in which fructose triggers release of gastric leptin which, in turn, up-regulates GLUT5 and concurrently modulates metabolic functions in the liver. This loop appears to be a new mechanism (possibly pathogenic) by which fructose consumption rapidly becomes highly lipogenic and deleterious. PMID:19956534
Qi, Lu; Kang, Kihwa; Zhang, Cuilin; van Dam, Rob M; Kraft, Peter; Hunter, David; Lee, Chih-Hao; Hu, Frank B
2008-11-01
To examine the longitudinal association of fat mass-and obesity-associated (FTO) variant with obesity, circulating adipokine levels, and FTO expression in various materials from human and mouse. We genotyped rs9939609 in 2,287 men and 3,520 women from two prospective cohorts. Plasma adiponectin and leptin were measured in a subset of diabetic men (n = 854) and women (n = 987). Expression of FTO was tested in adipocytes from db/db mice and mouse macrophages. We observed a trend toward decreasing associations between rs9939609 and BMI at older age (>or=65 years) in men, whereas the associations were constant across different age groups in women. In addition, the single nucleotide polymorphism (SNP) rs9939609 was associated with lower plasma adiponectin (log[e]--means, 1.82 +/- 0.04, 1.73 +/- 0.03, and 1.68 +/- 0.05 for TT, TA, and AA genotypes, respectively; P for trend = 0.02) and leptin (log[e]--means, 3.56 +/- 0.04, 3.63 +/- 0.04, and 3.70 +/- 0.06; P for trend = 0.06) in diabetic women. Adjustment for BMI attenuated the associations. FTO gene was universally expressed in human and mice tissues, including adipocytes. In an ancillary study of adipocytes from db/db mice, FTO expression was approximately 50% lower than in those from wild-type mice. The association between FTO SNP rs9939609 and obesity risk may decline at older age. The variant affects circulating adiponectin and leptin levels through the changes in BMI. In addition, the expression of FTO gene was reduced in adipocytes from db/db mice.
Struwe, Ellen; Berzl, Gabriele M; Schild, Ralf L; Dötsch, Jörg
2009-01-01
Fetal growth restriction is associated with an increased risk for metabolic and cardiovascular disease in later life. To further elucidate mechanisms that might be involved in the process of prenatal programming, we measured the adipokines leptin, resistin, and adiponectin and the GH-releasing hormone ghrelin in the placenta of small for gestational age (SGA) neonates. The control group included 24 placentas of appropriate for gestational age (AGA) newborns, in the study group were 16 placentas of SGA neonates. Gene expression of leptin, resistin, adiponectin, and ghrelin was examined. For hormones showing alterations in gene regulation placental protein expression was measured by Western blot. Placental mRNA expression of leptin was significantly increased in SGA placentas (p=0.0035, related to beta-actin). Protein concentration was increased, as well. There were no differences in placental resistin, adiponectin, or ghrelin gene expressions between SGA neonates and controls. Leptin was the only hormone to demonstrate a significant inverse correlation with birth weight (r=-0.44, p=0.01). Adiponectin correlated significantly with leptin (r=0.53, p=0.0023) and ghrelin (r=0.50, p=0.0045). Placental leptin gene expression and protein concentration showed the expected increase in the SGA group. Leptin was inversely correlated with birth weight. Positive correlation of adiponectin with leptin and ghrelin expression suggests an interaction between these hormones in the placenta. However, the unchanged expression of resistin, adiponectin, and ghrelin in SGA placentas and the absence of correlation with birth weight cast doubt whether these hormones produced in the placenta play a key role in fetal programming.
Calvino, Camila; Império, Güínever Eustáquio; Wilieman, Marianna; Costa-E-Sousa, Ricardo Henrique; Souza, Luana Lopes; Trevenzoli, Isis Hara; Pazos-Moura, Carmen Cabanelas
2016-01-01
Thyroid hormone and leptin are essential regulators of energy homeostasis. Both hormones stimulate energy expenditure but have opposite effects on appetite. The mechanisms behind food intake regulation in thyroid dysfunctions are poorly understood. It has been shown that hypothyroid rats exhibited impaired leptin anorexigenic effect and signaling in total hypothalamus, even though they were hypophagic. It was hypothesized that hypothyroidism modulates the expression of neuropeptides: orexigenic neuropeptide Y (NPY) and anorexigenic proopiomelanocortin (POMC), independently of inducing nuclei-specific changes in hypothalamic leptin signaling. Adult male rats were rendered hypothyroid by administration of 0.03% methimazole in the drinking water for 21 days. Protein content of NPY, POMC, and leptin signaling (the signal transducer and activator of transcription 3 [STAT3] pathway) were evaluated by Western blot, and mRNA levels by real time reverse transcription polymerase chain reaction in arcuate (ARC), ventromedial (VMN), and paraventricular (PVN) hypothalamic nuclei isolated from euthyroid (eu) and hypothyroid (hypo) rats. Leptin anorexigenic effect was tested by recording food intake for two hours after intracerebroventricular (i.c.v.) administration of leptin. Statistical differences were considered significant at p ≤ 0.05. Hypothyroidism was confirmed by decreased serum triiodothyronine, thyroxine, and increased thyrotropin, in addition to increased levels of pro-TRH mRNA in PVN and Dio2 mRNA in the ARC of hypo rats. Hypothyroidism decreased body weight and food intake associated with decreased protein content of NPY and increased content of POMC in the ARC. Conversely, hypothyroidism induced central resistance to the acute anorexigenic effect of leptin, since while euthyroid rats displayed reduced food intake after leptin i.c.v. injection, hypothyroid rats showed no response. Hypothyroid rats exhibited decreased leptin receptor (ObRb) protein content in ARC and VMN but not in PVN nucleus. ObRb protein changes were concomitant with decreased phosphorylated STAT3 in the ARC, and decreased total STAT3 in VMN and PVN. However, hypothyroidism did not affect mRNA levels of Lepr or Stat3 in the hypothalamic nuclei. Experimental hypothyroidism induced a negative energy balance accompanied by decreased NPY and increased POMC protein content in the ARC, resulting in predominance of anorexigenic pathways, despite central leptin resistance and impairment of the leptin signaling cascade in a nuclei-specific manner.
Gao, Yuanqing; Vidal-Itriago, Andrés; Milanova, Irina; Korpel, Nikita L; Kalsbeek, Martin J; Tom, Robby Zachariah; Kalsbeek, Andries; Hofmann, Susanna M; Yi, Chun-Xia
2018-01-01
Leptin is a cytokine produced by adipose tissue that acts mainly on the hypothalamus to regulate appetite and energy homeostasis. Previous studies revealed that the leptin receptor is expressed not only in neurons, but also in glial cells. Microglia are resident immune cells in the brain that play an essential role in immune defense and neural network development. Previously we reported that microglial morphology and cytokine production are changed in the leptin receptor deficient db/db mouse, suggesting that leptin's central effects on metabolic control might involve signaling through microglia. In the current study, we aimed to uncover the role of leptin signaling in microglia in systemic metabolic control. We generated a mouse model with leptin receptor deficiency, specifically in the myeloid cells, to determine the role of microglial leptin signaling in the development of metabolic disease and to investigate microglial functions. We discovered that these mice have increased body weight with hyperphagia. In the hypothalamus, pro-opiomelanocortin neuron numbers in the arcuate nucleus (ARC) and α-MSH projections from the ARC to the paraventricular nucleus (PVN) decreased, which was accompanied by the presence of less ramified microglia with impaired phagocytic capacity in the PVN. Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Erkasap, S; Erkasap, N; Bradford, B; Mamedova, L; Uysal, O; Ozkurt, M; Ozyurt, R; Kutlay, O; Bayram, B
2017-01-01
Our study aimed to investigate the possible modifying effects of leptin and combined use of resveratrol on rat renal I/R injury and their relationship on signal pathways and apoptosis-related mechanisms. Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure. Male Sprague Dawley rats were divided into 5 groups: Control, I/R, I/R+leptin, I/R+resveratrol and I/R+leptin+resveratrol. Leptin (10 μg/kg BW) was administered (i.p.) 30 min prior to I/R. Resveratrol was administered by gavage at 20 mg/kg BW per d for 12 d prior to I/R. The left renal artery was exposed to 1 h of ischemia and 1 h of reperfusion. Resveratrol treatment alone increased TNF-α, TNF-α R1, NF-κB, SIRT-1, STAT1 and STAT3 mRNA levels and decreased caspase 3 protein levels. Leptin treatment alone significantly decreased the caspase 3 protein levels. The combined use of resveratrol and leptin significantly increased STAT3, and caspase 3 mRNA levels, and decreased the caspase 3 protein levels. Apoptosis was significantly decreased especially in the leptin and leptin+resveratrol groups. The present study suggest that a combined use of resveratrol and leptin has preventive and regulatory effects on renal I/R injury; the mechanism involves decreasing apoptosis, likely by altering the JAK/STAT pathway and SIRT1 expression (Fig. 8, Ref. 24).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young
2011-03-25
Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreasedmore » expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.« less
Hormonal modulation of food intake in response to low leptin levels induced by hypergravity
NASA Technical Reports Server (NTRS)
Moran, M. M.; Stein, T. P.; Wade, C. E.
2001-01-01
A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.
Leptin, adiponectin and serotonin levels in lean and obese dogs.
Park, Hyung-Jin; Lee, Sang-Eun; Oh, Jung-Hyun; Seo, Kyoung-Won; Song, Kun-Ho
2014-05-13
Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility. There are few studies looking at the role of 5HT and the relationship between peripheral circulating serotonin and obesity. The aim of this study was to find any differences in leptin, adiponectin, and 5HT between lean and obese dogs and to identify correlations among these factors. Leptin, triglyceride (TG) and cholesterol levels were higher in the obese group (all p < 0.01). Adiponectin and 5HT levels were higher in the lean group compared to the obese group (p < 0.01). Leptin (r = 0.628, p < 0.01), TG (r = 0.491, p < 0.01) and cholesterol (r = 0.419, p < 0.01) were positively correlated with body condition score (BCS), and adiponectin (r = -0.446, p < 0.01) and 5HT (r = -0.490, p < 0.01) were negatively correlated with BCS. Leptin was negatively correlated with adiponectin (r = -0.294, p < 0.01) and 5HT (r = -0.343, p < 0.01). 5HT was negatively correlated with leptin (r = -0.343, p < 0.01), TG (r = -0.268, p < 0.05) and cholesterol (r = -0.357, p < 0.05). 5HT is an important appetite control neurotransmitter, but there are limited studies for 5HT levels related to obesity in dogs. To the best of our knowledge, this is the first study to evaluate peripheral 5HT levels in obese dogs. From this research, we can assume that 5HT may be correlated with canine obesity. Further studies will be needed to further elucidate the role of low serum 5HT levels in canine obesity.
Leptin, adiponectin and serotonin levels in lean and obese dogs
2014-01-01
Background Serotonin (5-hydroytryptamine or 5HT) is associated with numerous behavioral and psychological factors and is a biochemical marker of mood. 5HT is involved in the hypothalamic regulation of energy consumption. 5HT controls appetite in the central nerve system (CNS) and stimulates intestinal mobility. There are few studies looking at the role of 5HT and the relationship between peripheral circulating serotonin and obesity. The aim of this study was to find any differences in leptin, adiponectin, and 5HT between lean and obese dogs and to identify correlations among these factors. Results Leptin, triglyceride (TG) and cholesterol levels were higher in the obese group (all p < 0.01). Adiponectin and 5HT levels were higher in the lean group compared to the obese group (p < 0.01). Leptin (r = 0.628, p < 0.01), TG (r = 0.491, p < 0.01) and cholesterol (r = 0.419, p < 0.01) were positively correlated with body condition score (BCS), and adiponectin (r = -0.446, p < 0.01) and 5HT (r = -0.490, p < 0.01) were negatively correlated with BCS. Leptin was negatively correlated with adiponectin (r = -0.294, p < 0.01) and 5HT (r = -0.343, p < 0.01). 5HT was negatively correlated with leptin (r = -0.343, p < 0.01), TG (r = -0.268, p < 0.05) and cholesterol (r = -0.357, p < 0.05). Conclusions 5HT is an important appetite control neurotransmitter, but there are limited studies for 5HT levels related to obesity in dogs. To the best of our knowledge, this is the first study to evaluate peripheral 5HT levels in obese dogs. From this research, we can assume that 5HT may be correlated with canine obesity. Further studies will be needed to further elucidate the role of low serum 5HT levels in canine obesity. PMID:24886049
Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Ferreri, Carla; Orlando, Antonella; Riezzo, Giuseppe
2017-03-01
A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut-brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator. Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed. Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334). Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.
Wannamethee, S Goya; Shaper, A Gerald; Whincup, Peter H; Lennon, Lucy; Sattar, Naveed
2011-10-25
We examined the relationship between body mass index (BMI), waist circumference, and incident HF in men with and without pre-existing coronary heart disease (CHD) and assessed the contribution of plasma leptin concentration to these associations. Leptin has been proposed as a potential link between obesity and heart failure (HF). This was a prospective study of 4,080 men age 60 to 79 years with no diagnosed HF followed for a mean period of 9 years, in whom there were 228 incident HF cases. Increased BMI was associated with significantly increased risk of HF in men with and without pre-existing CHD (myocardial infarction or angina) after adjustment for cardiovascular risk factors including C-reactive protein. The adjusted hazard ratios (HRs) associated with a 1-SD increase in BMI were 1.37 (95% confidence interval [CI]: 1.09 to 1.72) and 1.18 (95% CI: 1.00 to 1.39) in men with and without CHD, respectively. Increased leptin was significantly associated with an increased risk of HF in men without pre-existing CHD, independent of BMI and potential mediators (adjusted HR for a 1-SD increase in log leptin: 1.30 [95% CI: 1.06 to 1.61]; p = 0.01). However, no association was seen in those with pre-existing CHD (corresponding HR: 1.06 [95% CI: 0.77 to 1.45]; p = 0.72). Adjustment for leptin abolished the association between BMI and HF in men with no CHD; in those with CHD, the association between BMI and HF remained significant (p = 0.03). Similar patterns were seen for waist circumference. In the absence of established CHD, the association between obesity and HF may be mediated by plasma leptin. In those with CHD, obesity appears to increase the risk of HF independent of leptin. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling.
Tam, Joseph; Szanda, Gergő; Drori, Adi; Liu, Ziyi; Cinar, Resat; Kashiwaya, Yoshihiro; Reitman, Marc L; Kunos, George
2017-10-01
In visceral obesity, an overactive endocannabinoid/CB 1 receptor (CB 1 R) system promotes increased caloric intake and decreases energy expenditure, which are mitigated by global or peripheral CB 1 R blockade. In mice with diet-induced obesity (DIO), inhibition of food intake by the peripherally restricted CB 1 R antagonist JD5037 could be attributed to endogenous leptin due to the rapid reversal of hyperleptinemia that maintains leptin resistance, but the signaling pathway engaged by leptin has remained to be determined. We analyzed the hypothalamic circuitry targeted by leptin following chronic treatment of DIO mice with JD5037. Leptin treatment or an increase in endogenous leptin following fasting/refeeding induced STAT3 phosphorylation in neurons in the arcuate nucleus (ARC) in lean and JD5037-treated DIO mice, but not in vehicle-treated DIO animals. Co-localization of pSTAT3 in leptin-treated mice was significantly less common with NPY + than with POMC + ARC neurons. The hypophagic effect of JD5037 was absent in melanocortin-4 receptor (MC4R) deficient obese mice or DIO mice treated with a MC4R antagonist, but was maintained in NPY -/- mice kept on a high-fat diet. Peripheral CB 1 R blockade in DIO restores sensitivity to endogenous leptin, which elicits hypophagia via the re-activation of melanocortin signaling in the ARC. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Zhang, C; Su, Z; Zhao, B; Qu, Q; Tan, Y; Cai, L; Li, X
2010-01-01
Obesity in human was found mainly due to the poor transportation of leptin through brain-blood barrier (BBB), called as leptin resistance. To produce a leptin capable of penetrating BBB, we have added Tat-PTD(9) to the C terminal of leptin to construct a fusion protein. The fusion Tat-leptin and native leptin genes were synthesized by single-step insertion of a polymerase chain reaction and expressed in Escherichia coli BL21 (Rosseta). The expressing products were purified and renatured by Ni-NTA affinity chromatography, and identified by the molecular size in SDS-PAGE gel and by its immunoreactivity to specific antibody with Western-blotting assay. To bio-functionally evaluate the fusion protein, Balb/c mice fed with high-fat diet (HFD) were given Tat-leptin, leptin or saline for 19 days. The immunohistochemical staining showed the increases in positive stains for the leptin in the region of hypothalamus of the HFD mice with either Tat-leptin or leptin as compared to saline group, but the staining intensity and frequency in the group with Tat-leptin were stronger and higher than those in the group with leptin. Furthermore, the most efficiency in preventing the body-weight gain caused by HFD was found in Tat-leptin group among these three groups. These results suggest that Tat-modified leptin may become a great potential candidate for the prevention or therapy of obese patients. J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart , New York.
Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Haiping; Tianjin Medical University Cancer Hospital, Tianjin; Yu Jinming
2008-03-28
Leptin and its receptors are overexpressed in breast cancer tissues and correlate with poor prognosis. Survivin, a member of the inhibitor of apoptosis protein (IAP) gene family, is generally upregulated in tumor tissues and prevents tumor cells from apoptosis. Here we showed that leptin upregulated survivin mRNA and protein expression in MCF-7 breast cancer cells. Meanwhile, leptin suppressed docetaxel-induced apoptosis by inhibiting caspase activity. Knockdown of signal transducer and activator transcription 3 (STAT3) expression by small interfering RNA (siRNA) blocked leptin-induced upregulation of survivin. TransAM ELISA showed that leptin increased nuclear translocation of active STAT3. In addition, chromatin immunoprecipitation (ChIP)more » assay detected an enhanced binding of STAT3 to survivin promoter in MCF-7 cells after treatment by leptin. Further studies showed that leptin enhanced the transcriptional activity of survivin promoter. Collectively, our findings identify leptin/STAT3 signaling as a novel pathway for survivin expression in breast cancer cells.« less
Koch, Christiane; Augustine, Rachael A.; Steger, Juliane; Ganjam, Goutham K.; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W.; Shepherd, Peter R.; Anderson, Greg M.; Grattan, David R.; Tups, Alexander
2013-01-01
Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lepob/ob mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes. PMID:21123564
Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander
2010-12-01
Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.
Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, Rama; Lin Cal; Tran, Teresa
2005-06-17
Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayedmore » local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.« less
Bellone, S; Prodam, F; Savastio, S; De Rienzo, F; Demarchi, I; Trovato, L; Petri, A; Rapa, A; Aimaretti, G; Bona, G
2012-02-01
Ghrelin circulates in blood as acylated (AG) and unacylated (UAG) ghrelin. The physiological role of the two forms is poorly understood, in particular in childhood. Aim of the study was to evaluate the AG and UAG levels in obese and normal weight (NW) children, pre-pubertal and pubertal, and their relationship with insulin, leptin and adiponectin levels. A population based study in which AG, UAG, leptin, adiponectin, glucose, insulin, testosterone or estradiol levels, insulinemic indexes were evaluated in 82 NW and 58 obese (OB) children. Both ghrelin forms in NW were higher (AG, p<0.02; UAG, p<0.0001) than in OB subjects, with similar ratio AG/UAG . While no differences were observed for gender, puberty AG (p<0.01) and UAG (p<0.0001) levels were higher in pre-pubertal than pubertal NW and OB subjects. Adiponectin levels in NW subjects were higher (p<0.001), while leptin and insulin levels were lower (p<0.0001) than in OB subjects. NW children showed homeostasis model assessment (HOMA) and HOMAβ indices lower than OB children (p<0.0001) with a higher a quantitative insulin sensitivity check index (p<0.0001). AG and UAG levels correlated to each other (p<0.0001), each showing a negative correlation to age, height, weight and body mass index. Both forms, but more strongly UAG, correlated with adiponectin, leptin, and insulin. OB children show lower levels of both AG and UAG when compared to NW subjects, with lower levels during puberty. These results demonstrate a peculiar strong relationship between UAG levels and metabolic parameters in the pediatric population, suggesting a role for UAG in metabolic functions.
Endrighi, Romano; Hamer, Mark; Hackett, Ruth A; Carvalho, Livia A; Jackson, Sarah E; Wardle, Jane; Steptoe, Andrew
2015-01-01
Epidemiologic evidence links psychosocial stress with obesity but experimental studies examining the mechanisms that mediates the effect of stress on adiposity are scarce. The aim of this study was to investigate whether changes in adiposity following minimal weight loss affect heightened stress responses in women, and examine the role of the adipokine leptin in driving inflammatory responses. Twenty-three overweight or obese, but otherwise healthy, women (M age = 30.41 ± 8.0 years; BMI = 31.9 ± 4.1 kg/m(2)) completed standardized acute mental stress before and after a 9-week calorie restriction program designed to modify adiposity levels. Cardiovascular (blood pressure and heart rate) and inflammatory cytokines (leptin and interleukin-6; IL-6) responses to mental stress were assessed several times between baseline and a 45-min post-stress recovery period. There were modest changes in adiposity measures while the adipokine leptin was markedly reduced (-27%) after the intervention. Blood pressure reactivity was attenuated (-3.38 ± 1.39 mmHg) and heart rate recovery was improved (2.07 ± 0.96 Bpm) after weight loss. Blood pressure responses were inversely associated with changes in waist to hip ratio post intervention. Decreased levels of circulating leptin following weight loss were inversely associated with the IL-6 inflammatory response to stress (r = -0.47). We offered preliminary evidence suggesting that modest changes in adiposity following a brief caloric restriction program may yield beneficial effect on cardiovascular stress responses. In addition, reductions in basal leptin activity might be important in blunting pro-inflammatory responses. Large randomized trials of the effect of adiposity on autonomic responses are thus warranted.
Melanson, Kathleen J; Zukley, Linda; Lowndes, Joshua; Nguyen, Von; Angelopoulos, Theodore J; Rippe, James M
2007-02-01
Fructose has been implicated in obesity, partly due to lack of insulin-mediated leptin stimulation and ghrelin suppression. Most work has examined effects of pure fructose, rather than high-fructose corn syrup (HFCS), the most commonly consumed form of fructose. This study examined effects of beverages sweetened with HFCS or sucrose (Suc), when consumed with mixed meals, on blood glucose, insulin, leptin, ghrelin, and appetite. Thirty lean women were studied on two randomized 2-d visits during which HFCS- and Suc-sweetened beverages were consumed as 30% of energy on isocaloric diets during day 1 while blood was sampled. On day 2, food was eaten ad libitum. Subjects rated appetite at designated times throughout visits. No significant differences between the two sweeteners were seen in fasting plasma glucose, insulin, leptin, and ghrelin (P > 0.05). The within-day variation in all four items was not different between the two visits (P > 0.05). Net areas under the curve were similar for glucose, insulin, and leptin (P > 0.05). There were no differences in energy or macronutrient intake on day 2. The only appetite variable that differed between sweeteners was desire to eat, which had a higher area under the curve the day after Suc compared with HFCS. These short-term results suggest that, when fructose is consumed in the form of HFCS, the measured metabolic responses do not differ from Suc in lean women. Further research is required to examine appetite responses and to determine if these findings hold true for obese individuals, males, or longer periods.
Massage Improves Growth Quality by Decreasing Body Fat Deposition in Male Preterm Infants
Moyer-Mileur, Laurie J.; Haley, Shannon; Slater, Hillarie; Beachy, Joanna; Smith, Sandra L.
2012-01-01
Objectives To assess the effect of massage on weight gain and body fat deposition in preterm infants. Study design Preterm infants (29–32 wk) were randomized to Massage (n=22, 12F/10M) or Control (n=22, 12F/10M). Treatment was masked with Massage or Control administered twice-daily by licensed massage therapists (6 d/wk for 4 wk). Body weight (g), length (cm), ponderal index (PI g/cm3), body circumferences (cm), skinfold thickness (triceps TSF, mid-thigh MTSF, and subscapular SSF; mm) were measured. Circulating IGF-1, leptin, and adiponectin were determined by ELISA. Daily dietary intake was collected. Results Energy and protein intake as well as increase in weight (g/kg/d), length, and body circumferences were similar. Massage male infants had smaller PI, TSF, MTSF, and SSF, and increases over time than Control male infants (p<0.05). Massage female infants had larger SSF increase than Control females (p<0.05). Circulating adiponectin increased over time in Control male infants (group X time X sex interaction, p<0.01) and was correlated to PI (r=0.39, p<0.01). Conclusions Twice daily massage did not promote greater weight gain in preterm infants. Massage did, however, limit body fat deposition in male preterm infants. Massage decreased circulating adiponectin over time in male infants with higher adiponectin concentrations associated with increased body fat. These findings suggest that massage may improve body fat deposition, and in turn growth quality, of preterm infants in a sex-specific manner. PMID:23062248
Bender, Melissa Cui; Hu, Caroline; Pelletier, Chris; Denver, Robert J
2018-03-28
Many animal life histories entail changing feeding ecology, but the molecular bases for these transitions are poorly understood. The amphibian tadpole is typically a growth and dispersal life-history stage. Tadpoles are primarily herbivorous, and they capitalize on growth opportunities to reach a minimum body size to initiate metamorphosis. During metamorphic climax, feeding declines, at which time the gastrointestinal (GI) tract remodels to accommodate the carnivorous diet of the adult frog. Here we show that anorexigenic hypothalamic feeding controls are absent in the tadpole, but develop during metamorphosis concurrent with the production of the satiety signal leptin. Before metamorphosis there is a large increase in leptin mRNA in fat tissue. Leptin receptor mRNA increased during metamorphosis in the preoptic area/hypothalamus, the key brain region involved with the control of food intake and metabolism. This corresponded with an increase in functional leptin receptor, as evidenced by induction of socs3 mRNA and phosphorylated STAT3 immunoreactivity, and suppression of feeding behaviour after injection of recombinant frog leptin. Furthermore, we found that immunoneutralization of leptin in tadpoles at metamorphic climax caused them to resume feeding. The absence of negative regulation of food intake in the tadpole allows the animal to maximize growth prior to metamorphosis. Maturation of leptin-responsive neural circuits suppresses feeding during metamorphosis to facilitate remodelling of the GI tract. © 2018 The Author(s).
Presence and distribution of leptin and leptin receptor in the canine gallbladder.
Lee, Sungin; Lee, Aeri; Kweon, Oh-Kyeong; Kim, Wan Hee
2016-09-01
The hormone leptin is produced by mature adipocytes and plays an important role in regulating food intake and energy metabolism through its interaction with the leptin receptor. In addition to roles in obesity and obesity-related diseases, leptin has been reported to affect the components and secretion of bile in leptin-deficient mice. Furthermore, gallbladder diseases such as cholelithiasis are known to be associated with serum leptin concentrations in humans. We hypothesized that the canine gallbladder is a source of leptin and that the leptin receptor may be localized in the gallbladder, where it plays a role in regulating the function of this organ. The aim of this study was to demonstrate the presence and expression patterns of leptin and its receptors in normal canine gallbladders using reverse transcriptase-PCR (RT-PCR) and immunohistochemistry. Clinically normal gallbladder tissue samples were obtained from four healthy beagle dogs with similar body condition scores. RT-PCR and sequencing of the amplified PCR products revealed the presence of leptin mRNA and its receptors in the gallbladder. Immunohistochemical investigations demonstrated the expression of leptin and its receptors in the luminal single columnar and tubuloalveolar glandular epithelial cells. In conclusion, the results of this study demonstrated the presence of leptin and its receptors in the gallbladders of dogs. Leptin and its receptor were both localized throughout the cytoplasm of luminal and glandular epithelial cells. These results suggested that the gallbladder is not only a source of leptin, but also a target of leptin though autocrine/paracrine mechanisms. The results of this study could increase the understanding of both the normal physiological functions of the gallbladder and the pathophysiological mechanisms of gallbladder diseases characterized by leptin system dysfunction. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.
Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G
2016-07-01
Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.
Hormonal, lifestyle, and dietary factors in relation to leptin among elderly men.
Lagiou, P; Signorello, L B; Mantzoros, C S; Trichopoulos, D; Hsieh, C C; Trichopoulou, A
1999-01-01
Leptin, the adipocyte-secreted protein product of the ob gene, has been strongly linked to obesity and is believed to play a role in the regulation of the reproductive system. This study examines the potential influence of lifestyle and dietary factors, as well as of other hormones, on serum levels of leptin. The authors studied a population of 48 healthy elderly Greek men. Sera from these men were analyzed for leptin, several steroid hormones, sex hormone-binding globulin, and insulin-like growth factor 1. The authors also utilized data from food frequency questionnaires and information on demographic, anthropometric, and lifestyle (cigarette smoking, alcohol and coffee drinking) factors. Using linear regression modeling, serum leptin levels were inversely associated with testosterone and positively associated with estradiol and dehydroepiandrosterone sulfate, after adjustment for the other hormones and body mass index (BMI). Leptin levels in men with a BMI >30 kg/m2 were 170% higher than in men with a BMI <27 kg/m2 (95% CI 63- 346%). Height was also positively associated with leptin, independent of BMI. No notable relationships were observed between leptin, on the one hand, and smoking, alcohol drinking, coffee drinking, or total energy intake, on the other. When total energy intake was separated into its three major components (carbohydrate, fat, and protein), it appeared that fat intake may have an isocalorically differential effect on serum leptin levels; one marginal quintile increase in fat intake corresponded to an 11% increase in leptin (95% CI 0-24%). Serum levels of leptin may be influenced by other endocrine factors, especially testosterone and estradiol, and may be positively associated with excess fat intake independently of obesity.
Dubinion, John H; da Silva, Alexandre A; Hall, John E
2011-04-01
Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.
Leptin Is Produced by Parathyroid Glands and Stimulates Parathyroid Hormone Secretion.
Hoang, Don; Broer, Niclas; Sosa, Julie A; Abitbol, Nathalie; Yao, Xiaopan; Li, Fangyong; Rivera-Molina, Felix; Toomre, Derek K; Roman, Sanziana A; Sue, Gloria; Kim, Samuel; Li, Alexander Y; Callender, Glenda G; Simpson, Christine; Narayan, Deepak
2017-12-01
We asked if leptin and its cognate receptor were present in normal and diseased parathyroid glands, and if so, whether they had any functional effects on parathyroid hormone (PTH) secretion in parathyroid neoplasms. The parathyroid glands acting through PTH play a critical role in the regulation of serum calcium. Based on leptin's recently discovered role in bone metabolism, we hypothesized these glands were the sites of a functional interaction between these 2 hormones. From July 2010 to July 2011, 96 patients were enrolled in a prospective study of leptin and hyperparathyroidism, all of whom were enrolled based on their diagnosis of hyperparathyroidism, and their candidacy for surgical intervention provided informed consent. Immediately after parathyroidectomy, 100 to 300 mg of adenomatous or hyperplastic diseased parathyroid tissue was prepared and processed according to requirements of the following: in situ hybridization, immunohistochemistry, immunofluorescence by conventional and spinning disc confocal microscopy, electron microscopy, parathyroid culture, whole organ explant, and animal model assays. Leptin, leptin receptor (long isoform), and PTH mRNA transcripts and protein were detected in an overlapping fashion in parathyroid chief cells in adenoma and hyperplastic glands, and also in normal parathyroid by in situ hybridization, qRT-PCR, and immunohistochemistry. Confocal microscopy confirmed active exogenous leptin uptake in cultured parathyroid cells. PTH secretion in explants increased in response to leptin and decreased with leptin receptor signaling inhibition by AG490, a JAK2/STAT3 inhibitor. Ob/ob mice injected with mouse leptin exhibited increased PTH levels from baseline. Taken together, these data suggest that leptin is a functionally active product of the parathyroid glands and stimulates PTH release.
Mao, Xiangbing; Zeng, Xiangfang; Huang, Zhimin; Wang, Junjun; Qiao, Shiyan
2013-07-28
Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.
Tohma, Yusuf; Akturk, Mujde; Altinova, Alev; Yassibas, Emine; Cerit, Ethem Turgay; Gulbahar, Ozlem; Arslan, Metin; Sanlier, Nevin; Toruner, Fusun
2015-07-01
There is insufficient information about the appetite-related hormones orexin-A, nesfatin-1, agouti-related peptide (AgRP), and neuropeptide Y (NPY) in hyperthyroidism. The aim of the present study was to investigate the effects of hyperthyroidism on the basal metabolic rate (BMR) and energy intake, orexin-A, nesfatin-1, AgRP, NPY, and leptin levels in the circulation, and their relationship with each other and on appetite. In this prospective study, patients were evaluated in hyperthyroid and euthyroid states in comparison with healthy subjects. Twenty-one patients with overt hyperthyroidism and 33 healthy controls were included in the study. Daily energy intake in the hyperthyroid state was found to be higher than that in the euthyroid state patient group (p=0.039). BMR was higher in hyperthyroid patients than the control group (p=0.018). Orexin-A was lower and nesfatin-1 was higher in hyperthyroid patients compared to the controls (p<0.001), whereas orexin-A increased and nesfatin-1 decreased after euthyroidism (p=0.003, p<0.001). No differences were found in the AgRP, NPY, and leptin levels between the hyperthyroid and euthyroid states and controls (p>0.05). Orexin-A correlated negatively with nesfatin-1 (p=0.042), BMR (p=0.013), free triiodothyronine (fT3; p<0.001), and free thyroxine (fT4; p<0.001) and positively with thyrotropin (TSH; p<0.001). Nesfatin-1 correlated negatively with orexin-A (p=0.042) and TSH (p<0.001) and positively with fT3 (p=0.005) and fT4 (p=0.001). In the regression analysis, "diagnosis of hyperthyroidism" was the main factor affecting orexin-A (p<0.001). Although it seems that no relationship exists among orexin-A, nesfatin-1, and increased appetite in hyperthyroidism, the orexin-A and nesfatin-1 levels are markedly affected by hyperthyroidism.
Vitzel, Kaio F.; Bikopoulos, George; Hung, Steven; Curi, Rui; Ceddia, Rolando B.
2013-01-01
This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis. PMID:23967267
Improved systemic metabolism and adipocyte biology in miR-150 knockout mice.
Kang, Minsung; Liu, Xiaobing; Fu, Yuchang; Timothy Garvey, W
2018-06-01
Short non-coding micro-RNAs (miRNAs) are post-transcriptional factors that directly regulate protein expression by degrading or inhibiting target mRNAs; however, the role of miRNAs in obesity and cardiometabolic disease remains unclarified. Based on our earlier study demonstrating that miR-150 influences lipid metabolism, we have studied effects of miR-150 on systemic metabolism and adipocyte biology. Metabolic phenotypes including body weight, food intake, body composition, glucose tolerance and insulin sensitivity were assessed in WT and global miR-150 KO male mice fed a high-fat diet. Molecular changes in epididymal adipose tissue were evaluated through qRT-PCR and Western blotting. miR-150 KO mice displayed lower body weight characterized by a reduction in % fat mass while % lean mass was increased. Lower body weight was associated with reduced food consumption and an increase in circulating leptin concentrations, as well as enhanced insulin sensitivity and glucose tolerance compared with WT mice. Absence of miR-150 resulted in increased mTOR expression known to participate in increased leptin production leading to reduction of food intake. Expression of PGC-1α, another target gene of miR-150, was also increased together with upregulation of PPARα and glycerol kinase in adipose tissue as well as other genes participating in triglyceride degradation and lipid oxidation. miR-150 KO mice showed metabolic benefits accompanied by reduced body weight, decreased energy intake, and enhanced lipid metabolism. miR-150 may represent both a biomarker and novel therapeutic target regarding obesity and insulin resistance. Copyright © 2018. Published by Elsevier Inc.
Kim, Eun Ju; Kim, Yeon Kyung; Kim, Min-Kyoung; Kim, Sungsoo; Kim, Jin Yong; Lee, Dong Hun; Chung, Jin Ho
2016-05-10
Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis.
Scott, Michael M; Williams, Kevin W; Rossi, Jari; Lee, Charlotte E; Elmquist, Joel K
2011-06-01
Leptin is an adipose-derived hormone that signals to inform the brain of nutrient status; loss of leptin signaling results in marked hyperphagia and obesity. Recent work has identified several groups of neurons that contribute to the effects of leptin to regulate energy balance, but leptin receptors are distributed throughout the brain, and the function of leptin signaling in discrete neuronal populations outside of the hypothalamus has not been defined. In the current study, we produced mice in which the long form of the leptin receptor (Lepr) was selectively ablated using Cre-recombinase selectively expressed in the hindbrain under control of the paired-like homeobox 2b (Phox2b) promoter (Phox2b Cre Lepr(flox/flox) mice). In these mice, Lepr was deleted from glucagon-like 1 peptide-expressing neurons resident in the nucleus of the solitary tract. Phox2b Cre Lepr(flox/flox) mice were hyperphagic, displayed increased food intake after fasting, and gained weight at a faster rate than wild-type controls. Paradoxically, Phox2b Cre Lepr(flox/flox) mice also exhibited an increased metabolic rate independent of a change in locomotor activity that was dependent on food intake, and glucose homeostasis was normal. Together, these data support a physiologically important role of direct leptin action in the hindbrain.
Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo
2014-09-01
Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.
Leptin, adiponectin, leptin to adiponectin ratio and insulin resistance in depressive women.
Zeman, Miroslav; Jirak, Roman; Jachymova, Marie; Vecka, Marek; Tvrzicka, Eva; Zak, Ales
2009-01-01
Depressive disorder (DD) is associated with an increased risk of type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD). It was suggested, that metabolic syndrome (MetS), cluster of metabolic and hormonal changes, such as insulin resistence (IR), abdominal obesity, dyslipidemia, arterial hypertension and elevated fasting glycaemia, could stand behind the connection. Recent findings have shown, that adipocytokines leptin and adiponectin might play a role in both depression and MetS. The aim of this pilot study was to observe the plasma concentrations of leptin, adiponectin, leptin-to-adiponectin ratio and indices of IR in women with depressive disorder. The plasma leptin, adiponectin, parameters of lipid and glucose homeostasis and indices of IR were investigated in a group of 38 women with DD. The results were compared with those of 38 healthy women of the control group, matched for age. Depressive women differed significantly from the controls in higher concentrations of plasma leptin (p <0.05), insulin (p <0.01), C-peptide (p <0.01), value of HOMA-IR (p <0.01), and the leptin-to-adiponectin ratio (p <0.05).The QUICKI index of insulin sensitivity was lower (p <0.01). HAM-D score of DD cases correlated negatively with adiponectin (r = - 0.3505; p < 0.05), independently of HOMA-IR. We have not found in DD group any differences between the drug free patients and those treated either with escitaloprame alone or in the combination with mirtazapine. The results of the pilot study presented support the hypothesis that at least part of DD cases has increased leptin serum levels and certain features of MetS. It could be the factor connecting depression with an increased risk of either DM2 or CVD.
Selective leptin resistance revisited
2013-01-01
In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension. PMID:23883674
Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes
de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina
2015-01-01
Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072
Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes.
Oliveira, Miriane de; de Síbio, Maria Teresa; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina
2015-01-01
To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey's test or Student's t test, were used to analyze data, and significance level was set at 5%. Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases.
Ferrante, Maria C; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria
2014-09-15
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of "leptin-resistance" in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Hypoxemia-induced leptin secretion: a mechanism for the control of food intake in diseased fish.
MacDonald, Lauren E; Alderman, Sarah L; Kramer, Sarah; Woo, Patrick T K; Bernier, Nicholas J
2014-06-01
Leptin is a potent anorexigen, but little is known about the physiological conditions under which this cytokine regulates food intake in fish. In this study, we characterized the relationships between food intake, O2-carrying capacity, liver leptin-A1 (lep-a1) gene expression, and plasma leptin-A1 in rainbow trout infected with a pathogenic hemoflagellate, Cryptobia salmositica. As lep gene expression is hypoxia-sensitive and Cryptobia-infected fish are anemic, we hypothesized that Cryptobia-induced anorexia is mediated by leptin. A 14-week time course experiment revealed that Cryptobia-infected fish experience a transient 75% reduction in food intake, a sharp initial drop in hematocrit and hemoglobin levels followed by a partial recovery, a transient 17-fold increase in lep-a1 gene expression, and a sustained increase in plasma leptin-A1 levels. In the hypothalamus, peak anorexia was associated with decreases in mRNA levels of neuropeptide Y (npy) and cocaine- and amphetamine-regulated transcript (cart), and increases in agouti-related protein (agrp) and pro-opiomelanocortin A2 (pomc). In contrast, in non-infected fish pair-fed to infected animals, lep-a1 gene expression and plasma levels did not differ from those of non-infected satiated fish. Pair-fed fish were also characterized by increases in hypothalamic npy and agrp, no changes in pomc-a2, and a reduction in cart mRNA expression. Finally, peak infection was characterized by a significant positive correlation between O2-carrying capacity and food intake. These findings show that hypoxemia, and not feed restriction, stimulates leptin-A1 secretion in Cryptobia-infected rainbow trout and suggest that leptin contributes to anorexia by inhibiting hypothalamic npy and stimulating pomc-a2. © 2014 Society for Endocrinology.
Huybregts, Lieven; Roberfroid, Dominique; Lanou, Hermann; Meda, Nicolas; Taes, Youri; Valea, Innocent; D'Alessandro, Umberto; Kolsteren, Patrick; Van Camp, John
2013-05-01
In developing countries, prenatal lipid-based nutrient supplements (LNSs) were shown to increase birth size; however, the mechanism of this effect remains unknown. Cord blood hormone concentrations are strongly associated with birth size. Therefore, we hypothesize that LNSs increase birth size through a change in the endocrine regulation of fetal development. We compared the effect of daily prenatal LNSs with multiple micronutrient tablets on cord blood hormone concentrations using a randomized, controlled design including 197 pregnant women from rural Burkina Faso. Insulin-like growth factors (IGF) I and II, their binding proteins IGFBP-1 and IGFBP-3, leptin, cortisol, and insulin were quantified in cord sera using immunoassays. LNS was associated with higher cord blood leptin mainly in primigravidae (+57%; P = 0.02) and women from the highest tertile of BMI at study inclusion (+41%; P = 0.02). We did not find any significant LNS effects on other measured cord hormones. The observed increase in cord leptin was associated with a significantly higher birth weight. Cord sera from small-for-gestational age newborns had lower median IGF-I (-9 μg/L; P = 0.003), IGF-II (-79 μg/L; P = 0.003), IGFBP-3 (-0.7 μg/L; P = 0.007), and leptin (-1.0 μg/L; P = 0.016) concentrations but higher median cortisol (+18 μg/L; P = 0.037) concentrations compared with normally grown newborns. Prenatal LNS resulted in increased cord leptin concentrations in primigravidae and mothers with higher BMI at study inclusion. The elevated leptin concentrations could point toward a higher neonatal fat mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Nannan; Liu, Bing; Song, Jiaguang
Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptinmore » induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway. - Highlights: • Serum leptin was elevated in CKD patients and it was associated with endothelial dysfunction. • Leptin induced endothelial dysfunction by remodeling cytoskeleton in HUVECs. • Leptin promoted endothelial dysfunction via a mechanism involving the AKT/GSK3β and β-catenin signals.« less
Pérez-Bravo, F; Albala, C; Santos, J L; Yañez, M; Carrasco, E
1998-10-01
Leptin, the product of the human ob gene is increased in obese individuals, suggesting resistance to its effect. We examined the relationship of serum leptin levels with respect to obesity, gender and insulin levels in two populations with different ethnic compositions in Chile. Leptin and insulin levels were determined by radioimmunoassay (RIA) and correlated with body mass index (BMI), gender and ethnic background. 79 Caucasian subjects from Santiago and 65 Mapuche natives from the Araucania region, Chile, were included in this study. Leptin concentrations in obese subjects were significantly increased in both ethnic groups in relation to lean status: Caucasian and Mapuche obese 19.3 +/- 11.6 and 10.1 +/- 5.8 (P < 0.001), respectively vs Caucasian and Mapuche lean 10.4 +/- 5.8 and 4.7 +/- 2.9 (P < 0.001, respectively). When we compared Mapuche and Caucasian groups, similar leptin levels were observed among the males of the two populations in both metabolic states (lean and obese). In contrast, the leptin level distributions between women showed a marked difference, having a minor value in the Mapuche women with a comparable value with the male group in this ethnic population. The leptin concentrations are associated with obesity in both ethnic groups in Chile. However, the leptin levels between the Mapuche natives were significantly decreased compared to the Caucasian group. The gender distribution does not seem to be important in the Mapuche natives. The ethnic composition seems to be important in the leptin distribution in the analysed populations.
Association between Nitrogen Stable Isotope Ratios in Human Hair and Serum Levels of Leptin.
Ahn, Song Vogue; Koh, Sang-Baek; Lee, Kwang-Sik; Bong, Yeon-Sik; Park, Jong-Ku
2017-10-01
Stable isotope ratios have been reported to be potential biomarkers of dietary intake and nutritional status. High serum levels of leptin, a hormone which regulates energy metabolism and food intake, are associated with insulin resistance and metabolic syndrome. However, little is known about the association between stable isotope ratios and the metabolic risk in humans. We investigated whether the carbon and nitrogen stable isotope ratios in hair are associated with serum leptin levels. Hair samples were collected from 399 healthy adults (233 men and 166 women) aged 40 to 70 years of a community-based cohort in Korea and the bulk stable isotope ratios of carbon (δ 13 C) and nitrogen (δ 15 N) were measured for all hair samples. Serum leptin levels were analyzed by radioimmunoassay. δ 15 N showed positive correlations with serum leptin levels. In multivariate models, increasing δ 15 N were associated with elevated serum leptin levels (defined as ≥ the median values), whereas δ 13 C were not significantly associated with serum leptin levels. The odds ratio (95% confidence interval) per 1‰ increase in δ 15 N for an elevated serum leptin level was 1.58 (1.11-2.26). In participants with high body mass index, δ 15 N showed positive associations with serum leptin levels, whereas these associations were not seen in participants with low body mass index. The nitrogen stable isotopic ratio in hair is positively associated with serum leptin levels. The hair δ 15 N could be used as a clinical marker to estimate metabolic risk.
Wang, LiHan; Hu, XinYang; Zhu, Wei; Jiang, Zhi; Zhou, Yu; Chen, PanPan; Wang, JianAn
2014-02-01
Autophagy is the basic catabolic progress involved in cell degradation of unnecessary or dysfunctional cellular components. It has been proven that autophagy could be utilized for cell survival under stresses. Hypoxic-preconditioning (HPC) could reduce apoptosis induced by ischemia and hypoxia/serum deprivation (H/SD) in bone marrow-derived mesenchymal stem cells (BMSCs). Previous studies have shown that both leptin signaling and autophagy activation were involved in the protection against apoptosis induced by various stress, including ischemia-reperfusion. However, it has never been fully understood how leptin was involved in the protective effects conferred by autophagy. In the present study, we demonstrated that HPC can induce autophagy in BMSCs by increased LC3-II/LC3-I ratio and autophagosome formation. Interestingly, similar effects were also observed when BMSCs were pretreated with rapamycin. The beneficial effects offered by HPC were absent when BMSCs were incubated with autophagy inhibitor, 3-methyladenine (3-MA). In addition, down-regulated leptin expression by leptin-shRNA also attenuated HPC-induced autophagy in BMSCs, which in turn was associated with increased apoptosis after exposed to sustained H/SD. Furthermore, increased AMP-activated protein kinase phosphorylation and decreased mammalian target of rapamycin phosphorylation that were observed in HPC-treated BMSCs can also be attenuated by down-regulation of leptin expression. Our data suggests that leptin has impact on HPC-induced autophagy in BMSCs which confers protection against apoptosis under H/SD, possibly through modulating both AMPK and mTOR pathway.
Leptin concentrations in response to acute stress predict subsequent intake of comfort foods
Tomiyama, A. Janet; Schamarek, Imke; Lustig, Robert H.; Kirschbaum, Clemens; Puterman, Eli; Havel, Peter J.; Epel, Elissa S.
2012-01-01
Both animals and humans show a tendency toward eating more “comfort food” (high fat, sweet food) after acute stress. Such stress eating may be contributing to the obesity epidemic, and it is important to understand the underlying psychobiological mechanisms. Prior investigations have studied what makes individuals eat more after stress; this study investigates what might make individuals eat less. Leptin has been shown to increase following a laboratory stressor, and is known to affect eating behavior. This study examined whether leptin reactivity accounts for individual differences in stress eating. To test this, we exposed forty women to standardized acute psychological laboratory stress (Trier Social Stress Test) while blood was sampled repeatedly for measurements of plasma leptin. We then measured food intake after the stressor in 29 of these women. Increasing leptin during the stressor predicted lower intake of comfort food. These initial findings suggest that acute changes in leptin may be one of the factors modulating down the consumption of comfort food following stress. PMID:22579988
Hair cycle control by leptin as a new anagen inducer.
Sumikawa, Yasuyuki; Inui, Shigeki; Nakajima, Takeshi; Itami, Satoshi
2014-01-01
Our purpose is to clarify the physiological role of leptin in hair cycle as leptin reportedly causes activation of Stat3, which is indispensable for hair cycling. While hair follicles in dorsal skin of 5-week-old C57/BL6 mice had progressed to late anagen phase, those in dorsal skin of 5-week-old leptin receptor deficient db/db mice remained in the first telogen and later entered the anagen at postnatal day 40, indicating that deficiency in leptin receptor signalling delayed the second hair cycle progression. Next, we shaved dorsal hairs on wild-type mice at postnatal 7 weeks and injected skin with mouse leptin or a mock. After 20 days, although mock injection showed no effect, hair growth occurred around leptin injection area. Human leptin fragment (aa22-56) had similar effects. Although the hair cycle of ob/ob mice was similar to that of wild-type mice, injection of mouse leptin on ob/ob mice at postnatal 7 weeks induced anagen transition. Immunohistochemically, leptin is expressed in hair follicles from catagen to early anagen in wild-type mice, suggesting that leptin is an anagen inducer in vivo. Phosphorylation of Erk, Jak2 and Stat3 in human keratinocytes was stimulated by leptin and leptin fragment. In addition, RT-PCR and ELISA showed that the production of leptin by human dermal papilla cells increased under hypoxic condition, suggesting that hypoxia in catagen/telogen phase promotes leptin production, preparing for entry into the next anagen. In conclusion, leptin, a well-known adipokine, acts as an anagen inducer and represents a new player in hair biology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seth, Ratanesh Kumar; Das, Suvarthi; Kumar, Ashutosh
2014-01-01
Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radicalmore » formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp/Rag2 KO mice. • Leptin mediated CD8+CD57+ T cells play an important role in NASH.« less
Charlier, E; Malaise, O; Zeddou, M; Neuville, S; Cobraiville, G; Deroyer, C; Sanchez, C; Gillet, P; Kurth, W; de Seny, D; Relic, B; Malaise, M G
2016-02-01
The aetiology of OA is not fully understood although several adipokines such as leptin are known mediators of disease progression. Since leptin levels were increased in synovial fluid compared to serum in OA patients, it was suggested that joint cells themselves could produce leptin. However, exact mechanisms underlying leptin production by chondrocytes are poorly understood. Nevertheless, prednisolone, although displaying powerful anti-inflammatory properties has been recently reported to be potent stimulator of leptin and its receptor in OA synovial fibroblasts. Therefore, we investigated, in vitro, spontaneous and prednisolone-induced leptin production in OA chondrocytes, focusing on transforming growth factor-β (TGFβ) and Wnt/β-catenin pathways. We used an in vitro dedifferentiation model, comparing human freshly isolated hip OA chondrocytes cultivated in monolayer during 1 day (type II, COL2A1 +; type X, COL10A1 + and type I collagen, COL1A1 -) or 14 days (COL2A1 -; COL10A1 - and COL1A1+). Leptin expression was not detected in day1 OA chondrocytes whereas day14 OA chondrocytes produced leptin, significantly increased with prednisolone. Activin receptor-like kinase 1 (ALK1)/ALK5 ratio was shifted during dedifferentiation, from high ALK5 and phospho (p)-Smad2 expression at day1 to high ALK1, endoglin and p-Smad1/5 expression at day14. Moreover, inactive glycogen synthase kinase 3 (GSK3) and active β-catenin were only found in dedifferentiated OA chondrocytes. Smad1 and β-catenin but not endoglin stable lentiviral silencing led to a significant decrease in leptin production by dedifferentiated OA chondrocytes. Only dedifferentiated OA chondrocytes produced leptin. Prednisolone markedly enhanced leptin production, which involved Smad1 and β-catenin activation. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity.
Chen, Yan; Wu, Rong; Chen, Hang-Zi; Xiao, Qian; Wang, Wei-Jia; He, Jian-Ping; Li, Xiao-Xue; Yu, Xian-Wen; Li, Li; Wang, Peng; Wan, Xi-Chen; Tian, Xin-Hua; Li, Shu-Jing; Yu, Xiang; Wu, Qiao
2015-06-01
Leptin, an anorexigenic hormone in the hypothalamus, suppresses food intake and increases energy expenditure. Failure to respond to leptin will lead to obesity. Here, we discovered that nuclear receptor Nur77 expression is lower in the hypothalamus of obese mice compared with normal mice. Injection of leptin results in significant reduction in body weight in wild-type mice but not in Nur77 knockout (KO) littermates or mice with specific Nur77 knockdown in the hypothalamus. Hypothalamic Nur77 not only participates in leptin central control of food intake but also expands leptin's reach to liver and adipose tissues to regulate lipid metabolism. Nur77 facilitates signal transducer and activator of transcription 3 (STAT3) acetylation by recruiting acetylase p300 and disassociating deacetylase histone deacetylase 1 (HDAC1) to enhance the transcriptional activity of STAT3 and consequently modulates the expression of downstream gene Pomc in the hypothalamus. Nur77 deficiency compromises response to leptin in mice fed a high-fat diet. Severe leptin resistance in Nur77 KO mice with increased appetite, lower energy expenditure, and hyperleptinemia contributes to aging-induced obesity. Our study opens a new avenue for regulating metabolism with Nur77 as the positive modulator in the leptin-driven antiobesity in the hypothalamus. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes.
Schram, Kristin; De Girolamo, Sabrina; Madani, Siham; Munoz, Diana; Thong, Farah; Sweeney, Gary
2010-12-01
A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.
Williams, Rachel C; Skelton, Andrew J; Todryk, Stephen M; Rowan, Andrew D; Preshaw, Philip M; Taylor, John J
2016-01-01
Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy).
Williams, Rachel C.; Skelton, Andrew J.; Todryk, Stephen M.; Rowan, Andrew D.; Preshaw, Philip M.; Taylor, John J.
2016-01-01
Introduction Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. Methods and Results We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. Conclusions We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy). PMID:26829555
2005-08-01
reproductive status and stress hormones in breast cancer patients” ( Kinesiology ) 2004 Kelly Dougherty “No relation between leptin and exercise...associated reproductive disturbances in healthy normal weight young women” ( Kinesiology ) 2004 Brian Frye “Predictors of weight loss in a diet...and exercise intervention in young women” ( Kinesiology ) 2005 Sarah Giambuzzi ( Kinesiology – In Progress) 2005 Jennifer Ward (Physiology- In
[Mechanism study on leptin resistance in lung cancer cachexia rats treated by Xiaoyan Decoction].
Zhang, Yun-Chao; Jia, Ying-Jie; Yang, Pei-Ying; Zhang, Xing; Li, Xiao-Jiang; Zhang, Ying; Zhu, Jin-Li; Sun, Yi-Yu; Chen, Jun; Duan, Hao-Guo; Guo, Hua; Li, Chao
2014-12-01
To study the leptin resistance mechanism of Xiaoyan Decoction (XD) in lung cancer cachexia (LCC) rats. An LCC rat model was established. Totally 40 rats were randomly divided into the normal control group, the LCC model group, the XD group, and the positive control group, 10 in each group. After LCC model was set up, rats in the LCC model group were administered with normal saline, 2 mL each time. Rats in the XD group were administered with XD at the daily dose of 2 mL. Those in the positive control group were administered with Medroxyprogesterone Acetate suspension (20 mg/kg) by gastrogavage at the daily dose of 2 mL. All medication lasted for 14 days. The general condition and tumor growth were observed. Serum levels of leptin and leptin receptor in the hypothalamus were detected using enzyme-linked immunosorbent assay. Contents of neuropeptide Y (NPY) and anorexia for genomic POMC were detected using real-time PCR technique. Serum leptin levels were lower in the LCC model group than in the normal control group with statistical significance (P < 0.05). Compared with the LCC model groups, serum leptin levels significantly increased in the XD group (P < 0.01). Leptin receptor levels in the hypothalamus increased significantly in the LCC model group (P < 0.01). Increased receptor levels in the LCC model group indicated that either XD or Medroxyprogesterone Acetate could effectively reduce levels of leptin receptor with statistical significance (P < 0.01). There was also statistical difference between the XD group and the positive control group (P < 0.05). Contents of NPY was higher in the LCC model group than in the other groups with statistical difference (P < 0.05). There was no statistical difference in NPY between the normal control group and the rest 2 treatment groups (P > 0.05). There was statistical difference in POMC between the normal control group and the LCC model group (P < 0.05). POMC could be decreased in the XD group and the positive control group with statistical significance (P < 0.05), and it was more obviously decreased in the XD group (P < 0.05). Leptin resistance existed in LCC rats. XD could increase serum leptin levels and reduce leptin receptor levels in the hypothalamus. LCC could be improved by elevating NPY contents in the hypothalamus and reducing POMC contents, promoting the appetite, and increasing food intake from the periphery pathway and the central pathway.
Mirshamsi, Shirin; Laidlaw, Hilary A; Ning, Ke; Anderson, Erin; Burgess, Laura A; Gray, Alexander; Sutherland, Calum; Ashford, Michael LJ
2004-01-01
Background Leptin and insulin are long-term regulators of body weight. They act in hypothalamic centres to modulate the function of specific neuronal subtypes, by altering transcriptional control of releasable peptides and by modifying neuronal electrical activity. A key cellular signalling intermediate, implicated in control of food intake by these hormones, is the enzyme phosphoinositide 3-kinase. In this study we have explored further the linkage between this enzyme and other cellular mediators of leptin and insulin action on rat arcuate nucleus neurones and the mouse hypothalamic cell line, GT1-7. Results Leptin and insulin increased the levels of various phosphorylated signalling intermediates, associated with the JAK2-STAT3, MAPK and PI3K cascades in the arcuate nucleus. Inhibitors of PI3K were shown to reduce the hormone driven phosphorylation through the PI3K and MAPK pathways. Using isolated arcuate neurones, leptin and insulin were demonstrated to increase the activity of KATP channels in a PI3K dependent manner, and to increase levels of PtdIns(3,4,5)P3. KATP activation by these hormones in arcuate neurones was also sensitive to the presence of the actin filament stabilising toxin, jasplakinolide. Using confocal imaging of fluorescently labelled actin and direct analysis of G- and F-actin concentration in GT1-7 cells, leptin was demonstrated directly to induce a re-organization of cellular actin, by increasing levels of globular actin at the expense of filamentous actin in a PI3-kinase dependent manner. Leptin stimulated PI3-kinase activity in GT1-7 cells and an increase in PtdIns(3,4,5)P3 could be detected, which was prevented by PI3K inhibitors. Conclusions Leptin and insulin mediated phosphorylation of cellular signalling intermediates and of KATP channel activation in arcuate neurones is sensitive to PI3K inhibition, thus strengthening further the likely importance of this enzyme in leptin and insulin mediated energy homeostasis control. The sensitivity of leptin and insulin stimulation of KATP channel opening in arcuate neurones to jasplakinolide indicates that cytoskeletal remodelling may be an important contributor to the cellular signalling mechanisms of these hormones in hypothalamic neurones. This hypothesis is reinforced by the finding that leptin induces actin filament depolymerization, in a PI3K dependent manner in a mouse hypothalamic cell line. PMID:15581426
Cha, Jin Joo; Hyun, Young Youl; Jee, Yi Hwa; Lee, Mi Jin; Han, Kum Hyun; Kang, Young Sun; Han, Sang Youb; Cha, Dae Ryong
2013-08-01
The intercellular adhesion molecule-1 (ICAM-1) and leptin are important inflammatory biomarkers. We investigated whether plasma-soluble ICAM-1 levels were related to the diabetic nephropathy and systemic inflammation. One hundred forty-seven type 2 diabetic patients and 46 healthy control subjects were studied. Plasma sICAM-1 concentrations were significantly higher in the diabetic groups than controls and increased significantly as diabetic nephropathy advanced. Plasma sICAM-1 levels were positively correlated with body mass index, fasting and postprandial blood glucose, urinary albumin excretion, and negatively correlated with creatinine clearance. Multiple regression analysis showed that plasma leptin levels were associated with a significant increase in plasma sICAM-1 levels. In cultured HUVECs, leptin increased ICAM-1 production in a dose-dependent manner, and this stimulating effect of leptin on ICAM-1 expression was reversed by MEK inhibitor, PD98059. Overall, these findings suggest that activation of leptin synthesis in a diabetic environment promotes ICAM-1 activation via mitogen-activated protein kinase pathway in type 2 diabetic patients.
Replication of obesity and diabetes-related SNP associations in individuals from Yucatán, México.
Hernandez-Escalante, Victor M; Nava-Gonzalez, Edna J; Voruganti, V Saroja; Kent, Jack W; Haack, Karin; Laviada-Molina, Hugo A; Molina-Segui, Fernanda; Gallegos-Cabriales, Esther C; Lopez-Alvarenga, Juan Carlos; Cole, Shelley A; Mezzles, Marguerite J; Comuzzie, Anthony G; Bastarrachea, Raul A
2014-01-01
The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is ~19%. T2D is affected by both environmental and genetic factors. Although specific genes have been implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects. Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from 10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated individuals (n = 259) living in southeastern Mexico were enrolled in the study based at the University of Yucatan School of Medicine in Merida. Phenotypes measured included anthropometric measurements, circulating levels of adipose tissue endocrine factors (leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure. Association analyses were conducted by measured genotype analysis implemented in SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2 to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11 with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant association (p = 0.001) was observed between plasma leptin and rs5219 of KCNJ11.
Replication of obesity and diabetes-related SNP associations in individuals from Yucatán, México
Hernandez-Escalante, Victor M.; Nava-Gonzalez, Edna J.; Voruganti, V. Saroja; Kent, Jack W.; Haack, Karin; Laviada-Molina, Hugo A.; Molina-Segui, Fernanda; Gallegos-Cabriales, Esther C.; Lopez-Alvarenga, Juan Carlos; Cole, Shelley A.; Mezzles, Marguerite J.; Comuzzie, Anthony G.; Bastarrachea, Raul A.
2014-01-01
The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is ~19%. T2D is affected by both environmental and genetic factors. Although specific genes have been implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects. Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from 10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated individuals (n = 259) living in southeastern Mexico were enrolled in the study based at the University of Yucatan School of Medicine in Merida. Phenotypes measured included anthropometric measurements, circulating levels of adipose tissue endocrine factors (leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure. Association analyses were conducted by measured genotype analysis implemented in SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2 to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11 with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant association (p = 0.001) was observed between plasma leptin and rs5219 of KCNJ11. PMID:25477898
Goguet-Rubio, Perrine; Klug, Rebecca L; Sharma, Dana L; Srikanthan, Krithika; Puri, Nitin; Lakhani, Vishal H; Nichols, Alexandra; O'Hanlon, Kathleen M; Abraham, Nader G; Shapiro, Joseph I; Sodhi, Komal
2017-01-01
Objectives: Metabolic syndrome causes complications like cardiovascular disease and type 2 diabetes mellitus (T2DM). As metabolic syndrome develops, altered levels of cytokines and microRNAs (miRNA) are measurable in the circulation. We aimed to construct a panel detecting abnormal levels of cytokines and miRNAs in patients at risk for metabolic syndrome. Methods: Participants included 54 patients from a Family Medicine Clinic at Marshall University School of Medicine, in groups of: Control, Obese, and Metabolic Syndrome (MetS). Results: Serum levels of leptin, adiponectin, leptin: adiponectin ratio, IL-6, six miRNAs (320a, 197-3p, 23-3p, 221-3p, 27a-3p, and 130a-3p), were measured. Among the three groups, leptin, and leptin: adiponectin ratio, and IL-6 levels were highest in MetS, and levels in Obese were greater than Control (p>0.05). Adiponectin levels were lower in Obese compared to Control, but lowest in MetS (p<0.05). MiRNAs levels were lowest in MetS, and levels in Obese were lower than Control (p>0.05). Conclusion: Our results support the clinical application of biomarkers in diagnosing early stage MetS, which will enable attenuation of disease progression before onset of irreversible complications. Since West Virginians are high-risk for developing MetS, our biomarker panel could reduce the disease burden on our population.
Kiely, James M; Noh, Jae H; Svatek, Carol L; Pitt, Henry A; Swartz-Basile, Deborah A
2006-07-01
Residual bowel increases absorption after massive small bowel resection. Leptin affects intestinal adaptation, carbohydrate, peptide, and lipid handling. Sucrase, peptidase, and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) are involved in carbohydrate, protein, and lipid absorption. We hypothesized that leptin-deficient obese mice would have altered absorptive enzymes compared with controls before and after small bowel resection. Sucrase, peptidase (aminopeptidase N [ApN], dipeptidyl peptidase IV [DPPIV]), and MGAT activities were determined from lean control (C57BL/6J, n = 16) and leptin-deficient (Lep(ob), n = 16) mice small bowel before and after 50% resection. Ileal sucrase activity was greater in obese mice before and after resection. Jejunal ApN and DPPIV activities were lower for obese mice before resection; ileal ApN activity was unaltered after resection for both strains. Resection increased DPPIV activity in both strains. Jejunal MGAT in obese mice decreased postresection. In both strains, ileal MGAT activity decreased after resection, and obese mice had greater activity in remnant ileum. After small bowel resection, leptin-deficient mice have increased sucrase activity and diminished ileal ApN, DPPIV, and MGAT activity compared with controls. Therefore, we conclude that leptin deficiency alters intestinal enzyme activity in unresected animals and after small bowel resection. Altered handling of carbohydrate, protein, and lipid may contribute to obesity and diabetes in leptin-deficient mice.
Leptin rapidly activates PPARs in C2C12 muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola
2005-07-08
Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluatedmore » as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.« less
Lin, Ji; Yan, Guang-Tao; Wang, Lu-Huan
2008-02-01
To explore the effect of acute intra-peritoneal infection on leptin expression levels in peripheral blood and vital organs, and find out the role leptin plays in acute inflammation. A cecal ligation and perforation model of rats was established, setting groups of sham-operation, intralipid injection, injury, estradiol injection and insulin injection. A rat leptin radioimmunoassay was used to check serum leptin concentrations at 12 h after the injury, and RT-PCR was also used to detect leptin mRNA expressions in adipose tissue, lung and liver. Compared with serum leptin level of sham-operation group after injury, that of all the other four groups showed no significant difference, while the level of intralipid group was significantly higher than that of injury group and estradiol group. Compared with leptin mRNA expression level of sham-operation group after injury, that of the other four groups had different changes. Leptin mRNA expression of intralipid group was significantly increased in adipose tissue but decreased in lung and liver. Leptin expression levels may be affected by the changes of energy metabolism and neuroendocrine function after injury, which suggests a possible protective role for leptin in the recovery of body homeostasis.
Elinav, Eran; Ali, Mohammad; Bruck, Rafi; Brazowski, Eli; Phillips, Adam; Shapira, Yami; Katz, Meirav; Solomon, Gila; Halpern, Zamir; Gertler, Arieh
2009-01-01
Leptin signaling is involved in T-cell polarization and is required for profibrotic function of hepatic stellate cells (HSCs). Leptin-deficient ob/ob mice do not develop liver fibrosis despite the presence of severe long-standing steatohepatitis. Here, we blocked leptin signaling with our recently generated mouse leptin antagonist (MLA), and examined the effects on chronic liver fibrosis in vivo using the chronic thioacetamide (TAA) fibrosis model, and in vitro using freshly-isolated primary HSCs. In the chronic TAA fibrosis model, leptin administration was associated with significantly enhanced liver disease and a 100% 5-week to 8-week mortality rate, while administration or coadministration of MLA markedly improved survival, attenuated liver fibrosis, and reduced interferon gamma (IFN-gamma) levels. No significant changes in weight, serum cholesterol, or triglycerides were noted. In vitro administration of rat leptin antagonist (RLA), either alone or with leptin, to rat primary HSCs reduced leptin-stimulated effects such as increased expression of alpha-smooth muscle actin (alpha-SMA), and activation of alpha1 procollagen promoter. Inhibition of leptin-enhanced hepatic fibrosis may hold promise as a future antifibrotic therapeutic modality.
The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients.
Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki
2016-01-01
Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation.
The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients
Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki
2016-01-01
Objective: Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Methods: Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Results: Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Conclusion: Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation. PMID:28083046
Leptin confers protection against TNF-α-induced apoptosis in rat cardiomyocytes.
Yu, Lu; Zhao, Yanbo; Xu, Shengjie; Jin, Chongying; Wang, Min; Fu, Guosheng
2014-12-05
Leptin, an important adipose-derived hormone, is recognized as a crucial protein in energy homeostasis. Recent studies indicated that leptin is associated with cardiac pathophysiology, however, the role and mechanisms of leptin in cardiomyocytes apoptosis are poorly understood. Here we investigated whether leptin exerted protective effect on cardiomyocytes exposed to tumor necrosis factor-alpha (TNF-α) and the possible mechanisms. Neonatal rat cardiomyocytes were subjected to TNF-α in the presence or absence of leptin. By FITC/Annexin V flow cytometry and Western blot, we noticed that TNF-α increased Annexin V binding and cleaved caspase-3/PARP, which were attenuated by leptin pretreatment. Moreover, leptin protected cardiomyocytes against mitochondrial apoptosis by inhibiting cytochrome C elevation and Bcl-2 decreasing. TNF-α-induced P38 MAPK and NF-κB activation were abolished by leptin addition, and the P38 and NF-κB inhibitor, SB203580 and Bay117082, also mitigated the apoptotic effect of TNF-α, indicating that their activation might be responsible for the apoptosis in TNF-α-treated cardiomyocytes. Therefore, leptin conferred anti-apoptotic effect in cardiomyocytes exposed to TNF-α possibly by inhibiting TNF-α-activated P38 MAPK and NF-κB pathways.
Uptake of leptin and albumin via separate pathways in proximal tubule cells.
Briffa, Jessica F; Grinfeld, Esther; Poronnik, Philip; McAinch, Andrew J; Hryciw, Deanne H
2016-10-01
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5min exposure, however there was no co-localisation at 10, 20 and 30min exposure. In OK cells, acute exposure to leptin for 2h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garonna, Elena; Botham, Kathleen M.; Birdsey, Graeme M.; Randi, Anna M.; Gonzalez-Perez, Ruben R.; Wheeler-Jones, Caroline P. D.
2011-01-01
Background The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs. Methodology/Principal Findings Immunoblotting studies showed that leptin increased cyclo-oxygenase-2 (COX-2) expression (but not COX-1) in cultured human umbilical vein ECs (HUVEC) through pathways that depend upon activation of both p38 mitogen-activated protein kinase (p38MAPK) and Akt, and stimulated rapid phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) on Tyr1175. Phosphorylation of VEGFR2, p38MAPK and Akt, and COX-2 induction in cells challenged with leptin were blocked by a specific leptin peptide receptor antagonist. Pharmacological inhibitors of COX-2, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and p38MAPK abrogated leptin-induced EC proliferation (assessed by quantifying 5-bromo-2′-deoxyuridine incorporation, calcein fluorescence and propidium iodide staining), slowed the increased migration rate of leptin-stimulated cells (in vitro wound healing assay) and inhibited leptin-induced capillary-like tube formation by HUVEC on Matrigel. Inhibition of VEGFR2 tyrosine kinase activity reduced leptin-stimulated p38MAPK and Akt activation, COX-2 induction, and pro-angiogenic EC responses, and blockade of VEGFR2 or COX-2 activities abolished leptin-driven neo-angiogenesis in a chick chorioallantoic membrane vascularisation assay in vivo. Conclusions/Significance We conclude that a functional endothelial p38MAPK/Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is regulated upstream by ObRb-dependent activation of VEGFR2. These studies identify a new function for VEGFR2 as a mediator of leptin-stimulated COX-2 expression and angiogenesis and have implications for understanding leptin's regulation of the vasculature in both non-obese and obese individuals. PMID:21533119
Moraes-Vieira, Pedro M.M.; Larocca, Rafael A.; Bassi, Enio J.; Peron, Jean Pierre S.; Andrade-Oliveira, Vinícius; Wasinski, Frederick; Araujo, Ronaldo; Thornley, Thomas; Quintana, Francisco J.; Basso, Alexandre S.; Strom, Terry B.; Câmara, Niels O.S.
2016-01-01
Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs. PMID:24271843
Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.
Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L
2016-07-28
Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Leptin, An Adipokine With Central Importance in the Global Obesity Problem.
Mechanick, Jeffrey I; Zhao, Shan; Garvey, W Timothy
2017-12-13
Leptin has central importance in the global obesity and cardiovascular disease problem. Leptin is principally secreted by adipocytes and acts in the hypothalamus to suppress appetite and food intake, increase energy expenditure, and regulate body weight. Based on clinical translation of specific and networked actions, leptin affects the cardiovascular system and may be a marker and driver of cardiometabolic risk factors with interventions that are actionable by cardiologists. Leptin subnetwork analysis demonstrates a statistically significant role for ethnoculturally and socioeconomically appropriate lifestyle intervention in cardiovascular disease. Emergent mechanistic components and potential diagnostic or therapeutic targets include hexokinase 3, urocortins, clusterin, sialic acid-binding immunoglobulin-like lectin 6, C-reactive protein, platelet glycoprotein VI, albumin, pentraxin 3, ghrelin, obestatin prepropeptide, leptin receptor, neuropeptide Y, and corticotropin-releasing factor receptor 1. Emergent associated symptoms include weight change, eating disorders, vascular necrosis, chronic fatigue, and chest pain. Leptin-targeted therapies are reported for lipodystrophy and leptin deficiency, but they are investigational for leptin resistance, obesity, and other chronic diseases. Copyright © 2017 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
Autoadjusting-CPAP effect on serum Leptin concentrations in Obstructive Sleep Apnoea patients
Drummond, Marta; Winck, João C; Guimarães, João T; Santos, Ana C; Almeida, João; Marques, José A
2008-01-01
Background Leptin is an hormone that regulates body weight. Studies have shown increasing leptin concentrations according to body mass index (BMI) and intermittent hypoxia. Our aim is to evaluate the basal leptin levels in OSA patients and its possible relation to OSA severity, independently of confounders and investigate the Autoadjusting-CPAP effect on leptin values. Methods In ninety eight male patients with moderate to severe OSA leptin serum levels were evaluated before therapy, 9 days and 6 months after therapy. Results In this group mean age was 55.3 years, mean BMI was 33.2 Kg/m2 and mean Apnoea- Hypopnea Index (AHI) was 51.7/h. Mean basal serum leptin value was 12.1 ug/L. Univariate analysis showed a significant correlation between serum leptin values and BMI (R = 0.68; p < 0.001), waist-hip ratio (R = 0.283; p = 0.004) and AHI (R = 0.198; p = 0.048); in stepwise multiple regression analysis only BMI (p < 0.001) was a predictor of serum leptin values. One week after therapy, mean leptin serum level decreased to 11.0 ug/L and 6 months after it was 11.4 ug/L. (p = 0.56 and p = 0.387, respectively) Conclusion Baseline leptin serum levels positively correlate with BMI, fat distributioand OSA severity. BMI is the only predictor of basal leptin levels. Treatment with Autoadjusting-CPAP has a small effect on leptin levels. PMID:18828917
Sauter, E R; Garofalo, C; Hewett, J; Hewett, J E; Morelli, C; Surmacz, E
2004-05-01
While obesity is a known risk factor for postmenopausal breast cancer, the molecular mechanisms involved are unclear. Systemic levels of leptin, the product of the ob (obesity) gene, are increased in obese individuals (body mass index, BMI, over 25) and are higher in women than men. Leptin has been found to stimulate the growth of breast cancer cells in vitro. Our goal was to determine whether leptin was 1) present in nipple aspirate fluid (NAF), and 2) whether NAF leptin levels were associated with a) levels in serum, b) obesity, and c) breast cancer. We collected and evaluated NAF specimens from 83 subjects and serum specimens from 49 subjects. NAF leptin was detectable in 16/41 (39 %) of premenopausal and 21/42 (50 %) postmenopausal subjects. NAF leptin was significantly lower (p = 0.042) in premenopausal than postmenopausal women with a BMI < 25, but not in those with a higher BMI. NAF leptin was significantly associated with BMI in premenopausal (p = 0.011) but not in postmenopausal women. Serum leptin was associated with BMI in both premenopausal and postmenopausal women (p = 0.0001 for both). NAF and serum leptin were associated in premenopausal (p = 0.02) but not postmenopausal women. Neither NAF nor serum leptin was associated with premenopausal or postmenopausal breast cancer. Our findings include that 1) leptin is present in the breast and detectable in a subset of NAF samples, 2) NAF leptin in premenopausal but not postmenopausal women parallels serum leptin levels, and 3) neither NAF nor serum levels of leptin were associated with premenopausal or postmenopausal breast cancer.
Ma, Yan; Zhu, Mei J.; Uthlaut, Adam B.; Nijland, Mark J.; Nathanielsz, Peter W.; Hess, Bret W.; Ford, Stephen P.
2011-01-01
Multiparous ewes received 100% (control, C, n=13) or 50% (nutrient restricted, NR, n=14) of NRC dietary requirements from d28-d78 of gestation. On d78, 5 C and 6 NR ewes were necropsied. The remaining 8 C and 8 NR ewes were fed to 100% of NRC from d78-d135 and necropsied. Maternal blood was collected at both necropsies and at weekly intervals for assay of glucose, insulin and leptin. Fetal blood was collected at d78 and d135 necropsies for assay of glucose and lipids. Cotyledonary (COT) tissue was evaluated for protein and mRNA expression [fatty acid transporter (FATP)1, FATP4, CD36, glucose transporter (GLUT)1 and GLUT3], mRNA expression only [placenta fatty acid binding protein (FABPpm) and lipoprotein lipase (LPL)], or expression of phosphorylated and total protein forms [AMP kinase (AMPK)α, acetyl-CoA carboxylase (ACC), extracellular signal-regulated kinase (Erk)1/2, mammalian target of rapamycin (mTOR) and protein kinase B (Akt)]. On d78, but not d135, placental and fetal weights were reduced (P < 0.05) in NR vs. C ewes. Maternal circulating glucose, insulin and leptin levels were decreased in NR vs. C ewes on d78 (P < 0.05) but similar at d135. Fetal blood glucose and triglyceride levels were lower in NR vs. C ewes (P < 0.05) on d78, but similar on d135. On d78, GLUT1, FATP4, CD36 mRNA and protein expression levels, FABPpm mRNA level, and leptin protein level were all increased (P < 0.05) in COT of NR vs. C ewes. AMPK, ACC, and Erk1/2 activities were also increased (P < 0.05) in NR vs. C COT on d78. In contrast, only FATP4 was increased (P < 0.05) at both the mRNA and protein levels in COT of NR realimented vs. C ewes on d135. These data demonstrate placental adaptation to maternal NR through increasing nutrient transporter production and growth signaling activity. PMID:21292322
Tsuda, Kazushi; Kimura, Keizo; Nishio, Ichiro
2002-09-27
Abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. Recently, there has been an indication that leptin, the product of the human obesity gene, actively participates not only in the metabolic regulations but also in the control of cardiovascular functions. In the present study, to assess the role of leptin in the regulation of membrane properties, the effects of leptin on membrane fluidity of erythrocytes in humans are examined. The membrane fluidity of erythrocytes in healthy volunteers by means of an electron paramagnetic resonance (EPR) and spin-labeling method is determined. In an in vitro study, leptin decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in healthy volunteers. The finding indicated that leptin increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of leptin on the membrane fluidity was significantly potentiated by the nitric oxide (NO) donors, L-arginine and S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by leptin was significantly attenuated in the presence of the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that leptin increased the membrane fluidity and improved the rigidity of cell membranes to some extent via an NO- and cGMP-dependent mechanism. Furthermore, the data also suggest that leptin might have a crucial role in the regulation of rheological behavior of erythrocytes and microcirculation in humans.
Wang, Lin; Cao, Hong; Pang, Xueli; Li, Kuangfa; Dang, Weiqi; Tang, Hao; Chen, Tingmei
2013-12-01
To investigate the effect and the relevant molecular mechanisms of leptin on the migration and invasion of human breast cancer MCF-7 cells. The expression of OB-R in MCF-7 cells was measured by RT-PCR and Western blotting. The effects of leptin (100 ng/mL) on the the phosphorylation of a few key cell signaling proteins, p-ERK1/2, p-STAT3, p-AKT in MCF-7 cells were examined by Western blotting. Cell scratch assay and Transwell(TM); assay were utilized to measure the effects of leptin on the migration and invasion capability of MCF-7 cells, respectively. The effects of leptin on the mRNA and protein expression of matrix metalloproteinas 9 (MMP-9) and transforming growth factor β (TGF-β) were measured by RT-PCR and Western blotting. Both OB-Rb and OB-Rt were expressed in MCF-7 cells. This indicated that leptin may have significant activities in MCF7 cells. Indeed, leptin increased the phosphorylation of p-ERK1/2, p-STAT3, and p-AKT in MCF-7 cells (P < 0.05). Further, leptin promoted migration and invasion of MCF-7 cells, which were attenuated by the JAK/STAT inhibitor AG490 (50 μmol/L), and the PI3K/AKT inhibitor LY294002 (10 μmol/L) (P < 0.05). Similarly, leptin also increased the mRNA and protein expression of MMP-9 and TGF-β, and these effects were blocked by AG490 and LY294002 as well (P < 0.05). Leptin promoted the migration and invasion capabilities of MCF-7 cells. These activities may be achieved by the upregulation of MMP-9 and TGF-β through JAK/STAT and PI3K/AKT signaling pathways.
Ptak, Anna; Kolaczkowska, Elzbieta; Gregoraszczuk, Ewa L
2013-04-01
The OVCAR-3 cell line expressing the long (ObRb) and short (ObRt) isoforms of leptin receptor mRNA was used to analyze the effect of leptin on the expression of selected genes and proteins involved in the cell cycle and apoptosis. OVCAR-3 cells were exposed to 2, 20, 40, and 100 ng/ml of leptin. Cell proliferation was determined using the alamarBlue cell viability test and flow cytometry. Apoptosis was measured using a cellular DNA fragmentation ELISA kit. The expression of selected cell cycle and apoptosis genes was evaluated by real-time PCR and confirmed by western blot. The stimulatory action of leptin on cell proliferation was observed as an increase in cells in the S and G2/M phases. Up-regulation of genes responsible for inducing cell proliferation and suppression of genes responsible for inhibition of proliferation were noted. Western blots revealed increased expression of cyclins D and A and inhibition of p21WAF1/CIP1 protein expression by leptin. Inhibition of DNA fragmentation was observed under all leptin doses. Suppression of genes involved in the extrinsic and intrinsic apoptotic pathway was observed. Western blots illustrated decreased Bad, TNFR1, and caspase 6 protein expression in response to leptin treatment. Leptin promotes ovarian cancer cell line growth by up-regulating genes and proteins responsible for inducing cell proliferation as well as down-regulating pro-apoptotic genes and proteins in apoptotic pathways. Results of this study warrant examining the relationship between the risk of ovarian cancer and elevated leptin levels in obese women.