Utilization of western coal fly ash in construction of highways in the Midwest
DOT National Transportation Integrated Search
2000-03-01
Coal burning utilities in the Midwest are increasingly using sub-bituminous coal from Wyoming. These utilities typically produce fly ash, which, because of its high calcium oxide content, may be classified as Class C fly ash. These ashes are characte...
Occupational safety and health implications of increased coal utilization.
Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L
1979-01-01
An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621
Energy Information Administration quarterly coal report, October--December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-21
The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 wasmore » 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.« less
1980-06-01
The National Energy Plan announced by President Carter on April 29, 1977 proposed a significant increase in the utilization of the vast domestic deposits of coal to replace the dwindling supplies of oil and natural gas, and increasingly expensive oil from foreign sources, to meet national energy needs. At the same time, in recognition of possible adverse health and ecological consequences of increased coal production and use, the President announced that a special committee would be formed to study this aspect of the National Energy Plan. The Committee held a series of public meetings during November and December 1977 to review a number of special papers on particular problems associated with increased coal utilization. These papers, which were prepared by scientists of the US Environmental Protection Agency; the Department of Energy; the HEW National Institute for Occupational Safety and Health, and the National Institute of Environmental Health Sciences; New York University; and Vanderbilt University; provided essential background information for the deliberations of the Committee and were published in EHP Vol. 33, pp. 127-314, 1979. One paper by A. P. Altschuler et al. is published in this volume of EHP. The Committee's basic finding was that it is safe to proceed with plans to increase the utilization of coal if the following environmental and safety policies are adhered to:* Compliance with Federal and State air, water, and solid waste regulations* Universal adoption and successful operation of best available control technology on new facilities* Compliance with reclamation standards* Compliance with mine health and safety standards* Judicious siting of coal-fired facilitiesThe Committee concluded that, even with the best mitigation policies, there will be some adverse health and environmental effects from the dramatic increase in coal use. However, these will not impact all regions and individuals uniformly. The Committee identified six major areas of uncertainty and concern requiring further investigation if the nation is to minimize undesirable consequences of increased coal utilization now, and in the future. Two critical health issues of concern are air pollution health effects and coal mine worker health and safety. Two critical environmental issues are global effects of carbon dioxide in the atmosphere and acid fallout. Two additional important issues of concern are trace elements in the environment and reclamation of arid land.Finally, because of the inadequate data and methodology used in the study of these matters, the Committee strongly recommended the establishment of an improved national environmental data collection, modeling and monitoring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
Strategies for rational utilization of bituminous coal deposits in the German Federal Republic
NASA Astrophysics Data System (ADS)
Erasmus, F. C.; Lenhartz, R.
1980-09-01
The status and economic conditions for coal mining in the GFR are examined, and the production of the individual coal regions is reviewed. Exploratory work, conducted in the light of inevitable production increases in the future, is noted. Some changes in the present coal production and utilization strategies which may be needed to meet future requirements and at the same time optimize the mining procedures are discussed.
Report on health and environmental effects of increased coal utilization*
1980-01-01
The National Energy Plan announced by President Carter on April 29, 1977 proposed a significant increase in the utilization of the vast domestic deposits of coal to replace the dwindling supplies of oil and natural gas, and increasingly expensive oil from foreign sources, to meet national energy needs. At the same time, in recognition of possible adverse health and ecological consequences of increased coal production and use, the President announced that a special committee would be formed to study this aspect of the National Energy Plan. The Committee held a series of public meetings during November and December 1977 to review a number of special papers on particular problems associated with increased coal utilization. These papers, which were prepared by scientists of the US Environmental Protection Agency; the Department of Energy; the HEW National Institute for Occupational Safety and Health, and the National Institute of Environmental Health Sciences; New York University; and Vanderbilt University; provided essential background information for the deliberations of the Committee and were published in EHP Vol. 33, pp. 127–314, 1979. One paper by A. P. Altschuler et al. is published in this volume of EHP. The Committee's basic finding was that it is safe to proceed with plans to increase the utilization of coal if the following environmental and safety policies are adhered to: • Compliance with Federal and State air, water, and solid waste regulations • Universal adoption and successful operation of best available control technology on new facilities • Compliance with reclamation standards • Compliance with mine health and safety standards • Judicious siting of coal-fired facilities The Committee concluded that, even with the best mitigation policies, there will be some adverse health and environmental effects from the dramatic increase in coal use. However, these will not impact all regions and individuals uniformly. The Committee identified six major areas of uncertainty and concern requiring further investigation if the nation is to minimize undesirable consequences of increased coal utilization now, and in the future. Two critical health issues of concern are air pollution health effects and coal mine worker health and safety. Two critical environmental issues are global effects of carbon dioxide in the atmosphere and acid fallout. Two additional important issues of concern are trace elements in the environment and reclamation of arid land. Finally, because of the inadequate data and methodology used in the study of these matters, the Committee strongly recommended the establishment of an improved national environmental data collection, modeling and monitoring system. PMID:6775943
NASA Astrophysics Data System (ADS)
Kern, J.
2015-12-01
Electric power utilities are increasingly cognizant of the risks water scarcity and rising temperatures pose for generators that use water as a "fuel" (i.e., hydroelectric dams) and generators that use water for cooling (i.e., coal, natural gas and nuclear). At the same time, utilities are under increasing market and policy pressure to retire coal-fired generation, the primary source of carbon emissions in the electric power sector. Due to falling costs of renewables and low natural gas prices, retiring coal fired generation is mostly being replaced with combined cycle natural gas, wind and solar. An immediate benefit of this shift has been a reduction in water withdrawals per megawatt-hour and reduced thermal impacts in surface water systems. In the process of retiring older coal-fired power plants, many of which use water intensive open-loop cooling systems, utilities are making their systems less vulnerable to water scarcity and higher water temperatures. However, it is not clear whether financial risks from water scarcity will decrease as result of this change. In particular, the choice to replace coal with natural gas combined cycle plants leaves utilities financially exposed to natural gas prices, especially during droughts when natural gas generation is used to replace lost hydropower production. Utility-scale solar, while more expensive than natural gas combined cycle generation, gives utilities an opportunity to simultaneously reduce their exposure to water scarcity and fuel price risk. In this study, we assess how switching from coal to natural gas and solar changes a utility's financial exposure to drought. We model impacts on retail prices and a utility's rate of return under current conditions and non-stationarity in natural gas prices and temperature and streamflows to determine whether increased exposure to natural gas prices offsets corresponding gains in water use efficiency. We also evaluate whether utility scale solar is an effective hedge against the combined effects of drought and natural gas price volatility—one that increases costs on average but reduces exposure to large drought-related losses.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
Activities of the Institute of Chemical Processing of Coal at Zabrze
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreszer, K.
1995-12-31
The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less
Coal burning issues. [Book - monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, A.E.S.
1980-01-01
The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less
Conceptual design of thermal energy storage systems for near term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.
1979-01-01
Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.
Butterman, W.C.; McCartan, L.; Morse, D.E.; Sibley, S.F.
1999-01-01
The US coal industry had a good year in 1998, setting another production record of 1.015 Gt (1.12 billion st), an increase of 2.6% from 1997. The increase was led by coal use for electricity generation, responding primarily to a substantial decline in hydroelectric generation. Year-end coal stocks at electric utilities swelled in 1998 for the first time in four years due to unseasonably mild fall and winter weather.
Hydrogen production with coal using a pulverization device
Paulson, Leland E.
1989-01-01
A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.
Health Implications of Increased Coal Use in the Western States
Guidotti, Tee L.
1979-01-01
The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803
Health implications of increased coal use in the Western States.
Guidotti, T L
1979-07-01
The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.
Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae
2009-07-15
This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.
Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method ofmore » liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.« less
Survey of electric utility demand for coal. [1972-1992; by utility and state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asbury, J.G.; Caruso, J.V.; Kouvalis, A.
1979-08-01
This report presents the results of a survey of electric utility demand for coal in the United States. The sources of survey information are: (1) Federal Energy Regulatory Commission Form 423 data on utility coal purchases during the period July 1972 through December 1978 and (2) direct telephone survey data on utility coal-purchase intentions for power plants to be constructed by 1992. Price and quantity data for coal used in existing plants are presented to illustrate price and market-share trends in individual coal-consuming states during recent years. Coal source, quality, quantity, and transportation data are reported for existing and plannedmore » generating plants.« less
Fossil fuels in a sustainable energy future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel, T.F.
1995-12-01
The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke
Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effectsmore » of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.« less
REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less
Bio-coal briquettes using low-grade coal
NASA Astrophysics Data System (ADS)
Estiaty, L. M.; Fatimah, D.; Widodo
2018-02-01
The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.
Transformations of inorganic coal constituents in combustion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
Coal utilization in China: environmental impacts and human health.
Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun
2014-08-01
Coal is one of the major energy resources in China, accounting for approximately 70 % of primary energy consumption. Many environmental problems and human health risks arise during coal exploitation, utilization, and waste disposal, especially in the remote mountainous areas of western China (e.g., eastern Yunnan, western Guizhou and Hubei, and southern Shaanxi). In this paper, we report a thorough review of the environmental and human health impacts related to coal utilization in China. The abundance of the toxic trace elements such as F, As, Se, and Hg in Chinese coals is summarized. The environmental problems (i.e., water, soil, and air pollution) that are related to coal utilization are outlined. The provenance, distributions, typical symptoms, sources, and possible pathways of endemic fluorosis, arsenism, and selenosis due to improper coal usage (briquettes mixed with high-F clay, mineralized As-rich coal, and Se-rich stone coal) are discussed in detail. In 2010, 14.8, 1.9 million, and 16,000 Chinese people suffered from dental fluorosis, skeletal fluorosis, and arsenism, respectively. Finally, several suggestions are proposed for the prevention and treatment for endemic problems caused by coal utilization.
Bio-mass utilization in high pressure cogeneration boiler
NASA Astrophysics Data System (ADS)
Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.
2017-07-01
Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.
Size distribution of rare earth elements in coal ash
Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.
2015-01-01
Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported.
Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Singh, Rajendra
2017-07-01
The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.
Possible environmental effects of increased coal use in California
NASA Technical Reports Server (NTRS)
Carey, D. L.
1978-01-01
If coal is to be utilized in California it must be made compatible with the state's drive toward restoring environmental quality. The impacts resulting from coal's mining and transportation, or from water consumption, water quality degradation and electric transmission line routing can probably be adequately mitigated through strong and early planning efforts, the use of improved control and process technologies, and sincere utility commitment. The socioeconomic impacts may prove somewhat more difficult to satisfactorily mitigate. Of greatest concern is adequate control of generated air pollutants and disposal of solid and liquid wastes since acceptable technologies or handling techniques have yet to be conclusively demonstrated.
Integrated coal cleaning, liquefaction, and gasification process
Chervenak, Michael C.
1980-01-01
Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.
Reducing power production costs by utilizing petroleum coke. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbreath, K.C.
1998-07-01
A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it maymore » adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.« less
Study on the Inference Factors of Huangling Coking Coal Pyrolysis
NASA Astrophysics Data System (ADS)
Du, Meili; Yang, Zongyi; Fan, Jinwen
2018-01-01
In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.
Coal and peat in the sub-Saharan region of Africa: alternative energy options?
Weaver, J.N.; Landis, E.R.
1990-01-01
Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author
Surfactant-assisted coal liquefaction
NASA Technical Reports Server (NTRS)
Hsu, G. C.
1977-01-01
Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helble, J.J.; Srinivasachar, S.; Wilemski, G.
1992-11-01
The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon themore » size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.« less
The environmental status of coal ash produced in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, L.A.
1996-12-31
From the 6.1 million tons of coal ash produced by Israeli power stations during the 1982--95 period, 65% were utilized for cement production, 18% served to construct embankments around the Hadera coastal power station, and the remaining 17% were disposed to the sea, according to permits issued by the governmental authorities. The coal imported to Israel is typically low-sulfur, beneficiated bituminous coal, and ash produced from it is alkaline and characterized by low concentrations of trace elements. According to the results of leaching tests, the potential release of trace elements from the ash is low, thus there is only amore » minor risk of contaminating groundwater under disposal or utilization sites. However, while the annual ash production increases and is planned to reach one million tons in the year 2000, the promotion of ash employment for new applications, for example as a road base material or for shore extension projects, is still prevented by the absence of regulations fixing the environmental status of coal ash.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.
2000-07-01
The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...
Hospitalization patterns associated with Appalachian coal mining.
Hendryx, Michael; Ahern, Melissa M; Nurkiewicz, Timothy R
2007-12-01
The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.
Zhai, Haibo; Ou, Yang; Rubin, Edward S
2015-07-07
This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.
Analysis of ecological environment impact of coal exploitation and utilization
NASA Astrophysics Data System (ADS)
Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi
2018-02-01
Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.
A new approach to enhance the selectivity of liberation and the efficiency of coal grinding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.H.; Guo, Q.; Parekh, B.K.
1993-12-31
An innovative process has been developed at the University of Kentucky to enhance the liberation of mineral matter from coal and the efficiency of grinding energy utilization. Through treating coal with a swelling agent prior to grinding, the grindability of coals can be considerably improved. The Hardgrove Grindability tests show that the HGI of a KY. No. 9 coal increases from 41 for the untreated coal to 60-90 after swelling pretreatment for a short time. Batch stirred ball mill grinding results demonstrate that this new technique has a great potential in reducing the energy consumption of fine coal grinding. Dependingmore » on the pretreatment conditions, the specific energy consumption of producing less than 10 {mu}m product is reduced to 41-60% of that of the untreated coal feed. The production rate of -10 {mu}m particles increases considerably for the pretreated coal. The Energy-Dispersive-X-ray Analytical Scanning Electron Microscope (EDXA-SEM) studies clearly demonstrate that intensive cracking and fracturing were developed during the swelling pretreatment. Cracks and fractures were induced in the coal matrix, preferentially along the boundaries between the pyrite particles and coal matrix. These may be responsible for enhancement in both the efficiency of grinding energy consumption and the selectivity of liberation.« less
Utilization of coal-water fuel in heat power industry and by public utilities of Ukraine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papayani, F.A.; Switly, Y.G.
1995-12-31
One of the major problems of the fuel and energy balance of Ukraine is acute shortage of its own resources of organic fuel. At present the steam coal output in Ukraine approaches 100 mln t, oil production makes up about 5 min t and that of gas reaches 22 bln. m{sup 3}, which in terms of equivalent fuel (e.f ) totals 94 min t, the annual demand being approximately 300 mln t e.f. To make up for fuel deficiency Ukraine has to annually import 120 bln. m{sup 3} of gas, 50 mln t of oil and about 10 mln tmore » of coal, their approximate cost being U.S.$ 15.6 bln. At the same time coal reserves in developed fields only make up 10 bln. t, the total reserves of this fuel being 100 bln. t. Thus the whole burden of meeting the requirements of Ukraine in power resources when nuclear power plants capacities are being reduced and expected to be reducing in the nearest future falls on coal. Under wasting conditions a problem of today is to develop and introduce new technologies of coal mining and utilization with due regard for technical, economic and ecological aspects which are particularly important for densely populated industrial regions. Ecological problems associated with a dramatic increase in the volume of coal combustion can be solved by developing new methods and means for flue gas cleaning in the first place and by wide-scale introduction of coal-water fuel (CWF) in the second place. Investigations have shown that the second way is more preferable since it is based on the integrated technology for original coal demineralization and CWT production, advantages of each process being used in full measure. Thus demineralization of coal is among major requirements to development of a CWT production technology.« less
Calcium impregnation of coal enriched in CO.sub.2 using high-pressure techniques
NASA Technical Reports Server (NTRS)
Gavalas, George R. (Inventor); Sharma, Pramod K. (Inventor); Voecks, Gerald E. (Inventor)
1990-01-01
Methods are described for impregnating coal with calcium carbonate by utilizing an aqueous phase ionic reaction between calcium acetate, calcium hydroxide, and water with CO.sub.2 contained within the coal. The coal is enriched in CO.sub.2 by contacting it with CO.sub.2 at high pressure, in either a continuous or pulsed mode. The inclusion of CO.sub.2 in the coal during the process does not involve evacuating the coal and subsequently absorbing CO.sub.2 onto the coal as in prior methods. Rather, the coal is treated with carbon dioxide at high pressure in a practical and viable approach. The impregnation of coal by calcium compounds not only reduces sulfur emissions by effectively tying up the sulfur as calcium sulfide or sulfate, but also increases the gasification or combustion rate. The invention also encompasses the use of other Group IIA elements, as well as the coal products resulting from the methods of treatment described.
Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A
2014-06-01
To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI. Copyright © 2014 Elsevier Ltd. All rights reserved.
Life Cycle Assessment of Coal-fired Power Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spath, P. L.; Mann, M. K.; Kerr, D. R.
1999-09-01
Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less
A fouling monitor alarm to prevent forced outages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, R.E.; Hickinbotham, A.; Fang, T.C.
2000-07-01
Many utilities rely on coal blending to meet emissions and boiler performance goals, but the increased variability in coal quality can adversely impact ash deposition and soot blowing requirements. Other utilities are experimenting with lower quality coals and burner zone blending of coals fired from different bunkers as part of a deregulation strategy to reduce fuel costs. However, these strategies can lead to slagging/fouling episodes, a possible outage, or a decrease in unit availability if boiler operations are not carefully monitored. This paper summarizes the development of software to monitor boiler fouling and to provide an advanced warning to themore » control operators when a fouling episode is imminent. With adequate warming, preemptive action can be taken (e.g., soot blowing, a change in coal blend, etc.) to potentially avoid a costly outage. The software utilizes a unique combination of combustion diagnostic techniques and convective section heat adsorption analyses to identify boiler operating conditions where ash deposition rates may be high and conductive to triggering a fouling episode. The paper outlines the history of the fouling problem and the implementation of the software on Wabamun Unit 4, a tangentially-fired unit with relatively narrow reheat tube spacing. The unit had a tendency to foul when burning a high alkaline (but low ash) coal seam. The paper discusses the software development, implementation, and data acquisitions activities. Preliminary test results are provided for Wabamun 4 and for Sundance Units 1 and 2 where the software was recently installed.« less
Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model
Haney, D.C.; Chesnut, D.R.
1997-01-01
The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.
Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.
2000-01-01
Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.
Enrichment of reactive macerals in coal: its characterization and utilization in coke making
NASA Astrophysics Data System (ADS)
Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.
2018-01-01
Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.
Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.
Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan
2015-01-01
Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.
MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL
The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...
Plane flame furnace combustion tests on JPL desulfurized coal
NASA Technical Reports Server (NTRS)
Reuther, J. J.; Kim, H. T.; Lima, J. G. H.
1982-01-01
The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.
Dai, Wenting; Dong, Jihong; Yan, Wanglin; Xu, Jiren
2017-01-01
The paper divided the whole coal life cycle, explained each phase characteristics, and took coal mine in China as a study case to assess the ecological risk in coal utilization phase. The main conclusions are as follows: (1) the whole coal life cycle is divided into coal mining, processing, transportation, utilization, and waste disposal. (2) The key points of production organization and characteristics in the five phases have great differences. The coal mining phase is characterized by the damage of the key ecological factors (water, soil, atmosphere, vegetation, etc.) damaged while the coal processing phase by discharging waste. The characteristics in coal transportation phase mainly performance as escaping and migration of atmospheric pollutants. In coal utilization phase, the main characteristics are aggravation of greenhouse effect. The main characteristics of waste disposal phase are accumulation of negative ecological effects on the land. (3) The ecological risk of soil heavy metals is serious in coal utilization phase. The potential ecological hazard coefficients of Pb and As in coal, residue and ash are all lower than 40, presenting low environmental impact on soil; the potential ecological risk coefficients of Cd are higher than 60, nearly half of their potential ecological risk coefficients are higher than 160, which presents high environmental pollution impact on soil; Hg's potential ecological risk coefficients are higher than 320, presenting the highest environmental pollution impact on soil; the comprehensive pollution indexes in coal, residue, and ash are relatively high, which means the pollution hazard potential to soil environment is high. (4) The ecological risk of the atmospheric solid suspended matter is relatively strong in coal utilization phase. The ecological risk of Cd and As in primary flue gas is both lower than net flue gas. The geoaccumulation indexes of Cd and Hg in primary flue gas and net flue gas are both higher than 5, presenting the very strong ecological risk; 50 % of the geoaccumulation index values of As are between 3 and 4, which has also presenting a strong ecological risk while Pb does not present the ecological risk characterization.
Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping
2010-05-01
The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).
Emissions of sulfur trioxide from coal-fired power plants.
Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R
2004-06-01
Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist.
Assessing the coal resources of the United States
Gluskoter, Harold J.; Flores, R.M.; Hatch, J.; Kirschbaum, M.A.; Ruppert, L.F.; Warwick, Peter D.
1996-01-01
In 1994, coal production in the United States reached the highest level in history (slightly more than 909 million metric tons or one billion short tons), continuing the upward trend of coal production and utilization that began 34 years ago. Previous assessments of the coal resources of the United States, which were completed as early as 1909, clearly indicated that the total coal resources of the Nation are large and that utilization at the current rate will not soon deplete them.
5. annual clean coal technology conference: powering the next millennium. Vol.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals whilemore » keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.« less
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Chatterjee, Snehamoy
2017-05-01
Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.
Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe
NASA Astrophysics Data System (ADS)
Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong
2018-05-01
Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.W.
The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less
NASA Astrophysics Data System (ADS)
Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui
2018-01-01
With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.
CPICOR{trademark}: Clean power from integrated coal-ore reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintrell, R.; Miller, R.N.; Harbison, E.J.
1997-12-31
The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less
NASA Astrophysics Data System (ADS)
Afiza Mohammed, Syakirah; Rehan Karim, Mohamed
2017-06-01
Worldwide annual production of coal bottom ash waste was increased in the last decade and is being dumped on landfill over the years. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and on-going need to develop new recycling methods for coal bottom ash. The utilization of coal bottom ash in highway engineering is one of the options to reduce the environmental problems related to the disposal of bottom ash. The present review describe the physical and chemical properties of coal bottom ash waste and its current application as highway embankment material, as acoustic absorbing material and as aggregate replacement in asphalt mixtures. The purpose of this review is to stimulate and promote the effective recycling of coal bottom ash in highway engineering industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noser, T.C.
1986-01-01
To raise necessary revenues, many energy rich states have turned to greater utilization of severance taxation. Increases in oil and gas prices and the decline of nuclear power led to an increase in the competitiveness of coal, and perhaps to the generation of economic rents within the coal industry which state legislatures would hope to reappropriate via severance taxation. The purpose of this research is to determine if economic rents have been generated within the coal industry, and to analyze the implications of increased severance taxation. A mine simulation model was used to estimate the price per ton of coalmore » a typical firm would have to charge in order to cover all operating costs and earn a normal rate or return. Such estimates were made for eleven major coal producing states and compared to actual price data for the years 1978 through 1981. For each year, actual selling prices exceeded the minimum acceptable selling price necessary for firms to earn a normal rate of return, i.e., economic rents were generated in each year, totalling nearly $2.5 billion in 1981. Regarding the implications of increased severance taxation, it was argued that will the exception of a pure profits tax, any tax imposed on a profit-maximizing firm would discourage production and investment.« less
Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan
2015-11-03
A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.
Synergistic Effect of Co-utilization of Coal and Biomass Char: An Overview
NASA Astrophysics Data System (ADS)
Paiman, M. E. S.; Hamzah, N. S.; Idris, S. S.; Rahman, N. A.; Ismail, K.
2018-05-01
Global concerns on impact of greenhouse gases emission, mostly released from coal-fired power plant, and the depletion of fossil fuel particularly coal, has led the production of electricity from alternatives resources such as co-utilization technologies. Previous studies proved that the co-utilization of coal and biomass/biomass chars has significantly reduced the emission of greenhouse gases either during the pyrolysis, combustion or gasification process in laboratories, pilots as well as in the industrial scales. Interestingly, most of the studies reported the presence of synergistic effect during the co-utilization processes particularly between coal and biomass char while some are not. Biomass chars were found to have porous and highly disorder carbon structure and belong to the class of most reactive carbon material, resulting to be more reactive than those hard coal and lignite. Up to date, microwave assisted pyrolysis is one of the best and latest techniques employed to produce better quality of biomass chars and it is also reduce the processing cost. Lot of works has been done regarding on the existence of synergistic effects during its co-utilization. However, the knowledge is limited to thermal and product characteristics so far. Even so, the specific reasons behind its existence are yet to understand well. Therefore, in this paper, the emphasis will be given on the synergistic effects on emission characteristics of co-utilization of coal and biomass chars so that it can be apply in energy-based industries to help in reduction of the greenhouse gases emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vories, K.C.
2003-07-01
Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less
Geochemical survey of the western coal regions; first annual progress report, July 1974
Connor, Jon J.; Tidball, Ronald R.; Erdman, James A.; Ebens, Richard J.; Keith, John R.; Anderson, Barbara M.
1974-01-01
National energy needs have precipitated an increased interest in the development of a large coal-based electric power industry in the western United States. This anticipated development has, in turn, spawned a great deal of interest in the environmental impact consequent upon the mining and utilization of these coal supplies. Numerous studies directed to assessing this impact are underway or are in the planning stages by agencies of government at all levels as well as by educational institutions and private firms. It is expected that such studies will continue to increase in number in the foreseeable future. Some idea of the diversity of this work is given by Boulding (1974), who surveyed a broad spectrum of people and organizations concerned about the environmental impact of coal development in the Northern Great Plains. This survey included over 50 governmental organizations and over 50 nongovernmental organizations.
Ellis, Margaret S.; Affolter, Ronald H.
2007-01-01
The Energy Resources Program of the U.S. Geological Survey promotes and supports coal research to improve the understanding of the coal endowment of the United States. This results in geologically based, non-biased energy information products for policy and decision makers, land and resource managers, other federal and state agencies, the domestic energy industry, foreign governments, nongovernmental groups, academia, and other scientists. A more integrated approach to our coal quality work involves what we call a 'cradle to grave' approach. These types of studies focus not on just one aspect of the coal but rather on how or where different quality parameters form and (or) occur and what happens to them through the mining, production, transport, utilization and waste disposal process. An extensive suite of coal quality analyses, mineralogical, petrology, and leaching investigations are determined on samples taken from the different phases of the coal utilization process. This report consists of a tutorial that was given on June 10, 2007 at the 32nd International Technical Conference on Coal Utilization & Fuel Systems, The Power of Coal, Clearwater Coal Conference in Clearwater, Florida, USA. This tutorial covers how these studies are conducted and the importance of providing improved, comprehensive, science-based data sets for policy and decision makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Musich, M.A.
1995-10-01
Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metricmore » tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.« less
Mercury in US coal: Observations using the COALQUAL and ICR data
Quick, J.C.; Brill, T.C.; Tabet, D.E.
2003-01-01
The COALQUAL data set lists the mercury content of samples collected from the in-ground US coal resource, whereas the ICR data set lists the mercury content of samples collected from coal shipments delivered to US electric utilities. After selection and adjustment of records, the COALQUAL data average 0.17 ??g Hg/g dry coal or 5.8 kg Hg/PJ, whereas the ICR data average 0.10 ??g Hg/g dry coal or 3.5 kg Hg/PJ. Because sample frequency does not correspond to the inground or produced tonnage, these values are not accurate estimates of the mercury content of either in-ground or delivered US coal. Commercial US coal contains less mercury than previously estimated, and its mercury content has declined during the 1990s. Selective mining and more extensive coal washing may accelerate the current trend towards lower mercury content in coal burned at US electric utilities.
Highlights of worldwide production and utilization of coal ash -- A survey for the period 1959--1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, O.E.; Stewart, B.R.
1997-09-01
In 1960, the Coal Committee for the United Nations Economic Committee for Europe requested a group of rapporteurs to undertaken work on the utilization of ash from coal fueling thermal power stations. This later became the Group of Experts on the Utilization of Ash. In 1959, out of a world production of 100 million tons of ash, only 2% was put to use, whereas in 1969, about 15% of a production of 200 million tons was used. In 1989, 562 million tons were produced, and 90.5 million tons were used. The main uses of coal ash have been in cementmore » and concrete manufacture; in road construction and as filler on construction sites; in cellular concrete; and in lightweight aggregate and brick. Worldwide, in 1989, 27.7 million tons were used in cement and concrete manufacture, 23.6 million tons in road construction and as filler on construction sites, 2.8 million tons in cellular concrete, and 6.8 million tons in lightweight aggregate and bricks. This paper presents a worldwide survey of the production and utilization of coal ash from 1959 to 1989. The data were collected from various working papers of the US Group of Experts on the utilization of Ash and from two papers by O.E. Manz on the worldwide production and utilization of coal ash.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchanka, Volha; Evans, Meredydd; Ruiz, Felicia
Coal production globally is projected to grow in the foreseeable future. Countries with heavy reliance on coal could reduce methane and other emissions through the capture and utilization of coal mine methane (CMM) in the short and medium term, while they pursue structural and long-term economic changes. Several countries have successfully implemented policies to promote CMM capture and utilization; however, some countries still struggle to implement projects. This paper outlines key factors to consider in adapting policies for CMM mitigation. The authors propose an approach for selecting adequate mechanisms for stimulating CMM mitigation that involves reviewing global best practices andmore » categorizing them functionally either as mechanisms needed to improve the underlying conditions or as CMM-specific policies. It is important to understand local policy frameworks and to consider whether it is more feasible to improve underlying policy conditions or to provide targeted incentives as an interim measure. Using Kazakhstan as a case study, the authors demonstrate how policymakers could assess the overall policy framework to find the most promising options to facilitate CMM projects. Kazakhstan’s emissions from underground coal mines have been increasing both in total and per tonne of coal production, while overall production has been declining. CMM mitigation presents an opportunity for the country to reduce its greenhouse gas emissions in the near and medium term, while the government pursues sustainable development goals. Analysis shows that policymakers in Kazakhstan can leverage existing policies to stimulate utilization by extending feed-in tariffs to cover CMM and by developing working methodologies for companies to obtain emission reduction credits from CMM projects.« less
NASA Astrophysics Data System (ADS)
Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew
2016-04-01
Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plemons, R.E.; Hopwood, W.H. Jr.; Hamilton, J.H.
For a number of years the Oak Ridge Y-12 Plant Laboratory has been analyzing coal predominately for the utilities department of the Y-12 Plant. All laboratory procedures, except a Leco sulfur method which used the Leco Instruction Manual as a reference, were written based on the ASTM coal analyses. Sulfur is analyzed at the present time by two methods, gravimetric and Leco. The laboratory has two major endeavors for monitoring the quality of its coal analyses. (1) A control program by the Plant Statistical Quality Control Department. Quality Control submits one sample for every nine samples submitted by the utilitiesmore » departments and the laboratory analyzes a control sample along with the utilities samples. (2) An exchange program with the DOE Coal Analysis Laboratory in Bruceton, Pennsylvania. The Y-12 Laboratory submits to the DOE Coal Laboratory, on even numbered months, a sample that Y-12 has analyzed. The DOE Coal Laboratory submits, on odd numbered months, one of their analyzed samples to the Y-12 Plant Laboratory to be analyzed. The results of these control and exchange programs are monitored not only by laboratory personnel, but also by Statistical Quality Control personnel who provide statistical evaluations. After analysis and reporting of results, all utilities samples are retained by the laboratory until the coal contracts have been settled. The utilities departments have responsibility for the initiation and preparation of the coal samples. The samples normally received by the laboratory have been ground to 4-mesh, reduced to 0.5-gallon quantities, and sealed in air-tight containers. Sample identification numbers and a Request for Analysis are generated by the utilities departments.« less
NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS
The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...
Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Debangsu; DVallance, David; Henthorn, Greg
This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhousemore » gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO 2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including conceptual design, process modeling and process validation were developed and validated for different cases. Equipment design and capital costs were investigated on capital coast estimation and economical model validation. Material and energy balances and techno-economic analysis on base case were conducted for evaluation of projects. Also, sensitives studies of direct and indirect approaches were both used to evaluate the CBTL plant economic performance. In this study, techno-economic analysis were conducted in Aspen Process Economic Analyzer (APEA) environment for indirect, direct, and hybrid CBTL plants with CCS based on high fidelity process models developed in Aspen Plus and Excel. The process thermal efficiency ranges from 45% to 67%. The break-even oil price ranges from $86.1 to $100.6 per barrel for small scale (10000 bbl/day) CBTL plants and from $65.3 to $80.5 per barrel for large scale (50000 bbl/day) CBTL plants. Increasing biomass/coal ratio from 8/92 to 20/80 would increase the break-even oil price of indirect CBTL plant by $3/bbl and decrease the break-even oil price of direct CBTL plant by about $1/bbl. The order of carbon capture penalty is direct > indirect > hybrid. The order of capital investment is hybrid (with or without shale gas utilization) > direct (without shale gas utilization) > indirect > direct (with shale gas utilization). The order of thermal efficiency is direct > hybrid > indirect. The order of break-even oil price is hybrid (without shale gas utilization) > direct (without shale gas utilization) > hybrid (with shale gas utilization) > indirect > direct (with shale gas utilization).« less
Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less
MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS
The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...
Modules for estimating solid waste from fossil-fuel technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.
1980-10-01
Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less
A Course in Fundamentals of Coal Utilization and Conversion Processes.
ERIC Educational Resources Information Center
Radovic, Ljubisa R.
1985-01-01
Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…
Coal Activities for Secondary Students.
ERIC Educational Resources Information Center
American Coal Foundation, Washington, DC.
This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and…
Kolo, Matthew Tikpangi; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Abdullah, Wan Hasiah Binti
2016-01-01
Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10-3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10-3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal.
Kolo, Matthew Tikpangi; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Abdullah, Wan Hasiah Binti
2016-01-01
Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10−3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10−3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal. PMID:27348624
Thermal energy storage for power generation applications
NASA Astrophysics Data System (ADS)
Drost, M. K.; Antoniak, Zen I.; Brown, D. R.
1990-03-01
Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.
Advanced power assessment for Czech lignite. Task 3.6, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondreal, E.A.; Mann, M.D.; Weber, G.W.
1995-12-01
The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is amore » challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.« less
Recycling of coal combustion wastes.
Oz, Derya; Koca, Sabina; Koca, Huseyin
2009-05-01
The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.
Study on feasible technical potential of coal to electricity in china
NASA Astrophysics Data System (ADS)
Jia, Dexiang; Tan, Xiandong
2017-01-01
The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
30 CFR 816.59 - Coal recovery.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...
Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P
2013-10-01
Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.
Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W
1979-01-01
This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614
Coal extrusion in the plastic state
NASA Technical Reports Server (NTRS)
England, C.; Ryason, P. R.
1977-01-01
Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.
The Reduction of NOx Using Pulsed Electron Beams
2015-12-30
flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning
Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2
NASA Technical Reports Server (NTRS)
Robson, F. L.
1981-01-01
Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai
2016-01-01
The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400
30 CFR 817.59 - Coal recovery.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...
30 CFR 817.59 - Coal recovery.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...
30 CFR 817.59 - Coal recovery.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...
30 CFR 817.59 - Coal recovery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...
A New Use for High-Sulfur Coal
NASA Technical Reports Server (NTRS)
Lawson, D. D.; England, C.
1982-01-01
New process recovers some of economic value of high-sulfur coal. Although high-sulfur content is undesirable in most coal-utilization schemes (such as simple burning), proposed process prefers high-sulfur coal to produce electrical power or hydrogen. Potential exists for widespread application in energy industry.
30 CFR 817.59 - Coal recovery.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...
Zinc sulfide liquefaction catalyst
Garg, Diwakar
1984-01-01
A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.
NASA Technical Reports Server (NTRS)
1986-01-01
Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.
Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.
1983-01-01
A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.
Van Hook, R I
1979-01-01
This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619
MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES
Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...
New method of feeding coal - Continuous extrusion of fully plastic coal
NASA Technical Reports Server (NTRS)
Ryason, P. R.; England, C.
1978-01-01
Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.
75 FR 64719 - National Coal Council; Notice of Open Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... DEPARTMENT OF ENERGY National Coal Council; Notice of Open Meeting AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the National Coal Council..., Department of Energy. Presentation by Mr. Ben Yamagata, Executive Director of the Coal Utilization Research...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovanni, D.V.; Carr, R.C.; Landham, E.C.
Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
COAL UTILITY EVIRONMENTAL COST (CUECOST) WORKBOOK USER'S MANUAL
The document is a user's manual for the Coal Utility Environmental Cost (CUECost) workbook (an interrelated set of spreadsheets) and documents its development and the validity of methods used to estimate installed capital ad annualize costs. The CUECost workbook produces rough-or...
This fact sheet describes the final rule signed on December 19, 2014 establishing a comprehensive set of requirements for the disposal of coal combustion residuals generated by electric utilities in landfills and surface impoundments.
NASA Astrophysics Data System (ADS)
Greene, M. I.; Ladelfa, C. J.; Bivacca, S. J.
1980-05-01
Flash hydropyrolysis (FHP) of coal is an emerging technology for the direct production of methane, ethane and BTX in a single-stage, high throughput reactor. The FHP technique involves the short residence time (1-2 seconds), rapid heatup of coal in a dilute-phase, transport reactor. When integrated into an overall, grass-roots conversion complex, the FHP technique can be utilized to generate a product consisting of SNG, ethylene/propylene, benzene and Fischer-Tropsch-based alcohols. This paper summarizes the process engineering and economics of conceptualized facility based on an FHP reactor operation with a lignitic coal. The plant is hypothetically sited near the extensive lignite fields located in the Texas region of the United States. Utilizing utility-financing methods for the costing of SNG, and selling the chemicals cogenerated at petrochemical market prices, the 20-year average SNG cost has been computed to vary between $3-4/MM Btu, depending upon the coal costs, interest rates, debt/equity ratio, coproduct chemicals prices, etc.
Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China
NASA Astrophysics Data System (ADS)
Wang, Shaobin; Luo, Kunli
2017-08-01
To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.
Ash particulate formation from pulverized coal under oxy-fuel combustion conditions.
Jia, Yunlu; Lighty, JoAnn S
2012-05-01
Aerosol particulates are generated by coal combustion. The amount and properties of aerosol particulates, specifically size distribution and composition, can be affected by combustion conditions. Understanding the formation of these particles is important for predicting emissions and understanding potential deposition. Oxy-fuel combustion conditions utilize an oxygen-enriched gas environment with CO(2). The high concentration of CO(2) is a result of recycle flue gas which is used to maintain temperature. A hypothesis is that high CO(2) concentration reduces the vaporization of refractory oxides from combustion. A high-temperature drop-tube furnace was used under different oxygen concentrations and CO(2) versus N(2) to study the effects of furnace temperature, coal type, and gas phase conditions on particulate formation. A scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) were utilized for particle size distributions ranging from 14.3 nm to 20 μm. In addition, particles were collected on a Berner low pressure impactor (BLPI) for elemental analysis using scanning electron microscopy and energy dispersive spectroscopy. Three particle size modes were seen: ultrafine (below 0.1 μm), fine (0.1 to 1.0 μm), and coarse (above 1 μm). Ultrafine mass concentrations were directly related to estimated particle temperature, increasing with increasing temperature. For high silicon and calcium coals, Utah Skyline and PRB, there was a secondary effect due to CO(2) and the hypothesized reaction. Illinois #6, a high sulfur coal, had the highest amount of ultrafine mass and most of the sulfur was concentrated in the ultrafine and fine modes. Fine and coarse mode mass concentrations did not show a temperature or CO(2) relationship. (The table of contents graphic and abstract graphic are adapted from ref 27.). © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feihu Li; Jianping Zhai; Xiaoru Fu
2006-08-15
The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni andmore » V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.« less
Hydromechanical Advanced Coal Excavator
NASA Technical Reports Server (NTRS)
Estus, Jay M.; Summers, David
1990-01-01
Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.
Ozden, Banu; Guler, Erkan; Vaasma, Taavi; Horvath, Maria; Kiisk, Madis; Kovacs, Tibor
2018-08-01
Coal, residues and waste produced by the combustion of the coal contain naturally occurring radionuclides such as 238 U, 226 Ra, 210 Pb, 232 Th and 40 K and trace elements such as Cd, Cr, Pb, Ni and Zn. In this work, coal and its combustion residues collected from Yatagan and Yenikoy coal fired thermal power plants (CPPs) in Turkey were studied to determine the concentrations of natural radionuclides and trace elements, and their enrichments factors to better understand the radionuclide concentration processes within the combustion system. In addition, the utilization of coal fly ash as a secondary raw material in building industry was also studied in terms of radiological aspects. Fly ash samples were taken at different stages along the emission control system of the thermal power plants. Activity concentrations of naturally occurring radionuclides were determined with Canberra Broad Energy Germanium (BEGe) detector BE3830-P and ORTEC Soloist PIPS type semiconductor detector. The particle size distribution and trace elements contents were determined in various ash fractions by the laser scattering particle size distribution analyzer and inductively coupled plasma (ICP-OES). From the obtained data, natural radionuclides tend to condense on fly ash with and the activity concentrations increase as the temperature drop in CPPs. Measured 210 Pb and 210 Po concentration varied between 186 ± 20-1153 ± 44 Bq kg -1 , and 56 ± 5-1174 ± 45 Bq kg -1 , respectively. The highest 210 Pb and 210 Po activity concentrations were determined in fly ash taken from the temporary storage point as 1153 ± 44 Bq kg -1 and 1174 ± 45 Bq kg -1 , respectively. There were significant differences in the activity concentrations of some natural radionuclide and trace elements (Pb and Zn) contents in ash fractions among the sampling point inside both of the plants (ANOVA, p < 0.001). Coal and ash sample analysis showed an increase activity concentration and enrichment factors towards the electrostatic precipitators for both of the power plants. The enrichment factors for Zn follow a similar trend as Pb, increasing in value towards the end of the emission control system. The calculated activity indexes were above 1.0 value for both of the power plants, assuming the utilization of fly ash at 100%. It can be concluded that the reuse of fly ash as a secondary raw material may not be hazardous depending on the percentage of utilization of ash. Copyright © 2017 Elsevier Ltd. All rights reserved.
NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION
The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...
The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...
Illinois SB 1987: the Clean Coal Portfolio Standard Law
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants thatmore » capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.« less
Methane-producing microbial community in a coal bed of the Illinois basin.
Strapoc, Dariusz; Picardal, Flynn W; Turich, Courtney; Schaperdoth, Irene; Macalady, Jennifer L; Lipp, Julius S; Lin, Yu-Shih; Ertefai, Tobias F; Schubotz, Florence; Hinrichs, Kai-Uwe; Mastalerz, Maria; Schimmelmann, Arndt
2008-04-01
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.
Wabash River coal gasification repowering project -- first year operation experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troxclair, E.J.; Stultz, J.
1997-12-31
The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less
Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.
2001-01-01
The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.
30 CFR 819.13 - Auger mining: Coal recovery.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...
75 FR 64974 - Notice of Data Availability on Coal Combustion Residual Surface Impoundments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
...-2009-0640; FRL-9216-3] RIN 2050-AE81 Notice of Data Availability on Coal Combustion Residual Surface... rulemaking (75 FR 51434, August 20, 2010) on the Disposal of Coal Combustion Residuals from Electric... Requests that EPA sent to electric utilities on their coal combustion residual surface impoundments as well...
30 CFR 819.13 - Auger mining: Coal recovery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...
Service Modules for Coal Extraction
NASA Technical Reports Server (NTRS)
Gangal, M. D.; Lewis, E. V.
1985-01-01
Service train follows group of mining machines, paying out utility lines as machines progress into coal face. Service train for four mining machines removes gases and coal and provides water and electricity. Flexible, coiling armored carriers protect cables and hoses. High coal production attained by arraying row of machines across face, working side by side.
30 CFR 819.13 - Auger mining: Coal recovery.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...
30 CFR 819.13 - Auger mining: Coal recovery.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...
30 CFR 819.13 - Auger mining: Coal recovery.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...
Evaluating the fate of metals in air pollution control residues from coal-fired power plants
Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
Babu, Suresh P.; Bair, Wilford G.
1992-01-01
A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.
The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...
CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS
The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...
Coal-oil coprocessing at HTI - development and improvement of the technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalzer, R.H.; Lee, L.K.; Hu, J.
1995-12-31
Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less
Economics of utilization of high sulfur coal resources - an integrated market approach
Bhagwat, S.B.
1993-01-01
Before the Clean Air Act Amendments of 1990, coal policies - especially coal research policies - were geared to find a solution to the sulfur emission problem. However, technologies to reduce sulfur emissions cannot be tailored for a single coal. A technology that will clean Illinois coal to compliance levels will do the same, or nearly the same, for most other types of coal. This paper will discuss an integrated approach to the analysis of the future of coals from different regions in the United States and its implications for coal-related policies by government and industry.
Air quality as a constraint to the use of coal in California
NASA Technical Reports Server (NTRS)
Austin, T. C.
1978-01-01
Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.
Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.
1982-01-01
Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.
A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers
This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology costs and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO...
NASA Astrophysics Data System (ADS)
Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.
2012-12-01
Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.
NASA Technical Reports Server (NTRS)
Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.
1976-01-01
Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.
Acid mine drainage and subsidence: effects of increased coal utilization.
Hill, R D; Bates, E R
1979-01-01
The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617
Environmentally and economically efficient utilization of coal processing waste.
Dmitrienko, Margarita A; Strizhak, Pavel A
2017-11-15
High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SO x ), nitrogen (NO x ) and carbon (CO, CO 2 ) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The coal industry, the utilities, and the state government are planning for development of high-energy coal gasification in Illinois to convert its abundant high-sulfur coal supply to a substitute natural gas. Following a summary of the findings, the following topics are discussed briefly: Illinois coal and the push for coal gasification; coal gasification: a look at the process; potential sites for an Illinois coal gasification industry; the impact of coal gasification's water requirements; solid wastes from coal gasification; land losses: the impact on agriculture; potential human health problems with coal gasification; the energy efficiency of coal gasification; potential economic impactsmore » of coal gasification; the corporations behind high-energy coal gasification; state involvement: legalizing the losses of the people; the national energy picture: the impact of western coal developments on Illinois; action: what you can do now. 27 references. (MCW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianping Jing; Zhengqi Li; Guangkui Liu
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less
Wang, Shaobin; Luo, Kunli
2018-01-01
The relation between life expectancy and energy utilization is of particular concern. Different viewpoints concerned the health impacts of heating policy in China. However, it is still obscure that what kind of heating energy or what pattern of heating methods is the most related with the difference of life expectancies in China. The aim of this paper is to comprehensively investigate the spatial relations between life expectancy at birth (LEB) and different heating energy utilization in China by using spatial autocorrelation models including global spatial autocorrelation, local spatial autocorrelation and hot spot analysis. The results showed that: (1) Most of heating energy exhibit a distinct north-south difference, such as central heating supply, stalks and domestic coal. Whereas spatial distribution of domestic natural gas and electricity exhibited west-east differences. (2) Consumption of central heating, stalks and domestic coal show obvious spatial dependence. Whereas firewood, natural gas and electricity did not show significant spatial autocorrelation. It exhibited an extinct south-north difference of heat supply, stalks and domestic coal which were identified to show significant positive spatial autocorrelation. (3) Central heating, residential boilers and natural gas did not show any significant correlations with LEB. While, the utilization of domestic coal and biomass showed significant negative correlations with LEB, and household electricity shows positive correlations. The utilization of domestic coal in China showed a negative effect on LEB, rather than central heating. To improve the solid fuel stoves and control consumption of domestic coal consumption and other low quality solid fuel is imperative to improve the public health level in China in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
The report describes an investigation of the adequacy of a modeling approach in predicting the thermal environment and flow field of pulverized-coal-fired utility boilers. Two 420 MWe coal-fired boilers were evaluated: a single-wall-fired unit and a tangentially fired unit, repre...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...
Supersonic coal water slurry fuel atomizer
Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John
1991-01-01
A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.
NASA Technical Reports Server (NTRS)
Anderson, G. R., II
1981-01-01
The feasibility of utilizing a sensitized pick to discriminate between cutting coal and roof material during the longwall mining process was investigated. A conventional longwall mining pick was instrumented and cutting force magnitudes were determined for a variety of materials, including Illinois #6 coal, shale type materials, and synthetic coal/shale materials.
Process for converting coal into liquid fuel and metallurgical coke
Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.
1994-01-01
A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.
Methane-producing microbial community in a coal bed of the Illinois Basin
Strapoc, D.; Picardal, F.W.; Turich, C.; Schaperdoth, I.; Macalady, J.L.; Lipp, J.S.; Lin, Y.-S.; Ertefai, T.F.; Schubotz, F.; Hinrichs, K.-U.; Mastalerz, Maria; Schimmelmann, A.
2008-01-01
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H 2 and CO2, which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H2-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H 2-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Warwick, Peter D.; Pierce, B.S.; Landis, E.R.
1993-01-01
A coal resource assessment team from the U.S. Geological Survey (USGS), in cooperation with the Armenian Department of Underground Resources (DUR) and elements of the Ministry of Energy and Fuel, has completed an initial visit to Armenia under the auspices of the U.S. Agency for International Development JUSAID). The visit included discussions of the coal resources, identification of problems associated with on-going exploration and development activities, and field visits to selected solid fuel areas. The USGS team will return in November with a draft of the final report for discussion of conclusions and recommendations with Armenian counterparts, representatives of USAID, and the American Embassy. The final report, which will contain tabulated coal-sample analytical results and detailed recommendations, will be submitted to the USAID by the end of December 1993.Preliminary conclusions are that: 1) Armenia has usable deposits of coal that could form a viable, though relatively small, component of Armenia's energy budget; 2) on-going exploration and development activities must be augmented and expedited to increase understanding of the coal resource potential and subsequent utilization; 3) deficiencies in supplies (primarily fuel) and equipment (replacement of aging parts and units) have greatly reduced the gathering of necessary resource data; and 4) training of Armenian counterparts in conducting and managing coal exploration activities is desirable.
Characterization and Recovery of Rare Earths from Coal and By-Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne
Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a dramatic paradigm shift for coal.« less
PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I
The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...
Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping
2014-07-01
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.
Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds
NASA Astrophysics Data System (ADS)
Li, Ting; Li, Jingfeng
2017-12-01
Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-06-01
These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)
Coal Extraction - Environmental Prediction
Cecil, C. Blaine; Tewalt, Susan J.
2002-01-01
Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.
Coal cleaning: An underutilized solution?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, R.L.
1995-12-31
Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
Applications of acoustics in the measurement of coal slab thickness
NASA Technical Reports Server (NTRS)
Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.
1980-01-01
The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.
Effective use of fly ash slurry as fill material.
Horiuchi, S; Kawaguchi, M; Yasuhara, K
2000-09-15
A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.
New cleaning technologies advance coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onursal, B.
1984-05-01
Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.
NASA Technical Reports Server (NTRS)
Yancik, J. J.
1978-01-01
The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.
Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts
NASA Astrophysics Data System (ADS)
Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.
2016-12-01
Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.
Carbothermic reduction behaviors of Ti-Nb-bearing Fe concentrate from Bayan Obo ore in China
NASA Astrophysics Data System (ADS)
Wang, Guang; Du, Ya-xing; Wang, Jing-song; Xue, Qing-guo
2018-01-01
To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti-Nb-bearing Fe concentrate/coal composite pellet was reduced at temperatures greater than 1100°C. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100°C were analyzed by X-ray diffraction and scanning electron microscopy-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100°C for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.
Impact of solid discharges from coal usage in the Southwest.
Jones, D G; Straughan, I R
1978-12-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant.
COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION
The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2012 CFR
2012-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2014 CFR
2014-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
FURNACE SORBENT REACTIVITY TESTING FOR CONTROL OF SO2 EMISSIONS FROM ILLINOIS COALS
Research was undertaken to evaluate the potential of furnai sorbent injection (FSI) for sulf dioxide (S02) emission controlcoal-fired boilers utilizing coals indigenous to Illinois. Tests were run using four coals from the Illinois Basin and six calcium hydroxide [Ca(OH)2], sorbe...
This report evaluates changes in composition and constituent release by leaching that may occur to fly ash and other coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants. The addition of flue-gas desulfurization (FG...
Coal in sub-Saharan-African countries undergoing desertification
NASA Astrophysics Data System (ADS)
Weaver, J. N.; Brownfield, M. E.; Bergin, M. J.
Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation.
Coal in sub-Saharan-African countries undergoing desertification
Weaver, J.N.; Brownfield, M.E.; Bergin, M.J.
1990-01-01
Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigenous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fueld in the urban centers, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation. ?? 1991.
The US Geological Survey's national coal resource assessment: The results
Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.
2002-01-01
The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.
US fossil fuel technologies for Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehring, W.A.; Dials, G.E.; Gillette, J.L.
The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite depositsmore » that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.« less
Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, R.D.; McIlvried, H.G.; Gray, D.
1995-12-31
For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, D.F.
This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less
National Coal Quality Inventory (NaCQI) and U.S. Geological Survey Coal Quality Databases
,
1999-01-01
Coal will remain a very significant part of U.S. energy needs (fig.l), even though there will continue to be concern about environmental impacts associated with its use. Currently, about 88 percent of U.S. coal production is used by electric utilities. The remaining 12 percent is either exported or used domestically for other industrial applications, such as coke for steel production.
Wear compensating seal means for rotary piston coal feeder
Gencsoy, Hasan T.; Gardner, John F.
1979-01-01
The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.
NASA Technical Reports Server (NTRS)
Cukor, P. M.; Chapman, R. A.
1978-01-01
The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.
Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang
2010-02-01
Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.
Options for Kentucky's Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Demick
2012-11-01
Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for itsmore » extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.« less
An overview of the geological controls in underground coal gasification
NASA Astrophysics Data System (ADS)
Mohanty, Debadutta
2017-07-01
Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.
Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialecka, Barbara
One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less
Energy conversion alternatives study
NASA Technical Reports Server (NTRS)
Shure, L. T.
1979-01-01
Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.
This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...
Flue gas desulfurization (FGD) products use on agricultural land
USDA-ARS?s Scientific Manuscript database
Over half of the electricity used in the U.S. is presently produced by burning coal. Currently 114 m mt/year of coal combustion by products (CCP) are produced when coal is burned for generation of electricity. Only about 43% of CCPs currently produced in the U.S. are utilized. Opportunities should b...
Feasible Recycling of Industrial Waste Coal Gangue for Preparation of Mullite Based Ceramic Proppant
NASA Astrophysics Data System (ADS)
Li, Guomin; Ma, Haiqiang; Tian, Yuming; Wang, Kaiyue; Zhou, Yi; Wu, Yaqiao; Zou, Xinwei; Hao, Jianying; Bai, Pinbo
2017-09-01
Industrial waste coal gangue was successfully utilized to prepare the mullite-based ceramic proppants. The experiments involved the pelletizing technology of proppant through intensive mixer and following the sintering process under different temperatures. The crystalline phase, microstructure, density and breakage ratio of the proppants were investigated. The results showed that with the increasing of sintering temperature, the crystalline phases were transformed to rod-like mullite, which formed the cross-linked structure, improving the densification of proppants. Consequently, the breakage ratio under the closure pressure of 35 MPa exhibited declining trend and reached the minimum value of 6.8% at 1450 °C. Owing to the easy preparation, feasible design, low cost and moderate breakage ratio, the mullite-based ceramic proppant prepared by coal gangue and bauxite is promising candidate for fracturing proppants in future applications.
Review of coal bottom ash and coconut shell in the production of concrete
NASA Astrophysics Data System (ADS)
Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.
2018-04-01
Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.
Bhagavatula, Abhijit; Huffman, Gerald; Shah, Naresh; ...
2014-01-01
The thermal evolution profiles and kinetic parameters for the pyrolysis of two Montana coals (DECS-38 subbituminous coal and DECS-25 lignite coal), one biomass sample (corn stover), and their blends (10%, 20%, and 30% by weight of corn stover) have been investigated at a heating rate of 5°C/min in an inert nitrogen atmosphere, using thermogravimetric analysis. The thermal evolution profiles of subbituminous coal and lignite coal display only one major peak over a wide temperature distribution, ~152–814°C and ~175–818°C, respectively, whereas the thermal decomposition profile for corn stover falls in a much narrower band than that of the coals, ~226–608°C. Themore » nonlinearity in the evolution of volatile matter with increasing percentage of corn stover in the blends verifies the possibility of synergistic behavior in the blends with subbituminous coal where deviations from the predicted yield ranging between 2% and 7% were observed whereas very little deviations (1%–3%) from predicted yield were observed in blends with lignite indicating no significant interactions with corn stover. In addition, a single first-order reaction model using the Coats-Redfern approximation was utilized to predict the kinetic parameters of the pyrolysis reaction. The kinetic analysis indicated that each thermal evolution profile may be represented as a single first-order reaction. Three temperature regimes were identified for each of the coals while corn stover and the blends were analyzed using two and four temperature regimes, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagavatula, Abhijit; Huffman, Gerald; Shah, Naresh
The thermal evolution profiles and kinetic parameters for the pyrolysis of two Montana coals (DECS-38 subbituminous coal and DECS-25 lignite coal), one biomass sample (corn stover), and their blends (10%, 20%, and 30% by weight of corn stover) have been investigated at a heating rate of 5°C/min in an inert nitrogen atmosphere, using thermogravimetric analysis. The thermal evolution profiles of subbituminous coal and lignite coal display only one major peak over a wide temperature distribution, ~152–814°C and ~175–818°C, respectively, whereas the thermal decomposition profile for corn stover falls in a much narrower band than that of the coals, ~226–608°C. Themore » nonlinearity in the evolution of volatile matter with increasing percentage of corn stover in the blends verifies the possibility of synergistic behavior in the blends with subbituminous coal where deviations from the predicted yield ranging between 2% and 7% were observed whereas very little deviations (1%–3%) from predicted yield were observed in blends with lignite indicating no significant interactions with corn stover. In addition, a single first-order reaction model using the Coats-Redfern approximation was utilized to predict the kinetic parameters of the pyrolysis reaction. The kinetic analysis indicated that each thermal evolution profile may be represented as a single first-order reaction. Three temperature regimes were identified for each of the coals while corn stover and the blends were analyzed using two and four temperature regimes, respectively.« less
RDF (Refuse Derived Fuel) Utilization in a Navy Stoker Coal-Fired Boiler.
1984-10-01
the energy production in any coal-fired boiler conversion consideration. The selection of the actual RDF to be used in a converted boiler should be... industrial boilers by gathering information from the Navy Energy and Environmental Support Activity, engineering field divi- sions, and field...activities. Currently the Navy has 27 industrial size boilers firing coal as a primary fuel and 10 firing coal as a secondary fuel. The four principal factors
Effects of temperature and glucose limitation on coal solubilization by Candida ML13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, B.
1991-04-01
Biological processing has received considerable attention in recent years as a technology for the utilization of low-ranked coals. Several fungi and actinomycetes have been shown to liquefy highly oxidized coal in pure culture under aerobic conditions. This report describes the optimization of cultural conditions for coal solubilization by Candida sp. ML13, an organism originally isolated from a naturally weathered coal seam. Coal solubilization by surface cultures of Candida sp. has previously been demonstrated. The author describes here the elicitation of the activity in submerged cultures as well as the effect of carbohydrate concentration, carbon source, temperature, and agitation rate onmore » coal solubilization by this organism.« less
ERIC Educational Resources Information Center
Old West Regional Commission, Billings, MT.
To evaluate and test the effectiveness of the "Procedures Manual for Assisting the Socioeconomic Impact of the Construction and Operation of Coal Utilization Facilities in the Old West Region," an impact study of a proposed electric generating station on the Laramie River near Wheatland, Wyoming, identifies difficulties encountered in…
ERIC Educational Resources Information Center
Bureau of Labor Statistics (DOL), Washington, DC.
This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, M.P.
The United States` competitive position in world markets will be determined by many forces. Two of the fundamental factors are the increased use of new technologies, and the availability of low-cost electricity to operate those technologies. The US currently has an will likely continue to have market dominance in both these critical areas. Both of these factors are intimately related since the primary source of new technologies is electric in nature. And, because low-cost coal now dominates and will continue to dominate the electric supply system, and because the US has both an abundance of coal and the world`s largestmore » fleet of coal-fired power plants, the US will have an expanding base of low-cost electricity that will secure its current competitive advantage for years to come. Electric technologies and, increasingly, computer-based technologies integrated with electric technologies are the primary sources of innovative advancement and economic growth. As a consequence, the growth in electricity, which has historically tracked GNP growth, is expected to continue. And, with the restructuring of the electric utility industry and the emergence of vigorous competition, prices are expected to decline as competition increases. The net effect of these forces will be to dramatically increase the use of electric technologies -- and those sources of electricity that can provide low-cost electricity. The data show that coal, the primary source of new los-cost electricity, will supply between one-half and three-fourths of all new electric supply through 2010, at prices of about 3{cents}/kWh, and can do so without new power plant construction. Since the use of coal is expected to rise by at least 200 to 250 million tons/year over the current consumption of 850 million tons, and could increase as much as 400 million tons/yr, some have raised concerns about the emissions impact from the power plants. This report also shows that the net effect of increased electric use, assuming coal dominance, will be a decrease in emissions. This decrease will occur for two reasons: (a) power plants are becoming increasingly clean, and (b) the electric technologies that consume the electricity displace more emissions than are created at the power plants.« less
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Hamid, Sheikh Abdul Rezan Sheikh Abdul; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Ramakrishnan, Sivakumar; Fauzi, M. N. Ahmad; Ismail, Hanafi
2017-07-01
In this paper, the carbothermal reduction and nitridation (CTRN) of Malaysian ilmenite has been studied as a part of crucial steps involved in reduction and subsequent chlorination processes for synthesizing titanium tetrachloride (TiCl4) from nitrided Malaysian ilmenite concentrates. In CTRN, waste plastics such as polyethylene terephthalate (PET) could be utilized as an alternative source of carbon reductant. In this study, titanium oxycarbonitride (TiOxCyNz) separated from iron (Fe) phase was synthesized by non-isothermal CTRN of Malaysian ilmenite under H2-N2 atmosphere by utilizing a mixture of Sarawak Mukah-Balingan coal and PET as reducing agents in a horizontal tube furnace. Experiments have been carried out in the temperature range of 1150-1250°C for 3 hours with various ratios of PET to coal (25 wt.% PET, 50 wt.% PET, and 75 wt.% PET). X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods of analysis were conducted to assess the microstructures and chemical compositions of the unreduced and reduced samples. The results indicated that utilizing PET had a significant effect on iron separation from titanium oxycarbonitride (TiO0.02C0.13N0.85) at 1250°C with a mixture of 75 wt.% PET. Furthermore, XRD and SEM studies demonstrated that with increasing PET weight ratio in the mixtures, the rate of conversion increased and a low-carbon TiOxCyNz with minimal intermediate titanium sub-oxides was synthesized. The method of applying PET as potential reductant for CTRN of ilmenite has beneficial side effects in sustainable recycling of waste PET.
NASA Technical Reports Server (NTRS)
1979-01-01
Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.
A modification of procedures for petrographic analysis of tertiary Indonesian coals
NASA Astrophysics Data System (ADS)
Moore, T. A.; Ferm, J. C.
A study undertaken to characterize the Eocene coals from southeast Kalimantan has shown that standard preparation procedures fail to capture some basic petrographic properties of the coal. Modification of these procedures permits recognition of distinct plant parts and tissues embedded in finer grained matrix components. Plant parts and tissues can be classified on the basis of morphology and degree of degradation. The highest concentration and best preservation of plant parts and tissues occurs in banded coal and is lowest in the non-banded coal. Use of these procedures, which relates megascopic appearance to petrographic character, should allow more precise utilization of the coal.
Epstein, M B; Bates, M N; Arora, N K; Balakrishnan, K; Jack, D W; Smith, K R
2013-08-01
We examined the impact of maternal use of different household cooking fuels in India on low birth weight (LBW<2500g), and neonatal mortality (death within 28 days of birth). Using cross-sectional data from India's National Family Health Survey (NFHS-3), we separately analyzed the prevalence of these two outcomes in households utilizing three types of high-pollution fuels for cooking - biomass, coal, and kerosene - using low-pollution fuels (gas and biogas) as the comparison "control" group. Taking socioeconomic and child-specific factors into account, we employed logistic regression to examine the impact of fuel use on fetal and infant health. The results indicate that household use of high-pollution fuels is significantly associated with increased odds of LBW and neonatal death. Compared to households using cleaner fuels (in which the mean birth weight is 2901g), the primary use of coal, kerosene, and biomass fuels is associated with significant decreases in mean birth weight (of -110g for coal, -107g for kerosene, and -78g for biomass). Kerosene and biomass fuel use are also associated with increased risk of LBW (p<0.05). Results suggest that increased risk of neonatal death is strongly associated with household use of coal (OR 18.54; 95% CI: 6.31-54.45), and perhaps with kerosene (OR 2.30; 95% CI: 0.95-5.55). Biomass is associated with increased risk of neonatal death among infants born to women with no more than primary education (OR 7.56; 95% CI: 2.40-23.80). These results are consistent with a growing literature showing health impacts of household air pollution from these fuels. Copyright © 2012 Elsevier GmbH. All rights reserved.
Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...
China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...
Coal Utilization in Schools: Issues and Answers.
ERIC Educational Resources Information Center
Pusey, Robert H.
Coal, at one-third the cost of natural gas and one-fifth the cost of oil, is our cheapest source of energy and is also in abundant supply. Because of significant technological advances, coal-fired equipment now approaches the clean and automatic operational characteristics of gas- and oil-fired boilers. For these reasons, and because schools are…
Char binder for fluidized beds
Borio, Richard W.; Accortt, Joseph I.
1981-01-01
An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.
Coal Combustion Science quarterly progress report, April--June 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
Utilization of coal as a source of chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirbas, A.
Coal consists carbon-based substances can be used as a source of specialty aromatic chemicals and aliphatic chemicals. Four widespread processes allow for making chemicals from coals: gasification, liquefaction, direct conversion, and co-production of chemicals and fuels along with electricity. Coal is gasified to produce synthesis gas (syngas) with a gasifier which is then converted to paraffinic liquid fuels and chemicals by Fischer-Tropsch synthesis. Liquid product from coal gasification mainly contains benzene, toluene, xylene (BTX), phenols, alkylphenols, and cresol. Methanol is made using coal or syngas with hydrogen and carbon monoxide in a 2 to 1 ratio. Coal-derived methanol has manymore » preferable properties as it is free of sulfur and other impurities. Syngas from coal can be reformed to hydrogen. Ammonium sulfate from coal tar by pyrolysis can be converted to ammonia. The humus substances can be recovered from brown coal by alkali extraction.« less
NASA Astrophysics Data System (ADS)
Although electricity is not a natural resource in the sense of coal or oil and gas, the electric utility industry is an integral part of the energy sector of the economy. Electricity is derived by converting one type of energy resource (oil, gas, coal, uranium) into a usable energy form (electricity) and thus has unique properties as a source of energy for the end user. Electrical energy, however, is not only important to New Mexico because electric utilities consume a portion of the natural gas and a large portion of coal resources extracted in the state, but also because electricity affects industrial growth in both the energy and non-energy sectors of the state's economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Mohapatra, P.; Patel, S.K.
2009-07-01
In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less
Review and update of the applications of organic petrology: Part 1, geological applications
Suárez-Ruiz, Isabel; Flores, Deolinda; Mendonça Filho, João Graciano; Hackley, Paul C.
2012-01-01
Organic petrology developed as coal petrology at the beginning of the 20th century dedicated mainly to the study of coals because of their utilization in industry. Coal petrology was then considered a branch of coal science. Later, with the development of specialized nomenclature, classification of coal components, and the standardization and improvement of analytical (microscopical) methods, this discipline expanded in interests and name, becoming organic petrology. Organic petrology carries a broader context, being as well a tool applied in the study of dispersed organic matter in sedimentary rocks due to its importance in exploration for fossil fuel resources. At present, organic petrology is a discipline widely recognized for its role in fundamental and applied research with respect to both coal utilization and in geosciences. Throughout the 20th century several important monographs have been published on the discipline of organic petrology, including “Stach's textbook of coal petrology” (1st edition 1935, 2nd 1975, 3rd 1982), updated as the more general “Organic petrology” by Taylor et al. (1998). More recently, the text “Applied coal petrology: the role of petrology in coal utilization” was published by Suárez-Ruiz and Crelling (2008). This review is the first in a two-part review series that describes and updates the role of organic petrology in geosciences. A second part complementing this one and focused on the applications of organic petrology to other scientific fields will follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had oncemore » originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcupile, J.C.
The purpose of this study is to apply the methodologies developed in the Energy Conservation in Coal Conversion August, 1977 Progress Report - Contract No. EY77S024196 - to an energy efficient, near-term coal conversion process design, and to develop additional, general techniques for studying energy conservation and utilization in coal conversion processes. The process selected for study was the Ralph M. Parsons Company of Pasadena, California ''Oil/Gas Complex, Conceptual Design/Economic Analysis'' as described in R and D Report No. 114 - Interim Report No. 4, published March, 1977, ERDA Contract No. E(49-18)-1975. Thirteen papers representing possible alternative methods of energymore » conservation or waste heat utilization have been entered individually into EDB and ERA. (LTN)« less
Combustion inorganic transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, S.A.; Sweeny, P.G.; Abrahamson, H.B.
1988-04-01
The overall goal of the project is to develop a unified picture of the physical and chemical changes that occur in coal inorganic matter during combustion. The research is centered on two main tasks. Task 3.2A deals with the use of laser-induced fluorescence spectroscopy (LIFS) to study the release of sodium from various model compounds and coal during combustion in a flame. The vaporized or released sodium is considered to be an important factor in the formation of ash fouling deposits in full-scale utility boilers. Task 3.2B will study changes in the morphology and chemical associations of inorganic components inmore » coals during combustion in a drop-tube furnace designed to simulate the time-temperature profile of a pulverized coal-fired utility boiler. Results are described. 18 refs., 51 figs., 28 tabs.« less
Direct use of methane in coal liquefaction
Sundaram, Muthu S.; Steinberg, Meyer
1987-01-01
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.
Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloosterman, Jeff
2012-12-31
Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maya, R.S.
1986-01-01
This study assesses the feasibility of a coal based light liquids program as a way to localize forces that determine the flow of oil into the Zimbabwean economy. Methods in End-use Energy Analysis and Econometrics in which the utilization of petroleum energy is related to economic and industrial activity are used to gain insight into the structure and behavior of petroleum utilization in that country and to forecast future requirements of this resource. The feasibility of coal liquefaction as a substitute for imported oil is assessed by the use of engineering economics in which the technical economics of competing oilmore » supply technologies are analyzed and the best option is selected. Coal conversion technologies are numerous but all except the Fischer-Trosch indirect coal liquefaction technology are deficient in reliability as commercial ventures. The Fischer-Tropsch process by coincidence better matches Zimbabwe's product configuration than the less commercially advanced technologies. Using present value analysis to compare the coal liquefaction and the import option indicates that it is better to continue importing oil than to resort to a coal base for a portion of the oil supplies. An extended analysis taking special consideration of the risk and uncertainty factors characteristic of Zimbabwe's oil supply system indicates that the coal option is better than the import option. The relative infancy of the coal liquefaction industry and the possibility that activities responsible for the risk and uncertainty in the oil supply system will be removed in the future, however, make the adoption of the coal option an unusually risky undertaking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less
Current status and prospect: Coal water mixture technology in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sastrawinata, T.; Suwono, A.
1996-12-31
This paper covers the status of Coal Water Mixture (CWM) technology in Indonesia and also the prospect for implementing this technology. Advantageous use of a pipeline for coal transportation is geographically inconvenient. Characteristics of CWM for Indonesian coal and combustion characteristics of CWM for Indonesian coal are reviewed. The coal reserve estimated in Indonesia is about 36 billions tons with ratio of lignite and higher rank is 60:40. The main problems faced in the coal utilization in Indonesia is the transportation from the mines to the users. Remote, limited infrastructure and the geographic conditions are factors which contribute to themore » problems. The CWM made of Indonesian low rank coal from various origins has been prepared for further study. The CWM of various coal concentration up to 66% with good handling and storage stability was obtained. Rheological measurements of the obtained CWM shows that for high coal concentration (greater than about 40%), in addition to the yield stress, the solution also behaves as the power law model of fluid. Energy Technology Laboratory has just started to investigate the combustion characteristics of CWM. CWM in Indonesia has not been utilized commercially in the industrial boiler, so that needs to be studied comprehensively. The technical aspects in this is stressed on the combustion characteristics in the boiler furnace. LSDE has a state of the art coal combustion facility that includes a chemical analytic laboratory and a boiler simulator equipped with complete data acquisition. The experiments will have several numerical criteria to characterize CWS combustion process, i.e., Maximum Furnace Exit Temperature, firing rate, pressure drop in the test section, deposit strength and deposit weight, swirl flow number.« less
Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology.
Liu, Guijian; Niu, Zhiyuan; Van Niekerk, Daniel; Xue, Jian; Zheng, Liugen
2008-01-01
Coal may become more important as an energy source in the 21st century, and coal contains large quantities of organic and inorganic matter. When coal burns chemical and physical changes take place, and many toxic compounds are formed and emitted. Polycyclic aromatic hydrocarbons (PAHs) are among those compounds formed and are considered to pose potential health hazards because some PAHs are known carcinogens. Based on their toxicology, 16 PAHs are considered as priority pollutants by the USEPA. More attention must be given to the various methods of extraction and analysis of PAH from coal or coal products to accurately explain and determine the species of PAHs. The influences of the extraction time, solvents, and methods for PAH identification are important. In the future, more methods and influences will be studied more carefully and widely. PAHs are environmental pollutants, are highly lipid soluble, and can be absorbed by the lungs, gut, and skin of mammals because they are associated with fine particles from coal combustion. More attention is being given to PAHs because of their carcinogenic and mutagenic action. We suggest that when using a coal stove indoors, a chimney should be used; the particles and gas containing PAHs should be released outdoors to reduce the health hazard, especially in Southwest China. During coal utilization processes, such as coal combustion and pyrolysis, PAHs released may be divided into two categories according to their formation pathways: one pathway is derived from complex chemical reactions and the other is from free PAHs transferred from the original coal. The formation and emission of PAHs is a complex physical and chemical process that has received considerable attention in recent years. It is suggested that the formation mechanisms of PAHs will be an increasingly important topic for researchers to find methods for controlling emissions during coal combustion.
Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development
NASA Astrophysics Data System (ADS)
Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.
2016-12-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.
Impact of solid discharges from coal usage in the southwest
Jones, D. G.; Straughan, I. R.
1978-01-01
The Southwestern region of the United States is extremely wealthy in low sulfur coal resources which must be eventually utilized in response to national energy balance priorities. Fly ash and scrubber sludge can be safely disposed of using properly managed techniques to ensure that any potential impact from elements such as boron, molybdenum, or selenium is rendered insignificant. Alternative methods of solids utilization are presently being developed. Fly ash is presently being marketed commercially as an additive for concrete manufacture. Successful experiments have been completed to demonstrate the manufacture of commercial-grade wallboard from scrubber sludge. Also, greenhouse studies and field experiments have been conducted to demonstrate increased yields of selected crops grown on typical soils amended with fly ash in amounts ranging from 2% to 8%, by weight. These studies also indicate that barium and strontium may be good monitoring indices for determining atmospheric deposition of fly ash, due to their concentration ratios in soil and vegetation samples. Further studies are being conducted to confirm encouraging irrigation and crop-yield data obtained with fly ash amended soils. Finally, the composition of many fly ashes and soils are similar in the Southwest, and there are no anticipated solid discharges from coal usage which cannot be rendered insignificant with proper management of existing and emerging methods of treatment. Compared with the water availability impact of coal usage in the Southwest, the impact of solid waste discharges are insignificant. PMID:738243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The legislation on greater coal utilization before the committee includes S. 272 (requiring, to the extent practicable, electric power plants and major fuel-bearing installations to utilize fuels other than natural gas); S. 273 (requiring, to the extent practicable, new electric power plants and new major fuel-burning installations be constructed to utliize fuels other than natural gas or petroleum); and S. 977 (requiring, to the extent practicable, existing electric power plants and major fuel-burning installations to utilize fuels other than natural gas or petroleum). Statements were heard from seven senators and representatives from the following: American Electric Power Service Corp., Americanmore » Boiler Manufactures Association, National Electric Reliability Council, Virgina Electric and Power Co., Fossil Power Systems, Houston Lighting and Power Co., other electric utility industry representatives, and the Federal Energy Adminstration. Additional material from the Wall Street Journal and the Washington Post is included. (MCW)« less
Coal-fired power generaion, new air quality regulations, and future U.S. coal production
Attanasi, E.D.; Root, D.H.
1999-01-01
Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.
The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
1968-05-01
flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an
Coal-feeding mechanism for a fluidized bed combustion chamber
Gall, Robert L.
1981-01-01
The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P.D.; Wolff, E.N.
1981-05-01
Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability productsmore » of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence« less
Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.
Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei
2017-07-13
The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less
Qian, Dawen; Yan, Changzhen; Xing, Zanpin; Xiu, Lina
2017-10-14
The Muli coal mine is the largest open-cast coal mine in the Qinghai-Tibet Plateau, and it consists of two independent mining sites named Juhugeng and Jiangcang. It has received much attention due to the ecological problems caused by rapid expansion in recent years. The objective of this paper was to monitor the mining area and its surrounding land cover over the period 1976-2016 utilizing Landsat images, and the network structure of land cover changes was determined to visualize the relationships and pattern of the mining-induced land cover changes. In addition, the responses of the surrounding landscape pattern were analysed by constructing gradient transects. The results show that the mining area was increasing in size, especially after 2000 (increased by 71.68 km 2 ), and this caused shrinkage of the surrounding lands, including alpine meadow wetland (53.44 km 2 ), alpine meadow (6.28 km 2 ) and water (6.24 km 2 ). The network structure of the mining area revealed the changes in lands surrounding the mining area. The impact of mining development on landscape patterns was mainly distributed within a range of 1-6 km. Alpine meadow wetland was most affected in Juhugeng, while alpine meadow was most affected in Jiangcang. The results of this study provide a reference for the ecological assessment and restoration of the Muli coal mine land.
Application of geostatistics to coal-resource characterization and mine planning. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, P.W.; Walton, D.R.; Martuneac, L.
1981-12-01
Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future researchmore » and demonstration projects.« less
Fang, Li; Duan, Xiaofang; Chen, Rongming; Cheng, Fangqin
2014-08-01
This paper presents an effective utilization of slag from acid leaching of coal-waste with a novel approach, namely low-temperature co-melting method, for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock. It is very interesting that the co-melting reaction temperature of the mixture of Na2CO3 and the feedstock (50-100 microm) was as low as 850 degrees C, which was significantly lower than the temperature used in traditional sodium silicate production (1400 degrees C). The optimum SiO2/Na2O ratio was identified as 7:3 according to the results of thermogravimetry-differential scanning calorimetry (TGA-DSC), ICP-AES, and X-ray diffraction (XRD) analyses. In this condition, the main product was sodium disilicate (Na2O x 2SiO2), with water solubility of 85.0%. More importantly, the impurities such as aluminum in the feedstock, which had adverse effect on subsequent treatment, were concentrated almost completely in the filter residue as insoluble sodium alumunosilicates, i.e., Na(Si2Al)O6 x H2O. The lower co-melting temperature of this process demonstrates a significant energy-saving opportunity and thus a promising approach for highly effective utilization of coal-waste. Implications: Recently, alumina extraction from coal-waste has been extensively investigated and industrial applied in China. However, the slag-containing silica generated from the acid leaching process of coal-waste led to a secondary pollution, which hindered large-scale production. The proposed low-temperature co-melting method for preparation of sodium silicate (Na2O x nSiO2) using slag from acid leaching of coal-waste as feedstock indicated that it is an efficient approach for the recovery of silica from the acid-leached slag of coal-waste with minimal environmental impact.
Implementation of Paste Backfill Mining Technology in Chinese Coal Mines
Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao
2014-01-01
Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737
Implementation of paste backfill mining technology in Chinese coal mines.
Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao
2014-01-01
Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.
The impact of anaerobic microorganisms activities in ruminant waste and coal
NASA Astrophysics Data System (ADS)
Harlia, Ellin; Hamdani, H.; Winantris, Kurnani, Tb. B. A.; Hidayati, Y. A.; Marlina, E. T.; Rahmah, K. N.; Arief, H.; Ridwan, R.; Joni, I. M.
2018-02-01
Ruminant (dairy cattle, beef cattle and buffalo) waste from intensive farming concentrated in highly populated areas when stacked and accumulated in certain heights and in anaerobic condition, may produce Green House Gases (GHGs) which lead to global warming. This condition is generated through fermentation by microorganism contained in livestock waste and biogenic activities on coal. The GHGs include CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide). The GHG emission should be early monitored to minimize greater problems. In the other hand, methane can be utilized as an environmental friendly energy after stored as biogas on digester. The aim of this research is to detect how much GHGs formed from ruminant waste and biogenic activities on coal, which can be utilized as an alternative energy. This research conducted as an explorative study utilizing dairy cattle feces, beef cattle feces, buffalo feces and three types of coal: lignite, bituminous and sub-bituminous, which is separately added into medium 98-5 made from mixture of agar medium and chemical components in powder and crystal form diluted with distilled water and rumen liquid, with six repetitions. Each sample was stored into 250 mL anaerobic digester, observed weekly for period of 4 weeks, analyzed by Gas Chromatography (GC-A14). The result showed that GHGs: CH4, CO2 and N2O were found in all samples. Anticipation of GHGs formation to avoid air pollution is by utilizing livestock waste and coal in aerobic condition or in anaerobic condition through digester.
COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES
The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...
Engineering Graphene Films from Coal
NASA Astrophysics Data System (ADS)
Vijapur, Santosh H.
Graphene is a unique material with remarkable properties suitable for a wide array of applications. Chemical vapor deposition (CVD) is a simple technique for synthesis of large area and high quality graphene films on various metal substrates. Among the metal substrates, copper has been shown to be an excellent support for the growth of graphene films. Traditionally, hydrocarbon gases are used for the graphene synthesis via CVD. Unconventional solid carbon sources such as various polymers and food waste have also shown great potential for synthesis of graphene films. Coal is one such carbon enriched and abundantly available unconventional source. Utilization of coal as a carbon source to synthesize large area, transparent, and high quality few-layer graphene films via CVD has been demonstrated in the present work. Hydrocarbon gases are released as products of coal pyrolysis at temperatures ≥400 °C. This study hypothesized that, these hydrocarbon gases act as precursors for the synthesis of graphene films on the copper substrate. Hence, atmospheric pressure CVD and low temperature of 400 °C were utilized initially for the production of graphene films. These conditions were suitable for the formation of amorphous carbon (a-C) films but not crystalline graphene films that were the objective of this work. The synthesized a-C films on the copper substrate were shown to be uniform and transparent with large surface area. The thickness and surface roughness of the a-C films were determined to have typical values of 5 nm and 0.55 nm, respectively. The a-C film has >95 % optical transmittance and sheet resistivity of 0.6 MO sq-1. These values are comparable to other carbon thin films synthesized at higher temperatures. Further, the a-C films were transferred onto any type of substrate such as silicon wafer and titanium foil, and can be utilized for diverse applications. However, crystalline graphene films were not produced by implementing atmospheric pressure CVD and low temperature operation. Annealing of copper support was required to remove the oxide layer present on its surface and low pressure operation was demonstrated to be suitable for crystalline graphene film formation. The CVD system and the synthesis procedure were modified to address these issues. This was done by increasing the synthesis temperature, incorporating a vacuum pump for low pressure operation, and implementing two step procedure of annealing the copper substrate followed by subsequent coal pyrolysis for the synthesis of crystalline graphene films. The synthesized few layer graphene films were uniform and continuous with thickness in the range of 3-7 nm. The optical transmittance and electrical conductivity measurements demonstrated that the graphene films have >95 % transparency and sheet resistivity of 5.0 kO sq-1, respectively. An investigation of growth mechanism of coal derived graphene films synthesized via CVD was conducted utilizing spectroscopy, microscopy, and chromatography techniques. Gas collection was performed at the graphene synthesis conditions utilizing the CVD reactor without vacuum in operation. Various gases released as products of coal pyrolysis in the CVD reactor were collected and analyzed using gas chromatography. The analysis showed the presence of methane, ethane, ethene, propane, propene, carbon monoxide, and carbon dioxide as coal pyrolysis products. The hydrocarbon gases act as precursors for graphene growth. Raman spectroscopy, selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) confirmed the formation of crystalline graphene films at 1055 °C and 18-30 min synthesis. The growth mechanism involves copper catalyzed reaction to produce amorphous carbon film within the first few minutes of synthesis. Raman spectroscopy and SAED validated that lower synthesis times (6-12 min) produced hybrid amorphous carbon films. This is followed by hydrogen catalyzed graphitization of the underlying carbon film to form graphene domains. Optical microscopy and Raman spectra demonstrated the formation of these oval shaped graphene domains as synthesis time was increased (18-30 min). The graphene films are formed by growth and merging of these graphene domains on the copper substrate. The growth mechanism of coal derived crystalline graphene films is presented in the current work.
Direct use of methane in coal liquefaction
Sundaram, M.S.; Steinberg, M.
1985-06-19
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, K.S.; Feldman, P.L.; Jacobus, P.L.
1992-01-01
Madison Gas and Electric operates two 50 MWe pulverized coal fired boilers at its Blount station. This paper reports that these two units have been designed to operate with gas or coalfiring in combination with refuse derived fuel. Both these units are fitted with electrostatic precipitators for particulate control. Historically, these units have utilized Midwestern and Appalachian coals varying in sulfur contents between 2 and 5 %, with the SO{sub 2} emission level in the 3.5 pounds per million Btu range. Wisconsin's acid rain control law goes into effect in 1993 requiring utilities to control sulfur dioxide emissions below 1.2more » pounds per million Btu.« less
Coal gasifier cogeneration powerplant project
NASA Technical Reports Server (NTRS)
Shure, L. I.; Bloomfield, H. S.
1980-01-01
Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.
History of energy sources and their utilization in Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunsola, O.I.
1990-01-01
Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956more » and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.« less
The direct liquefaction proof of concept program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Lee, L.K.; Pradhan, V.R.
1995-12-31
The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstratingmore » optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.« less
Research needs of the power industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSollar, R.W.
1996-12-31
Most utilities have boilers that were designed to burn a specific fuel and, in most cases, the fuel was a high sulfur, high Btu, bituminous coal. With fuel switching many boilers are now being required to burn a fuel that is drastically different than that for which the boiler was designed. This is leading to a whole range of new problems. Fuel engineers now are more concerned with the slagging, fouling, corrosion and erosion that can take place in the boiler, and not only how the fuel burns. Utilities now look not only at the Btu of the fuel butmore » are concerned with the ash chemistry, grindability, and the ultimate analysis, especially nitrogen and oxygen that is inherent in the coal. Many utilities are not geared for and do not have the people and expertise necessary for all of the studies and evaluation that must be done. Some areas that need to be addressed by research are slagging and fouling indices for western coals and blends of eastern and western coals. Corrosion indices are needed which pertain not only to the high temperature superheater and reheat areas of the boilers, but also to the backpasses, the economizer, air heater, and especially the precipitator. The effects of chlorine in a boiler and hazardous air pollutants need to be addressed. Fuel switching has also caused precipitator problems. Work needs to be done on identifying coals that are difficult to collect as well as those coals that will not accept flue gas conditioning, and why the ash won`t condition.« less
NASA Astrophysics Data System (ADS)
Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas
2014-05-01
The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, H.G.; Sun, S.; Han, W.
This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversionmore » and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.« less
National Coal Quality Inventory (NACQI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Finkelman
2005-09-30
The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
JPRS Report, Science & Technology, Japan
1987-10-27
large untapped deposits of low-grade coal in such countries as Thailand and Indonesia . China has large shares of both the production and consumption...their supply and demand situations well balanced. Among these nations, production and consumption of coal are also well balanced, and there are...of coal in this region. Among other energy sources, natural gas is still in the initial stages of development and utilization, and hydropower
25 CFR 700.105 - Utility charges.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Policies and Instructions Definitions § 700.105 Utility charges. Utility charges means the cost for heat, lighting, hot water, electricity, natural gas, butane, propane, wood, coal or other fuels water, sewer and...
USGS international activities in coal resources
,
1999-01-01
During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.
Nonlinear-programming mathematical modeling of coal blending for power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Longhua; Zhou Junhu; Yao Qiang
At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized inmore » the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.« less
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.
Zhen, Xiaofei; Li, Jinping; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin; Kang, Jian
2018-01-01
In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.
Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure
Loth, John L.; Smith, William C.; Friggens, Gary R.
1982-01-01
The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.
NASA Astrophysics Data System (ADS)
Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.
2017-09-01
Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.
A summary of the ECAS MHD power plant results
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Harris, L. P.
1976-01-01
The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.
Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths
NASA Astrophysics Data System (ADS)
Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni
2014-10-01
Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.
Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.
2005-01-01
The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.
Abundance and modes of occurrence of mercury in some low-sulfur coals from China
Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.
2008-01-01
Mercury (Hg) is one of the hazardous trace elements in coal. Mercury in coal is almost totally emitted into the atmosphere during coal combustion. Especially for utilities burning low-sulfur coals that do not require scrubbers, Hg reduction will be neglected. Hg abundances of 52 low-sulfur coal samples from different coalfields in six provinces of China were determined by a flow injection mercury system (FIMS). The results show that Hg abundances in selected low-sulfur coals range from 0.03??ppm to 0.79??ppm, with an arithmetic mean of 0.24??ppm, which is higher than that of average Chinese coals (0.19??ppm). Correlation analysis and sequential extraction procedures are performed to study possible modes of occurrence of Hg in low-sulfur coals. Modes of occurrence of Hg are variable in low-sulfur coals, and the sulfide-bound and organic-bound Hg may be the dominant forms. In addition, the silicate-bound Hg may be the main form in some of these coals because of magmatic intrusion. ?? 2007 Elsevier B.V. All rights reserved.
Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.
2006-01-01
In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The anti-coal lobby has mounted a highly successful campaign that has brought the permitting, financing, and construction of new conventional coal-fired plants to a virtual halt. But the coal lobby is not yet ready to concede defeat. With powerful constituents in coal-mining and coal-burning states and influential utilities, mining companies, and railroads, it continues to fight for its survival using any and all gimmicks and scare tactics in the book. The battle is being waged in courtrooms, public forums, media campaigns, and especially in Congress. The problem with the coal lobby is that it refuses to admit that coal combustionmore » to generate electricity is among the chief sources of U.S. greenhouse gas emissions; unless they address this issue honestly, effectively, and immediately, their efforts are going to win few converts in the courts of law or public opinion.« less
Progress on coal-derived fuels for aviation systems
NASA Technical Reports Server (NTRS)
Witcofski, R. D.
1978-01-01
Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.
David Nicholls; John Zerbe
2012-01-01
Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...
Geology and coal resources of the Stonewall-Tercio area, Las Animas County, Colorado
Wood, Gordon H.; Johnson, R.B.; Eargle, D.H.; Duffner, R.T.; Major, Harold
1951-01-01
The Stonewall-Tercio area lies along the western edge of the Trinidad coal field, Colorado, a part of the large Raton Mesa region of Colorado and New Mexico. Coal of Upper Cretaceous and early Tertiary age in that region has been utilized extensively for coking and for domestic heating. Present mining operations are limited, but mining is possible throughout much of the field.
Alcohols as hydrogen-donor solvents for treatment of coal
Ross, David S.; Blessing, James E.
1981-01-01
A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.
The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...
Proceedings: Fourteenth annual EPRI conference on fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-01
EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less
Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, C.
2008-09-15
Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inletmore » flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.; Tselev, A.; Jesse, S.
The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and the development of rheological models of coal to coke transformations and for advancing novel approaches. Here, we explore the relationship between the local structural, chemical composition and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy (BE-AFAM) for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size,more » the bond-bending disorder of sp2 aromatic double bonds and the defect density. This methodology hence allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modelling and optimization of coal utilization processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancet, M.S.; Curran, G.P.; Sim, F.A.
1982-08-01
The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated undermore » pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less
The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.
NASA Astrophysics Data System (ADS)
Gilmartin, Barbara Jean
The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most predictive factors in terms of the variation in viscosity of the emulsion with coal type. The viscosity of the oil used is linearly related to the viscosity of the COW. The relative viscosity - concentration relationship for the emulsions was evaluated by an equation developed by Quemada for use in blood rheology: (eta)(,r) = (1 - (phi)/(phi)(,max))('-2). The best fit of the data to the equation was found when the coal plus water concentration was used for (phi). The maximum packing fraction increased with increasing shear rate, reflecting a breaking up of the agglomerates in the system. By using the relative packing fraction of the coal plus oil concentration, the relative viscosity of the emulsions tested at the three shear rates evaluted can be fit to the Quemada relative viscosity equation. In the pipe flow tests, the emulsions showed little time-dependent behavior, however they did exhibit a well effect. A fair correlation was obtained between pipe flow behavior and the results obtained in the viscometer. Coal/water/#4 oil emulsions behave as coal and water in oil systems and can be successfully modeled using theories from suspension rheology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... physical change, or change in the method of operation, at an existing electric utility steam generating... projects that are awarded funding from the Department of Energy as permanent clean coal technology... installation, operation, cessation, or removal of a temporary clean coal technology demonstration project is...
The utilization of forward osmosis for coal tailings dewatering
The feasibility of dewatering coal tailings slurry by forward osmosis (FO) membrane process was investigated in this research. A prototype cell was designed and used for the dewatering tests. A cellulosic FO membrane (Hydration Technology Innovations, LLC, Albany, OR) was used fo...
FILTRATION MODEL FOR COAL FLY ASH WITH GLASS FABRICS
The report describes a new mathematical model for predicting woven glass filter performance with coal fly ash aerosols from utility boilers. Its data base included: an extensive bench- and pilot-scale laboratory investigation of several dust/fabric combinations; field data from t...
NASA Astrophysics Data System (ADS)
Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang
2017-08-01
Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.
Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream
Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).
Comprehensive evaluation on low-carbon development of coal enterprise groups.
Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu
2017-12-19
Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Harun Bilirgen; Ursla Levy
2006-01-01
This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less
CONSOL`s perspective on CCT deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, F.P.; Statnick, R.M.
1997-12-31
The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...
Progress on coal-derived fuels for aviation systems
NASA Technical Reports Server (NTRS)
Witcofski, R. D.
1978-01-01
The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.
High sodium coal-firing experiences at Basin Electric Power Cooperative's Leland Olds Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laning, V.R.; Bartle, M.L.
1982-12-01
This paper describes some of the efforts made at the Leland Olds Station to cope with the problems created from high sodium content coals. Such coals have historically presented superheater fouling problems for utilities; ash deposits from high sodium coals have a very high sintering strength and are very difficult to remove by conventional methods. It is reported that the addition of limestone in the pulverizer unit at Leland Olds and vermiculite ore in the cyclone unit has helped reduce the fouling characteristics of high sodium lignites in North Dakota at an affordable cost.
Integrated process for the solvent refining of coal
Garg, Diwakar
1983-01-01
A process is set forth for the integrated liquefaction of coal by the catalytic solvent refining of a feed coal in a first stage to liquid and solid products and the catalytic hydrogenation of the solid product in a second stage to produce additional liquid product. A fresh inexpensive, throw-away catalyst is utilized in the second stage hydrogenation of the solid product and this catalyst is recovered and recycled for catalyst duty in the solvent refining stage without any activation steps performed on the used catalyst prior to its use in the solvent refining of feed coal.
Fossil energy waste management. Technology status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Newman, D.A.
1995-02-01
This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less
Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing
2010-05-15
A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaygusuz, K.
Exergy analysis is a general method for efficiency analysis of systems and processes. The use of the exergy concept and the analysis of ultimate efficiencies of processes is more or less still limited to the academic world. There are several reasons why its industrial use is still limited. To overcome some of the difficulties in industrial applications of energy analysis, it has made use of exergy analysis. The chemical exergy of a substance is the maximum work that can be obtained from it by taking it to chemical equilibrium with the reference environment at a constant temperature and pressure. Themore » first law analysis gives only the quantity of energy, while the second law defines the quality of energy also. The projected increase in coal utilization in power plants makes it desirable to evaluate the energy content of coal both quantitatively and qualitatively. In the present study, the chemical exergies of some coals of good quality in Turkey were calculated with the BASIC program by using second law analysis and the results were given as tabulated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvarli, H.
The high energy demand in Turkey is closely linked to economic growth, industrialization, and population increase. Turkish general energy policies are designed to support economic and social development. Natural conditions of Turkey are favorable for utilization of new and renewable energies, such as hydraulic energy, geothermal energy, wind energy, biomass energy, solar energy, and, probably, nuclear energy. As the use of hydraulic and coal in Turkey will reach its full capacity by 2020, imported natural gas, coal, and other resources will be used to meet the energy demand. By 2020, approximately 75% of final energy demand and 67% of electricitymore » supply will be met by coal, oil, and natural gas. Energy investments, which are closely related with the environmental protection, require massive financial resources. It is also important to use standardized equipment and materials in all areas of energy generation, transmission, distribution, and trade. For a sustainable development, the next investments on industry should be made for the clean technologies in regard with being environment-friendly.« less
US fossil fuel technologies for developing countries: Costa Rica country packet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Costa Rica presents long-term opportunities for US participation in the power generation sector. A growing industrial base, high economic growth, and an increasing living standard will continue to require more reliable electric generation. Although the country has depended upon hydropower to meet much of its energy needs, coal could become a more reliable form of energy in the near term, based on estimated indigenous resources and proximity to food quality imports. Thus, trade opportunities exist for the United States, in the electric power sector, for the US advanced fossil fuel technologies and related services. This report describes the Costa Ricanmore » energy situation; examines the financial, economic, and trade issues; and discusses project opportunities in Costa Rica. Costa Rica appears to have a positive climate for trade and investment activities, stimulated by the Caribbean Basin Initiative. Although the economy has recently slowed, the economic outlook appears healthy. Application for membership in the General Agreement on Tariffs and Trade is pending. Due to an unexpectedly large growth in electricity demand, the Costa Rican utility Instituto Costarricense de Electricidad is evaluating the need for construction of a coal-fired power plant in the size range of 60 to 125 MW, with an in-service data of the mid-1990s. A decision is expected by the end of 1988 concerning the required size, source of coal, and timing of this coal-fired plant. Based on conditions in Costa Rica, US advanced fossil-fuel technologies were chosen for continued study in conjunction with the identified potential project opportunities. These technologies are the atmospheric fluidized bed combustor and coal-water mixtures. They could play a major role in meeting the utility expansion and/or industrial conversion opportunities summarized in Table I.1. The value of such projects could approximate US $160 million.« less
Brownfield, M.E.
2002-01-01
Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report.
Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.
Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P
2016-05-13
Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.
Simulated coal spill causes mortality and growth inhibition in tropical marine organisms
NASA Astrophysics Data System (ADS)
Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.
2016-05-01
Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l-1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l-1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.
Characterization of Coals and Lignites by Thermo-Magneto-Gravimetric Analysis.
ERIC Educational Resources Information Center
Rowe, M. W.
1983-01-01
Describes an inexpensive means for determining proximate analysis of coal, and by use of this data, its energy content. Pyrite content is also obtained by utilizing magnetic properties of iron. The simple device used makes the experiment suitable for the undergraduate laboratory. (Author/JN)
Zhen, Xiaofei; Abdalla Osman, Yassir Idris; Feng, Rong; Zhang, Xuemin
2018-01-01
In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively. PMID:29651424
The fate of mercury in coal utilization byproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
William Aljoe; Thomas Feeley; James Murphy
2005-05-01
The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wetmore » FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.« less
Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2015-10-01
Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.
NASA Astrophysics Data System (ADS)
Dai, Chunxiao; Wang, Songhui; Sun, Dian; Chen, Dong
2007-06-01
The result of land use in coalfield is important to sustainable development in resourceful city. For surface morphology being changed by subsidence, the mining subsidence becomes the main problem to land use with the negative influence of ecological environment, production and steadily develop in coal mining areas. Taking Panyi Coal Mine of Huainan Mining Group Corp as an example, this paper predicted and simulated the mining subsidence in Matlab environment on the basis of the probability integral method. The change of land use types of early term, medium term and long term was analyzed in accordance with the results of mining subsidence prediction with GIS as a spatial data management and spatial analysis tool. The result of analysis showed that 80% area in Panyi Coal Mine be affected by mining subsidence and 52km2 perennial waterlogged area was gradually formed. The farmland ecosystem was gradually turned into wetland ecosystem in most study area. According to the economic and social development and natural conditions of mining area, calculating the ecological environment, production and people's livelihood, this paper supplied the plan for comprehensive utilization of land resource. In this plan, intervention measures be taken during the coal mining and the mining subsidence formation and development, and this method can solve the problems of Land use at the relative low cost.
Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia
NASA Technical Reports Server (NTRS)
Branam, J. G.; Rosborough, W. W.
1977-01-01
The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.
Assessment of steam-injected gas turbine systems and their potential application
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1982-01-01
Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
The adaption of coal quality to furnace structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Shun, X.
1996-12-31
This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less
PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER
The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...
DEVELOPMENT OF COST-EFFECTIVE NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS
Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea and active additives such as elemental mercury (Hg0) vapor at coal-fired utility ...
30 CFR 72.520 - Diesel equipment inventory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...
30 CFR 72.520 - Diesel equipment inventory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...
OVERBURDEN MINERALOGY AS RELATED TO GROUND-WATER CHEMICAL CHANGES IN COAL STRIP MINING
A research program was initiated to define and develop an inclusive, effective, and economical method for predicting potential ground-water quality changes resulting from the strip mining of coal in the Western United States. To utilize the predictive method, it is necessary to s...
30 CFR 72.520 - Diesel equipment inventory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...
30 CFR 72.520 - Diesel equipment inventory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...
30 CFR 72.520 - Diesel equipment inventory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...
The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...
Leaching of mercury and other constituents of potential concern during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. The specific objectives of the research was to: (1) evaluate mercury, arsenic an...
Capturing the emerging market for climate-friendly technologies: opportunities for Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-11-15
This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul
UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil thatmore » is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...
Simulated coal spill causes mortality and growth inhibition in tropical marine organisms
Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.
2016-01-01
Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l−1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l−1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems. PMID:27174014
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H. Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2014-01-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the women’s three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15–1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22–2.35) and twenty or more years of using coal (HR: 2.03; 95% CI: 1.35–3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. PMID:24917360
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2015-02-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use, and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15-1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22-2.35) and 20 or more years of using coal with poor ventilation (HR: 2.03; 95% CI: 1.35-3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. © 2014 UICC.
Center for Coal-Derived Low Energy Materials for Sustainable Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewell, Robert; Robl, Tom; Rathbone, Robert
2012-06-30
The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.
Economic Benefit of Coal Utilization/Conversion at Air Force Bases: Screening Study
1989-08-01
fire-tLbe) boilers that are small enough to be shipped by rail. The field-erected units are larger, water- tube boilers. The pulverized coal-fired and...circulating FBC boilers considered are field-erected, water- tube boilers. Pollution control technology costs were considered to a limited extent. All...Coal/H 0 mix (S/MBtu) = 3.00 OPTIONS Cal/oil mix (S/MBtu) 3.50 Soot blower multiplier = 0.0 Tube bank mod multiplier = 1.0 Primary fuel is 1 Bottom ash
Coal conversion products industrial applications
NASA Technical Reports Server (NTRS)
Dunkin, J. H.; Warren, D.
1980-01-01
Coal-based synthetic fuels complexes under development consideration by NASA/MSFC will produce large quantities of synthetic fuels, primarily medium BTU gas, which could be sold commercially to industries located in South Central Tennessee and Northern Alabama. The complexes would be modular in construction, and subsequent modules may produce liquid fuels or fuels for electric power production. Current and projected industries in the two states which have a propensity for utilizing coal-based synthetic fuels were identified, and a data base was compiled to support MFSC activities.
Liu, Hongbo; Tang, Zhifeng; Yang, Yongli; Weng, Dong; Sun, Gao; Duan, Zhiwen; Chen, Jie
2009-01-01
Background Coal workers' pneumoconiosis (CWP) is a preventable, but not fully curable occupational lung disease. More and more coal miners are likely to be at risk of developing CWP owing to an increase in coal production and utilization, especially in developing countries. Coal miners with different occupational categories and durations of dust exposure may be at different levels of risk for CWP. It is necessary to identify and classify different levels of risk for CWP in coal miners with different work histories. In this way, we can recommend different intervals for medical examinations according to different levels of risk for CWP. Our findings may provide a basis for further emending the measures of CWP prevention and control. Methods The study was performed using longitudinal retrospective data in the Tiefa Colliery in China. A three-layer artificial neural network with 6 input variables, 15 neurons in the hidden layer, and 1 output neuron was developed in conjunction with coal miners' occupational exposure data. Sensitivity and ROC analyses were adapted to explain the importance of input variables and the performance of the neural network. The occupational characteristics and the probability values predicted were used to categorize coal miners for their levels of risk for CWP. Results The sensitivity analysis showed that influence of the duration of dust exposure and occupational category on CWP was 65% and 67%, respectively. The area under the ROC in 3 sets was 0.981, 0.969, and 0.992. There were 7959 coal miners with a probability value < 0.001. The average duration of dust exposure was 15.35 years. The average duration of ex-dust exposure was 0.69 years. Of the coal miners, 79.27% worked in helping and mining. Most of the coal miners were born after 1950 and were first exposed to dust after 1970. One hundred forty-four coal miners had a probability value ≥0.1. The average durations of dust exposure and ex-dust exposure were 25.70 and 16.30 years, respectively. Most of the coal miners were born before 1950 and began to be exposed to dust before 1980. Of the coal miners, 90.28% worked in tunneling. Conclusion The duration of dust exposure and occupational category were the two most important factors for CWP. Coal miners at different levels of risk for CWP could be classified by the three-layer neural network analysis based on occupational history. PMID:19785771
Pipeline transportation of upgraded Yugoslavian lignite fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ljubicic, B.; Anderson, C.; Bukurov, Z.
1993-12-31
Hydraulic transport and handling procedures for coal are not widely used, but when practiced, they result in a technically and economically successful operation. Potentially the most attractive way to utilize lignitic coals for power generation would be to combine hydraulic mining techniques with aqueous ash removal, hydrothermal processing, solids concentration, and coal-water fuel (CWF) combustion. Technical and economic assessment of this operation is being implemented within the Yugoslavian-American Scientific Technical Cooperation Agreement. The Energy and Environmental Research Center (EERC), Grand Forks, North Dakota, with support from the U.S. Department of Energy, has entered into a jointly sponsored research project withmore » Electric Power of Serbia (EPS), Belgrade, Yugoslavia, to investigate the application of the nonevaporative hydrothermal drying procedure, commonly called hot-water drying (HWD), developed at the EERC, to the lignite from the Kovin deposit. Advances in hydrothermal treatment of low-rank coals (LRCs) at the EERC have enabled cheaper, more reactive LRCs to be used in coal-water fuels (CWFs). HWD is a high-temperature, nonevaporative drying technique carried out at high pressure in water that permanently alters the structure of LRC. It solves the stability problems by producing a safe, easily transported, liquid fuel that can be handled and used like oil. For continued or increased success, it is necessary to evaluate carefully all aspects of slurry technology that permit further optimization. This paper discusses some aspects of low-rank coal hydraulic transport combined with hydrothermal treatment as an alternative energy solution toward less oil dependence in Yugoslavia.« less
Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, R.W.
1997-12-31
An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less
Parker, F L
1979-01-01
The thermal consequences of coal utilization are most meaningfully assessed in comparison with the form of power generation replaced by coal which is most likely nuclear. The different effects are influenced by siting decisions and the intrinsic thermal efficiencies of the two fuel systems. Nuclear power plants discharge 50% more waste Rheat to the atmosphere through cooling towers or to a water body than coal-fired plants. Coal-fired plants require about 2/3 as much water as nuclear power plants. Nearly every property of water is affected nonlinearly by temperature, and biological effects may amplify these changes because protein denaturation takes place more rapidly above 30 degrees C and these high temperatures affect bactericidal and viricidal activity of chlorine compounds. Usually algal populations change from a dominance of diatoms and green algae to dominance by blue-green algae. All organisms experience elevated metabolic rates at higher temperatures which may affect total energy needs, foraging ability, reproduction, migration and susceptibility to disease. Intake structures inevitably draw many organisms into the cooling system of a power plant, but the number and kind are influenced by its location, configuration, and mode of operation. Use of water recirculation systems reduces water use and with it, the number of organisms entrained. Mechanical damage in the cooling system to small organisms is generally low, but fish and their larvae and eggs may be seriously damaged. Discharge effects may also be severe but are generally local. The near field, where there are strong shear velocities and rapid temperature changes are particularly stressful to fish, and stringent limitations on the timing and strength of discharges may be required to reduce these stresses to nondamaging levels. Off-stream cooling systems may increase cloudiness, ground fog, precipitation, temperature and local winds, but these effects generally extend no further than 1000 m even in winter. There is considerable potential for using condenser cooling water for agricultural and aquacultural purposes such as irrigation, frost protection, undersoil heating, greenhouse heating and climate control. However, over the next few decades little of this waste heat is likely to be used creatively. The thermal consequences of implementing NEP are locally serious but do not pose regional problems. Creative use of the waste heat for aquaculture, agriculture, cogeneration, and power for energy intensive industries can be a powerful means of mitigating undesirable effects. PMID:540623
Akaoka, K; McKendry, I; Saxton, J; Cottle, P W
2017-04-01
Transport of coal by train through residential neighborhoods in Metro Vancouver, British Columbia, Canada may increase the possibility of exposure to particulate matter at different size ranges, with concomitant potential negative health impacts. This pilot study identifies and quantifies train impacts on particulate matter (PM) concentrations at a single location. Field work was conducted during August and September 2014, with the attributes of a subset of passing trains confirmed visually, and the majority of passages identified with audio data. In addition to fixed ground based monitors at distances 15 and 50 m from the train tracks, an horizontally pointing mini-micropulse lidar system was deployed on three days to make backscatter and depolarization measurements in an attempt to identify the zone of influence, and sources, of train-generated PM. Ancillary wind and dust fall data were also utilized. Trains carrying coal are associated with a 5.3 (54%), 4.1 (33%), and 2.6 (17%) μgm -3 average increase in concentration over a 14 min period compared to the average concentrations over the 10 min prior to and after a train passage ("control" or "background" conditions), for PM 3 , PM 10 , and PM 20 , respectively. In addition, for PM 10 and PM 20 , concentrations during train passages of non-coal-carrying trains were not found to be significantly different from PM concentrations during control conditions. Presence of coal dust particles at the site was confirmed by dust fall measurements. Although enhancements of PM concentrations during 14 min train passages were generally modest, passing coal trains occasionally enhanced concentrations at 50 m from the tracks by ∼100 μgm -3 . Results showed that not every train passage increased PM concentrations, and the effect appears to be highly dependent on wind direction, local meteorology and load related factors. LiDAR imagery suggests that re-mobilization of track-side PM by train-induced turbulence may be a significant contributor to coarse particle enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drivers for the renaissance of coal
Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael
2015-01-01
Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries. PMID:26150491
Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation
NASA Astrophysics Data System (ADS)
Rice, Michael
Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit short-term fuel switching in power production. During the era prior to shale gas and electricity market deregulation, I do not find evidence that gas generation substituted for coal in response to fuel price changes. However, I do find evidence that coal plant operations are constrained by fuel contracts. As the min-take commitment to coal increases, changes to annual coal plant output decrease. My conclusions are robust in spite of bias due to the selective reporting of proprietary coal delivery contracts by utilities.
NASA Astrophysics Data System (ADS)
Ge, Lichao; Feng, Hongcui; Xu, Chang; Zhang, Yanwei; Wang, Zhihua
2018-02-01
This study investigates the influence of microwave irradiation on coal composition, pore structure, coal rank, and combustion characteristics of typical brown coals in China. Results show that the upgrading process significantly decreased the inherent moisture, and increased calorific value and fixed carbon content. After upgrading, pore distribution extended to micropore region, oxygen functional groups were reduced and destroyed, and the apparent aromaticity increased suggesting an improvement in the coal rank. Based on thermogravimetric analysis, the combustion processes of upgraded coals were delayed toward the high temperature region, and the temperatures of ignition, peak and burnout increased. Based on the average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and a high rank coal. In ignition and burnout segments, the activation energy increased but exhibited a decrease in the combustion stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, J.J.; Zawadzki, E.A.
1993-07-01
A new process for the production of commercial grade coke, char, and carbon products has been evaluated by Penelec/NYSEG. The process, developed by Coal Technology Corporation, CTC, utilizes a unique screw reactor to produce a devolatilized char from a wide variety of coals for the production of commercial grade coke for use in blast furnaces, foundries, and other processes requiring high quality coke. This process is called the CTC Mild Gasification Process (MGP). The process economics are significantly enhanced by integrating the new technology into an existing power generating complex. Cost savings are realized by the coke producer, the cokemore » user, and the electric utility company. Site specific economic studies involving the Homer City Generating Station site in Western Pennsylvania, confirmed that an integrated MGP at the Homer City site, using coal fines produced at the Homer City Coal Preparation Plant, would reduce capital and operating costs significantly and would enable the HC Owners to eliminate thermal dryers, obtain low cost fuel in the form of combustible gases and liquids, and obtain lower cost replacement coal on the spot market. A previous report, identified as the Interim Report on the Project, details the technical and economic studies.« less
Managing coal combustion residues in mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-07-01
Burning coal in electric utility plants produces, in addition to power, residues that contain constituents which may be harmful to the environment. The management of large volumes of coal combustion residues (CCRs) is a challenge for utilities, because they must either place the CCRs in landfills, surface impoundments, or mines, or find alternative uses for the material. This study focuses on the placement of CCRs in active and abandoned coal mines. The Committee on Mine Placement of Coal Combustion Wastes of the National Research Council believes that placement of CCRs in mines as part of the reclamation process may bemore » a viable option for the disposal of this material as long as the placement is properly planned and carried out in a manner that avoids significant adverse environmental and health impacts. This report discusses a variety of steps that are involved in planning and managing the use of CCRs as minefills, including an integrated process of CCR characterization and site characterization, management and engineering design of placement activities, and design and implementation of monitoring to reduce the risk of contamination moving from the mine site to the ambient environment. Enforceable federal standards are needed for the disposal of CCRs in minefills to ensure that states have adequate, explicit authority and that they implement minimum safeguards. 267 refs., 6 apps.« less
The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...
Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang
2010-05-01
Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less
Coal reburning for cyclone boiler NO sub x control demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less
Rice, Charles L.; Smith, J. Hiram
1980-01-01
The Pennsylvanian rocks of the eastern Kentucky coal field unlderlie an area of about 27,000 square kilometers (see index map). Largely because of the size and stratigraphic complexity of the area, Huddle and others (1963, p. 31) divided it into six coal reserve districts (unofficial), utilizing state and county lines as well as geologic features, drainage areas, and cola producing areas. This division is followed herein because, in general, each of these districts has a characteristic stratigraphic nomenclature, particularly as related to coal bed names. The six districts shown on the index mat, are the Princess, Licking River, Big Sandy, Hazard, Southwestern, and Upper Cumberland River; the Upper Cumberland River district has been divided into the Harlan and Middlesboro subdistricts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
Evaluating the feasibility of underground coal gasification in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, B.C.; Harju, J.A.; Schmit, C.R.
Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Chander, S.; Gutterman, C.
Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less
Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process
NASA Astrophysics Data System (ADS)
Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng
2017-07-01
As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.
Role of the Liquids From Coal process in the world energy picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, J.P.; Knottnerus, B.A.
1997-12-31
ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than threemore » million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.« less
Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals
NASA Astrophysics Data System (ADS)
Xiong, R.; Dong, L.; Xu, G. W.
Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.
Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe
Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.
1981-01-01
Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.
NASA Astrophysics Data System (ADS)
Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii
2013-10-01
Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.
The effect of coal bed dewatering and partial oxidation on biogenic methane potential
Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.
2013-01-01
Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.
A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.
2014-01-01
Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.
Coal conversion products Industrial applications
NASA Technical Reports Server (NTRS)
Warren, D.; Dunkin, J.
1980-01-01
The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
Combustion Of Poultry-Derived Fuel in a CFBC
NASA Astrophysics Data System (ADS)
Jia, Lufei; Anthony, Edward J.
Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.
Eco-friendly fly ash utilization: potential for land application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, A.; Thapliyal, A.
2009-07-01
The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants likemore » mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.« less
Current experiences in applied underground coal gasification
NASA Astrophysics Data System (ADS)
Peters, Justyn
2010-05-01
The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.
Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.
2000-01-01
Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.
Conceptual design of closed Brayton cycle for coal-fired power generation
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.
Glass, N R
1979-01-01
This report is limited to an evaluation of the ecological and environmental effects of gaseous emissions and aerosols of various types which result from coal combustion. It deals with NOx, SOx, fine particulate, photochemical oxidant and acid precipitation as these pollutants affect natural and managed resources and ecosystems. Also, synergistic effects involving two or more pollutants are evaluated as well as ecosystem level effects of gaseous pollutants. There is a brief summary of the effects on materials and atmospheric visibility of increased coal combustion. The economic implications of ecological effects are identified to the extent they can be determined within acceptable limits. Aquatic and terrestrial effects are distinguished where the pollutants in question are clearly problems in both media. At present, acid precipitation is most abundant in the north central and northeastern states. Total SOx and NOx emissions are projected to remain high in these regions while increasing relatively more in the western than in the eastern regions of the country. A variety of ecological processes are affected and altered by air pollution. Such processes include community succession and retrogression, nutrient biogeochemical cycling, photosynthetic activity, primary and secondary productivity, species diversity and community stability. Estimates of the non health-related cost of air pollutants range from several hundred million dollars to $1.7 billion dollars per year. In general, these estimates include only those relatively easily measured considerations such as the known losses to cultivate crops from acute air pollution episodes or the cost of frequent repainting required as a result of air pollution. No substantial nationwide estimates of losses to forest productivity, natural ecosystem productivity which is tapped by domestic grazing animals and wildlife, and other significant dollar losses are available. PMID:44247
Coping with coal quality impacts on power plant operation and maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatt, R.
1998-12-31
The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrer, C.W.; Layne, A.W.; Guthrie, H.D.
The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Actionmore » Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.« less
Processing woody debris biomass for co-milling with pulverized coal
Dana Mitchell; Bob Rummer
2007-01-01
The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...
The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...
ADVANCES IN CONTROL OF PM2..5 AND PM2..5 PRECURSORS GENERATED BY THE COMBUSTION OF PULVERIZED COAL
Particulate matter smaller than 2.5 micrometers in aerodynamic diameter (PM2.5) is of concern due to adverse health effects associated with elevated ambient mass concentrations of PM2.5. PM2.5 from coal-fired utility boilers is composed of directly emitted (primary) particles and...
Corrosion/Erosion Behavior of Silicon Nitride and Silicon Carbide Ceramics - Gas Turbine Experience
1979-04-01
C-0138. As part of a program to utilize ceramics in helical expander Brayton cycle turbomachines for coal-fired topping cycles, Myers el a1.7 have...Meyers et al., Reference 7). 7. MEYERS, B., LANDINGHAM, R., MOHR, P., and TAYLOR , K. An Adiabatic Coal-Fired 1350 C Expander in Proceedings: Workshop on
The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...
Pressurized fluidized bed offers promising route to cogeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
STAL-LAVAL has been monitoring the development of pressurized fluidized-bed combustion (PFBC) technology and has decided to apply it as a way to burn coal and satisfy the important criteria of efficiency, low cost, environmental acceptability, low investment cost, and the capacity to use a wide range of coal qualities. The present status of PFBC and co-generation technology is reviewed and examples of industrial as well as utiltiy applications are cited. A successful commercialization of PFBC could contribute to the success of coal-utilization policies. (DCK)
2013-01-01
The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293
Coal fracturing and heteroatom removal. Annual report, fiscal year 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapienza, R.; Slegeir, W.; Butcher, T.
1983-09-01
Coal-water slurry fuels offer a practical, economical method to use coal, replacing the 3 million barrels of oil used per day to fuel utility boilers, industrial heaters, and furnaces in the US. The mineral matter and in some cases the costs of grinding are major impediments to the direct use of this fuel in existing fluid fuel combustors. A process for the simultaneous cleaning and fracturing of a variety of coals has been explored at Brookhaven National Laboratory. This process entails exposure of coal to a carbon dioxide-water solvent system under pressure. Substantial amounts of mineral matter are leached intomore » the liquid phase, significantly lowering the concentrations of alkaline, and alkaline earth metals, and of silica- and alumina-like minerals in the coal. Grindability studies have been conducted in a laboratory ball mill using processed coal. Grinding times for large-size feed coal (1-3/8 to 3/8 in.) are reduced by a factor up to 10 following exposure to CO/sub 2//water. With smaller-feed coal (4 x 8 mesh), however, improvements in grindability are much smaller. An integrated system has been constructed in which coal is ground while under CO/sub 2/ pressure. Significant improvements in grindability have been observed with this system, even with smaller-feed coal. 20 refs., 8 figs., 24 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the fall of 1972, the Laramie Energy Research Center initiated an in situ coal gasification experiment in Hanna, Wyoming. The objective was to test the feasibility of underground gasification in a deep, thick seam of western subbituminous coal and, if feasible, to maximize gas heating value while sustaining stable gas production rates and achieving a high coal utilization efficiency. The coal seam was ignited on March 28, 1973, in a 30-foot seam 400 feet deep. The ''burn'' was maintained for a year, until March 22, 1974, when air injection was stopped. The combustion zone was extinguished by the naturalmore » influx of seam water in approximately three months. This report discusses the environmental inpacts of this program on the area and provides details of the program. 13 refs., 7 figs., 11 tabs.« less
Coal companies hope to receive carbon credits for methane reductions
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-09-30
Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The examplemore » they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.« less
Hydrogenation of coal liquid utilizing a metal carbonyl catalyst
Feder, Harold M.; Rathke, Jerome W.
1979-01-01
Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.
40 CFR 60.45Da - Standard for mercury (Hg).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...
New FERC chairman says plenty of activity yet to come
DOE Office of Scientific and Technical Information (OSTI.GOV)
Share, J.
Utility executives may have slowed their merger and acquisition activity to catch their breath, but it`s far from over, says Jim Hoecker, the new chairman of the Federal Energy Regulatory Commission. He doesn`t think we`ve seen the last of this phenomenon. As the industry begins to understand the shape of market developments to come in the future, increasingly creative M and A activities will be seen. But there`s also many other contractual arrangements among utilities and between utilities, pipelines, and gas distribution companies that reflect the more dynamic market of today. In the interview, he referred to a survey ofmore » utility executives in which as many as 45% indicated that their companies were involved in merger or acquisition activity. That survey found about 70% of these executives felt there is going to be more consolidation within the utility industry and an even larger proportion concluded there would be increased mergers between the electric and natural gas industries. In addition, Hoecker discusses gas versus electric, gas versus coal, and FERC`s future.« less
The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibert, W.A.; Duncan, J.H.; Keaton, D.E.
1994-12-31
An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facilitymore » to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less
Recent experience with the CQE{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, C.D.; Kehoe, D.B.; O`Connor, D.C.
1997-12-31
CQE (the Coal Quality Expert) is a software tool that brings a new level of sophistication to fuel decisions by seamlessly integrating the system-wide effects of fuel purchase decisions on power plant performance, emissions, and power generation costs. The CQE technology, which addresses fuel quality from the coal mine to the busbar and the stack, is an integration and improvement of predecessor software tools including: EPRI`s Coal Quality Information System, EPRI`s Coal Cleaning Cost Model, EPRI`s Coal Quality Impact Model, and EPRI and DOE models to predict slagging and fouling. CQE can be used as a stand-alone workstation or asmore » a network application for utilities, coal producers, and equipment manufacturers to perform detailed analyses of the impacts of coal quality, capital improvements, operational changes, and/or environmental compliance alternatives on power plant emissions, performance and production costs. It can be used as a comprehensive, precise and organized methodology for systematically evaluating all such impacts or it may be used in pieces with some default data to perform more strategic or comparative studies.« less
Coal Technology Program progress report for April 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the Hydrocarbonization Research program, two successful experiments were completed in the bench-scale hydrocarbonizer. A settling test at a lower temperature (390/sup 0/F) using 20 percent toluene in Solvent Refined Coal (SRC) Unfiltered Oil (UFO) produced a 30 percent clarified product in 2 hr. Characterization tests include distillation curves for Wilsonville's SRC-UFO and a particle size distribution of Pittsburg and Midway Coal Mining Company's (PAMCO) SRC-UFO. Studies of intermediate-temperature pyrolysis of large blocks have been maintained with char samples continuing to demonstrate pyrophoricity, even after heating to 700/sup 0/C. Simulated distillation analysis of tars produced by the last eight experimentsmore » are being compared with those performed at Laramie upon tars produced by the Hanna No. 2 experiment. In Coal-Fueled MIUS, stainless steel tubing to be used in one of the furnace tube bundles was ordered and the bid package for the furnace completed. Tests continued on the coal feed system and with the cold flow fluidized bed model. For the Synthoil process, flow diagrams, material balances, and utilities requirements were completed for the entire facility. For the Hydrocarbonization process, flowsheets were reviewed for compatibility; equipment lists were brought up to date; and utilities requirements were compiled from the individual flowsheets. The char recovery and storage subsystem flowsheet was completed. (auth)« less
Investigation on the activation of coal gangue by a new compound method.
Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu
2010-07-15
In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. 2010 Elsevier B.V. All rights reserved.
Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.
2008-01-01
The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.
Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng
2017-12-21
Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.
Air quality, health, and climate implications of China’s synthetic natural gas development
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.
2017-01-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993
Air quality, health, and climate implications of China's synthetic natural gas development.
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R; Mauzerall, Denise L
2017-05-09
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO 2 emissions. Due to variations in air pollutant and CO 2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today's technology, SNG emits 22 to 40% more CO 2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.
Air quality, health, and climate implications of China's synthetic natural gas development
NASA Astrophysics Data System (ADS)
Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.
2017-05-01
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.
[Predicting low NOx combustion property of a coal-fired boiler].
Zhou, Hao; Mao, Jianbo; Chi, Zuohe; Jiang, Xiao; Wang, Zhenhua; Cen, Kefa
2002-03-01
More attention was paid to the low NOx combustion property of the high capacity tangential firing boiler, but the NOx emission and unburned carbon content in fly ash of coal burned boiler were complicated, they were affected by many factors, such as coal character, boiler's load, air distribution, boiler style, burner style, furnace temperature, excess air ratio, pulverized coal fineness and the uniformity of the air and coal distribution, etc. In this paper, the NOx emission property and unburned carbon content in fly ash of a 600 MW utility tangentially firing coal burned boiler was experimentally investigated, and taking advantage of the nonlinear dynamics characteristics and self-learning characteristics of artificial neural network, an artificial neural network model on low NOx combustion property of the high capacity boiler was developed and verified. The results illustrated that such a model can predicate the NOx emission concentration and unburned carbon content under various operating conditions, if combined with the optimization algorithm, the operator can find the best operation condition of the low NOx combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spliethoff, H.; Hein, K.R.G.
1999-07-01
Biomass not only has a considerable potential as an additional fuel source but also shows a reasonable cost level in comparison to other renewable energies. The practicable fuel types are both residual material from forestry and agriculture, such as wood or straw, and especially cultivated reproducible feedstock such as Miscanthus Sinensis, whole cereal plants, poplars, or willows. Besides as single fuel, it is also considered to be sensible to utilize biomass in co-combustion in existing firing systems, such as pc-fired power stations. Biomass or sewage sludge utilized as additional fuel in coal combustion systems has consequences on combustion behavior, emissions,more » corrosion and residual matter. The effects of burning sewage sludge and agricultural residuals such as straw and manure as well as specially grown energy plants in combination with coal were studied in a 0.5 MW pulverized fuel test facility and a 20 kW electrically heated combustor. A major aspect of the investigations had been the required preparation and milling of the additional fuels. The investigations showed that in co-combustion of straw with coal, a grinding of 6 mm and finer is sufficient. The definitely coarser milling degree of biomass delays combustion and is observable by in-flame measurements. The investigations reveal that biomass addition has a positive effect on emissions. Since biomass in most cases contains considerably less sulphur than coal, an increasing biomass share in the thermal output makes the SO{sub 2} emissions decrease proportionally. In addition, SO{sub 2} can partly be captured in the ash by the alkaline-earth fractions of the biomass ash. As for sewage sludge, the emissions of SO{sub 2} correlate with the sulphur content of the fuel and, hence, rise with an increasing share of this biomass. Independently from the type, biomass shows a considerably stronger release of volatile matter. This latter fact may have a positive impact on NOx emissions when NOx-reducing techniques are applied. Within the framework of these investigations the following configurations were used: (1) unstaged combustion with preblending of coal and biomass, (2) air-staged combustion with preblending of coal and biomass, (3) reburning with biomass as reduction fuel, and (4) various burner configurations. The results show that the burner design and operation mode have a great influence on the NOx emissions of combined flames. Air staging and reburning are effective measures to reduce the NOx emissions of combined fuels. NOx emissions smaller than 300 mg/m at 6% O{sub 2} can be reached with all fuels.« less
Adsorbents for capturing mercury in coal-fired boiler flue gas.
Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R
2007-07-19
This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less
NASA Astrophysics Data System (ADS)
E. Romero, Carlos; De Saro, Robert
Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.
JV Task 120 - Coal Ash Resources Research Consortium Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett
2009-03-28
The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased levelmore » of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.« less
NASA Astrophysics Data System (ADS)
Khatami Firoozabadi, Seyed Reza
This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi-anthracite and lignites mostly experienced heterogeneous ignition in either O2/N2 or O2/CO2 atmospheres in both flow conditions. Replacing the N2 by CO 2 slightly increased the ignition temperature (30--40K). Ignition temperatures increased with the enhancement of coal rank in either air or oxy-fuel combustion conditions. However, increasing oxygen mole fraction decreased the ignition temperature for all coals. The ignition delay of coal particles was prolonged in the slow-heating O2/CO2 atmospheres, relative to the faster-heating O2/N2 atmospheres, particularly at high-diluent mole fractions. At higher O2 mole fractions, ignition delays decreased in both environments. Higher rank fuels such as anthracite and semi-anthracite experienced higher ignition delays while lower rank fuels such as lignite and biomasses experienced lower igniton delay times. In combustion, fuel particles were observed to burn in different modes, such as two-mode, or in one-mode combustion, depending on their rank and the furnace conditions. Strong tendencies were observed for all fuels to burn in one-mode when N2 was replaced by CO2, and when O 2 mole fraction increased in both environments. Moreover, increasing the coal rank, from lignite to bituminous, enhanced the tendency of coal particles to exhibit a two-mode combustion behavior. Particle luminosity, fragmentation and deduced temperatures were higher in O2/N2 than in O2/CO2 atmospheres, and corresponding burnout times were shorter, at the same O2 mole fractions. Particle luminosity and temperatures increased with increasing O2 mole fractions in both N2 and in CO2 background gases, and corresponding burnout times decreased with increasing O2 mole fractions. Bituminous coal particles swelled, whereas sub-bituminous coal particles exhibited limited fragmentation prior to and during the early stages of combustion. Lignite coal particles fragmented extensively and burned in one-mode regardless of the O2 mole fraction and the background gas. The timing of fragmentation (prior or after ignition) and the number of fragments depended on the type of the lignite and on the particle shape. Temperatures and burnout times of particles were also affected by the combustion mode. In nearly all bituminous and biomass particles combustion, sooty envelope flames were formed around the particles. Replacement of background N 2 by CO2 gas decreased the average soot volume fraction, fv, whereas increasing O2 from 20% to 30--40% increased the fv and then further increasing O2 to 100% decreased the soot volume fraction drastically. bituminous coal particle flames generated lower soot volume fractions in the range 2x10 -5--9x10-5, depending on O2 mole fraction. Moreover, biomass particle flames were optically thin and of equal-sized at all O2 mole fractions. (Abstract shortened by UMI.).
David L. Nicholls; Stephen E. Patterson; Erin Uloth
2006-01-01
Cofiring wood and coal at Fairbanks, Alaska, area electrical generation facilities represents an opportunity to use woody biomass from clearings within the borough's wildland-urban interface and from other sources, such as sawmill residues and woody material intended for landfills. Potential benefits of cofiring include air quality improvements, reduced greenhouse...
The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....
JPRS Report, Science & Technology, China: Energy.
1988-02-10
bedrock growth anticlines, buried hill fault blocks, rolling anticlines, compression anticlines, draped anticlines, volcanic diapers and others. The...development and utilization of solar , wind, geothermal and other energy resources, the energy conservation capacity and newly-added energy resources were...equivalent to 20 million tons of standard coal. The firewood-saving capacity in wood and coal-saving stoves, biogas pits and solar cookers alone was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinton, W.S.; Maxwell, J.D.; Healy, E.C.
1997-12-31
This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test programmore » was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.« less
Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti
The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.
Coal Fires in the United States: A Case Study in Government Inattention
NASA Astrophysics Data System (ADS)
McCurdy, K. M.
2006-12-01
Coal fires occur in all coal producing nations. Like most other environmental problems fires are not confined by political boundaries. Important economic coal seams in the United States are found across the Inter-montaine west, the Midwest, and Appalachia. The age of these deposits differs, as does the grade and sulfur content of the coal, the mining techniques utilized for exploitation of this resource, and the markets in which the coal is traded. Coal fires are ordinary occurrences under extraordinary conditions. Every coal bed exposed in an underground or surface mine has the potential to ignite. These fires are spread thinly over the political geography and over time, so that constituencies rarely coalesce to petition government to address the coal fire problem. Coal fires produce serious problems with long term consequences for society. They threaten mine safety, consume a non-renewable resource, and produce toxic gases with serious health effects for local populations. Additionally, as coal production in the developing world intensifies, these problems worsen. The lack of government attention to coal fires is due to the confluence of at least four independent political factors: 1) The separated powers, federated system in which decisions in the United States are made; 2) Low levels of political energy available in Congress to be expended on coal fires, measured by the magnitude of legislative majorities and seniority; 3) The mid-twentieth century model of scientific and technical information moving indirectly to legislators through the bureaucratic agencies; 4) The chronic and diffuse nature of fires across space and time.
Novel electrochemical process for coal conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooque, M.
1989-07-01
The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified whichmore » results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.« less
30 CFR 817.180 - Utility installations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.180 Utility installations. All underground mining activities shall be conducted in a manner...; oil, gas, and coal-slurry pipelines, railroads; electric and telephone lines; and water and sewage...
Managing Scarce Water Resources in China's Coal Power Industry.
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
Managing Scarce Water Resources in China's Coal Power Industry
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan
2016-06-01
Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.
Method for control of subsurface coal gasification
Komar, Charles A.
1976-12-14
The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.
Marketing prospects for Illinois basin coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahan, R.
1994-12-31
A perspective is given of markets for Illinois Basin coals within the national context. In recent years, prospects have started to brighten slightly for a series of reasons. First, production trends, transportation issues, marketing and the outlook are discussed. Some of the factors that are going to be important to watch in the future; for instance, the way the acid rain bill actually shakes out in the next couple of years; other environmental restrictions that could end up having a reverse impact on some Illinois Basin coals; and generally, what may happen as a result of the major movements towardmore » deregulation in the utility industry are described. These factors are going to have a significant impact on the coal industry altogether.« less
Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.
Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi
2017-10-01
Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
The solubilization of low-ranked coals by microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strandberg, G.W.
1987-07-09
Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less
Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying
2012-07-01
Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.
Biomass resources for energy in Ohio: The OH-MARKAL modeling framework
NASA Astrophysics Data System (ADS)
Shakya, Bibhakar
The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chindaprasirt, Prinya; Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t
2010-04-15
In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electronmore » microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.« less
Coal-water slurry fuel internal combustion engine and method for operating same
McMillian, Michael H.
1992-01-01
An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.
Rating the strength of coal mine roof rocks. Information circular/1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinda, G.M.; Mark, C.
1996-05-01
The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less
Hydrogen production from coal using a nuclear heat source
NASA Technical Reports Server (NTRS)
Quade, R. N.
1976-01-01
A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.
Calcium chloride: A new solution for frozen coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, D.G.
Few situations can strike more terror into the hearts of utility and industrial powerplant managers than the arrival of hopper cars loaded with solidly frozen coal. If the cars aren't emptied and returned to the railroad, usually within about 48 hours, demurrage (the equipment-detention charge) begins and can quickly rise to $50 or more per day per car. All to frequently, the hasty solution is to assign $16/hr workers the task of manually breaking up the frozen coal, using techniques that the mining industry considered obsolete 50 years ago. A CaCl/sub 2/ system represents a small investment. Either in drymore » or liquid form, the chemical is inexpensive and is consumed only when it is needed. The essential equipment, which is easy to operate and maintain, consists primarily of a storage tank, a pump, the necessary piping or hose, and either a fixed or portable spray applicator. A flowmeter will monitor the application rate, and the tank may be optionally heated. Application cost, including labor, for CaCl/sub 2/ is usually between $2.65 and $3.25 per treated ton. This is approximately half the cost of energy, per ton of coal, consumed by a thaw shed. In an emergency, when railcar demurrage costs are building at $50 or more per day per car, CaCl/sub 2/ is not only an inexpensive solution; it is possibly the only practical answer to the frozen-coal problem (see box, below). When used by itself, CaCl/sub 2/ minimizes the cost and frustration of unloading frozen coal because labor, equipment, chemical, energy, and maintenance costs are all held in tight control. When used to complement mechanical and/or thermal techniques, it increases unloading capacity, thereby improving productivity and helping to control all costs of cold-weather coal handling.« less
Floatabilities of treated coal in water at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Rohrer, R.L.; Lai, R.W.
1995-04-01
Experiments on equilibrium adsorption loadings of various probe compounds on 60-200 mesh Illinois No. 6 coal (PSOC-1539), Adaville No. 1 coal (PSOC-1544), Wyodak coal (PSOC-1545), and Pittsburgh No. 8 coal (PSOC-1549) were performed. The probe compounds include 2-methyl-1-pentanol (2M1P), 1-heptanol, benzene, and toluene. Equilibrium adsorption loadings of aromatic compounds such as toluene and benzene on the four chosen coals obey the Langmuir isotherm model up to 100 ppm in concentrations of probe compounds. Equilibrium adsorption loadings of higher aliphatic alcohols such as 2M1P and 1-heptanol on the four chosen coals do not follow both the Langmuir isotherm model and themore » Freundlich empirical adsorption model. Flotation of the coals, equilibrated with aqueous solutions of 2M1P and 1-heptanol, increases linearly with equilibrium adsorption loadings of these probe compounds on the coals. The chosen coals were treated with nitrogen and air at 1 atm and 125-225{degrees}C for 24 h. Flotation experiments of the treated coals were conducted at room temperature, using distilled water only as a flotation medium. Flotation of Adaville No. 1 coal and Wyodak coal treated with nitrogen gas is higher than that of the untreated coals and increases with treatment temperatures. Flotation of Adaville No. 1 coal treated with air at 125-225{degrees}C is not significantly different from that of untreated coal. Flotation of Pittsburgh No. 8 coal treated with air is lower than that of untreated coal and decreases with treatment temperatures. Flotation of Illinois No. 6 coal treated with nitrogen with nitrogen only is higher than that of untreated coal. Flotation of Illinois No. 6 coal treated with nitrogen at 125-175{degrees}C increases with treatment temperatures, whereas flotation of Illinois No. 6 coal treated with nitrogen at 174-225{degrees}C decreases with treatment temperatures.« less
Carbon Management in the Electric Power Industry
NASA Astrophysics Data System (ADS)
Stringer, John
2002-03-01
Approximately 53States in 2000 came from the combustion of coal in Rankine cycle plant; 16principally in Brayton cycle or combined cycle units. Electricity generation is responsible for 36amthropogenic CO2. This compares with 32transportation sector, but since the electric utility generators are large fixed sources it is likely that any legislation designed to reduce CO2 production will adress the utility generators first. Over the last 100 years there has been a continuous decrease in the carbon fraction of the fuels used for energy production world wide, and it is expected that this will continue, principally as a result of the increasing fraction of natural gas. It appears probable that the retirement of the existing nuclear fleet will be delayed by relicensing, and it seems more possible that new nuclear plant will be built than seemed likely even a couple of years ago. The impact of renewables should be increasing, but currently only about 2way currently, and without some considerable incentives, the rate of increase in this component over the next twenty years will probably be small. Currently, hydroelectric plants account for 7indication that this will increase appreciably. At the moment, a significant change would appear to require the capture of CO2 from the exhaust of the combustion plants, and particularly the large existing fleet of coal-fired Rankine units. Following the capture, the CO2 must then be sequestered in secure long-term locations. In addition, increases in the efficiency of power generation, and increases in the efficiency of end use leading to reductions in the energy intensity of the Gross Domestic Product, will be necessary. This paper will review the current state of art in these various approaches to the problem.
A synoptic description of coal basins via image processing
NASA Technical Reports Server (NTRS)
Farrell, K. W., Jr.; Wherry, D. B.
1978-01-01
An existing image processing system is adapted to describe the geologic attributes of a regional coal basin. This scheme handles a map as if it were a matrix, in contrast to more conventional approaches which represent map information in terms of linked polygons. The utility of the image processing approach is demonstrated by a multiattribute analysis of the Herrin No. 6 coal seam in Illinois. Findings include the location of a resource and estimation of tonnage corresponding to constraints on seam thickness, overburden, and Btu value, which are illustrative of the need for new mining technology.
Proceedings of the 92nd regular meeting of the Rocky Mountain Coal Mining Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finnie, D.G.
1996-12-31
The proceedings of the 92nd Regular Meeting of the Rocky Mountain Coal Mining Institute held June 29-July 2, 1996 in Durango, CO. are presented. Attention was focused on the following areas: plots, plans, and partnerships in US mining; partnerships at McKinley; deregulation of the electric utility industry; environmental partnerships; Federal Mine Safety and Health Act; injury prevention in the coal mining industry; new trend in back injury prevention; and automated high wall mining. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Kent and Riegel's Handbook of industrial chemistry and biotechnology. 11th ed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, James A.
2007-07-01
This handbook provides extensive information on plastics, rubber, adhesives, textile fibers, pharmaceutical chemistry, synthetic organic chemicals, soaps and detergents, as well as various other major classes of industrial chemistry. There is detailed coverage of coal utilization technology, dyes and dye intermediates, chlor-alkali and heavy chemicals, paints and pigments, chemical explosives, propellants, petroleum and petrochemicals, natural gas, industrial gases, synthetic nitrogen products, fats and oils, sulfur and sulfuric acid, phosphorous and phosphates, wood products, and sweeteners. The chapter on coal is entitled: coal technology for power, liquid fuels and chemicals. 100 ills.
NASA Astrophysics Data System (ADS)
Tkach, SM; Gavrilov, VL
2017-02-01
It is shown that the process flows of mining, haulage and utilization of coal in the Polar regions in Yakutia feature high quantitative and qualitative loss. In case the process flows are considered as integrated systems aimed at the overall performance efficiency, it is possible to reduce the loss per each individual chain loop. The authors formulate approaches intended to lower total loss of coal in process flows. The geotechnical and organizational solutions are put forward to improve and stabilize quality of fuel used by local fuel and energy industry.
Lung disease and coal mining: what pulmonologists need to know.
Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S
2016-03-01
Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.
Diversity of fuel sources for electricity generation in an evolving U.S. power sector
NASA Astrophysics Data System (ADS)
DiLuccia, Janelle G.
Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.
Economics and coal resource appraisal: strippable coal in the Illinois Basin ( USA).
Attanasi, E.D.; Green, E.K.
1981-01-01
Because coal is expected to provide an increasing part of U.S. energy supply, it is crucial for long term planning that coal-resource appraisals convey sufficient information regarding the degree of economic resource scarcity as coal consumption increases. Argues that coal-resource estimates, as they are now made, will not give warning of future supply difficulties. A method for incorporating an economic dimension into appraisals of strippable coal resources is presented and applied to a major producing region, the Illinois part of the Illinois basin? In particular, a long-run incremental cost function (that is unit costs vs. cumulative reserves extracted) is estimated for strippable coal in Illinois. -from Authors
Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.M.; Musich, M.A.; Young, B.C.
In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt%more » for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.
1999-07-01
As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less
Desulfurization of coal by microbial column flotation.
Ohmura, N; Saiki, H
1994-06-05
Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.
Iowa State Mining and Mineral Resources Research Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-08-01
This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchancemore » how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.« less
Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.
2011-11-30
Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energymore » generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.« less
Evaluating the CO 2 emissions reduction potential and cost of power sector re-dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel C.; Bielen, David A.; Townsend, Aaron
Prior studies of the U.S. electricity sector have recognized the potential to reduce carbon dioxide (CO2) emissions by substituting generation from coal-fired units with generation from under-utilized and lower-emitting natural gas-fired units; in fact, this type of 're-dispatch' was invoked as one of the three building blocks used to set the emissions targets under the Environmental Protection Agency's Clean Power Plan. Despite the existence of surplus natural gas capacity in the U.S., power system operational constraints not often considered in power sector policy analyses, such as transmission congestion, generator ramping constraints, minimum generation constraints, planned and unplanned generator outages, andmore » ancillary service requirements, could limit the potential and increase the cost of coal-to-gas re-dispatch. Using a highly detailed power system unit commitment and dispatch model, we estimate the maximum potential for re-dispatch in the Eastern Interconnection, which accounts for the majority of coal capacity and generation in the U.S. Under our reference assumptions, we find that maximizing coal-to-gas re-dispatch yields emissions reductions of 230 million metric tons (Mt), or 13% of power sector emissions in the Eastern Interconnection, with a corresponding average abatement cost of $15-$44 per metric ton of CO2, depending on the assumed supply elasticity of natural gas.« less
Coal Technology Program progress report, March 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less
Tandem mass spectrometry: analysis of complex mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, K.E.
1985-01-01
Applications of tandem mass spectrometry (MS/MS) for the analysis of complex mixtures results in increased specificity and selectivity by using a variety of reagent gases in both negative and positive ion modes. Natural isotopic abundance ratios were examined in both simple and complex mixtures using parent, daughter and neutral loss scans. MS/MS was also used to discover new compounds. Daughter scans were used to identify seven new alkaloids in a cactus species. Three of these alkaloids were novel compounds, and included the first simple, fully aromatic isoquinoline alkaloids reported in Cactaceae. MS/MS was used to characterize the chemical reaction productsmore » of coal in studies designed to probe its macromolecular structure. Negative ion chemical ionization was utilized to study reaction products resulting from the oxidation of coal. Possible structural units in the precursor coal were predicted based on the reaction products identified, aliphatic and aromatic acids and their anhydrides. The MS/MS method was also used to characterize reaction products resulting from coal liquefaction and/or extraction. These studies illustrate the types of problems for which MS/MS is useful. Emphasis has been placed on characterization of complex mixtures by selecting experimental parameters which enhance the information obtained. The value of using MS/MS in conjunction with other analytical techniques as well as the chemical pretreatment is demonstrated.« less
The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...
The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...
The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...
The report gives results of a study, the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired utility plants. To accomplish the object...
Commentary an urgent need for an EPA standard for disposal of coal ash
A. Dennis Lemly
2014-01-01
EPA, the White House, and electric utilities are stalled in a struggle over a proposed new rule on coal ash disposal. Although this rule is long overdue, EPA now stands on the cusp of bringing forward a landmark decision that could benefit aquatic resources in the USA for decades to come and also set an important regulatory leadership example for the international...
Coal-seismic, desktop computer programs in BASIC; Part 7, Display and compute shear-pair seismograms
Hasbrouck, W.P.
1983-01-01
Processing of geophysical data taken with the U.S. Geological Survey's coal-seismic system is done with a desk-top, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report discusses and presents five computer pro grams used to display and compute shear-pair seismograms.
Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...
NASA Astrophysics Data System (ADS)
Xu, Kaili
Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also simulated by using the Real Time Digital Simulator (RTDS) with a few assumptions. Simulation results of various operating conditions confirm the theoretical analysis results.
The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei
2016-01-01
The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miknis, F.P.; Netzel, D.A.
The results of coal swelling measurements using 1,4-dioxane as the swelling reagent for premoisturized coals (raw) and coal dried thermally, chemically, and with microwave radiation are presented. An increase in the swelling ratio relative to raw coal indicates a decrease in the amount of cross-linking in the coal. Conversely, a decrease in the ratio indicates an increase in cross-linking. The extent of cross-linking (as measured by 1,4-dioxane) for Texas, Black Thunder, and Eagle Butte Coals are about the same. Illinois {number_sign}6 coal appears to have less cross-linking relative to the other three coals. These results are expected on the basismore » of coal rank. The increase in cross linking is most pronounced for coals dried thermally and with microwave radiation. A decrease in the swelling ratios for all four coals suggests that cross-linking had occurred possibly due to partial devolatilization process. However, low temperature, chemical dehydration of the coals causes only a small or no change in the internal structure for Texas and Illinois {number_sign}6 coals whereas a significant decrease in the cross-linking structure for the Black Thunder and Eagle Butte coals is observed. It is possible that the solvent (CH{sub 3}OH) and products resulting from the chemical dehydrating (acetone and methanol) occupy the surface sites that water had before the reaction and thus preventing cross-linking to occur. These reagents can also promote swelling of coals and may account for some of the decrease in the cross-linking of the coal structure observed for the chemically dried coals.« less
From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)
Mastalerz, Maria; Padgett, P.L.
1999-01-01
A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof
2016-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG reactors. Fault reactivation resulting from fault shear and normal displacements is discussed under consideration of potentially induced seismicity. Here, the coupled simulation results indicate that seismic hazard during UCG operation remains negligible with a seismic moment magnitude of MW < 3.
Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.
Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang
2014-05-01
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Low-rank coal study : national needs for resource development. Volume 2. Resource characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources bymore » depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.« less
Studies of coupled chemical and catalytic coal conversion methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, L.M.
1988-01-01
Liquefaction of coal by depolymerization in an organic solvent has been studied for several years. The liquefied coal extract which results from such a process is far more suitable for conversion into liquid fuel by hydrogenolysis than is the untreated coal. Investigations on the chemical structure and the reactive sites of coal can help to select useful reactions for the production of liquids from coal. Sternberg et al. demonstrated that the reductive alkylation method transforms bituminous coal into an enormously soluble substance, irrespective of the mild reaction conditions. The effectiveness of newly introduced alkyl groups for the disruption of intermolecularmore » hydrogen bonds and pi-pi interactions between the aromatic sheets in coal macromolecules has been recognized. It has been reported by Ignasiak et al. that a C-alkylabon reaction using sodium or potassium amide in liquid ammonia can be used to introduce alkyl groups at acidic carbon sites. A method has been developed recently in this laboratory for the solubilization of high rank coals. In the previous reports it was shown that n-butyl lithium and potassium t-butoxide in refluxing heptane produced coal anions which could be alkylated with different alkyl halides. Such alkylated coals were soluble up to 92% in solvents like pyridine. Though the solubilization of coal depended very much on the length of the alkyl group, it also depended very much on the nature of the base used. Strong bases like n-butyl lithium (pKa=42) can cause proton abstraction from aromatic structures, if the more acidic benzylic protons are absent. The utility of this procedure, initially developed and used by Miyake and Stock, has now been tested with the high oxygen containing, low rank Illinois No. 6 and Wyodak coals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, L.M.
1988-12-31
Liquefaction of coal by depolymerization in an organic solvent has been studied for several years. The liquefied coal extract which results from such a process is far more suitable for conversion into liquid fuel by hydrogenolysis than is the untreated coal. Investigations on the chemical structure and the reactive sites of coal can help to select useful reactions for the production of liquids from coal. Sternberg et al. demonstrated that the reductive alkylation method transforms bituminous coal into an enormously soluble substance, irrespective of the mild reaction conditions. The effectiveness of newly introduced alkyl groups for the disruption of intermolecularmore » hydrogen bonds and pi-pi interactions between the aromatic sheets in coal macromolecules has been recognized. It has been reported by Ignasiak et al. that a C-alkylabon reaction using sodium or potassium amide in liquid ammonia can be used to introduce alkyl groups at acidic carbon sites. A method has been developed recently in this laboratory for the solubilization of high rank coals. In the previous reports it was shown that n-butyl lithium and potassium t-butoxide in refluxing heptane produced coal anions which could be alkylated with different alkyl halides. Such alkylated coals were soluble up to 92% in solvents like pyridine. Though the solubilization of coal depended very much on the length of the alkyl group, it also depended very much on the nature of the base used. Strong bases like n-butyl lithium (pKa=42) can cause proton abstraction from aromatic structures, if the more acidic benzylic protons are absent. The utility of this procedure, initially developed and used by Miyake and Stock, has now been tested with the high oxygen containing, low rank Illinois No. 6 and Wyodak coals.« less
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Mercury in coal and the impact of coal quality on mercury emissions from combustion systems
Kolker, A.; Senior, C.L.; Quick, J.C.
2006-01-01
The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.
Advanced coal gasifier-fuel cell power plant systems design
NASA Technical Reports Server (NTRS)
Heller, M. E.
1983-01-01
Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.
Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie
This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates aremore » high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.« less
Electric home heating: Substitution for oil and gas
NASA Astrophysics Data System (ADS)
Burwell, C. C.; Devine, W. D., Jr.; Phung, D. L.
1982-03-01
The objective of the research is to determine the potential for substituting electricity generated with surplus coal and nuclear capacity for gas and oil used for home heating. The relative effectiveness of electric heating was determined by an analysis of the purposes of extra winter sales of electricity to the residential sector compared to a similar analysis for extra winter sales of natural gas. The price of electricity for heating is determined based on utility rate structures for selected utilities (primarily located in the north and south central portions of the country) having surplus coal and nuclear capacity throughout the decade of the 1980s. It is found that, on the average, the overall efficiency of fuel use for heating homes electrically is comparable to the use of combustion systems in the home and that electric heating is substantially less costly than direct heating with oil in regions where coal and uranium are the primary fuels used for power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, C.H.; Shipper, E.S. Jr.
The cost of transporting coal is the most important aspect of the nation's failure to turn to coal and energy independence. The coal consumer is interested only in comparing the delivered costs of competitive sources of energy, and coal is frequently prohibitively high. The case for coal slurry pipelines and the need for federal legislation granting eminent domain and water rights is clear. The benefits to the public derive from increased use of domestic coal reserves at lower costs and from increased coal exports. Coal slurry pipelines will not be dependent upon federal largesse. While passage of legislation does notmore » guarantee construction, it will ensure that a genuine element of competition will be introduced. Without new legislation, slurry pipelines will remain ''pipe dreams.'' 108 references.« less
Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies
Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.
2015-01-01
Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.
Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.
Solar augmentation for process heat with central receiver technology
NASA Astrophysics Data System (ADS)
Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul
2016-05-01
Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S; Inagaki, Fumio; Orphan, Victoria J
2017-10-31
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13 C- or 15 N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
Trembath-Reichert, Elizabeth; Morono, Yuki; Ijiri, Akira; Hoshino, Tatsuhiko; Dawson, Katherine S.; Inagaki, Fumio
2017-01-01
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates. PMID:29078310
Chen, Bingyu; Liu, Guijian; Sun, Ruoyu
2016-05-01
A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.
Air quality and climate benefits of long-distance electricity transmission in China
NASA Astrophysics Data System (ADS)
Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.
2017-06-01
China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.
Comparative assessment of water use and environmental implications of coal slurry pipelines
Palmer, Richard N.; James II, I. C.; Hirsch, R.M.
1977-01-01
With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)
Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.
2011-01-01
The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.
Clean coal initiatives in Indiana
Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.
2007-01-01
Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond Hobbs
2007-05-31
The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial workmore » the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.« less
Concurrent changes in aggregation and swelling of coal particles in solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, M.
1995-12-31
A new method of coal swelling has been developed tinder the condition of low coal concentrations with continuous mixing of coal and solvent. The change in particle size distributions by a laser scattering procedure was used for the evaluation of coal swelling. Particle size distributions in good and poor solvents were nearly equal, but reversibly changed in good solvents from time to time. The effects of solubles and coal concentrations on the distributions were small. It was concluded that aggregate d coal particles disaggregate in good solvents, and that an increase in the particle size distribution due to swelling inmore » good solvents are compensated by a decrease in the particle size due to disaggregation. Therefore, the behavior of coal particles in solvents is controlled by aggregation in addition to coal swelling. This implies that an increase in the particle size due to coal swelling in actual processes is not so large as expected by the results obtained from the conventional coal swelling methods.« less
Development of a 5 kW Prototype Coal-Based Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh
2014-01-20
The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less
NASA Astrophysics Data System (ADS)
Hu, Guozhong; Yang, Nan; Xu, Guang; Xu, Jialin
2018-03-01
The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.
Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian Wang; Jianmin Wang; Yulin Tang
2009-05-15
Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less
Central Appalachia: Production potential of low-sulfur coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J.
The vast preponderance of eastern US low sulfur and 1.2-lbs SO{sub 2}/MMBtu compliance coal comes from a relatively small area composed of 14 counties located in eastern Kentucky, southern West Virginia and western Virginia. These 14 counties accounted for 68% of all Central Appalachian coal production in 1989 as well as 85% of all compliance coal shipped to electric utilities from this region. A property-by-property analysis of total production potential in 10 of the 14 counties (Floyd, Knott, Letcher, Harlan, Martin and Pike in Kentucky and Boone, Kanawha, Logan and Mingo in West Virginia) resulted in the following estimates ofmore » active and yet to be developed properties: (1) total salable reserves for all sulfur levels were 5.9 billion tons and (2) 1.2-lbs. SO{sub 2}/MMBtu compliance'' reserves totaled 2.38 billion tons. This potential supply of compliance coal is adequate to meet the expanded utility demand expected under acid rain for the next 20 years. Beyond 2010, compliance supplies will begin to reach depletion levels in some areas of the study region. A review of the cost structure for all active mines was used to categorize the cost structure for developing potential supplies. FOB cash costs for all active mines in the ten counties ranged from $15 per ton to $35 per ton and the median mine cost was about $22 per ton. A total of 47 companies with the ability to produce and ship coal from owned or leased reserves are active in the ten-county region. Identified development and expansion projects controlled by active companies are capable of expanding the region's current production level by over 30 million tons per year over the next twenty years. Beyond this period the issue of reserve depletion for coal of all sulfur levels in the ten county region will become a pressing issue. 11 figs., 12 tabs.« less
Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin
Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.
2010-01-01
The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.
Influence of electrical double-layer interaction on coal flotation.
Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M
2002-06-15
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.
1992-01-01
The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less
Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui
2016-10-01
The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regional price targets appropriate for advanced coal extraction
NASA Technical Reports Server (NTRS)
Terasawa, K. L.; Whipple, D. M.
1980-01-01
A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.
Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.
Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele
2013-10-31
Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.
Topical tar: Back to the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paghdal, K.V.; Schwartz, R.A.
2009-08-15
The use of medicinal tar for dermatologic disorders dates back to the ancient times. Although coal tar is utilized more frequently in modern dermatology, wood tars have also been widely employed. Tar is used mainly in the treatment of chronic stable plaque psoriasis, scalp psoriasis, atopic dermatitis, and seborrheic dermatitis, either alone or in combination therapy with other medications, phototherapy, or both. Many modifications have been made to tar preparations to increase their acceptability, as some dislike its odor, messy application, and staining of clothing. One should consider a tried and true treatment with tar that has led to clearingmore » of lesions and prolonged remission times. Occupational studies have demonstrated the carcinogenicity of tar; however, epidemiologic studies do not confirm similar outcomes when used topically. This article will review the pharmacology, formulations, efficacy, and adverse effects of crude coal tar and other tars in the treatment of selected dermatologic conditions.« less
Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing
Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele
2013-01-01
Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications. PMID:28788372
CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT
The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...
Desulfurizing Coal By Chlorinolysis and Hydrogenation
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.
1983-01-01
85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.
Grindability and combustion behavior of coal and torrefied biomass blends.
Gil, M V; García, R; Pevida, C; Rubiera, F
2015-09-01
Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kolak, Jonathan J.; Burruss, Robert A.
2005-01-01
Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.