Sample records for increased collagen expression

  1. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    PubMed Central

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  2. The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging.

    PubMed

    Egbert, M; Ruetze, M; Sattler, M; Wenck, H; Gallinat, S; Lucius, R; Weise, J M

    2014-01-01

    Periostin is a secreted 90kDa matricellular protein, which is predominantly expressed in collagen-rich tissues. Collagen is the most abundant protein in mammals and has great tensile strength. Recent investigations have shown that periostin influences collagen fibrillogenesis and biomechanical properties of murine connective tissues. We investigated the function of periostin concerning collagen homeostasis during intrinsic and extrinsic skin aging. For this purpose, human skin samples of young and old donors as well as samples of photoaged and sun-protected skin areas were analyzed for periostin expression. Using in vitro models, we determined the cell types responsible for periostin expression and performed functional analyses with periostin knockdown cells. TaqMan Real-Time PCR, UV irradiation, knockdown experiments, immunostaining, electron microscopy, collagen degradation assay, collagen crosslink analysis. Periostin expression is highest in the papillary dermis and downregulated during skin aging. Fibroblasts and non-follicular skin derived precursors were identified as main source for periostin expression in human skin. Periostin knockdown in fibroblasts has no effect on collagen expression, but results in an increased fibril diameter and aberrant collagen structure. This leads to an increased susceptibility of collagen toward proteases, whereas recombinant periostin protects collagen fibrils from degradation. Our data show that periostin plays an important role for proper collagen assembly and homeostasis. During skin aging periostin expression decreases and contributes to the phenotype of aged skin. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells.

    PubMed

    Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin

    2016-01-01

    During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.

  4. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    PubMed

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  5. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  6. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  7. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes.

    PubMed

    Fong, Gloria; Backman, Ludvig J; Hart, David A; Danielson, Patrik; McCormack, Bob; Scott, Alex

    2013-01-01

    The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading. Copyright © 2012 Orthopaedic Research Society.

  8. Cigarette smoke extract induces select matrix metalloproteinases and integrin expression in periodontal ligament fibroblasts.

    PubMed

    Bulmanski, Zachary; Brady, Matthew; Stoute, Diana; Lallier, Thomas E

    2012-06-01

    The periodontal ligament (PDL) is the connective tissue that anchors the cementum of the teeth to the alveolar bone. PDL fibroblasts are responsible for the production of collagen and remodeling of the PDL. Periodontal disease is increased among smokers in both incidence and severity. This study examines the direct effect of smoking on PDL fibroblasts and their production of various matrix components and remodeling enzymes. PDL cells were plated for 1 day and then treated with various concentrations of cigarette smoke extract (CSE). Survival of PDL cells was quantified after exposure to CSE, and their ability to contract three-dimensional collagen gels was examined. Changes in transcript expression after CSE treatment was compared using reverse transcription-polymerase chain reaction analysis for matrix metalloproteinases (MMPs), collagens, and integrins. Treatment with CSE-induced cell death at concentrations of ≥5%. PDL-cell-induced collagen gel contraction was reduced at concentrations of 1.5% CSE. Treatment with CSE selectively increased the expression of collagen Vα3 and decreased collagen XIα1. CSE increased the expression of MMP1 and MMP3 and, to a lesser extent, MMP2 and MMP8. CSE also increased the expression of integrins α1, α2, and α10 (collagen receptors) and α9 (a tenascin receptor). This study shows that cigarette smoking has local effects on the cells of the PDL. CSE reduced survival of PDL cells and their ability to contract collagen matrices. CSE also altered the expression of molecules known to provide the structural integrity of the ligament by altering collagen synthesis and remodeling as well as cell adhesion.

  9. Developmental changes in skin collagen biosynthesis pathway in posthatch male and female chickens

    NASA Technical Reports Server (NTRS)

    Pines, M.; Schickler, M.; Hurwitz, S.; Yamauchi, M.

    1996-01-01

    The developmental changes in skin collagen biosynthesis pathway in male and female chickens were evaluated. Concentration of collagen, levels of mRNA for collagen type I subunits and for lysyl hydroxylase, and the level of three lysyl oxidase-derived cross-links: dehydro-dihydroxylysinonorleucine (DHLNL), dehydro-hydroxylysinonorleucine (HLNL), and dehydro-histidinohydroxymerodesmosine (HHMD) were determined during 4 wk posthatching. Skin collagen content increased with age and was higher in males than in females. In both sexes, the expression of the genes coding for alpha 1 and alpha 2 of collagen type I decreased with age: alpha 1(I) gene expression decreased from Day 3 onwards, whereas the reduction in alpha 2(I) gene expression started 1 wk later. At all ages examined, the expression of both genes was higher in male than in female skin. Males and females lysyl hydroxylase gene expression remained low until Day 16, after which an increase in the enzyme gene expression was observed. An increase in skin HLNL content was observed from Day 3 in both sexes reaching a peak in males at Day 9 and in females 1 wk later. The DHLNL content, which was higher in males than in females at all ages tested, dramatically decreased in both male and female skin from 3 d of age, reaching its lowest level at Day 16, and remained at that low level thereafter. The skin content of HHMD in males and females followed an oscillatory behavior with higher peaks in the male skin. The results suggest that the higher tensile strength of male skin than female skin may be due to the elevated skin collagen content that resulted from increased expression in collagen type I genes on the one hand, and from the higher amounts of various collagen cross-links on the other.

  10. Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation.

    PubMed

    El Hajj, Elia C; El Hajj, Milad C; Voloshenyuk, Tetyana G; Mouton, Alan J; Khoutorova, Elena; Molina, Patricia E; Gilpin, Nicholas W; Gardner, Jason D

    2014-02-01

    Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol-induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5 to 200 mM) for 48 hours. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol (EtOH) were determined using rats exposed to EtOH vapor for 2 weeks, resulting in blood alcohol levels of 150 to 200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP, and collagen expression, was assessed. EtOH-exposed rats exhibited up-regulation of TIMP-1, TIMP-3 and TIMP-4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo EtOH exposure also produced fibrosis, indicated by increased CVF and expression of collagens. Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of myocardial fibrosis and cardiac dysfunction resulting from chronic alcohol abuse. Copyright © 2013 by the Research Society on Alcoholism.

  11. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis.

    PubMed

    Rebustini, Ivan T; Myers, Christopher; Lassiter, Keyonica S; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G; Hoffman, Matthew P

    2009-10-01

    Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here, we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Specifically, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA treatment, increasing MT-MMP and proproliferative gene expression via beta1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis.

  12. Upregulation of distinct collagen transcripts in post-surgery scar tissue: a study of conjunctival fibrosis.

    PubMed

    Seet, Li-Fong; Toh, Li Zhen; Chu, Stephanie W L; Finger, Sharon N; Chua, Jocelyn L L; Wong, Tina T

    2017-06-01

    Excessive accumulation of collagen is often used to assess the development of fibrosis. This study aims to identify collagen genes that define fibrosis in the conjunctiva following glaucoma filtration surgery (GFS). Using the mouse model of GFS, we have identified collagen transcripts that were upregulated in the fibrotic phase of wound healing via RNA-seq. The collagen transcripts that were increased the most were encoded by Col8a1 , Col11a1 and Col8a2 Further analysis of the Col8a1 , Col11a1 and Col8a2 transcripts revealed their increase by 67-, 54- and 18-fold, respectively, in the fibrotic phase, compared with 12-fold for Col1a1 , the most commonly evaluated collagen gene for fibrosis. However, only type I collagen was significantly upregulated at the protein level in the fibrotic phase. Type VIII and type I collagens colocalized in fibrous structures and in ACTA2-positive pericytes, and appeared to compensate for each other in expression levels. Type XI collagen showed low colocalization with both type VIII and type I collagens but can be found in association with macrophages. Furthermore, we show that both mouse and human conjunctival fibroblasts expressed elevated levels of the most highly expressed collagen genes in response to TGFβ2 treatment. Importantly, conjunctival tissues from individuals whose GF surgeries have failed due to scarring showed 3.60- and 2.78-fold increases in type VIII and I collagen transcripts, respectively, compared with those from individuals with no prior surgeries. These data demonstrate that distinct collagen transcripts are expressed at high levels in the conjunctiva after surgery and their unique expression profiles may imply differential influences on the fibrotic outcome. © 2017. Published by The Company of Biologists Ltd.

  13. Strain-Specific Induction of Endometrial Periglandular Fibrosis in Mice Exposed During Adulthood to the Endocrine Disrupting Chemical Bisphenol A

    PubMed Central

    Kendziorski, Jessica A.; Belcher, Scott M.

    2015-01-01

    The aim of this study was to compare effects of bisphenol A (BPA) on collagen accumulation in uteri of two mouse strains. Adult C57Bl/6N and CD-1 mice were exposed to dietary BPA (0.004–40 mg/kg/day) or 17α-ethinyl estradiol (0.00002–0.001 mg/kg/day) as effect control. An equine endometrosis-like phenotype with increased gland nesting and periglandular collagen accumulation was characteristic of unexposed C57Bl/6N, but not CD-1, endometrium. BPA non-monotonically increased gland nest density and periglandular collagen accumulation in both strains. Increased collagen I and III expression, decreased matrix metalloproteinase 2 (MMP2) and MMP14 expression, and increased immune response were associated with the endometrosis phenotype in the C57Bl/6N strain and the 30 ppm BPA CD-1 group. The association between the pro-collagen shift in increased collagen expression and decreased MMP2 expression and activity implies that strain differences and BPA exposure salter regulation of endometrial remodeling and contributes to increased fibrosis, a component of several human uterine diseases. PMID:26307436

  14. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro

    NASA Technical Reports Server (NTRS)

    Uzawa, K.; Grzesik, W. J.; Nishiura, T.; Kuznetsov, S. A.; Robey, P. G.; Brenner, D. A.; Yamauchi, M.

    1999-01-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern.

  15. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis

    PubMed Central

    Rebustini, Ivan T.; Myers, Christopher; Lassiter, Keyonica S.; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G.; Hoffman, Matthew P.

    2009-01-01

    Summary Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Importantly, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA-treatment, increasing MT-MMP and pro-proliferative gene expression via β1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA-treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis. PMID:19853562

  16. Impaired Collagen Biosynthesis and Cross‐linking in Aorta of Patients With Bicuspid Aortic Valve

    PubMed Central

    Wågsäter, Dick; Paloschi, Valentina; Hanemaaijer, Roeland; Hultenby, Kjell; Bank, Ruud A.; Franco‐Cereceda, Anders; Lindeman, Jan H. N.; Eriksson, Per

    2013-01-01

    Background Patients with bicuspid aortic valve (BAV) have an increased risk of developing ascending aortic aneurysm. In the present study, collagen homeostasis in nondilated and dilated aorta segments from patients with BAV was studied, with normal and dilated aortas from tricuspid aortic valve (TAV) patients as reference. Methods and Results Ascending aortas from 56 patients were used for biochemical and morphological analyses of collagen. mRNA expression was analyzed in 109 patients. Collagen turnover rates were similar in nondilated and dilated aortas of BAV patients, showing that aneurysmal formation in BAV is, in contrast to TAV, not associated with an increased collagen turnover. However, BAV in general was associated with an increased aortic collagen turnover compared with nondilated aortas of TAV patients. Importantly, the ratio of hydroxylysyl pyridinoline (HP) to lysyl pyridinoline (LP), 2 distinct forms of collagen cross‐linking, was lower in dilated aortas from patients with BAV, which suggests that BAV is associated with a defect in the posttranslational collagen modification. This suggests a deficiency at the level of lysyl hydroxylase (PLOD1), which was confirmed by mRNA and protein analyses that showed reduced PLOD1 expression but normal lysyl oxidase expression in dilated aortas from patients with BAV. This suggests that impaired collagen cross‐linking in BAV patients may be attributed to changes in the expression and/or activity of PLOD1. Conclusions Our results demonstrate an impaired biosynthesis and posttranslational modification of collagen in aortas of patients with BAV, which may explain the increased aortic aneurysm formation in BAV patients. PMID:23525417

  17. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2013-11-01

    Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. We investigated the effects of WFA on loss of type collagen expression and inflammation in rabbit articular chondrocytes. WFA increased the production of reactive oxygen species, suggesting the induction of oxidative stress, in a dose-dependent manner. Also, we confirmed that WFA causes loss of type collagen expression and inflammation as determined by a decrease of type II collagen expression and an increase of cyclooxygenase-2 (COX-2) expression via western blot analysis in a dose- and time- dependent manner. WFA also reduced the synthesis of sulfated proteoglycan via Alcian blue staining and caused the synthesis of prostaglandin E2 (PGE2) via assay kit in dose- and time-dependent manners. Treatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited WFA-induced loss of type II collagen expression and increase in COX-2 expression, accompanied by inhibition of reactive oxygen species production. WFA increased phosphorylation of both Akt and p38. Inhibition of PI3K/Akt, p38, and JNK with LY294002 (LY), SB203580 (SB), or SP600125 (SP) in WFA-treated cells rescued the expression of type II collagen and suppressed the expression of COX-2. These results demonstrate that WFA induces loss of type collagen expression and inflammation via PI3K/Akt, p38, and JNK by generating reactive oxygen species in rabbit articular chondrocytes. © 2013 Published by Elsevier Inc.

  18. Hyaluronic acid increases tendon derived cell viability and collagen type I expression in vitro: Comparative study of four different Hyaluronic acid preparations by molecular weight.

    PubMed

    Osti, Leonardo; Berardocco, Martina; di Giacomo, Viviana; Di Bernardo, Graziella; Oliva, Francesco; Berardi, Anna C

    2015-10-06

    Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate in human rotator cuff tendon derived cells the effects of four different HA on cell viability, proliferation, apoptosis and the expression of collagen type I and collagen type III. An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of four different HA preparations (Ps) (sodium hyaluronate MW: 500-730 KDa - Hyalgan®, 1000 kDa Artrosulfur HA®, 1600 KDa Hyalubrix® and 2200 KDa Synolis-VA®) at various concentrations. Tendon derived cells morphology were evaluated after 0, 7 and 14 d of culture. Viability, proliferation, apoptosis were evaluated after 0, 24 and 48 h of culture. The expression and deposition of collagen type I and collagen type III were evaluated after 1, 7 and 14 d of culture. All HAPs tested increased viability and proliferation, in dose dependent manner. HAPs already reduce apoptosis at 24 h compared to control cells (without HAPs). Furthermore, HAPs stimulated the synthesis of collagen type I in a dose dependent fashion over 14 d, without increase in collagen type III; moreover, in the presence of Synolis-VA® the expression and deposition of collagen type I was significantly higher as compare with the other HAPs. HAPs enhanced viability, proliferation and expression of collagen type I in tendon derived cells.

  19. Expression of heat shock protein 47 is increased in remnant kidney and correlates with disease progression

    PubMed Central

    SUNAMOTO, MASAAKI; KUZE, KOGO; IEHARA, NORIYUKI; TAKEOKA, HIROYA; NAGATA, KAZUHIRO; KITA, TORU; DOI, TOSHIO

    1998-01-01

    Glomerulosclerosis is characterized by accumulation of the mesangial extracellular matrix, including type I and IV collagen. The processing for the collagens in the glomeruli may play a critical role for development of glomerulosclerosis. We examined the expression of heat shock protein 47 (HSP47), a collagen-binding molecular chaperone in the progresive glomerulosclerosis model. Subtotally nephrectomized rats, unlike sham-operated rats, developed focal and segmental glomerulosclerosis. Immunological staining demonstrated an increased expression of HSP47 which paralleled the expression of type I and IV collagen in the glomeruli of the nephrectomized rats as the glomerulosclerosis developed. The mRNA levels encoding type I and type IV collagen and HSP47 were increased 3.4 fold, 3.6 fold and 2.8 fold, respectively, at week 7 after nephrectomy. By in situ hybridization, the expression of HSP47 mRNA was determined to be localized to the glomeruli with segmental sclerosis. These results suggest that HSP47 may play a central role in the process of extracellular matrix accumulation during the development of glomerulosclerosis. PMID:9741355

  20. Differential expression of type X collagen in a mechanically active 3-D chondrocyte culture system: a quantitative study

    PubMed Central

    Yang, Xu; Vezeridis, Peter S; Nicholas, Brian; Crisco, Joseph J; Moore, Douglas C; Chen, Qian

    2006-01-01

    Objective Mechanical loading of cartilage influences chondrocyte metabolism and gene expression. The gene encoding type X collagen is expressed specifically by hypertrophic chondrocytes and up regulated during osteoarthritis. In this study we tested the hypothesis that the mechanical microenvironment resulting from higher levels of local strain in a three dimensional cell culture construct would lead to an increase in the expression of type X collagen mRNA by chondrocytes in those areas. Methods Hypertrophic chondrocytes were isolated from embryonic chick sterna and seeded onto rectangular Gelfoam sponges. Seeded sponges were subjected to various levels of cyclic uniaxial tensile strains at 1 Hz with the computer-controlled Bio-Stretch system. Strain distribution across the sponge was quantified by digital image analysis. After mechanical loading, sponges were cut and the end and center regions were separated according to construct strain distribution. Total RNA was extracted from the cells harvested from these regions, and real-time quantitative RT-PCR was performed to quantify mRNA levels for type X collagen and a housing-keeping gene 18S RNA. Results Chondrocytes distributed in high (9%) local strain areas produced more than two times type X collagen mRNA compared to the those under no load conditions, while chondrocytes located in low (2.5%) local strain areas had no appreciable difference in type X collagen mRNA production in comparison to non-loaded samples. Increasing local strains above 2.5%, either in the center or end regions of the sponge, resulted in increased expression of Col X mRNA by chondrocytes in that region. Conclusion These findings suggest that the threshold of chondrocyte sensitivity to inducing type X collagen mRNA production is more than 2.5% local strain, and that increased local strains above the threshold results in an increase of Col X mRNA expression. Such quantitative analysis has important implications for our understanding of mechanosensitivity of cartilage and mechanical regulation of chondrocyte gene expression. PMID:17150098

  1. A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance.

    PubMed

    Yan, Xiaoyan; Zhang, Chuanbao; Liang, Tingyu; Yang, Fan; Wang, Haoyuan; Wu, Fan; Wang, Wen; Wang, Zheng; Cheng, Wen; Xu, Jiangnan; Jiang, Tao; Chen, Jing; Ding, Yaozhong

    2017-10-17

    Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.

  2. Increased oxygen exposure alters collagen expression and tissue architecture during ligature-induced periodontitis.

    PubMed

    Gajendrareddy, P K; Junges, R; Cygan, G; Zhao, Y; Marucha, P T; Engeland, C G

    2017-06-01

    The aim of this study was to evaluate the effects of increased oxygen availability on gene expression and on collagen deposition/maturation in the periodontium following disease. Male Wistar rats had ligatures placed around their molars to induce periodontal disease, and a subset of animals underwent hyperbaric oxygen (HBO) treatment for 2 h twice per day. At 15 and 28 d, tissue gene expression of COL1A1, transforming growth factor-β1 and alkaline phosphatase was determined; other histological samples were stained with Picrosirius red to evaluate levels of collagen deposition, maturation and thickness. In animals that underwent HBO treatment, type I collagen expression was higher and collagen deposition, maturation and thickness were more robust. Reduced mRNA levels of transforming growth factor-beta1 and alkaline phosphatase in HBO-treated rats on day 28 suggested that a quicker resolution in both soft tissue and bone remodeling occurred following oxygen treatment. No differences in inflammation were observed between groups. The extracellular matrix regenerated more quickly in the HBO-treated group as evidenced by higher collagen expression, deposition and maturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa

    PubMed Central

    Watt, Stephen A.; Dayal, Jasbani H. S.; Wright, Sheila; Riddle, Megan; Pourreyron, Celine; McMillan, James R.; Kimble, Roy M.; Prisco, Marco; Gartner, Ulrike; Warbrick, Emma; McLean, W. H. Irwin; Leigh, Irene M.; McGrath, John A.; Salas-Alanis, Julio C.; Tolar, Jakub; South, Andrew P.

    2015-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention. PMID:26380979

  4. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion

    PubMed Central

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296

  5. Collagen VI Ablation Retards Brain Tumor Progression Due to Deficits in Assembly of the Vascular Basal Lamina

    PubMed Central

    You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.

    2012-01-01

    To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614

  6. Influence of cyclic hydrostatic pressure on fibrocartilaginous metaplasia of achilles tendon fibroblasts.

    PubMed

    Shim, J W; Elder, S H

    2006-11-01

    The goal of this study was to demonstrate whether cyclically imposed hydrostatic pressure, compressive in nature, could induce fibrocartilaginous metaplasia in a purely tendinous cell source in vitro. The effect of short-duration cyclic hydrostatic pressure on tendon fibroblasts (tenocytes) expanded from rat Achilles tendon was studied. Total RNA was isolated either immediately after loading or 24 h later. The mRNA expression of tendon and cartilage specific markers - Collagen types I and II, Sox9, and Aggrecan was quantified by real-time reverse transcription polymerase chain reaction over multiple biological samples (n=6). For immediately isolated RNA samples, there were statistically significant increases in mRNA expression of Aggrecan and Collagen type II, while Collagen type I significantly decreased. Noticeably, for RNA samples isolated 24 h later, there were further increases in mRNA expression of Aggrecan and Collagen type II, whereas Collagen type I increased roughly three-fold relative to the non-loaded control. These findings support the hypothesis that cyclic hydrostatic pressurization can induce fibrocartilaginous metaplasia in tenocytes by upregulation of cartilaginous gene expression. Also, it was demonstrated that changes in mRNA expression as a result of single 2 h pressurization persist even up to 24 h.

  7. Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification

    PubMed Central

    2014-01-01

    Background Extracellular matrix (ECM) disarray is found in calcific aortic valvular disease (CAVD), yet much remains to be learned about the role of individual ECM components in valvular interstitial cell (VIC) function and dysfunction. Previous clinical analyses have shown that calcification is associated with decreased collagen content, while previous in vitro work has suggested that the presence of collagen attenuates the responsiveness of VICs to pro-calcific stimuli. The current study uses whole leaflet cultures to examine the contributions of endogenous collagen in regulating the phenotype and calcification of VICs. Methods A “top-down” approach was used to characterize changes in VIC phenotype in response to collagen alterations in the native 3D environment. Collagen-deficient leaflets were created via enzymatic treatment and cultured statically for six days in vitro. After culture, leaflets were harvested for analysis of DNA, proliferation, apoptosis, ECM composition, calcification, and gene/protein expression. Results In general, disruption of collagen was associated with increased expression of disease markers by VICs in whole organ leaflet culture. Compared to intact control leaflets, collagen-deficient leaflets demonstrated increased VIC proliferation and apoptosis, increased expression of disease-related markers such as alpha-smooth muscle actin, alkaline phosphatase, and osteocalcin, and an increase in calcification as evidenced by positive von Kossa staining. Conclusions These results indicate that disruption of the endogenous collagen structure in aortic valves is sufficient to stimulate pathological consequences in valve leaflet cultures, thereby highlighting the importance of collagen and the valve extracellular matrix in general in maintaining homeostasis of the valve phenotype. PMID:24581344

  8. Peripheral Blood Mononuclear Cells Enhance the Anabolic Effects of Platelet-Rich Plasma on Anterior Cruciate Ligament Fibroblasts

    PubMed Central

    Yoshida, Ryu; Murray, Martha M.

    2012-01-01

    Use of platelet-rich plasma (PRP) has shown promise in various orthopaedic applications, including treatment of anterior cruciate ligament (ACL) injuries. However, various components of blood, including peripheral blood mononuclear cells (PBMCs), are removed in the process of making PRP. It is yet unknown whether these PBMCs have a positive or negative effect on fibroblast behavior. To begin to define the effect of PBMCs on ACL fibroblasts, ACL fibroblasts were cultured on three-dimensional collagen scaffolds for 14 days with and without PBMCs. ACL fibroblasts exposed to PBMCs showed increased type I and type III procollagen gene expression, collagen protein expression, and cell proliferation when the cells were cultured in the presence of platelets and plasma. However, addition of PBMCs to cells cultured without the presence of platelets had no effect. The increase in collagen gene and protein expression was accompanied by an increase in IL-6 expression by the PBMCs with exposure to the platelets. Our results suggest that the interaction between platelets and PBMCs leads to an IL-6 mediated increase in collagen expression by ACL fibroblasts. PMID:22767425

  9. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen.

    PubMed

    Stefanovic, Branko

    2013-01-01

    Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Mechanistic Target of Rapamycin Complex 1 (mTORC1) and mTORC2 as Key Signaling Intermediates in Mesenchymal Cell Activation*

    PubMed Central

    Walker, Natalie M.; Belloli, Elizabeth A.; Stuckey, Linda; Chan, Kevin M.; Lin, Jules; Lynch, William; Chang, Andrew; Mazzoni, Serina M.; Fingar, Diane C.; Lama, Vibha N.

    2016-01-01

    Fibrotic diseases display mesenchymal cell (MC) activation with pathologic deposition of matrix proteins such as collagen. Here we investigate the role of mTOR complex 1 (mTORC1) and mTORC2 in regulating MC collagen expression, a hallmark of fibrotic disease. Relative to normal MCs (non-Fib MCs), MCs derived from fibrotic human lung allografts (Fib-MCs) demonstrated increased phosphoinositide-3kinase (PI3K) dependent activation of both mTORC1 and mTORC2, as measured by increased phosphorylation of S6K1 and 4E-BP1 (mTORC1 substrates) and AKT (an mTORC2 substrate). Dual ATP-competitive TORC1/2 inhibitor AZD8055, in contrast to allosteric mTORC1-specific inhibitor rapamycin, strongly inhibited 4E-BP1 phosphorylation and collagen I expression in Fib-MCs. In non-Fib MCs, increased mTORC1 signaling was shown to augment collagen I expression. mTORC1/4E-BP1 pathway was identified as an important driver of collagen I expression in Fib-MCs in experiments utilizing raptor gene silencing and overexpression of dominant-inhibitory 4E-BP1. Furthermore, siRNA-mediated knockdown of rictor, an mTORC2 partner protein, reduced mTORC1 substrate phosphorylation and collagen expression in Fib-, but not non-Fib MCs, revealing a dependence of mTORC1 signaling on mTORC2 function in activated MCs. Together these studies suggest a novel paradigm where fibrotic activation in MCs increases PI3K dependent mTORC1 and mTORC2 signaling and leads to increased collagen I expression via the mTORC1-dependent 4E-BP1/eIF4E pathway. These data provide rationale for targeting specific components of mTORC pathways in fibrotic states and underscore the need to further delineate mTORC2 signaling in activated cell states. PMID:26755732

  11. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  12. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Evaluation effect of low level Helium-Neon laser and Iranian propolis extract on Collagen Type I gene expression by human gingival fibroblasts: an in vitro study.

    PubMed

    Eslami, Hosein; Motahari, Paria; Safari, Ebrahim; Seyyedi, Maryam

    2017-06-30

    production of collagen by fibroblast cells is a key component in wound healing. Several studies have shown that low level laser therapy (LLLT) and propolis extract stimulate collagen Type I production. The aim of this study is to evaluation the combined effect of LLL helium neon (632.8 nm) and Iranian propolis extract on collagen Type I gene expression by human gingival fibroblasts (HGF3-PI 53). Human gingival fibroblasts after culturing divided into six experimental groups: G1-control group, which received no irradiation and propolis extract, G2-irradiated at1.5 J/cm 2 , G3-irradiated at 0.15 J/cm 2 , G4-recived extract of propolis, G5- combined extract of propolis and 1.5 J/cm 2 laser irradiation and G6- combined extract of propolis and 0.15 J/cm 2 laser irradiation. The experiments were conducted in triplicate. After 24 hour, the total RNA was extracted and cDNA synthesis was performed. Type I collagen mRNA expression was determined with real time PCR. The obtained results illustrated a statistically significant difference between G3 (0.15 J/cm 2 ) and G1 (control group) in levels of collagen Type I messenger RNA (mRNA) expression (p<0.05). The irradiated cells showed a 1.4 times increase in mRNA expression of the collagen Type I gene. Expression of this gene decreases in other groups that this difference was statistically significant. LLLT in different dosage and propolis extract may result in decreased or increased collagen type I gene expression. However this effect should be investigated in clinical studies.

  14. Evaluation effect of low level Helium-Neon laser and Iranian propolis extract on Collagen Type I gene expression by human gingival fibroblasts: an in vitro study

    PubMed Central

    Eslami, Hosein; Motahari, Paria; Safari, Ebrahim; Seyyedi, Maryam

    2017-01-01

    Back ground and aim production of collagen by fibroblast cells is a key component in wound healing. Several studies have shown that low level laser therapy (LLLT) and propolis extract stimulate collagen Type I production. The aim of this study is to evaluation the combined effect of LLL helium neon (632.8 nm) and Iranian propolis extract on collagen Type I gene expression by human gingival fibroblasts (HGF3-PI 53). Methods and materials Human gingival fibroblasts after culturing divided into six experimental groups: G1-control group, which received no irradiation and propolis extract, G2-irradiated at1.5 J/cm2, G3-irradiated at 0.15 J/cm2, G4-recived extract of propolis, G5- combined extract of propolis and 1.5 J/cm2 laser irradiation and G6- combined extract of propolis and 0.15 J/cm2 laser irradiation. The experiments were conducted in triplicate. After 24 hour, the total RNA was extracted and cDNA synthesis was performed. Type I collagen mRNA expression was determined with real time PCR. Results The obtained results illustrated a statistically significant difference between G3 (0.15 J/cm2) and G1 (control group) in levels of collagen Type I messenger RNA (mRNA) expression (p<0.05). The irradiated cells showed a 1.4 times increase in mRNA expression of the collagen Type I gene. Expression of this gene decreases in other groups that this difference was statistically significant. Conclusion LLLT in different dosage and propolis extract may result in decreased or increased collagen type I gene expression. However this effect should be investigated in clinical studies. PMID:28785130

  15. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    PubMed Central

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis. PMID:24919172

  16. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    PubMed

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  17. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium.

    PubMed

    Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J

    2004-04-01

    Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.

  18. Regulation of collagenase-3 and osteocalcin gene expression by collagen and osteopontin in differentiating MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Kowalski, Aaron J.; Denhardt, David T.; Nickols, G. Allen; Partridge, Nicola C.

    2002-01-01

    Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.

  19. Effect of Vaginal or Systemic Estrogen on Dynamics of Collagen Assembly in the Rat Vaginal Wall1

    PubMed Central

    Montoya, T. Ignacio; Maldonado, P. Antonio; Acevedo, Jesus F.; Word, R. Ann

    2014-01-01

    ABSTRACT The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support. PMID:25537371

  20. Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall.

    PubMed

    Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F; Word, R Ann

    2015-02-01

    The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support. © 2015 by the Society for the Study of Reproduction, Inc.

  1. Molecular, histologic, and trace mineral characterization of metacarpophalangeal and metatarsophalangeal joint hyperextension in juvenile llamas.

    PubMed

    Semevolos, Stacy A; Reed, Shannon K

    2011-04-01

    To evaluate molecular and histologic characteristics of the superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT), and suspensory ligament (SL) and assess trace-mineral concentrations in serum, liver, and hair of juvenile llamas with metacarpophalangeal and metatarsophalangeal joint hyperextension. 12 juvenile llamas (6 with bilateral hyperextension of metacarpophalangeal joints, metatarsophalangeal joints, or both and 6 clinically normal control llamas). Radiography and ultrasonography of metacarpophalangeal and metatarsophalangeal regions were performed. Llamas were euthanized, and SDFT, DDFT, and SL samples were collected for histologic evaluation of collagen and elastin content and orientation, proteoglycan content, and collagen type III immunohistochemistry. Total RNA was isolated from SL tissue, and gene expression of collagen types I and III, lysyl oxidase, and matrix metalloproteinase-13 was evaluated via real-time quantitative reverse transcriptase PCR assay. Liver, serum, and hair samples were evaluated for trace mineral content. Collagen type III gene expression and proteoglycan content were significantly increased in SL samples of affected juvenile llamas, compared with those of control llamas. No difference was detected in collagen and elastin content and orientation or in gene expression of collagen type I, lysyl oxidase, or matrix metalloproteinase-13 between groups. Affected llamas had significantly increased serum molybdenum and decreased liver cobalt concentrations, compared with values for control llamas. Increased collagen type III gene expression and proteoglycan content in SL samples of affected juvenile llamas provided evidence of ongoing SL matrix repair. Trace mineral differences may have been attributable to dietary imbalances in affected llamas.

  2. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  3. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease.

    PubMed

    Liu, Bin; Li, Chenghai; Liu, Zijuan; Dai, Zonghan; Tao, Yunxia

    2012-09-11

    Polycystic Kidney Disease (PKD) kidneys exhibit increased extracellular matrix (ECM) collagen expression and metalloproteinases (MMPs) activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. We examined the role of type I collagen (collagen I) and membrane bound type 1 MMP (MT1-MMP) on cyst development using both in vitro 3 dimensional (3D) collagen gel culture and in vivo PCK rat model of PKD. We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  4. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    PubMed Central

    2012-01-01

    Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition. PMID:22694981

  5. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression

    PubMed Central

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-01-01

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D). We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen. In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2. PMID:27121132

  6. Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis.

    PubMed

    Sakowicz-Burkiewicz, Monika; Kuczkowski, Jerzy; Przybyła, Tomasz; Grdeń, Marzena; Starzyńska, Anna; Pawełczyk, Tadeusz

    2017-09-01

    Tympanosclerosis is a pathological process involving the middle ear. The hallmark of this disease is the formation of calcium deposits. In the submucosal layer, as well as in the right layer of the tympanic membrane, the calcium deposits result in a significant increase in the activity of fibroblasts and deposition of collagen fibers. The aim of our study was to examine the expression level of genes encoding collagen type I, II, III and IV (COL1A1, COL2A1, COL3A1, COL4A1) and osteopontin (SPP1) in the tympanic membrane of patients with tympanosclerosis. The total RNA was isolated from middle ear tissues with tympanosclerosis, received from 25 patients and from 19 normal tympanic membranes. The gene expression level was determined by real-time RT-PCR. The gene expression levels were correlated with clinical Tos classification of tympanosclerosis. We observed that in the tympanic membrane of patients with tympanosclerosis, the expression of type I collagen is decreased, while the expression of type II and IV collagen and osteopontin is increased. Moreover, mRNA levels of the investigated genes strongly correlated with the clinical stages of tympanosclerosis. The strong correlations between the expression of type I, II, IV collagen and osteopontin and the clinical stage of tympanosclerosis indicate the involvement of these proteins in excessive fibrosis and pathological remodeling of the tympanic membrane. In the future, a treatment aiming to modulate these gene expressions and/or regulation of the degradation of their protein products could be used as a new medical approach for patients with tympanosclerosis.

  7. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    PubMed Central

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706

  8. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  9. The response to oestrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover

    PubMed Central

    Bay-Jensen, Anne-Christine; Tabassi, Nadine CB; Sondergaard, Lene V; Andersen, Thomas L; Dagnaes-Hansen, Frederik; Garnero, Patrick; Kassem, Moustapha; Delaissé, Jean-Marie

    2009-01-01

    Introduction The urinary level of the type II collagen degradation marker CTX-II is increased in postmenopausal women and in ovariectomised rats, suggesting that oestrogen deprivation induces cartilage breakdown. Here we investigate whether this response to oestrogen is also true for other type II collagen turnover markers known to be affected in osteoarthritis, and whether it relates to its presence in specific areas of cartilage tissue. Methods The type II collagen degradation markers CTX-II and Helix-II were measured in the body fluids of premenopausal and postmenopausal women and in those of ovariectomised rats receiving oestrogen or not. Levels of PIIANP, a marker of type II collagen synthesis, were also measured in rats. Rat knee cartilage was analysed for immunoreactivity of CTX-II and PIIANP and for type II collagen expression. Results As expected, urinary levels of CTX-II are significantly increased in postmenopausal women and also in oestrogen-deprived rats, although only transiently. However, in neither case were these elevations paralleled by a significant increase of Helix-II levels and PIIANP levels did not change at any time. CTX-II immunoreactivity and collagen expression were detected in different cartilage areas. The upper zone is the area where CTX-II immunoreactivity and collagen expression best reflected the differences in urinary levels of CTX-II measured in response to oestrogen. However, correlations between urinary levels of CTX-II and tissue immunostainings in individual rats were not statistically significant. Conclusions We found only a small effect of oestrogen deprivation on cartilage. It was detected by CTX-II, but not by other type II collagen turnover markers typically affected in osteoarthritis. PMID:20527083

  10. Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha

    PubMed Central

    1994-01-01

    Chronic allergic diseases and other disorders associated with mast cell activation can also be associated with tissue fibrosis, but a direct link between mast cell mediator release and fibroblast collagen gene expression has not been established. Using in situ hybridization, we show that the elicitation of an IgE-dependent passive cutaneous anaphylaxis (PCA) reaction in mice results in a transient, but marked augmentation of steady state levels of type alpha-1 (I) collagen mRNA in the dermis. While peak levels of collagen mRNA expression in the skin are observed 16-24 h after mast cell activation, substantial numbers of dermal cells are strongly positive for collagen mRNA at 1 and 2 h after antigen challenge, before circulating inflammatory cells are recruited into the tissues. Furthermore, experiments in mast cell- reconstituted or genetically mast cell-deficient WBB6F1-W/Wv mice demonstrate that the increased expression of collagen mRNA at sites of PCA reactions is entirely mast cell dependent. In vitro studies show that the supernatants of mouse serosal mast cells activated via the Fc epsilon RI markedly increase type alpha-1 (I) collagen mRNA levels in mouse embryonic skin fibroblasts, and also upregulate collagen secretion by these cells. The ability of mast cell supernatants to induce increased steady state levels of collagen mRNA in mouse skin fibroblasts is markedly diminished by absorption with antibodies specific for either of two mast cell-derived cytokines, transforming growth factor beta (TGF-beta 1) or tumor necrosis factor alpha (TNF- alpha), and is eliminated entirely by absorption with antibodies against both cytokines. Taken together, these findings demonstrate that IgE-dependent mouse mast cell activation can induce a transient and marked increase in steady state levels of type alpha-1 (I) collagen mRNA in dermal fibroblasts and that mast cell-derived TGF-beta 1 and TNF-alpha importantly contribute to this effect. PMID:7964480

  11. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes

    PubMed Central

    Dayal, Jasbani H. S.; Cole, Clare L.; Pourreyron, Celine; Watt, Stephen A.; Lim, Yok Zuan; Salas-Alanis, Julio C.; Murrell, Dedee F.; McGrath, John A.; Stieger, Bruno; Jahoda, Colin; Leigh, Irene M.; South, Andrew P.

    2014-01-01

    ABSTRACT Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332. PMID:24357722

  12. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at themore » gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.« less

  13. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    PubMed

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase*

    PubMed Central

    Baumann, Stephan

    2016-01-01

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1–2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. PMID:27402836

  16. The effect of collagen coating on titanium with nanotopography on in vitro osteogenesis.

    PubMed

    Costa, Daniel G; Ferraz, Emanuela P; Abuna, Rodrigo P F; de Oliveira, Paulo T; Morra, Marco; Beloti, Marcio M; Rosa, Adalberto L

    2017-10-01

    Several studies have shown the positive effects of Ti either with nanotopography or coated with collagen on osteoblast differentiation. Thus, we hypothesized that the association of nanotopography with collagen may increase the in vitro osteogenesis on Ti surface. Ti discs with nanotopography with or without collagen coating were characterized by scanning electron microscopy and atomic force microscopy. Rat calvaria-derived osteoblastic cells were cultured on both Ti surfaces for up to 14 days and the following parameters were evaluated: cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, protein expression of bone sialoprotein (BSP) and osteopontin (OPN), and gene expression of collagen type 1a (Coll1a), runt-related transcription factor 2 (Runx2), osterix (OSX), osteocalcin (OC), Ki67, Survivin, and Bcl2-associated X protein (BAX). Surface characterization evidenced that collagen coating did not alter the nanotopography. Collagen coating increased cell proliferation, ALP activity, extracellular matrix mineralization, and Coll1a, OSX, OC, and BAX gene expression. Also, OPN and BSP proteins were strongly detected in cultures grown on both Ti surfaces. In conclusion, our results showed that the combination of nanotopography with collagen coating stimulates the early, intermediate, and final events of the in vitro osteogenesis and may be considered a potential approach to promote osseointegration of Ti implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2783-2788, 2017. © 2017 Wiley Periodicals, Inc.

  17. Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair.

    PubMed Central

    Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Büchler, M W

    1997-01-01

    BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the pancreatic parenchyma. Images PMID:9155579

  18. Regeneration of cervix after excisional treatment for cervical intraepithelial neoplasia: a study of collagen distribution.

    PubMed

    Phadnis, S V; Atilade, A; Bowring, J; Kyrgiou, M; Young, M P A; Evans, H; Paraskevaidis, E; Walker, P

    2011-12-01

    To study the distribution of collagen in the regenerated cervical tissue after excisional treatment for cervical intraepithelial neoplasia (CIN). Cohort study. A large tertiary teaching hospital in London. Women who underwent repeat excisional treatment for treatment failure or persistent CIN. Eligible women who underwent a repeat excisional treatment for treatment failure, including hysterectomy, between January 2002 and December 2007 in our colposcopy unit were identified by the Infoflex(®) database and SNOMED encoded histopathology database. Collagen expression was assessed using picro-Sirius red stain and the intensity of staining was compared in paired specimens from the first and second treatments. Differences in collagen expression were examined in the paired excisional treatment specimens. A total of 17 women were included. Increased collagen expression in the regenerated cervical tissue of the second cone compared with the first cone was noted in six women, decreased expression was noted in five women, and the pattern of collagen distribution was equivocal in six women. There is no overall change in collagen distribution during regeneration following excisional treatment for CIN. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  19. Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition

    PubMed Central

    Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Li, Tianshi; Qili, Muge; Xu, Bozhi; Qian, Ming; Liang, Haihai; E, Xiaoqiang; Chege Gitau, Samuel; Wang, Lu; Huangfu, Longtao; Wu, Qiuxia; Xu, Chaoqian; Shan, Hongli

    2016-01-01

    Although increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis, the molecular mechanisms of pressure overload or AngII -induced cardiac interstitial fibrosis remain elusive. In this study, serpinE2/protease nexin-1 was over-expressed in a cardiac fibrosis model induced by pressure-overloaded via transverse aortic constriction (TAC) in mouse. Knockdown of serpinE2 attenuates cardiac fibrosis in a mouse model of TAC. At meantime, the results showed that serpinE2 significantly were increased with collagen accumulations induced by AngII or TGF-β stimulation in vitro. Intriguingly, extracellular collagen in myocardial fibroblast was reduced by knockdown of serpinE2 compared with the control in vitro. In stark contrast, the addition of exogenous PN-1 up-regulated the content of collagen in myocardial fibroblast. The MEK1/2- ERK1/2 signaling probably promoted the expression of serpinE2 via transcription factors Elk1 in myocardial fibroblast. In conclusion, stress-induced the ERK1/2 signaling pathway activation up-regulated serpinE2 expression, consequently led accumulation of collagen protein, and contributed to cardiac fibrosis. PMID:27876880

  20. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  1. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction.

    PubMed

    Chu, Chenyu; Liu, Li; Wang, Yufei; Wei, Shimin; Wang, Yuanjing; Man, Yi; Qu, Yili

    2018-04-28

    Collagen has been widely used in guided bone regeneration, and the implantation of collagen membranes will elicit the foreign body reaction (FBR). The imbalance of FBR often leads to failure of dental implants. Therefore, modulation of the FBR after implantation of collagen membranes becomes increasingly important. Macrophages, pivotal in FBR, have been distinguished into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Epigallocatechin-3-gallate (EGCG)-modified collagen membranes have been previously shown to regulate secretion of inflammatory factors. In this study, immunohistochemistry of CD31 showed that areas of blood vessels were significantly enlarged after implantation of EGCG-modified collagen membranes compared with those treated with pure collagen membranes. Besides, haematoxylin-eosin staining and immunofluorescence showed an increased number of M2 macrophages after implantation of EGCG-modified collagen membranes. In addition, quantitative real-time polymerase chain reaction showed that after implantation of EGCG-modified collagen membranes, expression of CXCL1 (predominant chemoattractants to neutrophils and inflammation promotors) was significantly downregulated, whereas expressions of STAB1, CCR2, CCR3, CCL2, and CCL3 (related to M2 macrophages) were significantly upregulated. From these findings, we conclude that EGCG-modified collagen membranes were able to regulate the recruitment and polarization of macrophages, so that ameliorate FBR. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Collagenolytic protease expression in cranial cruciate ligament and stifle synovial fluid in dogs with cranial cruciate ligament rupture.

    PubMed

    Muir, Peter; Danova, Nichole A; Argyle, David J; Manley, Paul A; Hao, Zhengling

    2005-01-01

    To determine expression of collagenolytic genes and collagen degradation in stifle tissues of dogs with ruptured cranial cruciate ligament (CCL). Six dogs with CCL rupture and 11 dogs with intact CCL. Gene expression in CCL tissue and synovial fluid cells was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Collagen degradation was studied using CCL explant cultures and a synovial fluid bioassay. Expression of matrix metalloproteases (MMP) was not found in young Beagles with intact CCL; however, increased expression of MMP-3 was found in CCL tissue from older hounds with intact CCL, when compared with young Beagles. In dogs with ruptured CCL, expression of MMP-2 and -9 was increased in stifle tissues, when compared with dogs with intact CCL. Similar to MMP-9, expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin S was only found in stifle tissues from dogs with ruptured CCL; in contrast, expression of cathepsin K was found in all ruptured and intact CCL. Collagen degradation was increased in ruptured CCL, when compared with intact CCL. Rupture of the CCL is associated with up-regulation of expression of MMP-2 and -9 (gelatinase A and B), TRAP, and cathepsin S, and increased degradation of collagen. These findings suggest that MMP-2, -9, cathepsin S, and TRAP may be important mediators of progressive joint destruction in dogs with CCL rupture. These genes are markers for macrophages and dendritic cells. MMP and cathepsin S pathways may offer novel targets for anti-inflammatory medical therapy aimed at ameliorating joint degradation associated with inflammatory arthritis.

  3. Periostin in Mature Stage Localized Scleroderma.

    PubMed

    Kim, Min-Woo; Park, Jung Tae; Kim, Jung Ho; Koh, Seong-Joon; Yoon, Hyun-Sun; Cho, Soyun; Park, Hyun-Sun

    2017-06-01

    Periostin is a novel matricellular protein expressed in many tissues, including bone, periodontal ligament, and skin. Although its expression is prominent in various fibrotic conditions, studies of periostin in localized scleroderma are rare. To investigate the expression of periostin and other molecules in localized scleroderma. A retrospective study of 14 patients with confirmed mature stage localized scleroderma was undertaken. Fourteen age-matched and biopsy site-matched subjects with normal skin were included as controls. Collagen fiber deposition, periostin, procollagen, transforming growth factor-β, and matrix metalloproteinase (MMP)-1 expression were assessed and compared between the two groups. Co-localization of α-smooth muscle actin and periostin was evaluated using confocal microscopy. Periostin was predominantly expressed along the dermo-epidermal junction in the controls. Conversely, patients with localized scleroderma demonstrated increased collagen fiber deposition and periostin expression that was more widely distributed along the entire dermis. MMP-1 staining showed increased expression in the epidermis and dermis of patients compared to scanty expression in the controls. A semi-quantitative evaluation showed a higher proportion of excessive collagen bundle deposition (57.1% vs. 7.1%, p =0.013), diffuse periostin positivity (42.9% vs. 0%, p =0.016), and moderate MMP-1 positivity (71.4% vs. 7.1%, p =0.001) in patients than in the controls. Compared to the controls, patients with localized scleroderma had enhanced periostin expression corresponding to increased collagen fiber deposition and unexpected overexpression of MMP-1. The results of this human in vivo study may implicate the pathogenesis of localized scleroderma.

  4. A collagen α2(I) mutation impairs healing after experimental myocardial infarction.

    PubMed

    Hofmann, Ulrich; Bonz, Andreas; Frantz, Stefan; Hu, Kai; Waller, Christiane; Roemer, Katrin; Wolf, Jürgen; Gattenlöhner, Stefan; Bauersachs, Johann; Ertl, Georg

    2012-01-01

    Collagen breakdown and de novo synthesis are important processes during early wound healing after myocardial infarction (MI). We tested the hypothesis that collagen I, the main constituent of the extracellular matrix, affects wound healing after MI. The osteogenesis imperfecta mouse (OIM), lacking procollagen-α2(I) expression, represents a model of the type III form of the disease in humans. Homozygous (OIM/OIM), heterozygous (OIM/WT), and wild-type (WT/WT) mice were subjected to a permanent myocardial infarction protocol or sham surgery. Baseline functional and geometrical parameters determined by echocardiography did not differ between genotypes. After MI but not after sham surgery, OIM/OIM animals exhibited significantly increased mortality, due to early ventricular rupture between day 3 and 7. Echocardiography at day 1 demonstrated increased left ventricular dilation in OIM/OIM animals. Less collagen I mRNA within the infarct area was found in OIM/OIM animals. At 2 days after MI, MMP-9 expression in the infarct border zone was higher in OIM/OIM than in WT/WT animals. Increased granulocyte infiltration into the infarct border zone occurred in OIM/OIM animals. Neither granulocyte depletion nor MMP inhibition reduced mortality in OIM/OIM animals. In this murine model, deficiency of collagen I leads to a myocardial wound-healing defect. Both structural alterations within pre-existing collagen matrix and impaired collagen de novo expression contribute to a high rate of early myocardial rupture after MI. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts.

    PubMed

    Martínez-Martínez, Ernesto; Ibarrola, Jaime; Lachén-Montes, Mercedes; Fernández-Celis, Amaya; Jaisser, Frederic; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; López-Andrés, Natalia

    2017-08-23

    Aldosterone (Aldo) could induce cardiac fibrosis, a hallmark of heart disease. Aldo direct effects on collagen production in cardiac fibroblasts remain controversial. Our aim is to characterize changes in the proteome of adult human cardiac fibroblasts treated with Aldo to identify new proteins altered that might be new therapeutic targets in cardiovascular diseases. Aldo increased collagens expressions in human cardiac fibroblasts. Complementary, using a quantitative proteomic approach, 30 proteins were found differentially expressed between control and Aldo-treated cardiac fibroblasts. Among these proteins, 7 were up-regulated and 23 were down-regulated by Aldo. From the up-regulated proteins, collagen type I, collagen type III, collagen type VI and S100-A11 were verified by Western blot. Moreover, protein interaction networks revealed a functional link between a third of Aldo-modulated proteome and specific survival routes. S100-A11 was identified as a possible link between Aldo and collagen. Interestingly, CRISPR/Cas9-mediated knock-down of S100-A11 blocked Aldo-induced collagen production in human cardiac fibroblasts. In adult human cardiac fibroblasts treated with Aldo, proteomic analyses revealed an increase in collagen production. S100-A11 was identified as a new regulator of Aldo-induced collagen production in human cardiac fibroblasts. These data could identify new candidate proteins for the treatment of cardiac fibrosis in cardiovascular diseases. S100-A11 is identified by a proteomic approach as a novel regulator of Aldosterone-induced collagen production in human cardiac fibroblasts. Our data could identify new candidate proteins of interest for the treatment of cardiac fibrosis in cardiovascular diseases. Copyright © 2017. Published by Elsevier B.V.

  6. Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis

    NASA Astrophysics Data System (ADS)

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Rennó, Ana Cláudia; Parizotto, Nivaldo Antonio

    2016-08-01

    This study investigates the histological modifications produced by low level laser therapy (LLLT) on the first day of bone repair, as well as evaluates the LLLT effects on collagen expression on the site of a fracture. Twenty Wistar rats were distributed into a control group (CG) and a laser group (LG). Laser irradiation of Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J was performed in five sessions. Animals were euthanized on day 5 postsurgery. Histopathological analysis showed that LLLT was able to increase deposition of granulation tissue and newly formed bone at the site of the injury. In addition, picrosirius analysis showed that collagen fiber organization in the LG was enhanced compared to CG. Microarray analysis demonstrated that LLLT produced an upregulation type I collagen (COL-I). Immunohistochemical analysis revealed that the subjects that were treated presented a higher immunoexpression of COL-I. Our findings indicated that LLLT improves bone healing by producing a significant increase in the expression of collagen genes.

  7. Glycosaminoglycans of abdominal skin after massive weight loss in post-bariatric female patients.

    PubMed

    Veiga, Daniela Francescato; Bussolaro, Rodolpho A; Kobayashi, Elsa Y; Medeiros, Valquíria P; Martins, João R M; Garcia, Elvio B; Novo, Neil F; Nader, Helena B; Ferreira, Lydia M

    2011-06-01

    The number of post-bariatric patients had a significant increase over the last years, and a better understanding of the consequences of massive weight loss on skin is imperative. Despite weight-loss-related changes in collagen and elastin have been reported, less is known about changes in another of the matrix components of the skin, the glycosaminoglycans. The objective of this study is to evaluate abdominal skin glycosaminoglycans concentrations and perlecan and collagen III expression in post-bariatric female patients. Skin tissue samples from the abdomen of lean (n = 19) and post-bariatric (n = 24) female patients were compared. Sulfated glycosaminoglycans and hyaluronic acid were extracted, characterized and quantified. Perlecan and collagen III expression was assessed by immunofluorescence. The major glycosaminoglycans found were dermatan sultafe and hyaluronic acid; the others were found in smaller amounts. The skin of the post-bariatric patients had lower concentrations of heparan sulfate (p = 0.002) while hyaluronic acid, dermatan sulfate, and chondroitin sulfate concentrations were similar to the lean women's skin. Post-bariatric skin showed decreased expression of perlecan and increased expression of collagen III. No correlation was found among glycosaminoglycans concentrations and age, body mass index, frequency of pregnancies, or skin types, but it was observed in higher skin heparan sulfate concentrations in post-bariatric patients who had their weights stabilized for over than 24 months (p = 0.000). Abdominal skin of post-bariatric women presented decreased heparan sulfate concentrations and perlecan expression and increased expression of collagen III.

  8. Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast.

    PubMed

    Ramos, Carlos; Montaño, Martha; Cisneros, Jose; Sommer, Bettina; Delgado, Javier; Gonzalez-Avila, Georgina

    2007-01-01

    Substance P is involved in inflammatory processes, but its effect on extracellular matrix metabolism has not been studied; therefore, the authors evaluated its effect on collagen synthesis and degradation, expression of pro-alpha1(I) collagen, matrix metalloproteinase-1 and -2, and tissue inhibitor of metalloproteinase-1 and -2 in normal human lung fibroblast strains. Substance P induced a decrease in collagen biosynthesis, concomitant to a down-regulation of pro-alpha1(I) collagen mRNA. In contrast, an increase in collagen degradation was observed, accompanied with an up-regulation of matrix metalloproteinase-1. Substance P did not influence tissue inhibitor of metalloproteinase-1 and -2 or matrix metalloproteinase-2 expression. The results suggest that substance P participates in extracellular matrix metabolism.

  9. [Effects and mechanisms of ursodeoxycholic acid on isoprenaline-Induced myocardial fibrosis in mice].

    PubMed

    Li, X; Han, K Q; Shi, Y N; Men, S Z; Li, S; Sun, M H; Dong, H; Lu, J J; Ma, L J; Zhao, M; Li, D; Liu, W

    2017-02-07

    Objective: To investigate the effects and possible mechanisms of ursodeoxycholic acid (UDCA) on myocardial fibrosis in mice. Method: To observe the expression of transforming growth factor(TGF) -β1, CTGF, MMPs and the degree of myocardial fibrosis, 61 male Kunming mice were randomly divided into normal group, low dose UDCA group, high dose of UDCA group, spironolactone group, and the control group.Isoproterenol (ISO) injection was given subcutaneously (30 d) to make the model of myocardial fibrosis.Corresponding anti-fibrosis drugs (UDCA or spironolactone) were given by gavage.HE staining and Masson staining were performed to explore the inflammation and fibrosis in the myocardium.The expression of collagen Ⅰ and collagen Ⅲ protein was detected by immunohistochemistry to evaluate the degree of fibrosis among the groups.Western blot was used to detect the expression of transforming growth factor, (TGF)-β1, connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2, -9, tissue inhibitor of metalloproteinase (TIMP)-4, -1 and anti-phospho-NFKBIA (p-IκB-α) inhibitor of NF-κB (IκB) protein in myocardium. Results: HE and Masson staining results showed that in the normal group, myocardial fibrosis is less, while the control group showed a large amount of fibrotic tissue ( P <0.05). Tissue fibrosis in the low/high dose UDCA group and spironolactone group was significantly reduced compared with the control group ( P <0.05), in which high dose of UDCA reduces fibrosis more significantly.Immunohistochemistry results showed that collagen Ⅰ and collagen Ⅲ protein expression was significantly increased ( P <0.05). Whereas in the low/high UDCA dose group and spironolactone group, collagen Ⅰ and collagen Ⅲ expression were significantly decreased ( P <0.05), the high UDCA dose group decreased more significantly.Western blot results suggest that TGFβ-1 expression in the myocardial tissue was significantly increased compared to the normal group ( P <0.05), whereas low/high UDCA dose group and spironolactone group, TGFβ-1 protein expression were significantly decreased [UDCA(1.52±0.16), (1.02±0.12), (1.01±0.21)vs (2.73±0.12), P <0.05], in which high UDCA dose group TGFβ-1 protein expression level decreased more significantly.However, there was no significant difference in the expression of CTGF, MMP2/9 and TIMP1/4 protein among the groups ( P >0.05). UDCA decrease p-IκB-α expression and increase IκB protein expression dose-dependently. Conclusions: UDCA can relieve isoproterenol induced myocardial fibrosis and reduce the myocardial collagen Ⅰ and collagen Ⅲ deposition in a dose dependent manner.Down-regulating of TGFβ-1 protein expression through the inhibition of TGR5-NF-κB signal transduction pathway might be a potential mechanism underlying UDCA's effects.

  10. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  11. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1.

    PubMed

    Chen, Bin; Li, Ran; Yan, Ning; Chen, Gang; Qian, Wen; Jiang, Hui-Li; Ji, Chao; Bi, Zhi-Gang

    2015-05-01

    Exposure to ultraviolet (UV) light reduces levels of type I collagen in the dermis and results in human skin damage and premature skin aging (photoaging). This leads to a wrinkled appearance through the inhibition of transforming growth factor‑β (TGF‑β)/Smad signaling. UV irradiation increases type I collagen degradation through upregulating matrix metalloproteinase (MMP) expression. Astragaloside IV (AST) is one of the major active components extracted from Astragalus membranaceus. However, its multiple anti‑photoaging effects remain to be elucidated. In the present study, the effects of AST against collagen reduction in UV‑induced skin aging in human skin fibroblasts were investigated. The expression of type I procollagen (COL1), MMP‑1, TGF‑βRⅡ and Smad7 were determined using reverse transcription‑polymerase chain reaction, western blotting and ELISA, respectively. UV irradiation inhibits type I collagen production by suppressing the TGF‑β/Smad signaling pathway and increasing COL1 degradation by inducing MMP‑1 expression. Transforming growth factor‑β type II protein and COL1 mRNA decreased but MMP‑1 and Smad7 levels increased in the photoaging model group, which was reversed by topical application of AST. AST prevents collagen reduction from UV irradiation in photoaging skin by improving TGF‑β/Smad signaling suppression and inhibiting MMP‑1, thus AST may be a potential agent against skin photoaging.

  12. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    PubMed Central

    Huh, Jeong-Eun; Park, Yeon-Cheol; Seo, Byung-Kwan; Lee, Jae-Dong; Baek, Yong-Hyeon; Choi, Do-Young; Park, Dong-Suk

    2013-01-01

    We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105) cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone. PMID:23983790

  13. Collagen and matrix metalloproteinase-2 and -9 in the ewe cervix during the estrous cycle.

    PubMed

    Rodríguez-Piñón, M; Tasende, C; Casuriaga, D; Bielli, A; Genovese, P; Garófalo, E G

    2015-09-15

    The cervical collagen remodeling during the estrous cycle of the ewe was examined. The collagen concentration determined by a hydroxyproline assay and the area occupied by collagen fibers (%C), determined by van Gieson staining, were assessed in the cranial and caudal cervix of Corriedale ewes on Days 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (defined as Day 0). In addition, the gelatinase activity by in situ and SDS-PAGE gelatin zymographies and matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) expression by immunohistochemistry were determined. The collagen concentration and %C were lowest on Day 1 of the estrous cycle (P < 0.04), when MMP-2 activity was highest (P < 0.006) and the ratio of activated to latent MMP-2 trend to be highest (P = 0.0819). The MMP-2 activity was detected in 73% of the homogenized cervical samples, and its expression was mainly detected in active fibroblasts. By contrast, the MMP-9 activity was detected in 9% of the samples, and its scarce expression was associated with plasmocytes, macrophages, and lymphocytes. Matrix metalloproteinase-2 expression was maximal on Day 1 in the cranial cervix and on Day 13 in the caudal cervix and was lower in the cranial than in the caudal cervix (P < 0.0001). This time-dependent increase in MMP-2 expression that differed between the cranial and caudal cervix may reflect their different physiological roles. The decrease in the collagen content and increase in fibroblast MMP-2 activity in sheep cervix on Day 1 of the estrous cycle suggests that cervical dilation at estrus is due to the occurrence of collagen fiber degradation modulated by changes in periovulatory hormone levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Effects of Fluoxetine on Nogo Expression and Collagen Production with Decrease of Pulmonary Artery Pressure in Rats with Right Ventricular Failure.

    PubMed

    Ran, Xun; Zhao, Jian-Xun; Nie, Hu; Chen, Yu-Cheng

    2016-11-01

    To investigate the effect of fluoxetine on neurite growth inhibitor (Nogo) expession and collagen production of cardiac tissue in rats with right heart failure and pulmonary hypertension. Thirty one male SD rats were randomly divided into the treatment group,right heart failure group and normal control group.The rats in the treatment group and right heart failure group received intrapertioneal injection of monocrotaline (MCT,60 mg/kg) to induce pulmonary hypertension and right heart failure.After 21 days,the rats in treatment group were given fluoxetine of 10 mg/(kg×d) by gavage per day for 21 days,the rats in the other two groups were given saline.HE staining was used to observe the pulmonary artery and right ventricular myocardial tissue in rats.The collagen formation in right ventricular myocardium was observed by Masson staining.The expressions of Nogo-A, Nogo-B ,type1collagen and type 3 collagen mRNA in myocardium were measured by real-time fluorescence quantitative PCR,while the semi quantitative measurement of Nogo protein level was detected by Western blot. After the intervention of fluoxetine,pulmonary artery stenosis was significantly reduced,myocardial tissue lesion decreased,collagen synthesis decreased in right ventricular myocardium.RT-PCR showed that mRNA of Nogo-A decreased,and mRNA of Nogo-B increased ( P <0.05).Western blot showed that the expression of Nogo-A protein decreased,while Nogo-B1 protein expression increased ( P <0.05),Nogo-B2 expression was not significantly changed ( P >0.05). Nogo may affect the collagen synthesis in right heart failure,and partly involved in myocardial fibrosis.

  15. Interleukin-35 upregulates OPG and inhibits RANKL in mice with collagen-induced arthritis and fibroblast-like synoviocytes.

    PubMed

    Li, Y; Li, D; Li, Y; Wu, S; Jiang, S; Lin, T; Xia, L; Shen, H; Lu, J

    2016-04-01

    IL-35 is a novel anti-inflammatory cytokine, but the exact role of IL-35 in the progression of RA remains unclear, especially associated with osteoporosis and bone erosion. The present research has not been reported. Our purpose is to study how IL-35 affects RA bone destruction. This study investigated the effect of interleukin-35 (IL-35) on OPG and RANKL expression in collagen-induced arthritis (CIA) in rats and in cultured fibroblast-like synoviocytes (FLS). Thirty DBA/1J mice were randomly assigned to three groups (n = 10 per group): the control group, the CIA group, and the CIA + IL-35 group. Collagen-induced arthritis was induced by immunization with collagen. IL-35 was intraperitoneally injected daily for 10 days, starting from the 24(th) day after immunization. FLS cells were isolated and cultured from CIA. The expression of IL-17, RANKL, and OPG was determined by RT-PCR and Western blot. Each experiment was repeated three times. CIA mice exhibited arthritis symptoms on day 24, followed by a rapid progression of arthritis. The expression of IL-17 and RANKL was increased and the expression of OPG was decreased in CIA mice compared with control mice. IL-35 treatment inhibited the development of arthritis in CIA mice, accompanied by a decrease in the expression of IL-17 and RANKL and an increase in the expression of OPG. Furthermore, IL-35 dose-dependently inhibited the expression of RANKL and increased the expression of OPG in cultured FLS cells. IL-35 inhibits RANKL expression and increases OPG expression in CIA mice. IL-35 may be used for treating rheumatoid arthritis.

  16. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  17. Abnormal Collagen Metabolism in Cultured Skin Fibroblasts from Patients with Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    Rodemann, H. Peter; Bayreuther, Klaus

    1984-08-01

    Total collagen synthesis is decreased by about 29% (P < 0.01) in skin fibroblasts established in vitro from male patients with Duchenne muscular dystrophy (DMD) as compared with that in normal male skin fibroblasts in vitro. The reduction in collagen synthesis is associated with an approximately 2-fold increase in collagen degradation in DMD fibroblasts. Correlated to these alterations in the metabolism of collagen, DMD fibroblasts express a significantly higher hydroxyproline/proline ratio (DMD: 1.36-1.45; P < 0.01) than do normal fibroblasts (controls: 0.86-0.89). The increased hydroxylation of proline residues of collagen (composed of type I and type III) could be the cause for the enhanced degradation of collagen in DMD fibroblasts.

  18. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    PubMed

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  19. PEP-1-SIRT2-induced matrix metalloproteinase-1 and -13 modulates type II collagen expression via ERK signaling in rabbit articular chondrocytes.

    PubMed

    Eo, Seong-Hui; Choi, Soo Young; Kim, Song Ja

    2016-11-01

    Matrix metalloproteinases (MMPs) are critical for the degradation of the extracellular matrix (ECM), which includes cartilage-specific collagen types I, II and XI. We previously found that PEP-1-sirtuin (SIRT)2 could induce dedifferentiation of articular chondrocytes; however, the underlying mechanisms remains unclear. We addressed this in the present study by examining the association between PEP-1-SIRT2 and the expression of MMP-1 and MMP-13 and type II collagen in rabbit articular chondrocytes. We found that PEP-1-SIRT2 increased MMP-1 and -13 expression in a dose- and time-dependent manner, as determined by western blotting. A similar trend in MMP-1 and -13 levels was observed in cultures during expansion to four passages. Pharmacological inhibition of MMP-1 and -13 blocked the PEP-1-SIRT2-induced decrease in type II collagen level. Phosphorylation of extracellular regulated kinase (ERK) was increased by PEP-1-SIRT2; however, treatment with the mitogen-activated protein kinase inhibitor PD98059 suppressed PEP-1-SIRT2-induced MMP-1 and -13 expression and dedifferentiation while restoring type II collagen expression in passage 2 cells. These results suggest that PEP-1-SIRT2 promotes MMP-induced dedifferentiation via ERK signaling in articular chondrocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.

    PubMed

    Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M

    1989-10-15

    During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.

  1. Collagen Membranes Adsorb the Transforming Growth Factor-β Receptor I Kinase-Dependent Activity of Enamel Matrix Derivative.

    PubMed

    Stähli, Alexandra; Miron, Richard J; Bosshardt, Dieter D; Sculean, Anton; Gruber, Reinhard

    2016-05-01

    Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)-β signaling in oral fibroblasts. Three commercially available collagen products were exposed to EMD or recombinant TGF-β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF-β target genes interleukin (IL)-11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. EMD or TGF-β1 provoked a significant increase of IL-11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF-β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin-coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL-11 and PRG4. These in vitro findings suggest that collagen products adsorb a TGF-β receptor I kinase-dependent activity of EMD and make it available for potential target cells.

  2. Methylparaben-induced decrease in collagen production and viability of cultured human dermal fibroblasts.

    PubMed

    Majewska, Natalia; Zaręba, Ilona; Surażyński, Arkadiusz; Galicka, Anna

    2017-09-01

    Parabens owing to their many advantageous properties are widely applied in cosmetics, food products and pharmaceuticals. However, recent research results have shown that they possess the ability to accumulate in the human body and exert many adverse effects. In this study, the impact of methylparaben (MP) as the most frequently used preservative in cosmetics, on human dermal fibroblasts and collagen production was evaluated. In cells treated with 0.01, 0.03 and 0.05% MP a dose-dependent decrease in collagen biosynthesis was revealed, which was positively correlated with the activity of prolidase responsible for the recovery of proline. Consequently, the concentration of total collagen secreted into the medium was markedly diminished. A similar reduction in expression of the major skin collagen type I at both the protein and mRNA level as well as collagen type III and VI at the mRNA level was also detected. The decrease in the collagen level may result not only from the reduced synthesis but also increased degradation owing to MP-induced activation of pro-MMP-2 (72 kDa). The increase in activity of MMP-2 (66 kDa) was accompanied by a reduction in the inhibitory activity of TIMP-2. In addition, an inhibitory effect of MP on cell survival and proliferation was revealed in this study. The increased expression and nuclear translocation of caspase-3 as well as increased Bax and decreased Bcl-2 expression may suggest MP-induced cell apoptosis. In summary, we have provided new data on the adverse effects of methylparaben on human dermal fibroblasts and the main structural protein of the skin. Further studies on the mechanisms responsible for its action are in progress. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay.

    PubMed

    Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio

    2007-02-01

    Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.

  4. Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats.

    PubMed

    Wang, Y; Huang, G; Mo, B; Wang, C

    2016-06-03

    The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation.

  5. Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis

    PubMed Central

    Arango, Julián Camilo; Puerta-Arias, Juan David; Pino-Tamayo, Paula Andrea; Salazar-Peláez, Lina María; Rojas, Mauricio

    2017-01-01

    Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106 P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling. PMID:29040281

  6. Effect of single- and double-row rotator cuff repair at the tendon-to-bone interface: preliminary results using an in vivo sheep model.

    PubMed

    Baums, M H; Schminke, B; Posmyk, A; Miosge, N; Klinger, H-M; Lakemeier, S

    2015-01-01

    The clinical superiority of the double-row technique is still a subject of controversial debate in rotator cuff repair. We hypothesised that the expression of different collagen types will differ between double-row and single-row rotator cuff repair indicating a faster healing response by the double-row technique. Twenty-four mature female sheep were randomly assembled to two different groups in which a surgically created acute infraspinatus tendon tear was fixed using either a modified single- or double-row repair technique. Shoulder joints from female sheep cadavers of identical age, bone maturity, and weight served as untreated control cluster. Expression of type I, II, and III collagen was observed in the tendon-to-bone junction along with recovering changes in the fibrocartilage zone after immunohistological tissue staining at 1, 2, 3, 6, 12, and 26 weeks postoperatively. Expression of type III collagen remained positive until 6 weeks after surgery in the double-row group, whereas it was detectable for 12 weeks in the single-row group. In both groups, type I collagen expression increased after 12 weeks. Type II collagen expression was increased after 12 weeks in the double-row versus single-row group. Clusters of chondrocytes were only visible between week 6 and 12 in the double-row group. The study demonstrates differences regarding the expression of type I and type III collagen in the tendon-to-bone junction following double-row rotator cuff repair compared to single-row repair. The healing response in this acute repair model is faster in the double-row group during the investigated healing period.

  7. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the development of cell-based therapies for cartilage repair. PMID:23899094

  8. Periostin in Mature Stage Localized Scleroderma

    PubMed Central

    Kim, Min-Woo; Park, Jung Tae; Kim, Jung Ho; Koh, Seong-Joon; Yoon, Hyun-Sun; Cho, Soyun

    2017-01-01

    Background Periostin is a novel matricellular protein expressed in many tissues, including bone, periodontal ligament, and skin. Although its expression is prominent in various fibrotic conditions, studies of periostin in localized scleroderma are rare. Objective To investigate the expression of periostin and other molecules in localized scleroderma. Methods A retrospective study of 14 patients with confirmed mature stage localized scleroderma was undertaken. Fourteen age-matched and biopsy site-matched subjects with normal skin were included as controls. Collagen fiber deposition, periostin, procollagen, transforming growth factor-β, and matrix metalloproteinase (MMP)-1 expression were assessed and compared between the two groups. Co-localization of α-smooth muscle actin and periostin was evaluated using confocal microscopy. Results Periostin was predominantly expressed along the dermo-epidermal junction in the controls. Conversely, patients with localized scleroderma demonstrated increased collagen fiber deposition and periostin expression that was more widely distributed along the entire dermis. MMP-1 staining showed increased expression in the epidermis and dermis of patients compared to scanty expression in the controls. A semi-quantitative evaluation showed a higher proportion of excessive collagen bundle deposition (57.1% vs. 7.1%, p=0.013), diffuse periostin positivity (42.9% vs. 0%, p=0.016), and moderate MMP-1 positivity (71.4% vs. 7.1%, p=0.001) in patients than in the controls. Conclusion Compared to the controls, patients with localized scleroderma had enhanced periostin expression corresponding to increased collagen fiber deposition and unexpected overexpression of MMP-1. The results of this human in vivo study may implicate the pathogenesis of localized scleroderma. PMID:28566901

  9. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    NASA Astrophysics Data System (ADS)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  10. Lung fibrosis-associated soluble mediators and bronchoalveolar lavage from idiopathic pulmonary fibrosis patients promote the expression of fibrogenic factors in subepithelial lung myofibroblasts.

    PubMed

    Bouros, Evangelos; Filidou, Eirini; Arvanitidis, Konstantinos; Mikroulis, Dimitrios; Steiropoulos, Paschalis; Bamias, George; Bouros, Demosthenes; Kolios, George

    2017-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy.

    PubMed

    Peters, T H; Sharma, H S; Yilmaz, E; Bogers, A J

    1999-06-30

    One of the main features in human tetralogy of Fallot (TF) is right ventricular hypertrophy (RVH) due to pressure (sub-pulmonary stenosis) and volume overload (ventricular septal defect). Currently, primary correction at a young age is the treatment of choice. To unravel the role of extracellular matrix in RVH, we examined myocardial expression of collagens and fibronectin in TF patients with primary correction (TF1, age 0.7 +/- 0.2 yr.), secondary surgery (TF2, age 36.9 +/- 4.6 yr), and in age-matched control patients. Sirius red staining quantified by video imaging showed significantly increased interstitial staining for collagens in both TF1 and TF2 groups as compared to respective controls. Fibronectin was expressed in extracellular spaces, perivascular regions, and in some cardiomyocytes. Quantitative analysis of fibronectin revealed increased expression in only TF1 group as compared to respective control. Our results indicate an increased amount of myocardial extracellular matrix deposition as a sign of fibrosis during RVH in patients with TF.

  12. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts.

    PubMed

    Liu, Jin-Cheng; Wang, Feng; Xie, Mei-Lin; Cheng, Zong-Qi; Qin, Qiong; Chen, Lin; Chen, Rong

    2017-02-01

    Osthole, a natural coumarin and bioactive compound isolated from the fruit of Cnidium monnieri (L.) Cusson, was reported to prevent isoprenaline-induced myocardial fibrosis in mice by inhibiting the transforming growth factor-β1 (TGF-β1) expression, but the underlying mechanism is still unclear. The aim of this study is to illuminate whether the mechanism of osthole inhibiting collagen I and III expressions is associated with Smad signaling pathway in mouse cardiac fibroblasts (CFs) treated with TGF-β1. The mouse CFs stimulated with TGF-β1 were cultured and treated with osthole 1.25-5μg/ml for 24h. The expressions of α-SMA, collagen I, collagen III, TGF-β receptor I (TβRI), Smad2/3, phospho-Smad2/3 (P-Smad2/3), Smad4 and Smad7 were detected by real-time PCR method and western blot method, respectively. After treatment with TGF-β1 and osthole in CFs, the levels of α-SMA expression and collagen I and III were reduced by osthole treatment. Accordingly, the ratio of collagen I/III had a similar changing trend. Besides, the levels of TβRI, Smad2/3, P-Smad2/3 and Smad4 expressions were decreased, while the level of Smad7 expression was increased after treatment with osthole. The present results demonstrated that osthole could inhibit the collagen I and III expressions and their ratio in CFs treated with TGF-β1 via Smad signaling pathway, which might be one of its anti-fibrotic action mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    PubMed Central

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-01-01

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248

  14. Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy

    PubMed Central

    Blaker, Carina; Clarke, Elizabeth; Jeffcott, Leo; Little, Christopher

    2017-01-01

    Flexor tendinopathy is a common problem affecting humans and animals. Tendon healing is poorly understood and the outcomes of conservative and surgical management are often suboptimal. While often considered a localized injury, recent evidence indicates that in the short term, tendinopathic changes are distributed widely throughout the tendon, remote from the lesion itself. Whether these changes persist throughout healing is unknown. The aim of this study was to document gene expression, histopathological and biomechanical changes that occur throughout the superficial digital flexor tendon (SDFT) up to 16 weeks post-injury, using an ovine surgical model of tendinopathy. Partial tendon transection was associated with decreased gene expression for aggrecan, decorin, fibromodulin, tissue inhibitors of metalloproteinases (TIMPS 1, 2 and 3), collagen I and collagen II. Gene expression for collagen III, lumican and matrix metalloproteinase 13 (MMP13) increased locally around the lesion site. Expression of collagen III and MMP13 decreased with time, but compared to controls, collagen III, MMP13 and lumican expression remained regionally high throughout the study. An increase in TIMP3 was observed over time. Histologically, operated tendons had higher pathology scores than controls, especially around the injured region. A chondroid phenotype was observed with increased cellular rounding and marked proteoglycan accumulation which only partially improved with time. Biomechanically, partial tendon transection resulted in a localized decrease in elastic modulus (in compression) but only at 8 weeks postoperatively. This study improves our understanding of tendon healing, demonstrating an early ‘peak’ in pathology characterized by altered gene expression and notable histopathological changes. Many of these pathological changes become more localized to the region of injury during healing. Collagen III and MMP13 expression levels remained high close to the lesion throughout the study and may reflect the production of tendon tissue with suboptimal biomechanical properties. Further studies evaluating the long-term response of tendon to injury (6–12 months) are warranted to provide additional information on tendon healing and provide further understanding of the mechanisms underlying the pathology observed in this study. PMID:29023489

  15. Altered procollagen gene expression in mid-gestational mouse excisional wounds.

    PubMed

    Goldberg, Stephanie R; Quirk, Gerald L; Sykes, Virginia W; Kordula, Tomasz; Lanning, David A

    2007-11-01

    Many pathologic conditions are characterized by excessive tissue contraction and scar formation. Previously, we developed a murine model of excisional wound healing in which mid-gestational wounds heal scarlessly compared with late-gestational wounds. We theorized that variations in procollagen gene expression may contribute to the scarless and rapid closure. Time-dated pregnant FVB strain mice underwent laparotomy and hysterotomy on embryonic days 15 (E15) and 18 (E18). Full-thickness, excisional wounds (3 mm) were made on each of 4 fetuses per doe and then harvested at 32, 48, or 72 h. Control tissue consisted of age-matched normal fetal skin. Procollagen types 1alpha1, 1alpha2, and 3 gene expressions were measured by real-time polymerase chain reaction and normalized to glyceraldehyde-3-phosphate dehydrogenase. Trichrome staining was also performed. Procollagen 1alpha1 expression was decreased in E15 wounds at 32 h compared with their normal skin groups. Procollagen types 1alpha2 and 3 expressions were both increased in the E15 groups compared with the E18 groups at 48 h. At 72 h, the E15 wounds had a collagen density similar to the surrounding normal skin while E18 wounds exhibited increased collagen deposition in a disorganized pattern. This study demonstrates that the pattern of gene expression for types 1 and 3 collagen varies between mid- and late-gestational mouse excisional wounds. These alterations in procollagen expression may contribute to a pattern of collagen deposition in the mid-gestational fetuses that is more favorable for scarless healing with less type 1 and more type 3 collagen.

  16. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  17. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis.

    PubMed

    Apte, M V; Haber, P S; Darby, S J; Rodgers, S C; McCaughan, G W; Korsten, M A; Pirola, R C; Wilson, J S

    1999-04-01

    The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.

  18. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis.

    PubMed

    Tjin, Gavin; White, Eric S; Faiz, Alen; Sicard, Delphine; Tschumperlin, Daniel J; Mahar, Annabelle; Kable, Eleanor P W; Burgess, Janette K

    2017-11-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with few effective therapeutic options. Structural remodelling of the extracellular matrix [i.e. collagen cross-linking mediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4)] might contribute to disease pathogenesis and represent a therapeutic target. This study aimed to further our understanding of the mechanisms by which LO inhibitors might improve lung fibrosis. Lung tissues from IPF and non-IPF subjects were examined for collagen structure (second harmonic generation imaging) and LO gene (microarray analysis) and protein (immunohistochemistry and western blotting) levels. Functional effects (collagen structure and tissue stiffness using atomic force microscopy) of LO inhibitors on collagen remodelling were examined in two models, collagen hydrogels and decellularized human lung matrices. LOXL1 / LOXL2 gene expression and protein levels were increased in IPF versus non-IPF. Increased collagen fibril thickness in IPF versus non-IPF lung tissues correlated with increased LOXL1/LOXL2, and decreased LOX, protein expression. β-Aminoproprionitrile (β-APN; pan-LO inhibitor) but not Compound A (LOXL2-specific inhibitor) interfered with transforming growth factor-β-induced collagen remodelling in both models. The β-APN treatment group was tested further, and β-APN was found to interfere with stiffening in the decellularized matrix model. LOXL1 activity might drive collagen remodelling in IPF lungs. The interrelationship between collagen structural remodelling and LOs is disrupted in IPF lungs. Inhibition of LO activity alleviates fibrosis by limiting fibrillar collagen cross-linking, thereby potentially impeding the formation of a pathological microenvironment in IPF. © 2017. Published by The Company of Biologists Ltd.

  19. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis.

    PubMed

    Sathyamoorthy, Tarangini; Tezera, Liku B; Walker, Naomi F; Brilha, Sara; Saraiva, Luisa; Mauri, Francesco A; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration. Copyright © 2015 The Authors.

  20. Myostatin regulates proliferation and extracellular matrix mRNA expression in NIH3T3 fibroblasts.

    PubMed

    Z Hosaka, Yoshinao; Ishibashi, Mika; Wakamatsu, Jun-Ichi; Uehara, Masato; Nishimura, Takanori

    2012-12-01

    The aim of this study was to clarify the effects of myostatin, which is a negative regulator of skeletal muscle mass, on the proliferation of NIH3T3 fibroblasts and the synthesis of extracellular matrix (ECM) by them. A proliferation assay revealed that myostatin attenuated cell growth at any of the doses used. High doses of myostatin strongly inhibited cell proliferation. Moreover, myostatin receptor, activin receptor type-2B (ActRIIB), was found to be distributed on cells and it was also clarified that myostatin increased the expression of cyclin-dependent kinase inhibitor p21 (p21). These results suggested that a high dose of myostatin inhibits fibroblast proliferation by the same mechanism as that for inhibition of myoblast proliferation. We then examined the effects of myostatin on the mRNA expression of ECM molecules (decorin, biglycan, type I collagen, type III collagen, type IV collagen and type V collagen) by real-time PCR. Real-time PCR showed that myostatin increased the mRNA of decorin, biglycan and collagen (types I, IV and V) in fibroblasts. The results suggest that myostatin regulates ECM synthesis in cultured fibroblasts.

  1. Fibroblast populated collagen lattices exhibit opposite biophysical conditions by fibrin or hyaluronic acid supplementation.

    PubMed

    Chopin-Doroteo, Mario; Salgado-Curiel, Rosa M; Pérez-González, José; Marín-Santibáñez, Benjamín M; Krötzsch, Edgar

    2018-06-01

    Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fibroblast populated collagen lattices (collagen, collagen-fibrin, and collagen-hyaluronic acid). Compared with collagen and collagen-hyaluronic acid cultures, collagen-fibrin cultures showed less contraction, which is correlated with increased elastic (G') and complex (|G*|) moduli, and reduced proportions of dendritic fibroblasts, despite increased αv integrin expression. Stiffness decreased during culture in collagen-fibrin environment, meanwhile phase shift (δ) values increased, clearly associated with the rise in fibrinolytic and gelatinolytic activities. These processes changed the viscoelastic properties of the system toward G' and |G*| values observed on day 5 in collagen cultures. Although less collagen turnover was observed in collagen-fibrin cultures than in collagen and collagen-hyaluronic acid cultures, collagen neosynthesis was apparently insufficient to contribute to the overall viscoelastic properties of the system. Collagen-hyaluronic acid cultures showed very limited changes during time. Firstly, they exhibited the highest δ values, suggesting an increase in the viscous behavior due to the hygroscopic properties of hyaluronic acid. These results showed that fibrin and hyaluronic acid not only affect differently the viscoelastic properties of the culture, they can tune fibroblastic activity by regulating cell attachment and extracellular matrix remodeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac fibroblast. • PKA regulates collagen gel contraction in cardiac myofibroblast.« less

  3. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    PubMed

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Changes in mast cell number and stem cell factor expression in human skin after radiotherapy for breast cancer.

    PubMed

    Westbury, Charlotte B; Freeman, Alex; Rashid, Mohammed; Pearson, Ann; Yarnold, John R; Short, Susan C

    2014-05-01

    Mast cells are involved in the pathogenesis of radiation fibrosis and may be a therapeutic target. The mechanism of increased mast cell number in relation to acute and late tissue responses in human skin was investigated. Punch biopsies of skin 1 and 15-18 months after breast radiotherapy and a contralateral control biopsy were collected. Mast cells were quantified by immunohistochemistry using the markers c-Kit and tryptase. Stem cell factor (SCF) and collagen-1 expression was analysed by qRT-PCR. Clinical photographic scores were performed at post-surgical baseline and 18 months and 5 years post-radiotherapy. Primary human dermal microvascular endothelial cell (HDMEC) cultures were exposed to 2Gy ionising radiation and p53 and SCF expression was analysed by Western blotting and ELISA. Dermal mast cell numbers were increased at 1 (p=0.047) and 18 months (p=0.040) using c-Kit, and at 18 months (p=0.024) using tryptase immunostaining. Collagen-1 mRNA in skin was increased at 1 month (p=0.047) and 18 months (p=0.032) and SCF mRNA increased at 1 month (p=0.003). None of 16 cases scored had a change in photographic appearance at 5 years, compared to baseline. SCF expression was not increased in HDMECs irradiated in vitro. Increased mast cell number was associated with up-regulated collagen-1 expression in human skin at early and late time points. This increase could be secondary to elevated SCF expression at 1 month after radiotherapy. Although mast cells accumulate around blood vessels, no endothelial cell secretion of SCF was seen after in vitro irradiation. Modification of mast cell number and collagen-1 expression may be observed in skin at 1 and 18 months after radiotherapy in breast cancer patients with no change in photographic breast appearance at 5 years. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. The mesangial matrix in the normal and sclerotic glomerulus.

    PubMed

    Rosenblum, N D

    1994-02-01

    Mesangial sclerosis is a final common pathway to glomerular destruction in a variety of glomerular diseases. The expression of several classes of extracellular matrix (ECM) molecules has been defined in the normal and diseased mesangial matrix (MM). However, the manner in which these ECM components determine the three dimensional structure and function of the MM remains to be defined. Structural studies of the MM suggest that its constituent molecules are regionally organized into subcompartments with different three dimensional structures. The diversity of matrix molecules expressed within the MM as well as the organization of these components in nonrenal ECM's, such as the cornea, provides further support for this organizational model. The study of the cornea has also revealed that novel short chain collagenous proteins partially determine the three dimensional structure of the matrix. Recently, a novel collagen, type VIII collagen, has been described in mesangial cells and in the intact glomerulus. It is hypothesized that type VIII collagen is expressed both as a polymer and as a monomer within the glomerulus, and depending on its conformation, may serve unique functions. In the chronically diseased MM, normal MM components are overexpressed and fibrillar collagens are expressed de novo in a delayed fashion. Enhanced proteoglycan expression, observed early in disease, may determine increased volume of the mesangium. This, in turn, may stimulate the production of fibrillar collagens by mesangial cells resulting in a fibrillar noncompliant mesangial matrix.

  6. Collagen type IV at the fetal-maternal interface.

    PubMed

    Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A

    2015-01-01

    Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle was determined by qPCR and protein localisation by immunohistochemistry. The structure of col-IV in placenta was examined using transmission electron microscopy. Finally, the expression of col-IV alpha chain NC1 domains and collagen receptors was localised by immunohistochemistry. Col-IV alpha chains were selectively up-regulated during the menstrual cycle and decidualisation. Primary extravillous trophoblast cells express collagen receptors and secrete col-IV in vitro and in vivo, resulting in the increased levels found in decidua basalis compared to decidua parietalis. A novel expression pattern of col-IV in the mesenchyme of placental villi, as a three-dimensional network, was found. NC1 domains of col-IV alpha chains are known to regulate tumour cell migration and the selective expression of these domains in decidua basalis compared to decidua parietalis was determined. Col-IV is expressed as novel forms in the placenta. These findings suggest that col-IV not only represents a structural protein providing tissue integrity but also influences the invasive behaviour of trophoblast cells at the implantation site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  8. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.

    PubMed

    Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J

    2016-11-01

    Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases.

    PubMed

    Kamel, Marwa; Wagih, Mohamed; Kilic, Gokhan S; Diaz-Arrastia, Concepcion R; Baraka, Mohamed A; Salama, Salama A

    2017-01-01

    The role of the extracellular matrix (ECM) in uterine fibroids (UF) has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH) and lysyl oxidases (LOX)], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl) and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b) and LOX. Also, increased resistance to matrix metalloproteinases (MMP) proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker ( α -SMA), growth-promoting markers (PCNA; pERK1/2; FAK pY397 ; Ki-67; and Cyclin D1), and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.

  10. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases

    PubMed Central

    Kamel, Marwa; Wagih, Mohamed; Diaz-Arrastia, Concepcion R.; Baraka, Mohamed A.

    2017-01-01

    The role of the extracellular matrix (ECM) in uterine fibroids (UF) has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH) and lysyl oxidases (LOX)], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl) and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b) and LOX. Also, increased resistance to matrix metalloproteinases (MMP) proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA), growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1), and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF. PMID:29082249

  11. [The characteristics of type I, III collagen and LN in pulmonary fibrosis induced by uranium ore dust in rats].

    PubMed

    Hu, Ying-chun; Luo, Zhen-hua; Yuan, Xing-jiang; Yang, Li-ping; Wang, Shou-feng; Li, Guang-yue; He, Xing-peng

    2011-02-01

    To explore the characteristics of LN and type I, III collagen in pulmonary fibrosis induced by uranium ore dust in rats. 60 adult Wistar rats were divided randomly into two groups, control group (30 rats) and uranium ore dust group (30 rats). Non-exposed intratracheal instillation method was used. Uranium ore dust group was exposed 20 mg/ml uranium ore dust suspension 1ml per rat, meanwhile control group was exposed normal saline 1ml per rat. Post-exposed the 7, 14, 21, 30 and 60 d, 6 rats in each group were killed randomly, lung tissue were collected. The pathological changes in lung tissue were observed by microscope using HE staining, the collagen I and III in lungs were observed by polarizing microscope using Biebrich scarlet staining. The expression of LN protein in lung tissue was observed by immunohistochemistry-SP. During lung fibrosis, a large amount of the proliferated I and III collagen in lungs were observed. Post-exposure to uranium ore dust, the characteristics in proliferated collagen in lungs were type I collagen deposited in lung interstitium mainly in the early stage. The area percentage of collagen I and III was increased significantly at 7, 14, 21, 30 and 60d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). The over expression of LN in the lung tissue were observed. The expression of LN was distributed in the lung tissue as thickening of the linear or cluster. The integral optical density of LN was increased significantly at 21, 30 and 60 d in the experimental group as compared with that in the control group (P < 0.05 or P < 0.01). After exposure to uranium ore dust, the characteristics in proliferated collagen in lungs are the type of I collagen deposited in lung interstitium mainly in the early stage, while the type of III collagen increase significantly at the later period. The overexpression of LN exists in the process of pulmonary fibrosis. It suggests that LN has a role effect in the process of pulmonary fibrosis.

  12. Hepatic Stellate Cells Express Functional CXCR4: Role in Stromal Cell–Derived Factor-1α–Mediated Stellate Cell Activation

    PubMed Central

    Hong, Feng; Tuyama, Ana; Lee, Ting Fang; Loke, Johnny; Agarwal, Ritu; Cheng, Xin; Garg, Anita; Fiel, M. Isabel; Schwartz, Myron; Walewski, Jose; Branch, Andrea; Schecter, Alison D.; Bansal, Meena B.

    2010-01-01

    Chemokine interactions with their receptors have been implicated in hepatic stellate cell (HSC) activation. The hepatic expression of CXCR4 messenger RNA is increased in hepatitis C cirrhotic livers and plasma levels of its endogenous ligand, stromal cell–derived factor-1α (SDF-1α), correlate with increased fibrosis in these patients. The expression of CXCR4 by HSCs has not been reported. We therefore examined whether HSCs express CXCR4 in vivo and in vitro and explored whether SDF-1α/CXCR4 receptor engagement promotes HSC activation, fibrogenesis, and proliferation. The hepatic protein expression of both CXCR4 and SDF-1α is increased in hepatitis C cirrhotic livers and immunoflourescent and immunohistochemical staining confirms that HSCs express CXCR4 in vivo. Immortalized human stellate cells as well as primary human HSCs express CXCR4, and cell surface receptor expression increases with progressive culture-induced activation. Treatment of stellate cells with recombinant SDF-1α increases expression of α-smooth muscle actin and collagen I and stimulates a dose-dependent increase in HSC proliferation. Inhibitor studies suggest that SDF-1α/CXCR4-dependent extracellular signal-regulated kinase 1/2 and Akt phosphorylation mediate effects on collagen I expression and stellate cell proliferation. Conclusion HSCs express CXCR4 receptor in vivo and in vitro. CXCR4 receptor activation by SDF-1α is profibrogenic through its effects on HSC activation, fibrogenesis, and proliferation. Extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase pathways mediate SDF-1α–induced effects on HSC expression of collagen I and proliferation. The availability of small molecule inhibitors of CXCR4 make this receptor an appealing target for antifibrotic approaches. PMID:19434726

  13. Age Increases Monocyte Adhesion on Collagen

    NASA Astrophysics Data System (ADS)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  14. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy.

    PubMed

    Chen, Kai; Zhou, Xiaoli; Sun, Zhongjie

    2015-11-01

    The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively. © 2015 American Heart Association, Inc.

  15. Loss of Matrix Metalloproteinase-2 Amplifies Murine Toxin-Induced Liver Fibrosis by Upregulating Collagen I Expression

    PubMed Central

    Radbill, Brian D.; Gupta, Ritu; Ramirez, Maria Celeste M.; DiFeo, Analisa; Martignetti, John A.; Alvarez, Carlos E.; Friedman, Scott L.; Narla, Goutham; Vrabie, Raluca; Bowles, Robert; Saiman, Yedidya

    2010-01-01

    Background and Aims Matrix metalloproteinase-2 (MMP-2), a type IV collagenase secreted by activated hepatic stellate cells (HSCs), is upregulated in chronic liver disease and is considered a profibrotic mediator due to its proliferative effect on cultured HSCs and ability to degrade normal liver matrix. Although associative studies and cell culture findings suggest that MMP-2 promotes hepatic fibrogenesis, no in vivo model has definitively established a pathologic role for MMP-2 in the development and progression of liver fibrosis. We therefore examined the impact of MMP-2 deficiency on liver fibrosis development during chronic CCl4 liver injury and explored the effect of MMP-2 deficiency and overexpression on collagen I expression. Methods Following chronic CCl4 administration, liver fibrosis was analyzed using Sirius Red staining with quantitative morphometry and real-time polymerase chain reaction (PCR) in MMP-2−/− mice and age-matched MMP-2+/+ controls. These studies were complemented by analyses of cultured human stellate cells. Results MMP-2−/− mice demonstrated an almost twofold increase in fibrosis which was not secondary to significant differences in hepatocellular injury, HSC activation or type I collagenase activity; however, type I collagen messenger RNA (mRNA) expression was increased threefold in the MMP-2−/− group by real-time PCR. Furthermore, targeted reduction of MMP-2 in cultured HSCs using RNA interference significantly increased collagen I mRNA and protein, while overexpression of MMP-2 resulted in decreased collagen I mRNA. Conclusions These findings suggest that increased MMP-2 during the progression of liver fibrosis may be an important mechanism for inhibiting type I collagen synthesis by activated HSCs, thereby providing a protective rather than pathologic role. PMID:20563750

  16. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    PubMed

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  17. Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity.

    PubMed

    Jansen, John A; van Veen, Toon A B; de Jong, Sanne; van der Nagel, Roel; van Stuijvenberg, Leonie; Driessen, Helen; Labzowski, Ronald; Oefner, Carolin M; Bosch, Astrid A; Nguyen, Tri Q; Goldschmeding, Roel; Vos, Marc A; de Bakker, Jacques M T; van Rijen, Harold V M

    2012-04-01

    Arrhythmogenic ventricular remodeling is hallmarked by both reduced gap junction expression and increased collagen deposition. We hypothesized that reduced connexin43 (Cx43) expression is responsible for enhanced fibrosis in the remodeled heart, resulting in an arrhythmogenic substrate. Therefore, we investigated the effect of normal or reduced Cx43 expression on the formation of fibrosis in a physiological (aging) and pathophysiological (transverse aortic constriction [TAC]) mouse model. The Cx43(fl/fl) and Cx43(CreER(T)/fl) mice were aged 18 to 21 months or, at the age of 3 months, either TAC or sham operated and euthanized after 16 weeks. Epicardial activation mapping of the right and left ventricles was performed on Langendorff perfused hearts. Sustained ventricular arrhythmias were induced in 0 of 11 aged Cx43(fl/fl) and 10 of 15 Cx43(Cre-ER(T)/fl) mice (P<0.01). Cx43 expression was reduced by half in aged Cx43(CreER(T)/fl) compared with aged Cx43(fl/fl) mice, whereas collagen deposition was significantly increased from 1.1±0.2% to 7.4±1.3%. Aged Cx43(CreER(T)/fl) mice with arrhythmias had significantly higher levels of fibrosis and conduction heterogeneity than aged Cx43(CreER(T)/fl) mice without arrhythmias. The TAC operation significantly increased fibrosis in control compared with sham (4.0±1.2% versus 0.4±0.06%), but this increase was significantly higher in Cx43(CreER(T)/fl) mice (10.8±1.4%). Discoidin domain receptor 2 expression was unchanged, but procollagen peptide I and III expression and collagen type 1α2 mRNA levels were higher in TAC-operated Cx43HZ mice. Reduced cellular coupling results in more excessive collagen deposition during aging or pressure overload in mice due to enhanced fibroblast activity, leading to increased conduction in homogeneity and proarrhythmia.

  18. Enhanced store-operated Ca2+ influx and ORAI1 expression in ventricular fibroblasts from human failing heart

    PubMed Central

    Ross, Gracious R.; Bajwa, Tanvir; Edwards, Stacie; Emelyanova, Larisa; Rizvi, Farhan; Holmuhamedov, Ekhson L.; Werner, Paul; Downey, Francis X.; Tajik, A. Jamil

    2017-01-01

    ABSTRACT Excessive cardiac fibrosis, characterized by increased collagen-rich extracellular matrix (ECM) deposition, is a major predisposing factor for mechanical and electrical dysfunction in heart failure (HF). The human ventricular fibroblast (hVF) remodeling mechanisms that cause excessive collagen deposition in HF are unclear, although reports suggest a role for intracellular free Ca2+ in fibrosis. Therefore, we determined the association of differences in cellular Ca2+ dynamics and collagen secretion/deposition between hVFs from failing and normal (control) hearts. Histology of left ventricle sections (Masson trichrome) confirmed excessive fibrosis in HF versus normal. In vitro, hVFs from HF showed increased secretion/deposition of soluble collagen in 48 h of culture compared with control [85.9±7.4 µg/106 cells vs 58.5±8.8 µg/106 cells, P<0.05; (Sircol™ assay)]. However, collagen gene expressions (COL1A1 and COL1A2; RT-PCR) were not different. Ca2+ imaging (fluo-3) of isolated hVFs showed no difference in the thapsigargin-induced intracellular Ca2+ release capacity (control 16±1.4% vs HF 17±1.1%); however, Ca2+ influx via store-operated Ca2+ entry/Ca2+ release-activated channels (SOCE/CRAC) was significantly (P≤0.05) greater in HF-hVFs (47±3%) compared with non-failing (35±5%). Immunoblotting for ICRAC channel components showed increased ORAI1 expression in HF-hVFs compared with normal without any difference in STIM1 expression. The Pearson's correlation coefficient for co-localization of STIM1/ORAI1 was significantly (P<0.01) greater in HF (0.5±0.01) than control (0.4±0.01) hVFs. The increase in collagen secretion of HF versus control hVFs was eliminated by incubation of hVFs with YM58483 (10 µM), a selective ICRAC inhibitor, for 48 h (66.78±5.87 µg/106 cells vs 55.81±7.09 µg/106 cells, P=0.27). In conclusion, hVFs from HF have increased collagen secretion capacity versus non-failing hearts and this is related to increase in Ca2+ entry via SOCE and enhanced expression of ORAI, the pore-forming subunit. Therapeutic inhibition of SOCE may reduce the progression of cardiac fibrosis/HF. PMID:28126709

  19. Alterations of Dermal Connective Tissue Collagen in Diabetes: Molecular Basis of Aged-Appearing Skin

    PubMed Central

    Argyropoulos, Angela J.; Robichaud, Patrick; Balimunkwe, Rebecca Mutesi; Fisher, Gary J.; Hammerberg, Craig; Yan, Yan

    2016-01-01

    Alterations of the collagen, the major structural protein in skin, contribute significantly to human skin connective tissue aging. As aged-appearing skin is more common in diabetes, here we investigated the molecular basis of aged-appearing skin in diabetes. Among all known human matrix metalloproteinases (MMPs), diabetic skin shows elevated levels of MMP-1 and MMP-2. Laser capture microdissection (LCM) coupled real-time PCR indicated that elevated MMPs in diabetic skin were primarily expressed in the dermis. Furthermore, diabetic skin shows increased lysyl oxidase (LOX) expression and higher cross-linked collagens. Atomic force microscopy (AFM) further indicated that collagen fibrils were fragmented/disorganized, and key mechanical properties of traction force and tensile strength were increased in diabetic skin, compared to intact/well-organized collagen fibrils in non-diabetic skin. In in vitro tissue culture system, multiple MMPs including MMP-1 and MM-2 were induced by high glucose (25 mM) exposure to isolated primary human skin dermal fibroblasts, the major cells responsible for collagen homeostasis in skin. The elevation of MMPs and LOX over the years is thought to result in the accumulation of fragmented and cross-linked collagen, and thus impairs dermal collagen structural integrity and mechanical properties in diabetes. Our data partially explain why old-looking skin is more common in diabetic patients. PMID:27104752

  20. Extracellular Collagen Promotes Interleukin-1β-Induced Urokinase-Type Plasminogen Activator Production by Human Corneal Fibroblasts.

    PubMed

    Sugioka, Koji; Kodama-Takahashi, Aya; Yoshida, Koji; Aomatsu, Keiichi; Okada, Kiyotaka; Nishida, Teruo; Shimomura, Yoshikazu

    2017-03-01

    Keratocytes maintain homeostasis of the corneal stroma through synthesis, secretion, and degradation of collagen fibrils of the extracellular matrix. Given that these cells are essentially embedded in a collagen matrix, keratocyte-collagen interactions may play a key role in regulation of the expression or activation of enzymes responsible for matrix degradation including urokinase-type plasminogen activator (uPA), plasmin, and matrix metalloproteinases (MMPs). We examined the effect of extracellular collagen on the production of uPA by corneal fibroblasts (activated keratocytes) stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Human corneal fibroblasts were cultured either on plastic or in a three-dimensional gel of type I collagen. Plasminogen activators were detected by fibrin zymography, whereas the IL-1 receptor (IL-1R) and MMPs were detected by immunoblot analysis. Collagen degradation by corneal fibroblasts was assessed by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Collagen and IL-1β synergistically increased the synthesis and secretion of uPA in corneal fibroblasts. Collagen also upregulated IL-1R expression in the cells in a concentration-dependent manner. The conversion of extracellular plasminogen to plasmin, as well as the plasminogen-dependent activation of MMP-1 and MMP-3 and degradation of collagen apparent in three-dimensional cultures of corneal fibroblasts exposed to IL-1β, were all abolished by a selective uPA inhibitor. Collagen and IL-1β cooperate to upregulate uPA production by corneal fibroblasts. Furthermore, IL-1β-induced collagen degradation by these cells appears to be strictly dependent on uPA expression and mediated by a uPA-plasmin-MMP pathway.

  1. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    PubMed

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  2. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice*

    PubMed Central

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen

    2016-01-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085

  3. Efficient Production of Hydroxylated Human-Like Collagen Via the Co-Expression of Three Key Genes in Escherichia coli Origami (DE3).

    PubMed

    Tang, Yunping; Yang, Xiuliang; Hang, Baojian; Li, Jiangtao; Huang, Lei; Huang, Feng; Xu, Zhinan

    2016-04-01

    Mature collagen is abundant in human bodies and very valuable for a range of industrial and medical applications. The biosynthesis of mature collagen requires post-translational modifications to increase the stability of collagen triple helix structure. By co-expressing the human-like collagen (HLC) gene with human prolyl 4-hydroxylase (P4H) and D-arabinono-1, 4-lactone oxidase (ALO) in Escherichia coli, we have constructed a prokaryotic expression system to produce the hydroxylated HLC. Then, five different media, as well as the induction conditions were investigated with regard to the soluble expression of such protein. The results indicated that the highest soluble expression level of target HLC obtained in shaking flasks was 49.55 ± 0.36 mg/L, when recombinant cells were grew in MBL medium and induced by 0.1 mM IPTG at the middle stage of exponential growth phase. By adopting the glucose feeding strategy, the expression level of target HLC can be improved up to 260 mg/L in a 10 L bench-top fermentor. Further, HPLC analyses revealed that more than 10 % of proline residues in purified HLC were successfully hydroxylated. The present work has provided a solid base for the large-scale production of hydroxylated HLC in E. coli.

  4. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.

    PubMed

    Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E

    2015-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    PubMed

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  6. Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function.

    PubMed

    Young, N J; Becker, D L; Fleck, R A; Goodship, A E; Patterson-Kane, J C

    2009-07-01

    Energy-storing tendons including the equine superficial digital flexor tendon (SDFT) contribute to energetic efficiency of locomotion at high-speed gaits, but consequently operate close to their physiological strain limits. Significant evidence of exercise-induced microdamage has been found in the SDFT which appears not to exhibit functional adaptation; the degenerative changes have not been repaired by the tendon fibroblasts (tenocytes), and are proposed to accumulate and predispose the tendon to rupture during normal athletic activity. The anatomically opposing common digital extensor tendon (CDET) functions only to position the digit, experiencing significantly lower levels of strain and is rarely damaged by exercise. A number of studies have indicated that tenocytes in the adult SDFT are less active in collagen synthesis and turnover than those in the immature SDFT or the CDET. Gap junction intercellular communication (GJIC) is known to be necessary for strain-induced collagen synthesis by tenocytes. We postulate therefore that expression of GJ proteins connexin 43 and 32 (Cx43; Cx32), GJIC and associated collagen expression levels are high in the SDFT and CDET of immature horses, when the SDFT in particular grows significantly in cross-sectional area, but reduce significantly during maturation in the energy-storing tendon only. The hypothesis was tested using tissue from the SDFT and CDET of foetuses, foals, and young adult Thoroughbred horses. Cellularity and the total area of both Cx43 and Cx32 plaques/mm(2) of tissue reduced significantly with maturation in each tendon. However, the total Cx43 plaque area per tenocyte significantly increased in the adult CDET. Evidence of recent collagen synthesis in the form of levels of neutral salt-soluble collagen, and collagen type I mRNA was significantly less in the adult compared with the immature SDFT; procollagen type I amino-propeptide (PINP) and procollagen type III amino-propeptide (PIIINP) levels per mm(2) of tissue and PINP expression per tenocyte also decreased with maturation in the SDFT. In the CDET PINP and PIIINP expression per tenocyte increased in the adult, and exceeded those in the adult SDFT. The level of PINP per mm(2) was greater in the adult CDET than in the SDFT despite the higher cellularity of the latter tendon. In the adult SDFT, levels of PIIINP were greater than those of PINP, suggesting relatively greater synthesis of a weaker form of collagen previously associated with microdamage. Tenocytes in monolayers showed differences in Cx43 and Cx32 expression compared with those in tissue, however there were age- and tendon-specific phenotypic differences, with a longer time for 50% recovery of fluorescence after photobleaching in adult SDFT cells compared with those from the CDET and immature SDFT. As cellularity reduces following growth in the SDFT, a failure of the remaining tenocytes to show a compensatory increase in GJ expression and collagen synthesis may explain why cell populations are not able to respond to exercise and to repair microdamage in some adult athletes. Enhancing GJIC in mature energy-storing tendons could provide a strategy to increase the cellular synthetic and reparative capacity.

  7. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma.

    PubMed

    Yan, Yongji; Wang, Chao; Lu, Yiqin; Gong, Huijie; Wu, Zhun; Ma, Xin; Li, Hongzhao; Wang, Baojun; Zhang, Xu

    2018-02-01

    The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.

  8. Carbon nanotubes attenuate cancer and improve healing

    NASA Astrophysics Data System (ADS)

    Wailes, Elizabeth Marguerite

    Breast cancer is the most common cancer in American women and the second largest cause of their cancer mortality. Resection of the primary tumor can greatly improve the prognosis, but if any of the cancerous cells remain, the patient is still at risk. This work investigates the ability of high aspect ratio nanoparticles to both heal injured tissue and attenuate cancer cells' aggression. To assess different particles' utility, carbon nanoparticles were evaluated in a fibroblast and collagen gel model of wound contraction, then polymeric nanoparticles were synthesized and tested similarly. The carbon particles, multi-walled nanotubes (MWNT) in particular, performed the best, strongly inhibiting pathological wound contraction, increasing cell viability, and decreasing reactive oxygen species. Later, carbon nanoparticle coatings with or without collagen were tested with breast cancer cells to assess adhesion, migration, and E-cadherin expression of the cells. The collagen-MWNT coatings were able to increase cancer cell adhesion to their substrate, decrease migration, increase E-cadherin expression, and also increase autophagy. The coatings effected all these changes without increasing proliferation of the cancer cells or affecting non-tumorigenic breast cells. To examine how these two sets of results might act together, co-cultures were then created with both fibroblasts and cancer cells in collagen gels with or without MWNT. The cells' movement and matrix metalloproteinase (MMP) expression were measured to gauge the cells' interaction in that environment, as fibroblasts can encourage or suppress metastasis depending on their behavior. The MWNT were able to decrease cancer cell movement, particularly their invasion into the gel, and selectively promote cancer cell death without harming the non-tumorigenic cells. They also decreased MMP expression. Finally, early in vivo work was undertaken to determine how the collagen-nanoparticle gels are able to control cancer in mice. Early trends suggest that the material might be quite helpful, but more work is necessary. Overall, the collagen-MWNT mixture has shown great promise and sensitivity in targeting pathological cells while improving the characteristics of the supporting cells. This novel method of mechanical control of cancer suggests new possibilities for cancer treatment, which has traditionally been conducted only through biochemical or radiological means.

  9. Prenatal Nicotine Increases Matrix Metalloproteinase 2 (MMP-2) Expression in Fetal Guinea Pig Hearts

    PubMed Central

    Thompson, Loren P.; Liu, Hongshan; Evans, LaShauna; Mong, Jessica A.

    2011-01-01

    This study tested the hypothesis that maternal nicotine ingestion increases matrix metalloproteinase (MMP) expression in fetal hearts, which is mediated by the generation of reactive oxygen species. Timed pregnant guinea pigs were administered either water alone, nicotine (200 μg/mL), N-acetylcysteine (NAC), or nicotine plus NAC in their drinking water for 10 days at 52-day gestation (term = 65 days). Near-term (62 days), anesthetized fetuses were extracted, hearts were excised, and left cardiac ventricles snap frozen for analysis of MMP-2/-9/-13 protein and activity levels. Interstitial collagens were identified by Picrosirius red stain to assess changes in the extracellular matrix. Prenatal nicotine increased active MMP-2 forms and interstitial collagen but had no effect on either pro- or active MMP-9 or MMP-13 forms. In the presence of nicotine, NAC decreased active MMP-2 protein levels and reversed the nicotine-induced increase in collagen staining. We conclude that prenatal nicotine alters MMP-2 expression in fetal hearts that may be mediated by reactive oxygen species generation. PMID:21775771

  10. Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact.

    PubMed

    Kreikemeyer, Bernd; Nakata, Masanobu; Oehmcke, Sonja; Gschwendtner, Caroline; Normann, Jana; Podbielski, Andreas

    2005-09-30

    The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.

  11. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    PubMed Central

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  12. Histopathologic and immunohistochemical features of capsular tissue around failed Ahmed glaucoma valves.

    PubMed

    Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P

    2017-01-01

    Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.

  13. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging

    PubMed Central

    Pageon, Hervé; Zucchi, Hélène; Dai, Zhenyu; Sell, David R.; Strauch, Christopher M.; Monnier, Vincent M.; Asselineau, Daniel

    2015-01-01

    Abstract Advanced glycation end products (AGEs) accumulate in the aging skin. To understand the biological effects of individual AGEs, skin reconstructed with collagen selectively enriched with Nɛ-(carboxymethyl)-lysine (CML), Nɛ-(carboxyethyl)-lysine (CEL), methylglyoxal hydroimidazolone (MG-H1), or pentosidine was studied. Immunohistochemistry revealed increased expression of α6 integrin at the dermal epidermal junction by CEL and CML (p<0.01). Laminin 5 was diminished by CEL and MG-H1 (p<0.05). Both CML and CEL induced a robust increase (p<0.01) in procollagen I. In the culture medium, IL-6, VEGF, and MMP1 secretion were significantly decreased (p<0.05) by MG-H1. While both CEL and CML decreased MMP3, only CEL decreased IL-6 and TIMP1, while CML stimulated TIMP1 synthesis significantly (p<0.05). mRNA expression studies using qPCR in the epidermis layer showed that CEL increased type 7 collagen (COL7A1), β1, and α6 integrin, while CML increased only COL7A1 (p<0.05). MG-H1-modified collagen had no effect. Importantly, in the dermis layer, MMP3 mRNA expression was increased by both CML and MG-H1. CML also significantly increased the mRNAs of MMP1, TIMP1, keratinocyte growth factor (KGF), IL-6, and monocyte chemoattractant protein 1 (MCP1) (p<0.05). Mixed effects were present in CEL-rich matrix. Minimally glycoxidized pentosidine-rich collagen suppressed most mRNAs of the genes studied (p<0.05) and decreased VEGF and increased MCP1 protein expression. Taken together, this model of the aging skin suggests that a combination of AGEs tends to counterbalance and thus minimizes the detrimental biological effects of individual AGEs. PMID:26309782

  14. Effects of leptin on lipopolysaccharide-induced remodeling in an in vitro model of human myometrial inflammation.

    PubMed

    Wendremaire, Maeva; Mourtialon, Pascal; Goirand, Françoise; Lirussi, Frédéric; Barrichon, Marina; Hadi, Tarik; Garrido, Carmen; Le Ray, Isabelle; Dumas, Monique; Sagot, Paul; Bardou, Marc

    2013-02-01

    Reorganization of myometrial extracellular matrix (ECM) is essential for the uterus to achieve powerful synchronous contractions during labor. Remodeling of the ECM has been implicated in membrane rupture and cervical ripening. Because maternal obesity is associated with both delivery disorders and elevated circulating leptin levels, this study aimed to assess the ability of leptin to interfere with lipopolysaccharide (LPS)-induced myometrial ECM remodeling. Myometrial biopsy samples were obtained from women undergoing cesarean delivery before labor onset. Myometrial explants were incubated for 48 h with LPS and leptin. LPS challenge was associated with a marked decrease in collagen content and in heat shock protein (HSP) 47 expression, reflecting a disruption in collagen synthesis and an increase in matrix metalloproteinase (MMP) 2 and MMP9 activity and in MMP2, MMP9, and MMP13 expression. Leptin prevented an LPS-induced decrease in myometrial collagen content in a concentration-dependent manner. This effect was associated with an increase in HSP47 expression and a decrease in MMP2 and MMP9 activity and expression. These results show that leptin prevents LPS-induced myometrial remodeling through collagen synthesis stimulation and inhibition of MMP2 and MMP9. Our study strengthens the hypothesis that leptin plays a role in the development of obesity-related delivery disorders.

  15. Platelet-lysate as an autologous alternative for fetal bovine serum in cardiovascular tissue engineering.

    PubMed

    Riem Vis, Paul W; Bouten, Carlijn V C; Sluijter, Joost P G; Pasterkamp, Gerard; van Herwerden, Lex A; Kluin, Jolanda

    2010-04-01

    There is an ongoing search for alternative tissue culture sera to engineer autologous tissues, since use of fetal bovine serum (FBS) is limited under Good Tissue Practice guidelines. We compared FBS with human platelet-lysate (PL) in media for in vitro cell culture. A threefold increase in duplication rate was found when human, saphenous vein-derived myofibroblasts were cultured in PL, whereas expression of marker proteins (alpha-smooth muscle actin, vimentin, desmin, and nonmuscle myosin heavy chain) was similar. Heat shock protein 47 mRNA expression was increased in PL cells, and type III collagen fibers were seen on PL-cell monolayers but not on cells cultured in FBS. These results imply a more efficient collagen fiber production. We also found higher levels of proteins involved in tissue repair and collagen remodeling, which could explain increased production of proteases and protease inhibitors by PL cells. Our findings indicate that PL is beneficial due to the increased duplication rate, in addition to the increased matrix production and remodeling. This could lead to production of strong tissue with properly organized collagen fibers, which is important for heart valve tissue engineering.

  16. Opuntia Extract Reduces Scar Formation in Rabbit Ear Model: A Randomized Controlled Study.

    PubMed

    Fang, Quan; Huang, Chunlan; You, Chuangang; Ma, Shaolin

    2015-12-01

    The purpose of this article is to investigate the effect of Opuntia stricta H (Cactaceae) extract on suppression of hypertrophic scar on ventral surface wounds of rabbit ears. Full thickness skin defection was established in a rabbit ear to simulate hypertrophic scar. Opuntia extract was sprayed on the wounds in the experimental group, and normal saline was used in the control group. After the wounds healed with scar formation, the hypertrophic scar tissue was harvested on days 22, 39, and 54 for histological analysis. The expression of type I and type III collagen and matrix metalloproteinase-1 (MMP-1) were evaluated by immunohistochemistry and real-time quantitative polymerase chain reaction. The results indicated that the scar of the control group is more prominent compared with the opuntia extract group. The expression of type I collagen in the opuntia extract group was lower than the control group, while type III collagen in opuntia extract group gradually increased and exceeded control group. The expression of MMP-1 decreased in the opuntia extract group, while the control group increased over time, but the amount of MMP-1 was much higher than that in the control group on day 22. In conclusion, opuntia extract reduces hypertrophic scar formation by means of type I collagen inhibition, and increasing type III collagen and MMP-1.T he novel application of opuntia extract may lead to innovative and effective antiscarring therapies. © The Author(s) 2015.

  17. Expression of modulators of extracellular matrix structure after anterior cruciate ligament injury.

    PubMed

    Haslauer, Carla M; Proffen, Benedikt L; Johnson, Victor M; Murray, Martha M

    2014-01-01

    The ability of the anterior cruciate ligament (ACL) to heal after injury declines within the first 2 weeks after ACL rupture. To begin to explore the mechanism behind this finding, we quantified the expression of genes for collagen I and III, decorin, tenascin-C, and alpha smooth muscle actin, as well as matrix metalloproteinase (MMP)-1 and -13 gene expression within multiple tissues of the knee joint after ACL injury in a large animal model over a 2-week postinjury period. Gene expression of collagen I and III, decorin, and MMP-1 was highest in the synovium, whereas the highest MMP-13 gene expression levels were found in the ACL. The gene expression for collagen and decorin increased over the 2 weeks to levels approaching that in the ligament and synovium; however, no significant increase in either of the MMPs was found in the provisional scaffold. This suggests that although the ACL and synovium up-regulate both anabolic and catabolic factors, the provisional scaffold is primarily anabolic in function. The relative lack of provisional scaffold formation within the joint environment may thus be one of the key reasons for ACL degradation after injury. © 2014 by the Wound Healing Society.

  18. A Modified Collagen Gel Dressing Promotes Angiogenesis in a Pre-Clinical Swine Model of Chronic Ischemic Wounds

    PubMed Central

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K.

    2015-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full thickness excisional wounds were established in the center of bi- pedicle ischemic skin flaps on the backs of animals. Ischemia was verified by Laser Doppler imaging and MCG was applied to the test group of wounds. Seven days post- wounding, macrophage recruitment to the wound was significantly higher in MCG- treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine IL-10 and of β-FGF. An increased expression of CCR2, a M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of TGF-β, VEGF, vWF, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post-wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I:III deposition. Taken together, MCG helped mount a more robust inflammatory response which resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome and post-wound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. PMID:25224310

  19. Stent-induced coronary artery stenosis characterized by multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Han-Wei; Simianu, Vlad; Locker, Mattew J.; Cheng, Ji-Xin; Sturek, Michael

    2011-02-01

    We demonstrate for the first time the applicability of multimodal nonlinear optical (NLO) microscopy to the interrogation of stented coronary arteries under different diet and stent deployment conditions. Bare metal stents and Taxus drug-eluting stents (DES) were placed in coronary arteries of Ossabaw pigs of control and atherogenic diet groups. Multimodal NLO imaging was performed to inspect changes in arterial structures and compositions after stenting. Sum frequency generation, one of the multimodalities, was used for the quantitative analysis of collagen content in the peristent and in-stent artery segments of both pig groups. Atherogenic diet increased lipid and collagen in peristent segments. In-stent segments showed decreased collagen expression in neointima compared to media. Deployment of DES in atheromatous arteries inhibited collagen expression in the arterial media.

  20. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    PubMed

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  1. Histopathologic and Myogenic Gene Expression Changes Associated with Wooden Breast in Broiler Breast Muscles.

    PubMed

    Velleman, Sandra G; Clark, Daniel L

    2015-09-01

    The wooden breast condition is a myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Currently, wooden breast-affected birds are phenotypically detected by palpation of the breast area, with affected birds having a very hard p. major muscle that is of lower value. The objective of this study was to compare the wooden breast myopathy in two fast-growing broiler lines (Lines A and B) with incidence of wooden breast to a slower growing broiler Line C with no phenotypically observable wooden breast. One of the characteristics of the wooden breast condition is fibrosis of the p. major muscle. Morphologic assessment of Lines A and B showed significant fibrosis in both lines, but the collagen distribution and arrangement of the collagen fibrils was different. In Line A, the collagen fibrils were tightly packed, whereas in Line B the collagen fibrils were diffuse. This difference in collagen organization may be due to the expression of the extracellular matrix proteoglycan decorin. Decorin is a regulator of collagen crosslinking and is expressed at significantly higher levels in Line A wooden breast-affected p. major muscle, which would lead to tightly packed collagen fibers due to high levels of collagen crosslinking. Furthermore, expression of the muscle-specific transcriptional regulatory factors for proliferation and differentiation of muscle cells leading to the regeneration of muscle in response to muscle damage was significantly elevated in Line A, and only the factor for differentiation, myogenin, was increased in Line B. The results from this study provide initial evidence that the etiology of the wooden breast myopathy may vary between fast-growing commercial broiler lines.

  2. Effect of adipose-derived mesenchymal stromal cells on tendon healing in aging and estrogen deficiency: an in vitro co-culture model.

    PubMed

    Veronesi, Francesca; Della Bella, Elena; Torricelli, Paola; Pagani, Stefania; Fini, Milena

    2015-11-01

    Aging and estrogen deficiency play a pivotal role in reducing tenocyte proliferation, collagen turnover and extracellular matrix remodeling. Mesenchymal stromal cells are being studied as an alternative for tendon regeneration, but little is known about the molecular events of adipose-derived mesenchymal stromal cells (ADSCs) on tenocytes in tendons compromised by aging and estrogen deficiency. The present in vitro study aims to compare the potential therapeutic effects of ADSCs, harvested from healthy young (sham) and aged estrogen-deficient (OVX) subjects, for tendon healing. An indirect co-culture system was set up with ADSCs, isolated from OVX or sham rats, and tenocytes from OVX rats. Cell proliferation, healing rate and gene expression were evaluated in both a standard culture condition and a microwound-healing model. It was observed that tenocyte proliferation, healing rate and collagen expression improved after the addition of sham ADSCs in both culture situations. OVX ADSCs also increased tenocyte proliferation and healing rate but less compared with sham ADSCs. Decorin and Tenascin C expression increased in the presence of OVX ADSCs. Findings suggest that ADSCs might be a promising treatment for tendon regeneration in advanced age and estrogen deficiency. However, some differences between allogenic and autologous cells were found and should be investigated in further in vivo studies. It appears that allogenic ADSCs improve tenocyte proliferation, collagen expression and the healing rate more than autologous cells. Autologous cells increase collagen expression only in the absence of an injury and increase Decorin and Tenascin C more than allogenic cells. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Enhanced migration of murine fibroblast-like 3T3-L1 preadipocytes on type I collagen-coated dish is reversed by silibinin treatment.

    PubMed

    Liu, Xiaoling; Xu, Qian; Liu, Weiwei; Yao, Guodong; Zhao, Yeli; Xu, Fanxing; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Yamato, Masayuki; Ikejima, Takashi

    2018-04-01

    Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.

  4. Genetic Deletion of the Adenosine A2A Receptor Confers Postnatal Development of Relative Myopia in Mice

    PubMed Central

    Zhou, Xiangtian; Huang, Qinzhu; An, Jianhong; Lu, Runxia; Qin, Xiaoyi; Jiang, Liqin; Li, Yuan; Wang, Jianhua; Chen, Jiangfan; Qu, Jia

    2010-01-01

    Purpose. To critically evaluate whether the adenosine A2A receptor (A2AR) plays a role in postnatal refractive development in mice. Methods. Custom-built biometric systems specifically designed for mice were used to assess the development of relative myopia by examining refraction and biometrics in A2AR knockout (KO) mice and wild-type (WT) littermates between postnatal days (P)28 and P56. Ocular dimensions were measured by customized optical coherence tomography (OCT), refractive state by eccentric infrared photorefraction (EIR), and corneal radius of curvature by modified keratometry. Scleral collagen diameter and density were examined by electron microscopy on P35. The effect of A2AR activation on collagen mRNA expression and on soluble collagen production was examined in cultured human scleral fibroblasts by real-time RT-PCR and a collagen assay kit. Results. Compared with WT littermates, the A2AR KO mice displayed relative myopia (average difference, 5.1 D between P28 and P35) and associated increases in VC depth and axial length from P28 to P56. Furthermore, the myopic shift in A2AR KO mice was associated with ultrastructural changes in the sclera: Electron microscopy revealed denser collagen fibrils with reduced diameter in A2AR KO compared with WT. Last, A2AR activation induced expression of mRNAs for collagens I, III, and V and increased production of soluble collagen in cultured human scleral fibroblasts. Conclusions. Genetic deletion of the A2AR promotes development of relative myopia with increased axial length and altered scleral collagen fiber structure during postnatal development in mice. Thus, the A2AR may be important in normal refractive development. PMID:20484596

  5. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-08

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Altered AIB1 or AIB1Δ3 Expression Impacts ERα Effects on Mammary Gland Stromal and Epithelial Content

    PubMed Central

    Nakles, Rebecca E.; Shiffert, Maddalena Tilli; Díaz-Cruz, Edgar S.; Cabrera, M. Carla; Alotaiby, Maram; Miermont, Anne M.; Riegel, Anna T.

    2011-01-01

    Amplified in breast cancer 1 (AIB1) (also known as steroid receptor coactivator-3) is a nuclear receptor coactivator enhancing estrogen receptor (ER)α and progesterone receptor (PR)-dependent transcription in breast cancer. The splice variant AIB1Δ3 demonstrates increased ability to promote ERα and PR-dependent transcription. Both are implicated in breast cancer risk and antihormone resistance. Conditional transgenic mice tested the in vivo impact of AIB1Δ3 overexpression compared with AIB1 on histological features of increased breast cancer risk and growth response to estrogen and progesterone in the mammary gland. Combining expression of either AIB1 or AIB1Δ3 with ERα overexpression, we investigated in vivo cooperativity. AIB1 and AIB1Δ3 overexpression equivalently increased the prevalence of hyperplastic alveolar nodules but not ductal hyperplasia or collagen content. When AIB1 or AIB1Δ3 overexpression was combined with ERα, both stromal collagen content and ductal hyperplasia prevalence were significantly increased and adenocarcinomas appeared. Overexpression of AIB1Δ3, especially combined with overexpressed ERα, led to an abnormal response to estrogen and progesterone with significant increases in stromal collagen content and development of a multilayered mammary epithelium. AIB1Δ3 overexpression was associated with a significant increase in PR expression and PR downstream signaling genes. AIB1 overexpression produced less marked growth abnormalities and no significant change in PR expression. In summary, AIB1Δ3 overexpression was more potent than AIB1 overexpression in increasing stromal collagen content, inducing abnormal mammary epithelial growth, altering PR expression levels, and mediating the response to estrogen and progesterone. Combining ERα overexpression with either AIB1 or AIB1Δ3 overexpression augmented abnormal growth responses in both epithelial and stromal compartments. PMID:21292825

  7. Features of liver tissue remodeling in intestinal failure during and after weaning off parenteral nutrition.

    PubMed

    Mutanen, Annika; Lohi, Jouko; Sorsa, Timo; Jalanko, Hannu; Pakarinen, Mikko P

    2016-09-01

    Intestinal failure is associated frequently with liver injury, which persists after weaning off parenteral nutrition. We compared features of liver remodeling in intestinal failure during and after weaning off parenteral nutrition. Liver biopsies and serum samples were obtained from 25 intestinal failure patients at a median age of 9.7 years (interquartile range: 4.6-18) and from age-matched control patients. Seven patients had been receiving parenteral nutrition for 53 months (22-160), and 18 patients had been weaned off parenteral nutrition 6.3 years (2.4-17) earlier, after having received parenteral nutrition for 10 months (3.3-34). Expression of alpha-smooth muscle actin, collagen 1, proinflammatory cytokines, growth factors, and matrix metalloproteinases (MMPs) was measured. Significant increases in immunohistochemical expression of alpha-smooth muscle actin and collagen 1 were observed predominantly in portal areas and were similar to increases seen in patients currently receiving parenteral nutrition and in patients weaned off parenteral nutrition. Gene and protein expressions of alpha-smooth muscle actin and collagen were interrelated. Gene expression of ACTA2, encoding alpha-smooth muscle actin, was increased only in patients who were receiving parenteral nutrition currently. Comparable upregulation of interleukin-1 (α and ß), epidermal growth factor, integrin-ß6, and MMP9 gene expression was observed in both patient groups, irrespective of whether they were receiving parenteral nutrition currently. Liver expression and serum levels of TIMP1 and MMP7 were increased only in the patients on parenteral nutrition currently but were not increased after weaning off parenteral nutrition. Intestinal failure is characterized by abnormal activation of hepatic myofibroblast and accumulation of collagen both during and after weaning off parenteral nutrition. Persistent transcriptional upregulation of proinflammatory and fibrogenic cytokines after weaning off parenteral nutrition suggests that factors other than parenteral nutrition may contribute to intestinal failure-associated liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  9. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less

  10. Effect of testosterone on the proliferation and collagen synthesis of cardiac fibroblasts induced by angiotensin II in neonatal rat

    PubMed Central

    Yang, Xiaocun; Wang, Ying; Yan, Shuxun; Sun, Lina; Yang, Guojie; Li, Yuan; Yu, Chaonan

    2017-01-01

    ABSTRACT The objective is to explore the effect of testosterone on the proliferation and collagen synthesis of neonatal rat cardiac fibroblasts (CF) induced by Angiotensin II (Ang II) and the underlying mechanisms. Derived from neonatal rats, the CFs were divided into 4 groups: the control group, Ang II group, testosterone group, and testosterone + Ang II group in vitro. Cell cycle distribution, collagen counts, and phosphorylated extracellular signal-regulated kinase (ERK1/2) (p - ERK1/2) expression were assessed by flow cytometry, VG staining, and immunocytochemistry, respectively. The Ang II group had a much higher proportion of cells in the S-phase, higher collagen contents, and a higher p - ERK1/2 expression level than either the control or testosterone group. However, these factors were significantly reduced in the testosterone + Ang II group as compared to the Ang II group. In terms of cells in the S-phase and the collagen contents, there was not a significant difference between the testosterone group and the control. However, the protein expression of p-ERK1/2 was significantly increased in the testosterone group as compared to the control. Testosterone inhibits the proliferation and collagen synthesis of CF induced by Ang II. The underlying mechanism may involve the ERK1/2 signaling pathway. PMID:27791460

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiu-Li, E-mail: usually.158@163.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071; Peng, Chun-Wei, E-mail: pqc278@163.com

    Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support suchmore » notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.« less

  12. Chronic Ethanol Administration Prevents Compensatory Cardiac Hypertrophy in Pressure Overload.

    PubMed

    Ninh, Van K; El Hajj, Elia C; Mouton, Alan J; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2018-05-30

    Alcohol is among the most commonly abused drugs worldwide and affects many organ systems, including the heart. Alcoholic cardiomyopathy is characterized by a dilated cardiac phenotype with extensive hypertrophy and extracellular matrix (ECM) remodeling. We have previously shown that chronic ethanol (EtOH) administration accelerates the progression to heart failure in a rat model of volume overload. However, the mechanism by which this decompensation occurs is unknown. For this study, we hypothesized that chronic EtOH administration would prevent compensatory hypertrophy and cardiac remodeling in a rodent model of pressure overload (PO). Abdominal aortic constriction was used to create PO in 8-week-old male Wistar rats. Alcohol administration was performed via chronic intermittent EtOH vapor inhalation for 2 weeks prior to surgery and for the duration of the 8-week study. Echocardiography measurements were taken to assess ventricular functional and structural changes. PO increased posterior wall thickness and the hypertrophic markers, atrial and B-type natriuretic peptides (ANP and BNP). With the added stressor of EtOH, wall thickness, ANP, and BNP decreased in PO animals. The combination of PO and EtOH resulted in increased wall stress compared to PO alone. PO also caused increased expression of collagen I and III, whereas EtOH alone only increased collagen III. The combined stresses of PO and EtOH led to an increase in collagen I expression, but collagen III did not change, resulting in an increased collagen I/III ratio in the PO rats treated with EtOH. Lastly, Notch1 expression was significantly increased only in the PO rats treated with EtOH. Our data indicate that chronic EtOH may limit the cardiac hypertrophy induced by PO which may be associated with a Notch1 mechanism, resulting in increased wall stress and altered ECM profile. Copyright © 2018 by the Research Society on Alcoholism.

  13. [EXPERIMENTAL RESEARCH OF DIFFERENTIATION OF HUMAN AMNIOTIC MESENCHYMAL STEM CELLS INTO LIGAMENT CELLS IN VITRO].

    PubMed

    Jin, Ying; Li, Yuwan; Zhang, Chenghao; Wu, Shuhong; Cheng, Daixiong; Liu, Yi

    2016-02-01

    To discuss whether human amniotic mesenchymal stem cells (hAMSCs) possesses the characteristic of mesenchymal stem cells, and could differentiate into ligament cells in vitro after induction. The hAMSCs were separated through enzyme digestion, and the phenotypic characteristics of hAMSCs were tested through flow cytometry. The cells at passage 3 were cultured with L-DMEM/F12 medium containing transforming growth factor beta1 (TGF-beta1) + basic fibroblast growth factor (bFGF) (group A), containing hyaluronic acid (HA) (group B), containing TGF-beta1+bFGF+HA (group C), and simple L-DMEM/F12 medium (group D) as control group. The morphology changes of cells in each group were observed by inverted phase contrast microscope at 21 days after induction; the cellular activities and proliferation were examined by sulforhodamine (SRB) colorimetric method; and specific mRNA and protein expressions of ligament including collagen type I, collagen type III, and tenascin C (TNC) were measured by real-time fluorescence quantitative PCR and immunohistochemical staining. The flow cytometry result indicated that hAMSCs expressed mesenchymal stem cell phenotype. After 21 days of induction, the cells in groups A, B, and C grew like spindle-shaped fibroblasts under inverted phase contrast microscope, and cells showed single shape, obvious directivity, and compact arrangement in group C. The SRB result indicated that the cells in each group reached the peak of growth curve at 6 days; the cellular activities of groups A, B, and C were significantly higher than that of group D at 6 days after induction. Also, the immunohistochemical staining results showed that no expressions of TNC were detected in 4 groups at 7 days; expressions of collagen type I in groups A, B, and C were significantly higher than that in group D at 7, 14, and 21 days (P<0.001); the expressions of collagen type III in groups A, B, and C were significantly higher than that in group D at 14 and 21 days (P<0.001). There was an increasing tendency with time in collagen type I of group B, in collagen type III and TNC of groups A and C, showing significant difference among different time points (P<0.001). The real-time fluorescence quantitative PCR results revealed that the mRNA expressions of collagen type I and TNC in group C were significantly higher than those in groups A and B (P<0.05), and the mRNA expression of collagen type III in group B were significantly higher than that in groups A and C at 21 days (P<0.05). The mRNA expressions of collagen type I and TNC in groups A and C and mRNA expression of collagen type III in group C had an increasing tendency with time, showing significant difference among different time points (P<0.001). The hAMSCs possesses the characteristics of mesenchymal stem cells and excellent proliferation capacity. After in vitro induction, the expressions of ligament specific genes can be up-regulated and the synthesis of ligament specific proteins can be also strengthened. As a result, it can be used as one of ligament tissue engineering seed cell sources.

  14. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    PubMed

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis. Copyright © 2015 the American Physiological Society.

  15. Effects of mangosteen peel extract combined with demineralized freeze-dried bovine bone xenograft on osteocalcin, collagen 1, and osteoblast as alveolar bone regeneration in socket preservation.

    PubMed

    Kresnoadi, Utari; Raharjo, Tika; Rostiny, Rostiny

    2018-01-01

    Tooth extraction will provoke changes in alveolar bone morphology and dimensions. Postextraction bone resorption can lead to significant problems for restorative dentistry. Therefore, the extracted tooth socket needs to be preserved to reduce alveolar ridge bone resorption. This research aimed to analyze the expression and levels of osteocalcin, collagen 1, and osteoblasts in extracted tooth sockets filled with a combination of mangosteen peel extract and demineralized freeze-dried bovine bone xenograft (DFDBBX). Fifty-six Cavia cobaya , whose lower left incisors had been extracted, were divided into eight groups according to the substance used to fill their sockets on days 7 and 30, Poly ethylene glycol, DFDBBX, mangosteen peel extract, or a combination of mangosteen peel extract and DFDBBX. This research was conducted in several stages; the application of mangosteen peel extract combined with graft material was performed as the form of tooth extraction socket preservation. The C. cobaya rats were subsequently examined by immunohistochemical methods to measure osteocalcin and collagen 1 expressions, whereas histological examination was conducted to calculate the number of osteoblasts in accordance with the duration of the research. On days 7 and 30, the group treated with a combination of DFDBBX and mangosteen peel extract which had the highest expression and levels of osteocalcin, collagen 1, and osteoblasts. The administration of mangosteen peel extract combined with DFDBBX as a means of tooth extraction socket preservation can increase osteocalcin and collagen 1 expression. Consequently, osteoblasts as a means of alveolar bone regeneration will increase in number.

  16. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload.

    PubMed

    Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2016-08-01

    Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.

    PubMed

    Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E

    2006-08-01

    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way.

  18. Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation.

    PubMed

    Luciani, Nathalie; Du, Vicard; Gazeau, Florence; Richert, Alain; Letourneur, Didier; Le Visage, Catherine; Wilhelm, Claire

    2016-06-01

    Tissue engineering strategies, such as cellularized scaffolds approaches, have been explored for cartilage replacement. The challenge, however, remains to produce a cartilaginous tissue incorporating functional chondrocytes and being large and thick enough to be compatible with the replacement of articular defects. Here, we achieved unprecedented cartilage tissue production into a porous polysaccharide scaffold by combining of efficient magnetic condensation of mesenchymal stem cells, and dynamic maturation in a bioreactor. In optimal conditions, all the hallmarks of chondrogenesis were enhanced with a 50-fold increase in collagen II expression compared to negative control, an overexpression of aggrecan and collagen XI, and a very low expression of collagen I and RUNX2. Histological staining showed a large number of cellular aggregates, as well as an increased proteoglycan synthesis by chondrocytes. Interestingly, electron microscopy showed larger chondrocytes and a more abundant extracellular matrix. In addition, the periodicity of the neosynthesized collagen fibers matched that of collagen II. These results represent a major step forward in replacement tissue for cartilage defects. A combination of several innovative technologies (magnetic cell seeding, polysaccharide porous scaffolds, and dynamic maturation in bioreactor) enabled unprecedented successful chondrogenesis within scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway

    PubMed Central

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-01-01

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca2+ concentrations ([Ca2+]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca2+]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia–ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca2+]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway. PMID:25257609

  20. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro.

    PubMed

    Ikenoue, Takashi; Trindade, Michael C D; Lee, Mel S; Lin, Eric Y; Schurman, David J; Goodman, Stuart B; Smith, R Lane

    2003-01-01

    This study addressed the hypothesis that duration and magnitude of applied intermittent hydrostatic pressure (IHP) are critical parameters in regulation of normal human articular chondrocyte aggrecan and type II collagen expression. Articular chondrocytes were isolated from knee cartilage and maintained as primary, high-density monolayer cultures. IHP was applied at magnitudes of 1, 5 and 10 MPa at 1 Hz for durations of either 4 h per day for one day (4 x 1) or 4 h per day for four days (4 x 4). Total cellular RNA was isolated and analyzed for aggrecan and type II collagen mRNA signal levels using specific primers and reverse transcription polymerase chain reaction (RT-PCR) nested with beta-actin primers as internal controls. With a 4x1 loading regimen, aggrecan mRNA signal levels increased 1.3- and 1.5-fold at 5 and 10 MPa, respectively, relative to beta-actin mRNA when compared to unloaded cultures. Changing the duration of loading to a 4x4 regimen increased aggrecan mRNA signal levels by 1.4-, 1.8- and 1.9-fold at loads of 1, 5 and 10 MPa, respectively. In contrast to the effects of IHP on aggrecan, type II collagen mRNA signal levels were only upregulated at loads of 5 and 10 MPa with the 4x4 loading regimen. Analysis of cell-associated protein by western blotting confirmed that IHP increased aggrecan and type II collagen in chondrocyte extracts. These data demonstrate that duration and magnitude of applied IHP differentially alter chondrocyte matrix protein expression. The results show that IHP provides an important stimulus for increasing cartilage matrix anabolism and may contribute to repair and regeneration of damaged or diseased cartilage.

  1. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  2. Regulation of aortic extracellular matrix synthesis via noradrenergic system and angiotensin II in juvenile rats.

    PubMed

    Dab, Houcine; Hachani, Rafik; Dhaouadi, Nedra; Sakly, Mohsen; Hodroj, Wassim; Randon, Jacques; Bricca, Giampiero; Kacem, Kamel

    2012-10-01

    Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.

  3. Collagenous gastritis: a morphologic and immunohistochemical study of 40 patients.

    PubMed

    Arnason, Thomas; Brown, Ian S; Goldsmith, Jeffrey D; Anderson, William; O'Brien, Blake H; Wilson, Claire; Winter, Harland; Lauwers, Gregory Y

    2015-04-01

    Collagenous gastritis is a rare condition defined histologically by a superficial subepithelial collagen layer. This study further characterizes the morphologic spectrum of collagenous gastritis by evaluating a multi-institutional series of 40 patients (26 female and 14 male). The median age at onset was 16 years (range 3-89 years), including 24 patients (60%) under age 18. Twelve patients (30%) had associated celiac disease, collagenous sprue, or collagenous colitis. Hematoxylin and eosin slides were reviewed in biopsies from all patients and tenascin, gastrin, eotaxin, and IgG4/IgG immunohistochemical stains were applied to a subset. The distribution of subepithelial collagen favored the body/fundus in pediatric patients and the antrum in adults. There were increased surface intraepithelial lymphocytes (>25 lymphocytes/100 epithelial cells) in five patients. Three of these patients had associated celiac and/or collagenous sprue/colitis, while the remaining two had increased duodenal lymphocytosis without specific etiology. An eosinophil-rich pattern (>30 eosinophils/high power field) was seen in 21/40 (52%) patients. Seven patients' biopsies demonstrated atrophy of the gastric corpus mucosa. Tenascin immunohistochemistry highlighted the subepithelial collagen in all 21 specimens evaluated and was a more sensitive method of collagen detection in biopsies from two patients with subtle subepithelial collagen. No increased eotaxin expression was identified in 16 specimens evaluated. One of the twenty-three biopsies tested had increased IgG4-positive cells (100/high power field) with an IgG4/IgG ratio of 55%. In summary, collagenous gastritis presents three distinct histologic patterns including a lymphocytic gastritis-like pattern, an eosinophil-rich pattern, and an atrophic pattern. Eotaxin and IgG4 were not elevated enough to implicate these pathways in the pathogenesis. Tenascin immunohistochemistry can be used as a sensitive method of collagen detection.

  4. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen.

    PubMed

    Hsu, Han-Hsiu; Uemura, Toshimasa; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2016-08-01

    Fish collagen has recently been reported to be a novel biomaterial for cell and tissue culture as an alternative to conventional mammalian collagens such as bovine and porcine collagens. Fish collagen could overcome the risk of zoonosis, such as from bovine spongiform encephalopathy. Among fish collagens, tilapia collagen, the denaturing temperature of which is near 37°C, is appropriate for cell and tissue culture. In this study, we investigated chondrogenic differentiation of human mesenchymal stem cells (hMSCs) cultured on tilapia scale collagen fibrils compared with porcine collagen and non-coated dishes. The collagen fibrils were observed using a scanning electronic microscope. Safranin O staining, glycosaminoglycans (GAG) expression, and real-time PCR were examined to evaluate chondrogenesis of hMSCs on each type of collagen fibril. The results showed that hMSCs cultured on tilapia scale collagen showed stronger Safranin O staining and higher GAG expression at day 6. Results of real-time PCR indicated that hMSCs cultured on tilapia collagen showed earlier SOX9 expression on day 4 and higher AGGRECAN and COLLAGEN II expression on day 6 compared with on porcine collagen and non-coated dishes. Furthermore, low mRNA levels of bone gamma-carboxyglutamate, a specific marker of osteogenesis, showed that tilapia collagen fibrils specifically enhanced chondrogenic differentiation of hMSCs in chondrogenic medium, as well as porcine collagen. Accordingly, tilapia scale collagen may provide an appropriate collagen source for hMSC chondrogenesis in vitro. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  6. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  7. Pancreatic Cancer Cells Enhance the Ability of Collagen Internalization during Epithelial–Mesenchymal Transition

    PubMed Central

    Ikenaga, Naoki; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Akagawa, Shin; Fujiwara, Kenji; Eguchi, Daiki; Kozono, Shingo; Ohtsuka, Takao; Takahata, Shunichi; Tanaka, Masao

    2012-01-01

    Background Extracellular matrix (ECM) remodeling is predominantly mediated by fibroblasts using intracellular and extracellular pathways. Although it is well known that extracellular degradation of the ECM by proteases derived from cancer cells facilitates cellular invasion, the intracellular degradation of ECM components by cancer cells has not been clarified. The aim of this study was to characterize collagen internalization, which is the initial step of the intracellular degradation pathway in pancreatic cancer cells, in light of epithelial–mesenchymal transition (EMT). Methodology/Principal Findings We analyzed the function of collagen internalization in two pancreatic cancer cell lines, SUIT-2 and KP-2, and pancreatic stellate cells (PSCs) using Oregon Green 488-gelatin. PSCs had a strong ability for collagen uptake, and the pancreatic cancer cells also internalized collagen although less efficiently. The collagen internalization abilities of SUIT-2 and KP-2 cells were promoted by EMT induced by human recombinant transforming growth factor β1 (P<0.05). Expression of Endo180, a collagen uptake receptor, was high in mesenchymal pancreatic cancer cell lines, as determined by EMT marker expression (P<0.01). Quantitative RT-PCR and western blot analyses showed that Endo180 expression was also increased by EMT induction in SUIT-2 and KP-2 cells. Endo180 knockdown by RNA interference attenuated the collagen uptake (P<0.01) and invasive abilities (P<0.05) of SUIT-2 and KP-2 cells. Conclusions/Significance Pancreatic cancer cells are capable of collagen internalization, which is enhanced by EMT. This ECM clearance system may be a novel mechanism for cellular invasion and a potential therapeutic target in pancreatic cancer. PMID:22792318

  8. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.

    PubMed

    Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L

    2015-02-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.

  9. Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs

    PubMed Central

    Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.

    2015-01-01

    The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738

  10. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair

    PubMed Central

    Sato, Emi; Zhang, Ling-juan; Dorschner, Robert A.; Adase, Christopher A.; Choudhury, Biswa P.; Gallo, Richard L.

    2018-01-01

    In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39−/− mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R−/− mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair. PMID:28454729

  11. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    PubMed

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Functional Role of HSP47 in the Periodontal Ligament Subjected to Occlusal Overload in Mice.

    PubMed

    Mimura, Hiroaki; Takaya, Tatsuo; Matsuda, Saeka; Nakano, Keisuke; Muraoka, Rina; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2016-01-01

    We carried out an experiment to induce traumatic occlusion in mice periodontal tissue and analyzed the expression of HSP47. Continuous traumatic occlusion resulted to damage and remodeling of periodontal ligament as well as increase in osteoclasts and bone resorption. Four days after traumatic occlusion, osteoclasts did not increase but Howship's lacunae became enlarged. That is, the persistent occlusal overload can destroy collagen fibers in the periodontal ligament. This was evident by the increased in HSP47 expression with the occlusal overload. HSP47 is maintained in fibroblasts for repair of damaged collagen fibers. On the other hand, osteoclasts continue to increase although the load was released. The osteoclasts that appeared on the alveolar bone surface were likely due to sustained activity. The increase in osteoclasts was estimated to occur after load application at day 4. HSP47 continued to increase until day 6 in experiment 2 but then reduced at day 10. Therefore, HSP47 appears after a period of certain activities to repair damaged collagen fibers, and the activity was returned to a state of equilibrium at day 30 with significantly diminished expression. Thus, the results suggest that HSP47 is actively involved in homeostasis of periodontal tissue subjected to occlusal overload.

  13. Lipo-PGE1 suppresses collagen production in human dermal fibroblasts via the ERK/Ets-1 signaling pathway.

    PubMed

    Yang, Yoolhee; Kim, Hee Jung; Woo, Kyong-Je; Cho, Daeho; Bang, Sa Ik

    2017-01-01

    Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1), a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF) migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK)/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, Cheri L.; Cholico, Giovan N.

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing evidence indicates that AhR signaling contributes to wound healing, which involves the coordinated deposition and remodeling of the extracellular matrix. In the liver, wound healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate fibrogenesis through the production of soluble mediators and collagen type I. We recently reported that TCDD treatment increases the activation of human HSCs in vitro. The goal of this study was to determine how TCDD impacts HSC activation in vivo using a mouse model of experimentalmore » liver fibrosis. To elicit fibrosis, C57BL6/male mice were treated twice weekly for 8 weeks with 0.5 ml/kg carbon tetrachloride (CCl{sub 4}). TCDD (20 μg/kg) or peanut oil (vehicle) was administered once a week during the last 2 weeks. Results indicate that TCDD increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic necroinflammation in CCl{sub 4}-treated mice. Likewise, TCDD treatment increased mRNA expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, desmin, delta-like homolog-1, TGF-β1, and collagen type I. However, TCDD treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. Instead, TCDD increased hepatic collagenase activity and increased expression of matrix metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. These results support the conclusion that TCDD increases CCl{sub 4}-induced liver damage and exacerbates HSC activation, yet collagen deposition and the development of fibrosis may be limited by TCDD-mediated changes in extracellular matrix remodeling. - Highlights: • TCDD increased liver damage and inflammation in mice treated with CCl{sub 4}. • TCDD treatment enhanced markers of hepatic stellate cell activation and fibrogenesis. • TCDD did not increase the deposition of collagen type I or the severity of liver fibrosis. • TCDD increased hepatic collagenase activity and expression of matrix metalloproteinase-13.« less

  15. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    PubMed

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.

  16. A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds.

    PubMed

    Elgharably, Haytham; Roy, Sashwati; Khanna, Savita; Abas, Motaz; Dasghatak, Piya; Das, Amitava; Mohammed, Kareem; Sen, Chandan K

    2013-01-01

    Collagen-based dressings are of great interest in wound care. However, evidence supporting their mechanism of action is scanty. This work provides first results from a preclinical swine model of excisional wounds, elucidating the mechanism of action of a modified collagen gel (MCG) dressing. Following wounding, wound-edge tissue was collected at specific time intervals (3, 7, 14, and 21 days postwounding). On day 7, histological analysis showed significant increase in the length of rete ridges, suggesting improved biomechanical properties of the healing wound tissue. Rapid and transient mounting of inflammation is necessary for efficient healing. MCG significantly accelerated neutrophil and macrophage recruitment to the wound site on day 3 and day 7 with successful resolution of inflammation on day 21. MCG induced monocyte chemotactic protein-1 expression in neutrophil-like human promyelocytic leukemia-60 cells in vitro. In vivo, MCG-treated wound tissue displayed elevated vascular endothelial growth factor expression. Consistently, MCG-treated wounds displayed significantly higher abundance of endothelial cells with increased blood flow to the wound area indicating improved vascularization. This observation was explained by the finding that MCG enhanced proliferation of wound-site endothelial cells. In MCG-treated wound tissue, Masson's trichrome and picrosirius red staining showed higher abundance of collagen and increased collagen type I:III ratio. This work presents first evidence from a preclinical setting explaining how a collagen-based dressing may improve wound closure by targeting multiple key mechanisms. The current findings warrant additional studies to determine whether the responses to the MCG are different from other collagen-based products used in clinical setting. © 2013 by the Wound Healing Society.

  17. A Modified Collagen Gel Enhances Healing Outcome in a Pre-Clinical Swine Model of Excisional Wounds

    PubMed Central

    Elgharably, Haytham; Roy, Sashwati; Khanna, Savita; Abas, Motaz; DasGhatak, Piya; Das, Amitava; Mohammed, Kareem; Sen, Chandan K.

    2013-01-01

    Collagen-based dressings are of great interest in wound care. However, evidence supporting their mechanism of action in a wound setting in vivo is scanty. This work providesfirst results from a pre-clinical swine model of excisional wounds elucidating the mechanism of action of a modified collagen gel (MCG) dressing. Following wounding, wound-edge tissue was collected at specific time intervals (3, 7, 14, and 21 days post-wounding). On day 7, histological analysis showed significant increase in the length of rete ridges suggesting improved biomechanical properties of the healing wound tissue. Rapid and transient mounting of inflammation is necessary for efficient healing. MCG significantly accelerated neutrophil and macrophages recruitment to the wound site on day 3 and day 7 with successful resolution of inflammation on day 21. MCG induced MCP-1 expression in neutrophil-like HL-60 cells in vitro. In vivo, MCG treated wound tissue displayed elevated VEGF expression. Consistently, MCG-treated wounds displayed significantly higher abundance of endothelial cells with increased blood flow to the wound area indicating improved vascularization. This observation was explained by the finding that MCG enhanced proliferation of wound-site endothelial cells. In MCG-treated wound tissue, Masson’s Trichrome and Picrosirius red staining showed higher abundance of collagen and increased collagen type I:III ratio. This work presents first evidence from a pre-clinical experimental setting explaining how a collagen-based dressing may improve wound closure by targeting multiple key mechanisms as compared to standard of care i.e., Tegadem treated wounds. The current findings warrant additional studies to determine whether the responses to the MCG are different from other modified or unmodified collagen based products used in clinical setting. PMID:23607796

  18. PDL Progenitor-Mediated PDL Recovery Contributes to Orthodontic Relapse.

    PubMed

    Feng, L; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; He, D; Gan, Y; Kou, X; Zhou, Y

    2016-08-01

    Periodontal ligament (PDL) is subjected to mechanical force during physiologic activities. PDL stem /: progenitor cells are the main mesenchymal stem cells in PDL. However, how PDL progenitors participate in PDL homeostasis upon and after mechanical force is largely unknown. In this study, force-triggered orthodontic tooth movement and the following relapse were used as models to demonstrate the response of PDL progenitors and their role in PDL remodeling upon and after mechanical force. Upon orthodontic force, PDL collagen on the compression side significantly degraded, showing a broken and disorganized pattern. After force withdrawal, the degraded PDL collagen recovered during the early stage of relapse. Correspondingly, increased CD90(+) PDL progenitors with suppressed expression of type I collagen (Col-I) were observed upon orthodontic force, whereas these cells accumulated at the degradation regions and regained Col-I expression after force withdrawal during early relapse. Our results further showed that compressive force altered cell morphology and repressed collagen expression in cultured PDL progenitors, which both recovered after force withdrawal. Force withdrawal-induced recovery of collagen expression in cultured PDL progenitors could be regulated by transforming growth factor-β (TGF-β), a key molecule for tissue homeostasis and extracellular matrix remodeling. More interesting, inhibiting the regained Col-I expression in CD90(+) PDL progenitors by blocking TGF-β interrupted PDL collagen recovery and partially inhibited the early relapse. These data suggest that PDL progenitors can respond to mechanical force and may process intrinsic stability to recover to original status after force withdrawal. PDL progenitors with intrinsic stability are required for PDL recovery and consequently contribute to early orthodontic relapse, which can be regulated by TGF-β signaling. © International & American Associations for Dental Research 2016.

  19. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-12-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses

    PubMed Central

    Su, Jianmin; Gorse, Karen; Ramirez, Francesco; Fox, Michael A.

    2010-01-01

    Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses. PMID:19937713

  1. Stromal matrix metalloproteinase 2 regulates collagen expression and promotes the outgrowth of experimental metastases.

    PubMed

    Bates, Andreia L; Pickup, Michael W; Hallett, Miranda A; Dozier, E Ashley; Thomas, Stacy; Fingleton, Barbara

    2015-04-01

    Breast cancer survival rates decrease from 99% for patients with local disease to 25% for those with distant metastases. Matrix metalloproteinases (MMPs), including MMP2, are associated with metastatic progression. We found that loss of host MMP2 reduces the proliferation of experimental metastases in the lungs and identified fibroblasts in tumour-bearing lungs as the major source of MMP2. In vitro, spheroidal mammary tumour growth was increased by co-culture with control fibroblasts isolated from tumour-bearing lungs, but not when fibroblasts with stable Mmp2 knockdown were used. This result prompted us to assess whether MMP2 was responsible for a tumour-proliferative, activated fibroblast phenotype. To test this, we evaluated: (a) fibroblasts from wild-type tumour-bearing lungs, with or without shRNA-mediated MMP2 knockdown; and (b) normal, quiescent fibroblasts isolated from either WT or Mmp2(-/-) mice. Quantitative PCR revealed that Mmp2 knockdown attenuated expression of two markers of activation (α-smooth muscle actin and vimentin), but there was minimal expression in quiescent WT or Mmp2(-/-) fibroblasts, as expected. Placing quiescent fibroblasts under activating conditions led to increases in activation-associated transcripts in WT but not Mmp2(-/-) fibroblasts. Additionally, Mmp2 knockdown fibroblasts showed significantly decreased expression of the matrix transcripts collagen I, collagen IV and fibronectin. Addition of active TGFβ was sufficient to rescue the MMP2-dependent collagen I and IV expression, while MMP2-induced collagen expression was blocked by the addition of TGFβ1-neutralizing antibody. Gene expression data in stromal cells of human breast cancers reveal that MMP2 expression is also positively correlated with activation and matrix transcripts. Thus, we present a model whereby MMP2 production in tumour fibroblasts is important for TGFβ1 activity and subsequent activation of fibroblasts to a matrix-producing, proliferation-supportive phenotype. Overall, our results reveal a previously undefined role for MMP2 in metastatic outgrowth mediated by fibroblasts, and extend the mechanisms by which MMPs contribute to tumour progression. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Hyaluronan and Its Binding Proteins during Cervical Ripening and Parturition: Dynamic Changes in Size, Distribution and Temporal Sequence

    PubMed Central

    Ruscheinsky, Monika; De la Motte, Carol; Mahendroo, Mala

    2008-01-01

    The uterine cervix undergoes changes during pregnancy and labor that transform it from a closed, rigid, collagen dense structure to one that is distensible, has a disorganized collagen matrix, and dilates sufficiently to allow birth. To protect the reproductive tract from exposure to the external environment, the cervix must be rapidly altered to a closed, undistensible structure after birth. Preparturition remodeling is characterized by increased synthesis of hyaluronan, decreased expression of collagen assembly genes and increased distribution of inflammatory cells into the cervical matrix. Postpartum remodeling is characterized by decreased hyaluronan (HA) content, increased expression of genes involved in assembly of mature collagen and inflammation. The focus of this study is to advance our understanding of functions HA plays in this dynamic process through characterization of HA size, structure and binding proteins in the mouse cervix. Changes in size and structure of HA before and after birth were observed as well as cell specific expression of HA binding proteins. CD44 expression is localized to the pericellular matrix surrounding the basal epithelia and on immune cells while inter α trypsin inhibitor (IαI) and versican are localized to the stromal matrix. Co-localization of HA and IαI is most pronounced after birth. Upregulation of the versican degrading protease, ADAMTS1 occurs in the cervix prior to birth. These studies suggest that HA has multiple, cell specific functions in the cervix that may include modulation of tissue structure and integrity, epithelial cell migration and differentiation, and inflammatory responses. PMID:18353623

  3. A novel explanation of corneal clouding in a bone marrow transplant-treated patient with Hurler syndrome

    PubMed Central

    Yuan, Ching; Bothun, Erick D.; Hardten, David R.; Tolar, Jakub; McLoon, Linda K.

    2016-01-01

    One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion. PMID:27235795

  4. Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma.

    PubMed

    Yao, Min; Wang, Xiaomei; Zhao, Yufeng; Wang, Xiaomeng; Gao, Feng

    2017-02-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) serve an important role in chondrosarcoma. The present study investigated whether the expression of MMPs was dependent on the activity of mitogen-activated protein kinase (MAPK) in chondrosarcoma. Surgical pathological specimens were collected to detect MMP-1, MMP-13, TIMP-1, type II collagen and phosphorylated MAPK levels in normal cartilage, enchondroma and chondrosarcoma tissues. The expression of MMP‑1, MMP‑13, TIMP‑1 and type II collagen was investigated utilizing MAPK inhibitors in chondrosarcoma cells. It was noted that the expression levels of MMP‑1, MMP‑13 and TIMP‑1 were increased in chondrosarcoma with the activity of MAPK. After chondrosarcoma cells were pretreated with MAPK inhibitors, the levels of MMP‑1, MMP‑13 and TIMP‑1 were inhibited. Furthermore, MMP‑1 and MMP‑13 are essential in regulating the degradation of type II collagen and decomposing cartilage matrix major. The high expression levels of MMP‑1 and MMP‑13 in chondrosarcoma expedite the invasion by chondrosarcoma cells and their expression can be depressed by MAPK inhibitors.

  5. Defective Expression and Function of the Leukocyte Associated Ig-like Receptor 1 in B Lymphocytes from Systemic Lupus Erythematosus Patients

    PubMed Central

    Colombo, Barbara M.; Canevali, Paolo; Magnani, Ottavia; Rossi, Edoardo; Puppo, Francesco; Zocchi, Maria Raffaella; Poggi, Alessandro

    2012-01-01

    Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies and dysregulation of B cell function. The leukocyte associated Immunoglobulin (Ig)-like receptor (LAIR)1 is a transmembrane molecule belonging to Ig superfamily which binds to different types of collagen. Herein, we have determined the expression and function of LAIR1 on B lymphocyte from SLE patients. LAIR1 expression in peripheral blood B lymphocytes from 54 SLE, 24 mixed connective tissue disease (MCTD), 20 systemic sclerosis (SSc) patients, 14 rheumatoid arthritis (RA) and 40 sex and age matched healthy donors (HD) have been analyzed by immunofluorescence. The effect of LAIR1 ligation by specific monoclonal antibodies, collagen or collagen producing mesenchymal stromal cells from reactive lymph nodes or bone marrow on Ig production by pokeweed mitogen and B cell receptor (BCR)-mediated NF-kB activation was assessed by ELISA and TransAM assay. The percentage of CD20+ B lymphocytes lacking or showing reduced expression of LAIR1 was markedly increased in SLE and MCTD but not in SSc or RA patients compared to HD. The downregulation of LAIR1 expression was not dependent on corticosteroid therapy. Interestingly, LAIR1 engagement by collagen or collagen-producing mesenchymal stromal cells in SLE patients with low LAIR1 expression on B cells delivered a lower inhibiting signal on Ig production. In addition, NF-kB p65 subunit activation upon BCR and LAIR1 co-engagement was less inhibited in SLE patients than in HD. Our findings indicate defective LAIR1 expression and function in SLE B lymphocytes, possible contributing to an altered control of B lymphocytes behavior. PMID:22355402

  6. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    PubMed

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.

  7. HoxD3 accelerates wound healing in diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott L.; Myers, Connie A.; Charboneau, Aubri

    Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up tomore » 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.« less

  8. Supplementating with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and -12 expression: a comparative study with placebo.

    PubMed

    Yoon, Hyun-Sun; Cho, Hyun Hee; Cho, Soyun; Lee, Se-Rah; Shin, Mi-Hee; Chung, Jin Ho

    2014-07-01

    Photoaging accounts for most age-related changes in skin appearance. It has been suggested that both astaxanthin, a potent antioxidant, and collagen hydrolysate can be used as antiaging modalities in photoaged skin. However, there is no clinical study using astaxanthin combined with collagen hydrolysate. We investigated the effects of using a combination of dietary astaxanthin and collagen hydrolysate supplementation on moderately photoaged skin in humans. A total of 44 healthy subjects were recruited and treated with astaxanthin (2 mg/day) combined with collagen hydrolysate (3 g/day) or placebos, which were identical in appearance and taste to the active supplementation for 12 weeks. The elasticity and hydration properties of facial skin were evaluated using noninvasive objective devices. In addition, we also evaluated the expression of procollagen type I, fibrillin-1, matrix metalloproteinase-1 (MMP-1) and -12, and ultraviolet (UV)-induced DNA damage in artificially UV-irradiated buttock skin before and after treatment. The supplement group showed significant improvements in skin elasticity and transepidermal water loss in photoaged facial skin after 12 weeks compared with the placebo group. In the supplement group, expression of procollagen type I mRNA increased and expression of MMP-1 and -12 mRNA decreased compared with those in the placebo group. In contrast, there was no significant difference in UV-induced DNA damage between groups. These results demonstrate that dietary astaxanthin combined with collagen hydrolysate can improve elasticity and barrier integrity in photoaged human facial skin, and such treatment is well tolerated.

  9. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  10. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes.

    PubMed

    Wong, Marcy; Siegrist, Mark; Goodwin, Kelly

    2003-10-01

    Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.

  11. A new method for meniscus repair using type I collagen scaffold and infrapatellar fat pad.

    PubMed

    Oda, Shuhei; Otsuki, Shuhei; Kurokawa, Yoshitaka; Hoshiyama, Yoshiaki; Nakajima, Mikio; Neo, Masashi

    2015-05-01

    The aim of this study was to investigate a new method for meniscal repair by combinative transplantation with type I collagen scaffold and infrapatellar fat pad. Two-mm cylindrical defects at the anterior part of bilateral medial menisci were prepared in nine Japanese white rabbits. The 18 knees were equally divided into three groups: I, no treatment; II, collagen scaffold transplantation; and III, collagen scaffold and infrapatellar fat pad transplantation. Another three rabbits (six knees) underwent sham surgery and served as controls. Rabbits were sacrificed at eight weeks after transplantation. Surface area of the medial meniscus was evaluated using macrophotographs. Ishida score for meniscal regeneration was used for assessment. To evaluate the composition of regenerated tissue, immunohistochemistry was analyzed with anti-type I and anti-type II collagen antibodies, and anti-Ki67 antibody. To investigate the effects of collagen scaffold on human meniscus, cells were isolated from human meniscus and infrapatellar fat pad, and cultured with collagen scaffold for three weeks. After that, gene expression was evaluated by using quantitative real-time polymerase chain reaction. In group I, the meniscus shrank anterior to posterior, and the surface area was significantly less than that of normal meniscus. However, the surface area was maintained in group III. Ishida score and Ki67-positive cell ratio in group III were significantly higher than that in any other group, and staining with type I and type II collagen was similar to that of the control. Expression of matrix metalloproteinase was significantly lower in cocultures of collagen scaffold, meniscus cell, and infrapatellar fat pad cell than in monocultured meniscus cell, and expression of interleukin-1β was not increased. This new method for meniscal repair by combinative transplantation with type I collagen scaffold and infrapatellar fat pad showed meniscal regeneration and potential for suppressing inflammation. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Quantitative proteomics reveals altered expression of extracellular matrix related proteins of human primary dermal fibroblasts in response to sulfated hyaluronan and collagen applied as artificial extracellular matrix.

    PubMed

    Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin

    2012-12-01

    Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.

  13. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds.

    PubMed

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K

    2014-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. © 2014 by the Wound Healing Society.

  14. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9. PMID:25080486

  15. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    PubMed

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9. Copyright © 2014 the American Physiological Society.

  16. Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract.

    PubMed

    Südel, Kirstin M; Venzke, Kirsten; Mielke, Heiko; Breitenbach, Ute; Mundt, Claudia; Jaspers, Sören; Koop, Urte; Sauermann, Kirsten; Knussman-Hartig, Elke; Moll, Ingrid; Gercken, Günther; Young, Anthony R; Stäb, Franz; Wenck, Horst; Gallinat, Stefan

    2005-01-01

    Biochemical and structural changes of the dermal connective tissue substantially contribute to the phenotype of aging skin. To study connective tissue metabolism with respect to ultraviolet (UV) exposure, we performed an in vitro (human dermal fibroblasts) and an in vivo complementary DNA array study in combination with protein analysis in young and old volunteers. Several genes of the collagen metabolism such as Collagen I, III and VI as well as heat shock protein 47 and matrix metalloproteinase-1 are expressed differentially, indicating UV-mediated effects on collagen expression, processing and degradation. In particular, Collagen I is time and age dependently reduced after a single UV exposure in human skin in vivo. Moreover, older subjects display a lower baseline level and a shorter UV-mediated increase in hyaluronan (HA) levels. To counteract these age-dependent changes, cultured fibroblasts were treated with a specific soy extract. This treatment resulted in increased collagen and HA synthesis. In a placebo-controlled in vivo study, topical application of an isoflavone-containing emulsion significantly enhanced the number of dermal papillae per area after 2 weeks. Because the flattening of the dermal-epidermal junction is the most reproducible structural change in aged skin, this soy extract appears to rejuvenate the structure of mature skin.

  17. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid.

    PubMed

    Heck, Bruce E; Park, Joshua J; Makani, Vishruti; Kim, Eun-Cheol; Kim, Dong Hyun

    2017-08-01

    Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator-activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form type II collagen cartilage within human OA synovial fluid. This novel articularly injectable formula could improve OA treatment in the future clinical application.

  18. Immunohistochemical expression of basement membrane proteins of verrucous carcinoma of the oral mucosa.

    PubMed

    Arduino, Paolo G; Carrozzo, Marco; Pagano, Marco; Broccoletti, Roberto; Scully, Crispian; Gandolfo, Sergio

    2010-06-01

    Squamous cell carcinoma (SCC) of the oral cavity is an extremely invasive tumour of stratified squamous epithelium that spreads throughout degradation of the basement membrane (BM) and extra-cellular matrix. Oral verrucous carcinoma (VC) is a rare low-grade variant of oral SCC that penetrates into the subepithelial connective tissue. It also has a different clinical behaviour from classical oral SCC. We investigated the immunohistochemical expression of laminin, laminin-5, collagen IV and fibronectin in VC, severe epithelial dysplasia (SED) and SCC in order to analyse if the pattern of these molecules expression contributes to the differences in the biological behaviour of these diseases. The staining pattern of laminin was less intensive in SCC compared with SED and VC, and collagen IV expression was increased in VC compared with SED. Discontinuities of laminin, collagen IV and fibronectin were more evident in SED than in VC. This study indicates that VC has a biological behaviour different from SED or SCC, observable by immunohistochemistry in the BM zone.

  19. Histochemical and Immunohistochemical Study of α-SMA, Collagen, and PCNA in Epithelial Ovarian Neoplasm

    PubMed

    Anggorowati, Nungki; Ratna Kurniasari, Chatarina; Damayanti, Karina; Cahyanti, Titik; Widodo, Irianiwati; Ghozali, Ahmad; Romi, Muhammad Mansyur; Sari, Dwi Cahyani Ratna; Arfian, Nur

    2017-03-01

    Background: Alpha-smooth muscle actin (α-SMA) is an isoform of actin, positive in myofibroblasts and is an epithelial to mesenchymal transition (EMT) marker. EMT is a process by which tumor cells develop to be more hostile and able to metastasize. Progression of tumor cells is always followed by cell composition and extracellular matrix component alteration. Increased α-SMA expression and collagen alteration may predict the progressivity of ovarian neoplasms. Objective: The aim of this research was to analyse the characteristic of α-SMA and collagen in tumor cells and stroma of ovarian neoplasms. In this study, PCNA (proliferating cell nuclear antigen) expression was also investigated. Methods: Thirty samples were collected including serous, mucinous, endometrioid, and clear cell subtypes. The expression of α-SMA and PCNA were calculated in cells and stroma of ovarian tumors. Collagen was detected using Sirius Red staining and presented as area fraction. Results: The overexpressions of α-SMA in tumor cells were only detected in serous and clear cell ovarian carcinoma. The histoscore of α-SMA was higher in malignant than in benign or borderline ovarian epithelial neoplasms (105.3±129.9 vs. 17.3±17.1, P=0.011; mean±SD). Oppositely, stromal α-SMA and collagen area fractions were higher in benign than in malignant tumors (27.2±6.6 vs 20.5±8.4, P=0.028; 31.0±5.6 vs. 23.7±6.4, P=0.04). The percentages of epithelial and stromal PCNA expressions were not significantly different between benign and malignant tumors. Conclusion: Tumor cells of serous and clear cell ovarian carcinoma exhibit mesenchymal characteristic as shown by α-SMA positive expression. This expression might indicate that these subtypes were more aggressive. This research showed that collagen and α-SMA area fractions in stroma were higher in benign than in malignant neoplasms. 10.22034/APJCP.2017.18.3.667

  20. Distribution of Collagen I, III, and IV and Laminin in the Human Liver during Prenatal Development.

    PubMed

    Jović, Marko; Nikolić, Ivan; Todorović, Vera; Petrović, Aleksandar; Petrović, Vladimir; Mojsilović, Marijola; Denčić, Tijana

    2018-06-27

    In the absence of systematized data on the extracellular matrix components during prenatal liver development, the present study aimed to investigate the time of appearance and distribution of collagen types I, III, and IV and laminin. The study material included embryonic and fetal livers, aged 7-37 weeks, categorized into 3 trimesters. The material was stained using hematoxylin-eosin and immunohistochemistry methods for the identification of collagen I, III, and IV and laminin. Collagen I was detected near the end of the first trimester in the capsules and walls of interlobular veins. As the liver matures, collagen I is increasingly abundant in the capsules, portal area connective tissues, arterial walls, interlobular veins, sinusoids, and central veins. Collagen III and collagen IV appear in the middle of the first trimester in the capsules, portal areas, and walls of central veins, as well as the sinusoids particularly. In trimesters 2 and 3, these collagens are increasingly present in all the structures, but collagen IV is also present in nerve fibers. Laminin is sporadically present adjacent to the sinusoids in trimester 1, while in trimesters 2 and 3 this protein commonly appears in the walls of arteries and interlobular veins, in the basal membrane of bile ducts, and in nerve fibers. The contents of collagen I, III, and IV increase during prenatal development in the liver capsule, arterial and vein walls, sinusoids, and portal area. Laminin expression is consistent with that of the collagens with the exception that, within lobules, laminin disappears with liver maturation. © 2018 S. Karger AG, Basel.

  1. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy.

    PubMed

    Zanotti, Simona; Gibertini, Sara; Curcio, Maurizio; Savadori, Paolo; Pasanisi, Barbara; Morandi, Lucia; Cornelio, Ferdinando; Mantegazza, Renato; Mora, Marina

    2015-07-01

    Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-β1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition. Copyright © 2015. Published by Elsevier B.V.

  2. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription.

    PubMed

    Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M

    2016-10-01

    Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016. © 2016 Wiley Periodicals, Inc.

  3. Association of Matrix Metalloproteinase Levels with Collagen Degradation in the Context of Abdominal Aortic Aneurysm.

    PubMed

    Klaus, V; Tanios-Schmies, F; Reeps, C; Trenner, M; Matevossian, E; Eckstein, H-H; Pelisek, J

    2017-04-01

    Matrix metalloproteinases (MMPs) have already been identified as key players in the pathogenesis of abdominal aortic aneurysm (AAA). However, the current data remain inconclusive. In this study, the expression of MMPs at mRNA and protein levels were investigated in relation to the degradation of collagen I and collagen III. Tissue samples were obtained from 40 patients with AAA undergoing open aortic repair, and from five healthy controls during kidney transplantation. Expression of MMPs 1, 2, 3, 7, 8, 9, and 12, and tissue inhibitor of metalloproteinase (TIMP)1, and TIMP2 were measured at the mRNA level using quantitative reverse transcription polymerase chain reaction. At the protein level, MMPs, collagen I, and collagen III, and their degradation products carboxy-terminal collagen cross-links (CTX)-I and CTX-III, were quantified via enzyme linked immunosorbent assay. In addition, immunohistochemistry and gelatine zymography were performed. In AAA, significantly enhanced mRNA expression was observed for MMPs 3, 9, and 12 compared with controls (p ≤ .001). MMPs 3, 9, and 12 correlated significantly with macrophages (p = .007, p = .018, and p = .015, respectively), and synthetic smooth muscle cells with MMPs 1, 2, and 9 (p = .020, p = .018, and p = .027, respectively). At the protein level, MMPs 8, 9, and 12 were significantly elevated in AAA (p = .006, p = .0004, and p < .001, respectively). No significant correlation between mRNA and protein was observed for any MMP. AAA contained significantly reduced intact collagen I (twofold; p = .002), whereas collagen III was increased (4.6 fold; p < .001). Regarding degraded collagen I and III relative to intact collagens, observations were inverse (1.4 fold increase for CTX-1 [p < .001]; fivefold decrease for CTX-III [p = .004]). MMPs 8, 9, and 12 correlated with collagen I (p = .019, p < .001, and p = 0.003, respectively), collagen III (p = .015, p < .001, and p < .001, respectively), and degraded collagen I (p = .012, p = .049, and p = .001, respectively). No significant relationship was found between mRNA and protein and MMP levels. MMPs 9 and 12 were overexpressed in AAA at the mRNA and protein level, and MMP-8 at the protein level. MMP-2 was detected in synthetic SMCs. Collagen I and III showed inverse behaviour in AAA. In particular, MMPs 8, 9, and 12 appear to be associated with collagen I, collagen III, and their degradation products. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF-β1 levels in serum of patients with atrial fibrillation.

    PubMed

    Zhao, Fei; Zhang, ShiJiang; Chen, YiJiang; Gu, WeiDong; Ni, BuQing; Shao, YongFeng; Wu, YanHu; Qin, JianWei

    2014-11-25

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Unfortunately, the precise mechanisms and sensitive serum biomarkers of atrial remodeling in AF remain unclear. The aim of this study was to determine whether the expression of the transcription factors NF-AT3 and NF-AT4 correlate with atrial structural remodeling of atrial fibrillation and serum markers for collagen I and III synthesis. Right and left atrial specimens were obtained from 90 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (n = 30), paroxysmal atrial fibrillation (n = 30), and persistent atrial fibrillation (n = 30) groups. NF-AT3, NF-AT4, and collagen I and III mRNA and protein expression in atria were measured. We also tested the levels of the carboxyl-terminal peptide from pro-collagen I, the N-terminal type I procollagen propeptides, the N-terminal type III procollagen propeptides, and TGF-β1 in serum using an enzyme immunosorbent assay. NF-AT3 and NF-AT4 mRNA and protein expression were increased in the AF groups, especially in the left atrium. NF-AT3 and NF-AT4 expression in the right atrium was increased in the persistent atrial fibrillation group compared the sinus rhythm group with similar valvular disease. In patients with AF, the expression levels of nuclear NF-AT3 and NF-AT4 correlated with those of collagens I and III in the atria and with PICP and TGF-β1 in blood. These data support the hypothesis that nuclear NF-AT3 and NF-AT4 participates in atrial structural remodeling, and that PICP and TGF-β1 levels may be sensitive serum biomarkers to estimate atrial structural remodeling with atrial fibrillation.

  5. Differential expression of miR-31 between inflammatory bowel disease and microscopic colitis.

    PubMed

    Zhang, Chen; Zhao, Zijin; Osman, Hany; Watson, Rao; Nalbantoglu, Ilke; Lin, Jingmei

    2014-01-01

    Idiopathic inflammatory bowel disease (IBD) and microscopic colitis (MC) are distinct entities. However, patients with intermittent episodes of IBD and MC that are encountered in a clinical setting puzzle clinicians and pathologists. This study examined whether microRNA assisted in the classification of IBD and MC. Small RNA was extracted from formalin-fixed, paraffin-embedded (FFPE) colon tissue and qRT-PCR was performed from cohorts of normal control (n=38), ulcerative colitis (n=36), Crohns disease (n=26), collagenous colitis (n=36), lymphocytic colitis (n=30), and patients with intermittent features of IBD and MC (n=6). Differential expression of miR-31 distinguished IBD (ulcerative colitis and Crohns disease) from MC (collagenous colitis and lymphocytic colitis), confirming the specificity of miR-31 expression in IBD (P=0.00001). In addition, expression of miR-31 was increased in collagenous colitis compared to that of lymphocytic colitis (P=0.010). Among 6 patients with alternating episodes of IBD and MC, one patient had matching miR-31 expression in different phases (lymphocytic colitis to ulcerative colitis, and then back to collagenous colitis). The other 5 patients had MC-like expression patterns in both MC and IBD episodes. In summary, IBD and MC have distinct miR-31 expression pattern. Therefore, miR-31 might be used as a biomarker to distinguish between IBD and MC in FFPE colonic tissue. In addition, miR-31 is differentially expressed in colonic tissue between lymphocytic colitis and collagenous colitis, suggesting them of separate disease processes. Finally, patients with alternating IBD and MC episodes represent a diverse group. Among them, the majority demonstrates MC-like miR-31 expression pattern in MC phases, which seems unlikely to support the speculation of MC as an inactive form of IBD. Although the mechanisms deserve further investigation, microRNA is a potentially useful biomarker to differentiate IBD and MC.

  6. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.

    PubMed

    Bardsley, Katie; Kwarciak, Agnieska; Freeman, Christine; Brook, Ian; Hatton, Paul; Crawford, Aileen

    2017-01-01

    The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation. The temporal changes in the genes measured reflected the temporal changes observed in the growth plate. Collagen II gene expression increased 6 fold by day 7 and was then significantly downregulated from day 14 onwards. Conversely, collagen X gene expression was detectable by day 14 and increased 100-fold by day 35. The temporal increase in collagen X expression was mirrored by increases in alkaline phosphatase gene expression which also was detectable by day 14 with a 30-fold increase in gene expression by day 35. Histological and immunohistochemical analysis of the engineered constructs showed increased chondrocyte cell volume (31-45 μm), deposition of collagen X in the extracellular matrix and expression of alkaline phosphatase activity. However, no cartilage mineralisation was observed in in vitro culture of up to 10 weeks. On subcutaneous implantation of the hypertrophic engineered constructs, the grafts became vascularised, cartilage mineralisation occurred and loss of the proteoglycan in the matrix was observed. Implantation of the hypertrophic engineered constructs into a rat cranial defect resulted in angiogenesis, mineralisation and remodelling of the cartilage tissue into bone. Micro-CT analysis indicated that defects which received the engineered hypertrophic constructs showed 38.48% in bone volume compared to 7.01% in the control defects. Development of tissue engineered hypertrophic cartilage to use as a bone graft substitute is an exciting development in regenerative medicine. This is a proof of principal study demonstrating the potential of nasal chondrocytes to engineer hypertrophic cartilage which will remodel into bone on in vivo transplantation. This approach to making engineered hypertrophic cartilage grafts could form the basis of a new potential future clinical treatment for maxillofacial reconstruction. Copyright © 2016. Published by Elsevier Ltd.

  7. Genistein modifies liver fibrosis and improves liver function by inducing uPA expression and proteolytic activity in CCl4-treated rats.

    PubMed

    Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes

    2008-01-01

    To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.

  8. Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts

    PubMed Central

    Gentile, Daniela; Lazzerini, Pietro E.; Gamberucci, Alessandra; Natale, Mariarita; Selvi, Enrico; Vanni, Francesca; Alì, Alessandra; Taddeucci, Paolo; Del-Ry, Silvia; Cabiati, Manuela; Della-Latta, Veronica; Abraham, David J.; Morales, Maria A.; Fulceri, Rosella; Laghi-Pasini, Franco; Capecchi, Pier L.

    2017-01-01

    Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2′-3′-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc. PMID:28955239

  9. Circulating Vascular Basement Membrane Fragments are Associated with the Diameter of the Abdominal Aorta and Their Expression Pattern is Altered in AAA Tissue.

    PubMed

    Holsti, Mari; Wanhainen, Anders; Lundin, Christina; Björck, Martin; Tegler, Gustaf; Svensson, Johan; Sund, Malin

    2018-04-12

    Abdominal aortic aneurysm (AAA) is characterised by enhanced proteolytic activity, and extracellular matrix (ECM) remodelling in the vascular wall. Type IV and XVIII collagen/endostatin are structural proteins in vascular basement membrane (VBM), a specialised ECM structure. Here the association between plasma levels of these collagens with the aortic diameter and expansion rate is studied, and their expression in aortic tissue characterised. This was a retrospective population based cohort study. Type IV and XVIII collagen/endostatin were analysed in plasma by ELISA assay in 615 men, divided into three groups based on the aortic diameter: 1) normal aorta ≤ 25 mm, 2) sub-aneurysmal aorta (SAA) 26-29 mm, and 3) AAA ≥ 30 mm. Follow up data were available for 159 men. The association between collagen levels and aortic diameter at baseline, and with the expansion rate at follow up were analysed in ordinal logistic regression and linear regression models, controlling for common confounding factors. Tissue expression of the collagens was analysed in normal aorta (n = 6) and AAA (n = 6) by immunofluorescence. Plasma levels of type XVIII collagen/endostatin (136 ng/mL [SD 29] in individuals with a normal aorta diameter, 154 ng/ml [SD 45] in SAA, and 162 ng/ml [SD 46] in AAA; p = .001) and type IV collagen (105 ng/mL [SD 42] normal aorta, 124 ng/ml [SD 46] SAA, and 127 ng/ml [SD 47] AAA; p = .037) were associated with a larger aortic diameter. A significant association was found between the baseline levels of type XVIII/endostatin and the aortic expansion rate (p = .035), but in the multivariable model, only the initial aortic diameter remained significantly associated with expansion (p = .005). Altered expression patterns of both collagens were observed in AAA tissue. Plasma levels of circulating type IV and XVIII collagen/endostatin increase with AAA diameter. The expression pattern of VBM proteins is altered in the aneurysm wall. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.

  10. Effect of doxycycline on transforming growth factor-beta-1-induced matrix metalloproteinase 2 expression, migration, and collagen contraction in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-11-01

    It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.

  11. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ling, E-mail: fangling_1984@126.com; Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032; Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7more » protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells • Silencing of TRPM7 led to collagen degradation in TGF-β1 stimulated HSC-T6 cells • TRPM7 upregulation contributes to the activation of TGF-β1/Smad pathway.« less

  12. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    NASA Astrophysics Data System (ADS)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  13. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    PubMed

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  14. Pycnogenol® effects on skin elasticity and hydration coincide with increased gene expressions of collagen type I and hyaluronic acid synthase in women.

    PubMed

    Marini, A; Grether-Beck, S; Jaenicke, T; Weber, M; Burki, C; Formann, P; Brenden, H; Schönlau, F; Krutmann, J

    2012-01-01

    In recent years there has been an increasing interest in the use of nutritional supplements to benefit human skin. Molecular evidence substantiating such effects, however, is scarce. In the present study we investigated whether nutritional supplementation of women with the standardized pine bark extract Pycnogenol® will improve their cosmetic appearance and relate these effects to expression of corresponding molecular markers of their skin. For this purpose 20 healthy postmenopausal women were supplemented with Pycnogenol for 12 weeks. Before, during and after supplementation, their skin condition was assessed (i) by employing non-invasive, biophysical methods including corneometry, cutometry, visioscan and ultrasound analyses and (ii) by taking biopsies and subsequent PCR for gene expression analyses related to extracellular matrix homeostasis. Pycnogenol supplementation was well tolerated in all volunteers. Pycnogenol significantly improved hydration and elasticity of skin. These effects were most pronounced in women presenting with dry skin conditions prior to the start of supplementation. The skin-physiological improvement was accompanied by a significant increase in the mRNA expression of hyaluronic acid synthase-1 (HAS-1), an enzyme critically involved in the synthesis of hyaluronic acid, and a noticeable increase in gene expression involved in collagen de novo synthesis. This study provides skin-physiological and for the first time molecular evidence that Pycnogenol supplementation benefits human skin by increasing skin hydration and skin elasticity. These effects are most likely due to an increased synthesis of extracellular matrix molecules such as hyaluronic acid and possibly collagen. Pycnogenol supplementation may thus be useful to counteract the clinical signs of skin aging. Copyright © 2012 S. Karger AG, Basel.

  15. Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1.

    PubMed

    Buechner, Nicole; Schroeder, Peter; Jakob, Sascha; Kunze, Kerstin; Maresch, Tanja; Calles, Christian; Krutmann, Jean; Haendeler, Judith

    2008-07-01

    Exposure of human skin to solar radiation, which includes ultraviolet (UV) radiation (UVA and UVB) visible light and infrared radiation, induces skin aging. The effects of light have been attributed to irradiation-induced reactive oxygen species (ROS) formation, but the specific signaling pathways are not well understood. Detrimental effects of solar radiation are dermal diseases and photoaging. Exposure of cultured human dermal fibroblasts to UVA, UVB or IRA increased ROS formation in vitro. One important redox regulator is the oxidoreductase thioredoxin-1 (Trx). Trx is ubiquitously expressed and has anti-oxidative and anti-apoptotic properties. Besides its function to reduce H(2)O(2), Trx binds to and regulates transcription factors. The aim of this study was to investigate whether Trx influences the regulation of MMP-1 and collagen Ialpha1 by UVA, UVB and IRA. We irradiated human dermal fibroblasts with UVA, UVB and IRA. UVA, UVB and IRA upregulated MMP-1 expression. Trx inhibited UVA-induced MMP-1 upregulation in a NFkappaB dependent manner. UVA, UVB and IRA reduced collagen Ialpha1 expression. Incubation with Trx inhibited the effects of UVB and IRA on collagen Ialpha1 expression. In conclusion, MMP-1 and collagen Ialpha1, which play important roles in aging processes, seems to be regulated by different transcriptional mechanisms and Trx can only influence distinct signaling pathways induced by UVA, UVB and probably IRA. Thus, Trx may serve as an important contributor to an "anti-aging therapeutic cocktail".

  16. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling.

    PubMed

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects and Mechanism of SO2 Inhalation on Rat Myocardial Collagen Fibers.

    PubMed

    Chen, Ping; Qiao, Decai; Liu, Xiaoli

    2018-03-21

    BACKGROUND This study investigates the effects and mechanism of sulfur dioxide (SO2) inhalation and exercise on rat myocardial collagen fiber. MATERIAL AND METHODS The rats were randomly divided into 4 groups: a control group (RG), an exercise group (EG), an SO2 pollution group (SRG), and an SO2 pollution and exercise group (SEG). Body weight, cardiac index, and left ventricular index in each group were compared. The myocardial hydroxyproline (Hyp) concentration was determined by pepsin acid hydrolysis. The interstitial myocardial collagen expression was measured by Sirius Red F3B in saturated carbazotic acid. The local myocardial angiotensin II type 1 receptor (AT1R) and connective tissue growth factor (CTGF) expression was tested by immunohistochemistry SABC method. RESULTS Compared with RG, the weight growth rate of EG, SRG, and SEG decreased significantly (P<0.01). Compared with EG, the body weight growth rate of SEG significantly decreased (P<0.01) and cardiac index and left ventricular index decreased but without a significant difference. Compared with EG, myocardial Hyp and collagen concentration, myocardial collagen volume fraction (CVF), perivascular collagen area (PVCA), and the expression of AT1R and CTGF in myocardium of SEG increased significantly (P<0.01). CONCLUSIONS SO2 inhalation and exercise will not only offset beneficial health effects of movement on the cardiovascular system, but also produce more unfavorable influences. People should pay attention to their environment when exercising, and try to avoid exercising in environments with SO2 pollution.

  18. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing.

    PubMed

    Baicu, Catalin F; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R; Bradshaw, Amy D

    2012-11-01

    Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function.

  19. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing

    PubMed Central

    Baicu, Catalin F.; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R.

    2012-01-01

    Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function. PMID:22942178

  20. Balance between apoptosis or survival induced by changes in extracellular-matrix composition in human mesangial cells: a key role for ILK-NFκB pathway.

    PubMed

    del Nogal, María; Luengo, Alicia; Olmos, Gemma; Lasa, Marina; Rodriguez-Puyol, Diego; Rodriguez-Puyol, Manuel; Calleros, Laura

    2012-12-01

    Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor. Collagen I activates a death pathway, through ILK/GSK-3β-dependent Bim expression. Moreover, collagen I significantly increases NFκB-dependent transcription, IκBα degradation and p65/NFκB translocation to the nucleus; it activates β1 integrin and this is accompanied by increased activity of ILK which leads to AKT activation. Knockdown of ILK or AKT with small interfering RNA suppresses the increase in NFκB activity. NFκB mediates cell survival through the antiapoptotic protein Bcl-xL. Our data suggest that human mesangial cells exposed to abnormal collagen I are protected against apoptosis by a complex mechanism involving integrin β1/ILK/AKT-dependent NFκB activation with consequent Bcl-xL overexpression, that opposes a simultaneously activated ILK/GSK-3β-dependent Bim expression and this dual mechanism may play a role in the progression of glomerular dysfunction.

  1. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice.

    PubMed

    Shi, Fang; Sheng, Qin; Xu, Xinhua; Huang, Wenli; Kang, Y James

    2015-09-01

    Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation. © 2014 by the Society for Experimental Biology and Medicine.

  2. Left and right ventricle late remodeling following myocardial infarction in rats.

    PubMed

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S; Lahera, Vicente; Vassallo, Paula F; Cachofeiro, Victoria

    2013-01-01

    The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals.

  3. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    PubMed

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  4. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  5. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture.

    PubMed

    Yoshida, Ryu; Cheng, Mingyu; Murray, Martha M

    2014-02-01

    Tissue engineering is one new strategy being developed to treat ACL ruptures. One such approach is bio-enhanced ACL repair, where a suture repair is supplemented with a bio-active scaffold containing platelets. However, the optimal concentration of platelets to stimulate ACL healing is not known. We hypothesized that increasing platelet concentrations in the scaffold would enhance critical cell behaviors. Porcine ACL fibroblasts were obtained from explant culture and suspended in platelet poor plasma (PPP), 1× platelet-rich plasma (PRP), 3× PRP, 5× PRP, or phosphate buffered saline (PBS). The cell suspensions were cultured in a 3D collagen scaffold. Cellular metabolism (MTT assay), apoptosis (TUNEL assay), and gene expression for type I and type III collagen were measured. 1× PRP significantly outperformed 5× PRP in all parameters studied: Type I and III collagen gene expression, apoptosis prevention, and cell metabolism stimulation. ACL fibroblasts cultured with 1× PRP had the highest type I and type III collagen gene expression. 1× PRP and PPP groups had the highest cell metabolism and lowest apoptosis rates. Concentration of platelets had significant effects on the behavior of ACL fibroblasts; thus, it is an important parameter that should be specified in clinical or basic science studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jae Hyung; Kim, Yang Hee; Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3more » dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.« less

  7. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyatake, Kazumasa; Tsuji, Kunikazu, E-mail: ktsuji.gcoe@tmd.ac.jp; Yamaga, Mika

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding themore » molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.« less

  8. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  9. Expression of collagen in ovular membranes of pregnant smokers and non-smokers: a pilot study.

    PubMed

    Negrini, Romulo; Araujo Júnior, Edward; Piato, Sebastião; Chade, Milca Cezar; Rios, Adriana Ribeiro Santos; Silva, Maria Antonieta Galvão; Aldrighi, José Mendes

    2015-09-01

    Our study compared the amount of total collagen and type I collagen in ovular membranes of pregnant smokers and non-smokers. The study group consisted of 14 pregnant smokers at 24-36 weeks of gestation; 39 pregnant non-smokers between 24-36 weeks of gestation comprised the control group. The expressions of total collagen and type I collagen were analyzed using two histological sections of the fetal membranes. The assessment of total collagen was performed using the Picro-Cirius red stain, and type I collagen expression was determined by means of immunohistochemistry The Mann-Whitney test was applied to verify possible differences between the groups. The average area covered by total collagen was lower in smokers (20630.45 microm2) as compared to non-smokers (24058.61 microm2), although the difference was not statistically significant (p = 0.454). Comparison involving collagen type I deemed similar results (20001.33 microm2 vs. 25328.29 microm2, p = 0.158). The amount of total collagen and type I collagen was lower in ovular membranes of pregnant smokers as compared to non-smokers, although the difference was not statistically significant.

  10. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  11. Increased expression of connective tissue growth factor (CTGF) in multiple organs after exposure of non-human primates (NHP) to lethal doses of radiation

    PubMed Central

    Zhang, Pei; Cui, Wanchang; Hankey, Kim G.; Gibbs, Allison M.; Smith, Cassandra P.; Taylor-Howell, Cheryl; Kearney, Sean R.; MacVittie, Thomas J.

    2015-01-01

    Exposure to sufficiently high doses of ionizing radiation is known to cause fibrosis in many different organs and tissues. Connective tissue growth factor (CTGF/CCN2), a member of the CCN family of matricellular proteins, plays an important role in the development of fibrosis in multiple organs. The aim of the present study was to quantify the gene and protein expression of CTGF in a variety of organs from non-human primates (NHP) that were previously exposed to potentially lethal doses of radiation. Tissues from non-irradiated NHP, and NHP exposed to whole thoracic lung irradiation (WTLI) or partial-body irradiation with 5% bone marrow sparing (PBI/BM5) were examined by real-time quantitative reverse transcription PCR, western blot, and immunohistochemistry. Expression of CTGF was elevated in the lung tissues of NHP exposed to WTLI relative to the lung tissues of the non-irradiated NHP. Increased expression of CTGF was also observed in multiple organs from NHP exposed to PBI/BM5 compared to non-irradiated NHP; these included the lung, kidney, spleen, thymus and liver. These irradiated organs also exhibited histological evidence of increased collagen deposition compared to the control tissues. There was significant correlation of CTGF expression with collagen deposition in the lung and spleen of NHP exposed to PBI/BM5. Significant correlations were observed between spleen and multiple organs on CTGF expression and collagen deposition respectively, suggesting possible crosstalk between spleen and other organs. Our data suggest that CTGF levels are increased in multiple organs after radiation exposure and that inflammatory cell infiltration may contribute to the elevated levels of CTGF in multiple organs. PMID:26425899

  12. Angiopoietin-like 7 Secretion Is Induced by Glaucoma Stimuli and Its Concentration Is Elevated in Glaucomatous Aqueous Humor

    PubMed Central

    Kuchtey, John; Källberg, Maria E.; Gelatt, Kirk N.; Rinkoski, Tommy; Komàromy, András M.; Kuchtey, Rachel W.

    2010-01-01

    Purpose To investigate the possibility that Angiopoietin-like 7 (ANGPTL7) protein is involved in the pathogenesis of glaucoma. Methods Primary human trabecular meshwork (TM) cells and corneoscleral explants were stimulated with either dexamethasone (DEX) or transforming growth factor β (TGFβ), and ANGPTL7 protein secreted into culture medium was determined by Western blot analysis. The effect of stable overexpression of ANGPTL7 in transfected immortalized TM cell lines on collagen expression was investigated by immunocytochemistry. Localization of ANGPTL7 protein in human eyes was determined by immunohistochemistry. The concentration of ANGPTL7 protein in aqueous humor (AH) from patients with glaucoma and control patients was compared by Western blot analysis. The beagle model of primary open-angle glaucoma (POAG) was used to correlate ANGPTL7 protein levels in canine AH with disease progression. Results TGFβ and DEX stimulated secretion of ANGPTL7 protein by TM cells and corneoscleral explants. Overexpression of ANGPTL7 by immortalized TM cell lines increased expression of type I collagen. Expression of ANGPTL7 protein was located in the corneal stroma, near the limbus, and throughout the sclera, with lower expression in the TM. In the lamina cribrosa, ANGPTL7 expression was associated with the cribriform plates. The concentration of ANGPTL7 protein was elevated in AH from patients with glaucoma and increased as disease progressed in POAG beagle dogs. Conclusions Induction of ANGPTL7 secretion by glaucoma stimuli and increased concentration of ANGPTL7 in glaucomatous AH suggest that ANGPTL7 is overexpressed in glaucoma. Since overexpression of ANGPTL7 increases collagen expression, a potential disease mechanism, ANGPTL7 could have a pathogenic role in glaucoma, and may serve as a potential therapeutic target. PMID:18421092

  13. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling

    PubMed Central

    Arora, Pamma D.; Wang, Yongqiang; Bresnick, Anne; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts. PMID:25877872

  14. Pressure overload-dependent membrane type 1-matrix metalloproteinase induction: relationship to LV remodeling and fibrosis.

    PubMed

    Zile, Michael R; Baicu, Catalin F; Stroud, Robert E; Van Laer, An; Arroyo, Jazmine; Mukherjee, Rupak; Jones, Jeffrey A; Spinale, Francis G

    2012-04-01

    Increased myocardial extracellular matrix collagen represents an important structural milestone during the development of left ventricular (LV) pressure overload (PO); however, the proteolytic pathways that contribute to this process are not fully understood. This study tested the hypothesis that membrane type 1-matrix metalloproteinase (MT1-MMP) is directly induced at the transcriptional level in vivo during PO and is related to changes in LV collagen content. PO was induced in vivo by transverse aortic constriction in transgenic mice containing the full length human MT1-MMP promoter region ligated to luciferase (MT1-MMP Prom mice). MT1-MMP promoter activation (luciferase expression), expression, and activity; collagen volume fraction (CVF); and left atrial dimension were measured at 1 (n = 8), 2 (n = 12), and 4 (n = 17) wk following PO. Non-PO mice (n = 10) served as controls. Luciferase expression increased by fivefold at 1 wk, fell at 2 wk, and increased again by ninefold at 4 wk of PO (P < 0.05). MT1-MMP expression and activity increased at 1 wk, fell at 2 wk, and increased again at 4 wk after PO. CVF increased at 1 wk, remained unchanged at 2 wk, and increased by threefold at 4 wk of PO (P < 0.05). There was a strong positive correlation between CVF and MT1-MMP activity (r = 0.80, P < 0.05). Left atrial dimension remained unchanged at 1 and 2 wk but increased by 25% at 4 wk of PO. When a mechanical load was applied in vitro to LV papillary muscles isolated from MT1-MMP Prom mice, increased load caused MT1-MMP promoter activation to increase by twofold and MT1-MMP expression to increase by fivefold (P < 0.05). These findings challenge the canonical belief that PO suppresses overall matrix proteolytic activity, but rather supports the concept that certain proteases, such as MT1-MMP, play a pivotal role in PO-induced matrix remodeling and fibrosis.

  15. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    PubMed

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  16. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen.

    PubMed

    Urello, Morgan A; Kiick, Kristi L; Sullivan, Millicent O

    2017-10-15

    Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailorable in vivo transgene expression at 100-fold higher levels and 10-fold longer time periods. These improvements were directly linked to a sustained interaction between collagen and polyplexes that persisted during cellular remodeling, polyplex uptake, and intracellular trafficking. Specifically, incorporation of CMPs into polyethylenimine (PEI) polyplexes preserved serum-exposed polyplex-collagen activity over a period of 14days, with 4 orders-of-magnitude more intact DNA present in CMP-modified polyplex-collagen relative to unmodified polyplex-collagen after a 10day incubation under cell culture conditions. CMP-modification also altered endocytic uptake, as indicated by gene silencing studies showing a nearly 50% decrease in transgene expression in response to caveolin-1 silencing in modified samples versus only 30% in unmodified samples. Furthermore, cellular internalization studies demonstrated that polyplex-collagen association persisted within cells in CMP polyplexes, but not in unmodified polyplexes, suggesting that CMP linkage to collagen regulates intracellular transport. Moreover, experiments in an in vivo repair model showed that CMP modification enabled tailoring of transgene expression from 4 to 25days over a range of concentrations. Overall, these findings demonstrate that CMP decoration provides substantial improvements in gene retention, altered release kinetics, improved serum-stability, and improved gene activity in vivo. This versatile technique has great potential for multiple applications in regenerative medicine. In this work, we demonstrate a novel approach for stably integrating DNA into collagen scaffolds to exploit the natural process of collagen remodelling for high efficiency non-viral gene delivery. The incorporation of CMPs into DNA polyplexes, coupled with the innate affinity between CMPs and collagen, not only permitted improved control over polyplex retention and release, but also provided a series of substantial and highly unique benefits via the stable and persistent linkage between CMP-polyplexes and collagen fragments. Specifically, CMP-modification of polyplexes was demonstrated to (i) control release for nearly a month, (ii) improve vector stability under physiological-like conditions, and (iii) provide ligands able to efficiently transfer genes via endocytic collagen pathways. These unique properties overcome key barriers inhibiting non-viral gene therapy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. The Chinese Herb Yi-Qi-Huo-Xue Protects Cardiomyocyte Function in Diabetic Cardiomyopathy.

    PubMed

    Wang, Xiangsheng; Huang, Jing; Wang, Shengyi; Ni, Qing

    2018-01-01

    Aims. To study the effect of the Chinese herb Yi-qi-huo-xue on cardiomyopathy in diabetic rats. Methods . Rats were fed a high fat and high glucose diet and injected with 50 ml/kg streptozotocin (STZ) to induce diabetic cardiomyopathy (DCM), followed by treatment with Yi-qi-huo-xue for 4 weeks. We measured the rats' heart weight index, observed the myocardial morphology using hematoxylin eosin (HE) staining, and determined the content of collagen types I and III in the myocardium using enzyme-linked immunosorbent assay (ELISA). We determined Bcl-2, Bax, and P53 protein expression by Western blot analysis and the cardiomyocyte apoptosis rate via a flow cytometry assay. Results. Compared with the rats in the control group, the diabetic rats gained weight and had increased blood sugar levels, an enhanced heart weight index, and increased myocardial pathophysiological damage. There was a decrease in their Bcl-2 expression, and their Bax and P53 expression increased. The Bcl-2/Bax ratio was enhanced, and there was an increase in the content of collagen types I and III in the myocardium. After treatment with Yi-qi-huo-xue, all levels listed above returned to normal. Conclusion. The Chinese herb Yi-qi-huo-xue degraded the myocardial interstitial collagen types I and III to protect the myocardium of the diabetic rats, thus delaying the role of myocardial fibrosis. Yi-qi-huo-xue could play an important role in protecting the myocardium of DCM rats by enhancing the expression of the Bcl-2 protein, inhibiting the expression of the Bax and P53 proteins, increasing the ratio of Bcl-2/Bax, and inhibiting the apoptosis of cardiomyocytes.

  18. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  19. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  20. Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs

    PubMed Central

    Lafyatis, Robert; Burkly, Linda C.

    2017-01-01

    Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention. PMID:28662216

  1. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.

    PubMed

    Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy

    2008-10-24

    Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.

  2. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    PubMed

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment. © 2017 IOP Publishing Ltd.

  3. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Severalmore » recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation.« less

  4. Advanced Osteoarthritis in Humans Is Associated With Altered Collagen VI Expression and Upregulation of ER-stress Markers Grp78 and Bag-1

    PubMed Central

    Nugent, Ashleigh E.; Speicher, Danielle M.; Gradisar, Ian; McBurney, Denise L.; Baraga, Anthony; Doane, Kathleen J.; Horton, Walter E.

    2009-01-01

    To test the hypothesis that a perturbation of endoplasmic reticulum (ER) function is involved in the pathogenesis of osteoarthritis (OA), articular cartilage was isolated from non-OA patients secondary to resection of osteo- or chondrosarcomas. Intra-joint samples of minimal and advanced osteoarthritic cartilage were isolated from patients undergoing total knee arthroplasty and scored for disease severity. Glucose-regulated protein-78 (grp78) and bcl-2–associated athanogene-1 (bag-1) were detected via immunofluorescence as markers of non-homeostatic ER function. Additionally, the expression of type VI collagen and its integrin receptor, NG2, was determined to examine cartilage matrix health and turnover. There was an upregulation of grp78 in advanced OA, and variable expression in minimal OA. Non-OA cartilage was consistently grp78 negative. The downstream regulator bag-1 was also upregulated in OA compared with normal cartilage. Collagen VI was mainly cell-associated in non-OA cartilage, with a more widespread distribution observed in OA cartilage along with increased intracellular staining intensity. The collagen VI integral membrane proteoglycan receptor NG2 was downregulated in advanced OA compared with its patient-matched minimally involved cartilage sample. These results suggest that chondrocytes exhibit ER stress during OA, in association with upregulation of a large secreted molecule, type VI collagen. (J Histochem Cytochem 57:923–931, 2009) PMID:19546472

  5. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases.

    PubMed

    Hui, Wang; Litherland, Gary J; Elias, Martina S; Kitson, Gareth I; Cawston, Tim E; Rowan, Andrew D; Young, David A

    2012-03-01

    To investigate the effect of leptin on cartilage destruction. Collagen release was assessed in bovine cartilage explant cultures, while collagenolytic and gelatinolytic activities in culture supernatants were determined by bioassay and gelatin zymography. The expression of matrix metalloproteinases (MMP) was analysed by real-time RT-PCR. Signalling pathway activation was studied by immunoblotting. Leptin levels in cultured osteoarthritic joint infrapatellar fat pad or peri-enthesal deposit supernatants were measured by immunoassay. Leptin, either alone or in synergy with IL-1, significantly induced collagen release from bovine cartilage by upregulating collagenolytic and gelatinolytic activity. In chondrocytes, leptin induced MMP1 and MMP13 expression with a concomitant activation of STAT1, STAT3, STAT5, MAPK (JNK, Erk, p38), Akt and NF-κB signalling pathways. Selective inhibitor blockade of PI3K, p38, Erk and Akt pathways significantly reduced MMP1 and MMP13 expression in chondrocytes, and reduced cartilage collagen release induced by leptin or leptin plus IL-1. JNK inhibition had no effect on leptin-induced MMP13 expression or leptin plus IL-1-induced cartilage collagen release. Conditioned media from cultured white adipose tissue (WAT) from osteoarthritis knee joint fat pads contained leptin, induced cartilage collagen release and increased MMP1 and MMP13 expression in chondrocytes; the latter being partly blocked with an anti-leptin antibody. Leptin acts as a pro-inflammatory adipokine with a catabolic role on cartilage metabolism via the upregulation of proteolytic enzymes and acts synergistically with other pro-inflammatory stimuli. This suggests that the infrapatellar fat pad and other WAT in arthritic joints are local producers of leptin, which may contribute to the inflammatory and degenerative processes in cartilage catabolism, providing a mechanistic link between obesity and osteoarthritis.

  6. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program

    PubMed Central

    Ionescu, Andreia; Kozhemyakina, Elena; Nicolae, Claudia; Kaestner, Klaus H.; Olsen, Bjorn R.; Lassar, Andrew B.

    2012-01-01

    During endochondral ossification small immature chondrocytes enlarge to form hypertrophic chondrocytes, which express collagen X. In this work, we demonstrate that FoxA factors are induced during chondrogenesis, bind to conserved binding sites in the collagen X enhancer, and can promote the expression of a collagen X-luciferase reporter in both chondrocytes and fibroblasts. In addition, we demonstrate by both gain and loss of function analyses that FoxA factors play a crucial role driving the expression of both endogenous collagen X and other hypertrophic chondrocyte-specific genes. Mice engineered to lack expression of both FoxA2 and FoxA3 in their chondrocytes display defects in chondrocyte hypertrophy, alkaline phosphatase expression, and mineralization in their sternebrae and in addition exhibit postnatal dwarfism that is coupled to significantly decreased expression of both collagen X and MMP13 in their growth plates. Together, our findings indicate that FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. PMID:22595668

  7. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    PubMed

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.

  9. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases.

  10. Dendritic cells: In vitro culture in two- and three-dimensional collagen systems and expression of collagen receptors in tumors and atherosclerotic microenvironments.

    PubMed

    Sprague, Leslee; Muccioli, Maria; Pate, Michelle; Singh, Manindra; Xiong, Chengkai; Ostermann, Alexander; Niese, Brandon; Li, Yihan; Li, Yandi; Courreges, Maria Cecilia; Benencia, Fabian

    2014-04-15

    Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis. Copyright © 2014. Published by Elsevier Inc.

  11. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP).

    PubMed

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2012-03-09

    Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor γ. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    PubMed Central

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  13. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    PubMed Central

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-01-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process. PMID:27934940

  14. Increasing the Dose of Autologous Chondrocytes Improves Articular Cartilage Repair: Histological and Molecular Study in the Sheep Animal Model.

    PubMed

    Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo; López-Alcorocho, Juan Manuel

    2014-04-01

    We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage.

  15. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

  16. Tissue-specific expression and regulation of the alternatively-spliced forms of lysyl hydroxylase 2 (LH2) in human kidney cells and skin fibroblasts.

    PubMed

    Walker, Linda C; Overstreet, Mayra A; Yeowell, Heather N

    2005-01-01

    Lysyl hydroxylases 1, 2, and 3 catalyse the hydroxylation of specific lysines in collagen. A small percentage of these hydroxylysine residues are precursors for the cross-link formation essential for the tensile strength of collagen. Lysyl hydroxylase 2 (LH2) exists as two alternatively-spliced forms; the long transcript (the major ubiquitously-expressed form) includes a 63 bp exon (13A) that is spliced out in the short form (expressed, together with the long form, in human kidney, spleen, liver, and placenta). This study shows that this alternative splicing event can be regulated by both cell density and cycloheximide (CHX). Although only the long form of LH2 is detected in untreated confluent human skin fibroblasts, after 24 h treatment with CHX the short LH2 transcript is also expressed. In kidney cells, in which both LH2 transcripts are equally expressed, the long LH2 transcript is significantly decreased after 24 h CHX treatment, whereas expression of the short transcript is slightly increased. This suggests that, in kidney cells, the splicing mechanism for the inclusion of exon 13A in LH2 requires a newly-synthesized protein factor that is suppressed by CHX, whereas, in skin fibroblasts in which levels of LH2 (long) are unaffected, CHX appears to suppress a factor that inhibits exclusion of exon 13A, thereby promoting expression of LH2 (short). As these alternate transcripts of LH2 may have specificity for hydroxylation of lysines in either telopeptide or helical collagen domains, their relative expression determines the type of cross-links formed, thereby affecting collagen strength. Therefore, any perturbation of the regulation of LH2 splicing could influence the stability of the extracellular matrix and contribute to specific connective tissue disorders.

  17. Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer.

    PubMed

    Jin, Hyo-Eon; Farr, Rebecca; Lee, Seung-Wuk

    2014-11-01

    Collagens are over-expressed in various human cancers and subsequently degraded and denatured by proteolytic enzymes, thus making them a target for diagnostics and therapeutics. Genetically engineered bacteriophage (phage) is a promising candidate for the development of imaging or therapeutic materials for cancer collagen targeting due to its promising structural features. We genetically engineered M13 phages with two functional peptides, collagen mimetic peptide and streptavidin binding peptide, on their minor and major coat proteins, respectively. The resulting engineered phage functions as a therapeutic or imaging material to target degraded and denatured collagens in cancerous tissues. We demonstrated that the engineered phages are able to target and label abnormal collagens expressed on A549 human lung adenocarcinoma cells after the conjugation with streptavidin-linked fluorescent agents. Our engineered collagen binding phage could be a useful platform for abnormal collagen imaging and drug delivery in various collagen-related diseases. Published by Elsevier Ltd.

  18. Left and Right Ventricle Late Remodeling Following Myocardial Infarction in Rats

    PubMed Central

    Stefanon, Ivanita; Valero-Muñoz, María; Fernandes, Aurélia Araújo; Ribeiro, Rogério Faustino; Rodríguez, Cristina; Miana, Maria; Martínez-González, José; Spalenza, Jessica S.; Lahera, Vicente; Vassallo, Paula F.; Cachofeiro, Victoria

    2013-01-01

    Background The mechanisms involved in cardiac remodeling in left (LV) and right ventricles (RV) after myocardial infarction (MI) are still unclear. We assayed factors involved in collagen turnover in both ventricles following MI in rats either presenting signs of heart failure (pulmonary congestion and increased LVEDP) or not (INF-HF or INF, respectively). Methods MI was induced in male rats by ligation of the left coronary artery. Four weeks after MI gene expression of collagen I, connective tissue growth factor (CTGF), transforming growth factor β (TGF-β) and lysyl oxidase (LOX), metalloproteinase-2 (MMP2) and tissue inhibitor metalloproteinase-2 (TIMP2) as well as cardiac hemodynamic in both ventricles were evaluated. Results Ventricular dilatation, hypertrophy and an increase in interstitial fibrosis and myocyte size were observed in the RV and LV from INF-HF animals, whereas only LV dilatation and fibrosis in RV was present in INF. The LV fibrosis in INF-HF was associated with higher mRNA of collagen I, CTGF, TGF-β and LOX expressions than in INF and SHAM animals, while MMP2/TIMP2 mRNA ratio did not change. RV fibrosis in INF and INF-HF groups was associated with an increase in LOX mRNA and a reduction in MMP2/TIMP2 ratio. CTGF mRNA was increased only in the INF-HF group. Conclusions INF and INF-HF animals presented different patterns of remodeling in both ventricles. In the INF-HF group, fibrosis seems to be consequence of collagen production in LV, and by reductions in collagen degradation in RV of both INF and INF-HF animals. PMID:23741440

  19. Microcontact printing of BMP-2 and its effect on human chondrocytes behavior

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Nie, Yu-Dong

    2010-01-01

    The present study is to investigate human chondrocytes behavior on microcontact printed bone morphogenetic protein-2 (BMP-2) lines on polystyrene (PS) surface. It was found that the cells aligned with BMP lines and expressed type II and VI collagen. The chondrocytes in vitro cultured on BMP lines were elongated, which resulted in altered cell morphology. Taking all these results into consideration, BMP-2 lines enhance cell adhesion, restrict spreading, and increase type II and VI collagen expression. The results represented in this study may be an approach to the problem of engineering reparative cartilage in vitro.

  20. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  1. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1

    PubMed Central

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277

  2. Gene expression analysis in calcific tendinopathy of the rotator cuff.

    PubMed

    Oliva, F; Barisani, D; Grasso, A; Maffulli, N

    2011-06-20

    We evaluated the expression of several genes involved in tissue remodelling and bone development in patients with calcific tendinopathy of the rotator cuff. Biopsies from calcified and non-calcified areas were obtained from 10 patients (8 women and 2 men; average age: 55 years; range: 40-68) with calcific tendinopathy of the rotator cuff. To evaluate the expression of selected genes, RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (PCR) were performed. A significantly increased expression of tissue transglutaminase (tTG)2 and its substrate, osteopontin, was detected in the calcific areas compared to the levels observed in the normal tissue from the same subject with calcific tendinopathy, whereas a modest increase was observed for catepsin K. There was also a significant decrease in mRNA expression of Bone Morphogenetic Protein (BMP)4 and BMP6 in the calcific area. BMP-2, collagen V and vascular endothelial growth factor (VEGF) did not show significant differences. Collagen X and matrix metalloproteinase (MMP)-9 were not detectable. A variation in expression of these genes could be characteristic of this form tendinopathy, since an increased level of these genes has not been detected in other forms of tendon lesions.

  3. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences.

    PubMed

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L

    2015-01-01

    The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes.

  4. Chronic Treatment with Atrial Natriuretic Peptide in Spontaneously Hypertensive Rats: Beneficial Renal Effects and Sex Differences

    PubMed Central

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Costa, María A.; Elesgaray, Rosana; Arranz, Cristina; Tomat, Analía L.

    2015-01-01

    Objective The aim of this study was to investigate the effects of chronic treatment with atrial natriuretic peptide (ANP) on renal function, nitric oxide (NO) system, oxidative stress, collagen content and apoptosis in kidneys of spontaneously hypertensive rats (SHR), as well as sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/h/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). Systolic blood pressure (SBP) was recorded and diuresis and natriuresis were determined. After treatment, renal NO synthase (NOS) activity and eNOS expression were evaluated. Thiobarbituric acid-reactive substances (TBARS), glutathione concentration and glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in the kidney. Collagen was identified in renal slices by Sirius red staining and apoptosis by Tunel assay. Results Female SHR showed lower SBP, oxidative stress, collagen content and apoptosis in kidney, and higher renal NOS activity and eNOS protein content, than males. ANP lowered SBP, increased diuresis, natriuresis, renal NOS activity and eNOS expression in both sexes. Renal response to ANP was more marked in females than in males. In kidney, ANP reduced TBARS, renal collagen content and apoptosis, and increased glutathione concentration and activity of GPx and SOD enzymes in both sexes. Conclusions Female SHR exhibited less organ damage than males. Chronic ANP treatment would ameliorate hypertension and end-organ damage in the kidney by reducing oxidative stress, increasing NO-system activity, and diminishing collagen content and apoptosis, in both sexes. PMID:25774801

  5. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants.

    PubMed

    Ward, W Kenneth; Li, Allen G; Siddiqui, Yasmin; Federiuk, Isaac F; Wang, Xiao-Jing

    2008-01-01

    The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response. Using quantitative real-time PCR and immunofluorescence, the expression of IL13, CTGF, collagen 1, decorin and fibronectin were measured in this tissue. IL-13, a product of Th2 cells, was highly expressed at all time points, with greatest expression at day 21. The IL-13 expression was paralleled by increased presence of T-cells at all time points. CTGF was also found to be more highly expressed in foreign body tissue than in controls. Collagen and decorin were highly expressed at the middle and later stages. Given the increased expression of IL-13 and CTGF in foreign body tissue, and their roles in other fibrotic disorders, these cytokines may well contribute to the formation of the foreign body capsule. Since the peak gene expression of IL-13 occurred later than the previously-reported TGFbeta expression peak, IL-13 is probably not the major stimulus to TGFbeta expression during foreign body encapsulation and may contribute to fibrosis independently.

  6. Identification of Type VI Collagen Synthesizing Cells in Human Diabetic Glomerulosclerosis Using Renal Biopsy Sections

    PubMed Central

    Razzaque, Mohammed Shawkat; Koji, Takehiko; Harada, Takashi; Taguchi, Takashi

    1997-01-01

    Although the role of extracellular matrices in the development of glomerulosclerosis has been discussed widely, the cellular origin of type VI collagen in diabetic nephropathy (DN) has remained relatively unexplored. This study reports the distribution and cellular origin of type VI collagen in DN. Type VI collagen‐specific oligonucleotide probes and monoclonal antibody were used to assess the relative expression of mRNA for \\alpha1 (VI) chain and its translated protein in paraffin‐embedded renal biopsy sections of DN. By immunohistochemistry, compared to the control, increased deposition of type VI collagen was noted in the diffuse and nodular lesions of diabetic glomeruli. For cellular localization of type VI collagen mRNA, paraffin‐embedded renal sections of the control and DN were hybridized in situ with digoxigenin (Dig)‐labeled antisense oligo‐DNA probe complementary to a part of \\alpha1 (VI) mRNA. In comparison to the control kidney sections, increased numbers of intraglomerular cells (both mesangial and epithelial cells) were positive for α1 (VI) mRNA in renal biopsy sections of DN. From the results, we conclude that overexpression of type VI collagen by intraglomerular cells with its increased deposition might significantly contribute to the glomerulosclerosis found in DN. PMID:9497854

  7. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels.

    PubMed

    Unemori, E N; Werb, Z

    1986-09-01

    Changes in cell shape are postulated to modulate gene expression during differentiation of a number of cell types, including rabbit synovial fibroblasts, which are inducible for expression of the zymogen form of the metalloendopeptidase, collagenase. In the work presented here, fibroblasts cultured on and within hydrated collagen gels were allowed to contract by release of the gels from the sides of the culture dish. Within 24 h of cell release, synthesis and secretion of procollagenase was initiated in the absence of any chemical manipulation. Fibroblasts grown in and on collagen also responded to 12-O-tetradecanoylphorbol-13-acetate and cytochalasin B with morphologic change and induced procollagenase. However, colchicine, which altered morphology to varying degrees in cells on plastic, on collagen, and within collagen gels, did not induce procollagenase expression. In all cases, the enzyme was induced only after reorganization of polymerized actin, rather than after a change in cellular morphology per se. As a first approach to identifying other aspects of the stimulated phenotype that could affect collagen turnover, the expression of collagen and endogenous metalloproteinase inhibitors in relation to procollagenase secretion was investigated. Collagen secretion by fibroblasts decreased when procollagenase secretion was induced by the pharmacologic agents, but not when cells were stimulated by contraction on or within collagen gels. The expression of two endogenous inhibitors was not coordinately regulated with induction of procollagenase. Therefore, the extracellular matrix and the cellular actin cytoskeleton may transduce signals that modulate the tissue remodeling phenotype of fibroblasts.

  8. Cryoplasty for Canine Iliac Artery Stenosis and its Impact on Expression of TIMP-2 and MMP-2.

    PubMed

    Wu, Zhengzhong; Zang, Shengbing; Liu, Wenwen; Jiang, Na; Yang, Weizhu

    2015-01-01

    This study was performed to observe the effects of cryoplasty on canine iliac artery stenosis and the expression of tissue inhibition of matrix metalloproteinase 2 (TIMP-2) and matrix metalloproteinase 2 (MMP-2). We produced a reliable canine model to mimic the atherosclerotic stenosis in the iliac artery by suturing the artery followed by vessel ligation to create an injury to intimal and medial walls. Sixteen mongrel dogs with iliac artery stenosis were randomized to conventional balloon angioplasty (n = 8) or cryoplasty (n = 8). Four weeks posttreatment, the cryoplasty group with less collagen fibers and smooth muscle demonstrated significantly larger luminal diameter of iliac artery compared to the balloon angioplasty group (P < .001). Expression of TIMP-2 significantly increased and expression of MMP-2 significantly reduced in iliac artery of the cryoplasty group compared to conventional balloon angioplasty. Our study suggests cryoplasty might increase the expression of TIMP-2 and decrease the expression of MMP-2, thereby inhibiting vascular hyperplasia and collagen fibers synthesis of the stenotic vessels. © The Author(s) 2015.

  9. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    PubMed Central

    Stasuk, Alexander

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625

  10. Attachment, proliferation and collagen type I mRNA expression of human gingival fibroblasts on different biodegradable membranes.

    PubMed

    Hakki, Sema S; Korkusuz, Petek; Purali, Nuhan; Bozkurt, Buket; Kus, Mahmut; Duran, Ismet

    2013-01-01

    The purpose of this study was to investigate adhesion, proliferation and type I collagen (COL I) mRNA expression of gingival fibroblasts on different membranes used in periodontal applications. Collagen (C), acellular dermal matrix (ADM) and polylactic acid; polyglycolic acid; lactide/glycolide copolymer (PLGA) biodegradable membranes were combined with gingival fibroblasts in culture and incubated for 48 h. Cell adhesion was examined with scanning electron and confocal microscopy. MTT assay was used to measure proliferation. COL I mRNA expression was assessed using quantitative-polymerase chain reaction (QPCR). The PLGA group exhibited the lowest cell survival on day 5 and 10, and lowest cell proliferation on days 5, 10 and 14. While cell proliferation was similar in C and ADM groups, the C membrane showed a slightly greater increase in viable cells to day 10. Confocal and scanning electron microscopy confirmed the results of proliferation and MTT assays. The highest COL I mRNA expression was noted in the PLGA membrane group when compared to the C (p < 0.01) and ADM (p < 0.05) membrane groups. These data revealed that adherence and proliferation of primary gingival fibroblasts on collagen-based C and ADM membranes is better than that seen with PLGA membranes, and thus may be preferable in the treatment of gingival recession defects.

  11. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production

    PubMed Central

    Matsui, Futoshi; Babitz, Stephen A.; Rhee, Audrey; Hile, Karen L.; Zhang, Hongji

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 106/rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson’s trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. PMID:27760767

  12. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis.

    PubMed

    Peng, D H; Ungewiss, C; Tong, P; Byers, L A; Wang, J; Canales, J R; Villalobos, P A; Uraoka, N; Mino, B; Behrens, C; Wistuba, I I; Han, R I; Wanna, C A; Fahrenholtz, M; Grande-Allen, K J; Creighton, C J; Gibbons, D L

    2017-04-06

    Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.

  13. ZEB1 Induces LOXL2-Mediated Collagen Stabilization and Deposition in the Extracellular Matrix to Drive Lung Cancer Invasion and Metastasis

    PubMed Central

    Peng, David H.; Ungewiss, Christin; Tong, Pan; Byers, Lauren A.; Wang, Jing; Canales, Jaime Rodriguez; Villalobos, Pamela A.; Uraoka, Naohiro; Mino, Barbara; Behrens, Carmen; Wistuba, Ignacio I.; Han, Richard I; Wanna, Charles A.; Fahrenholtz, Monica; Grande-Allen, Kathryn Jane; Creighton, Chad J.; Gibbons, Don L.

    2016-01-01

    Lung cancer is the leading cause of cancer-related death, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by many transcription factors, including double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. While the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. Additionally, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principle isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression. PMID:27694892

  14. Substance P Inhibits the Collagen Synthesis of Rat Myocardial Fibroblasts Induced by Ang II.

    PubMed

    Yang, Zhiyong; Zhang, Xinzhong; Guo, Naipeng; Li, Bin; Zhao, Sheng

    2016-12-16

    BACKGROUND The aim of this study was to explore the regulating effects of Substance P (SP) on the collagen synthesis of rat myocardial fibroblasts (CFBs) induced by angiotensin II (Ang II) and its potential mechanism. MATERIAL AND METHODS The CFBs of a neonatal SD rat were separately cultured and divided into the control group, Ang II treatment group, and treatment groups with different concentrations of SP, Ang II +; each group was given corresponding treatment respectively. RESULTS Ang II successfully induced the collagen synthesis of CFBs. Compared with the control group, the phosphorylation levels of TGF-β, erk, and smad2/3 were higher (p<0.05). Different concentrations of SP had an effect on Ang II-induced CFBs, reduced the collagen synthesis of CFBs, and increased the expressions of SP receptors, accompanied by lowering TGF-β protein, erk protein phosphorylation level, and smad2/3 protein phosphorylation level (p<0.05). Moreover, the higher the concentrations of SP, the more obvious of an effect it exerted. Treating the Ang II + SP group with aprepitant reduced the inhibiting effects of SP on collagen synthesis. The expression changes of collagen I and collagen III detected by immunocytochemistry were exactly in accordance with the results of qPCR and Western blotting. CONCLUSIONS SP can inhibit collagen synthesis of CFBs after Ang II inducing which may adjust the downstream signaling pathways associated protein including TGF-β, erk and smad2/3. SP can block the progress of myocardial fibrosis and is dose dependent, which is expected to be a promising target for the treatment of myocardial fibrosis.

  15. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice.

    PubMed

    Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu

    2008-11-01

    Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.

  16. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    PubMed

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3.

    PubMed

    Im, Jintaek; Kim, Kyutae; Hergert, Polla; Nho, Richard Seonghun

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) is an irreversible lethal lung disease with an unknown etiology. IPF patients' lung fibroblasts express inappropriately high Akt activity, protecting them in response to an apoptosis-inducing type I collagen matrix. FasL, a ligand for Fas, is known to be increased in the lung tissues of patients with IPF, implicated with the progression of IPF. Expression of Decoy Receptor3 (DcR3), which binds to FasL, thereby subsequently suppressing the FasL-Fas-dependent apoptotic pathway, is frequently altered in various human disease. However, the role of DcR3 in IPF fibroblasts in regulating their viability has not been examined. We found that enhanced DcR3 expression exists in the majority of IPF fibroblasts on collagen matrices, resulting in the protection of IPF fibroblasts from FasL-induced apoptosis. Abnormally high Akt activity suppresses GSK-3β function, thereby accumulating the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) in the nucleus, increasing DcR3 expression in IPF fibroblasts. This alteration protects IPF cells from FasL-induced apoptosis on collagen. However, the inhibition of Akt or NFATc1 decreases DcR3 mRNA and protein levels, which sensitizes IPF fibroblasts to FasL-mediated apoptosis. Furthermore, enhanced DcR3 and NFATc1 expression is mainly present in myofibroblasts in the fibroblastic foci of lung tissues derived from IPF patients. Our results showed that when IPF cells interact with collagen matrix, aberrantly activated Akt increases DcR3 expression via GSK-3β-NFATc1 and protects IPF cells from the FasL-dependent apoptotic pathway. These findings suggest that the inhibition of DcR3 function may be an effective approach for sensitizing IPF fibroblasts in response to FasL, limiting the progression of lung fibrosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. A Novel Antifibrotic Mechanism of Nintedanib and Pirfenidone. Inhibition of Collagen Fibril Assembly.

    PubMed

    Knüppel, Larissa; Ishikawa, Yoshihiro; Aichler, Michaela; Heinzelmann, Katharina; Hatz, Rudolf; Behr, Jürgen; Walch, Axel; Bächinger, Hans Peter; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2017-07-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix, in particular, collagens. Two IPF therapeutics, nintedanib and pirfenidone, decelerate lung function decline, but their underlying mechanisms of action are poorly understood. In this study, we sought to analyze their effects on collagen synthesis and maturation at important regulatory levels. Primary human fibroblasts from patients with IPF and healthy donors were treated with nintedanib (0.01-1.0 μM) or pirfenidone (100-1,000 μM) in the absence or presence of transforming growth factor-β1. Effects on collagen, fibronectin, FKBP10, and HSP47 expression, and collagen I and III secretion, were analyzed by quantitative polymerase chain reaction and Western blot. The appearance of collagen fibrils was monitored by scanning electron microscopy, and the kinetics of collagen fibril assembly was assessed using a light-scattering approach. In IPF fibroblasts, nintedanib reduced the expression of collagen I and V, fibronectin, and FKBP10 and attenuated the secretion of collagen I and III. Pirfenidone also down-regulated collagen V but otherwise showed fewer and less pronounced effects. By and large, the effects were similar in donor fibroblasts. For both drugs, electron microscopy of IPF fibroblast cultures revealed fewer and thinner collagen fibrils compared with untreated controls. Finally, both drugs dose-dependently delayed fibril formation of purified collagen I. In summary, both drugs act on important regulatory levels in collagen synthesis and processing. Nintedanib was more effective in down-regulating profibrotic gene expression and collagen secretion. Importantly, both drugs inhibited collagen I fibril formation and caused a reduction in and an altered appearance of collagen fibril bundles, representing a completely novel mechanism of action for both drugs.

  19. Renal myofibroblasts contract collagen I matrix lattices in vitro.

    PubMed

    Kelynack, K J; Hewitson, T D; Pedagogos, E; Nicholls, K M; Becker, G J

    1999-01-01

    Myofibroblasts, cells with both fibroblastic and smooth muscle cell features, have been implicated in renal scarring. In addition to synthetic properties, contractile features and integrin expression may allow myofibroblasts to rearrange and contract interstitial collagenous proteins. Myofibroblasts from normal rat kidneys were grown in cell-populated collagen lattices to measure cell generated contraction. Following detachment of cell populated collagen lattices, myofibroblasts progressively contracted collagen lattices, reducing lattice diameter by 42% at 24 h. Alignment of myofibroblasts, rearrangement of fibrils and beta(1) integrin expression were observed within lattices. We postulate that interstitial myofibroblasts contribute to renal scarring through manipulation of collagenous proteins. Copyright 1999 S. Karger AG, Basel

  20. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue.

    PubMed

    Olczyk, Pawel; Wisowski, Grzegorz; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Olczyk, Monika; Kozma, Ewa M

    2013-01-01

    Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.

  1. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes.

    PubMed

    Bader, Hannah L; Keene, Douglas R; Charvet, Benjamin; Veit, Guido; Driever, Wolfgang; Koch, Manuel; Ruggiero, Florence

    2009-01-01

    Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.

  2. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering

    PubMed Central

    Wang, Limin; Stegemann, Jan P.

    2010-01-01

    Chitosan and collagen type I are naturally-derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased two-fold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. PMID:20170955

  3. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering.

    PubMed

    Wang, Limin; Stegemann, Jan P

    2010-05-01

    Chitosan and collagen type I are naturally derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased twofold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti-migratory effect of magnolol was cytoskeletal dependent. • Magnolol inhibited β1-integrin and collagen expression in vivo.« less

  5. Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading.

    PubMed

    Rinkler, Christina; Heuer, Frank; Pedro, Maria Teresa; Mauer, Uwe Max; Ignatius, Anita; Neidlinger-Wilke, Cornelia

    2010-10-01

    Environmental alterations resulting in a decrease in the nutrient supply have been associated with intervertebral disc (IVD) degeneration, particularly of the nucleus pulposus (NP). The goal of the present study was to examine the hypothesis that glucose deprivation alters the metabolism of NP cells and their responsiveness to mechanical loading. A possible interaction of glucose supply and hydrostatic pressure (HP) with gene expression by NP cells has not been investigated. The influence of glucose supply (physiological concentration: 5 mM, reduction: 0 or 0.5 mM) and cyclic HP loading (2.5 MPa, 0.1 Hz, 30 minutes) on bovine and human NP cell matrix turnover was analyzed by quantitative real-time reverse transcriptase–polymerase chain reaction. Glucose-dependent effects on cell viability were determined by trypan blue exclusion. A glycosaminoglycan (GAG) assay was performed to determine nutritional effects on the protein level. Glucose reduction resulted in significant downregulations (p < 0.05) of aggrecan, collagen-I, and collagen-II gene expression by bovine NP cells. Exemplary human donors also displayed a similar trend for aggrecan and collagen-II, whereas matrix metalloproteinases (MMPs) tended to be upregulated under glucose deprivation. After HP loading, human NP cells showed individual upregulations of collagen-I and collagen-II expression, while MMP expression tended to be downregulated under glucose reduction relative to a normal glucose supply. Cell viability decreased with glucose deprivation. The GAG content was similar in all groups at Day 1, whereas at Day 3 there was a significant increase under physiological conditions. Glucose deprivation strongly affected NP cell metabolism. The effects of an altered glucose supply on gene expression were more pronounced than the mechanically induced effects. Data in this study demonstrate that the glucose environment is more critical for disc cell metabolism than mechanical loads. In individual human donors, however, adequate mechanical stimuli might have a beneficial effect on matrix turnover during IVD degeneration.

  6. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    PubMed

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-09-12

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.

  7. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes.

    PubMed

    Schram, Kristin; De Girolamo, Sabrina; Madani, Siham; Munoz, Diana; Thong, Farah; Sweeney, Gary

    2010-12-01

    A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.

  8. Prostaglandin F2α receptor silencing attenuates vascular remodeling in rats with type 2 diabetes.

    PubMed

    Li, Ya; Han, Lu; Ding, Wen-Yuan; Ti, Yun; Li, Yi-Hui; Tang, Meng-Xiong; Wang, Zhi-Hao; Zhang, Yun; Zhang, Wei; Zhong, Ming

    2015-12-01

    Vascular remodeling is an important feature of diabetic macrovascular complications. The prostaglandin F2α receptor (FP), the expression of which is upregulated by insulin resistance and diabetes, is reportedly involved in myocardial remodeling. In this study, we aimed to investigate whether the FP receptor is implicated in diabetes-induced vascular remodeling. A type 2 diabetic rat model was induced through a high-fat diet and low-dose streptozotocin (STZ). Thirty-two rats were randomized into four groups: control, diabetes, diabetes treated with empty virus and diabetes treated with FP receptor-shRNA. Then, we evaluated the metabolic index, FP receptor expression and vascular remodeling. We used FP receptor gene silencing in vivo to investigate the role that the FP receptor plays in the pathophysiologic features of vascular remodeling. Diabetic rats displayed increased levels of blood glucose, cholesterol, and triglycerides, as well as severe insulin resistance and FP receptor overexpression. In addition, increased medial thickness, excessive collagen deposition and diminished elastic fibers were observed in the diabetic rats, resulting in vascular remodeling. In the FP receptor-shRNA group, the medial thickness, collagen content, elastin/collagen ratio, and collagen I/collagen III content ratio were markedly decreased. Additionally, with FP receptor gene silencing, the JNK phosphorylation level was markedly decreased. Silencing of the FP receptor exerts a protective effect on diabetes-induced vascular remodeling, thereby suggesting a new therapeutic target for vascular remodeling in diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis.

    PubMed

    Korol, Renee M; Canham, Peter B; Liu, Li; Viswanathan, Kasinath; Ferguson, Gary G; Hammond, Rob R; Finlay, Helen M; Baker, Henry V; Lopez, Cecilia; Lucas, Alexandra R

    2011-01-01

    Erosion and rupture of surface layers in atherosclerotic plaque can cause heart attack and stroke; however, changes in luminal surface composition are incompletely defined. Laser-induced fluorescence spectroscopy (LIFS), with limited tissue penetration, was used to investigate the surface of unstable carotid plaque and correlated with microscopy, birefringence and gene expression. Arterial matrix collagens I, III and elastin were assessed in unstable plaques (n = 25) and reference left internal mammary arteries (LIMA, n = 10). LIFS in addition to selective histological staining with picrosirius red, Movat pentachrome and immunostaining revealed decreased elastin and increased collagen I and III (P < 0.05) in carotid plaque when compared with LIMA. Within plaque, collagen I was elevated in the internal carotid region versus the common carotid region. Polarized light microscopy detected layers of aligned collagen and associated mechanical rigidity of the fibrous cap. Microarray analysis of three carotid and three LIMA specimens confirmed up-regulation of collagen I, III and IV, lysyl oxidase and MMP-12. In conclusion, LIFS analysis coupled with microscopy revealed marked regional differences in collagen I, III and elastin in surface layers of carotid plaque; indicative of plaque instability. Birefringence measurements demonstrated mechanical rigidity and weakening of the fibrous cap with complementary changes in ECM gene expression. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  10. Sodium-dependent Vitamin C transporter 2 deficiency impairs myelination and remyelination after injury: Roles of collagen and demethylation.

    PubMed

    Röhr, Dominik; Halfter, Hartmut; Schulz, Jörg B; Young, Peter; Gess, Burkhard

    2017-07-01

    Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2 +/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2 +/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters. © 2017 Wiley Periodicals, Inc.

  11. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts

    PubMed Central

    Jam, Faidruz Azura; Ismail, Zahariah; Wan Ngah, Wan Zurinah

    2013-01-01

    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging. PMID:24396567

  12. Nandrolone and resistance training induce heart remodeling: role of fetal genes and implications for cardiac pathophysiology.

    PubMed

    Tanno, Ana Paula; das Neves, Vander José; Rosa, Kaleizu Teodoro; Cunha, Tatiana Sousa; Giordano, Fernanda Cristina Linarello; Calil, Caroline Morini; Guzzoni, Vinicius; Fernandes, Tiago; de Oliveira, Edilamar Menezes; Novaes, Pedro Duarte; Irigoyen, Maria Cláudia; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2011-10-24

    This study was conducted to assess the isolated and combined effects of nandrolone and resistance training on cardiac morphology, function, and mRNA expression of pathological cardiac hypertrophy markers. Wistar rats were randomly divided into four groups and submitted to 6 weeks of treatment with nandrolone and/or resistance training. Cardiac parameters were determined by echocardiography. Heart was analyzed for collagen infiltration. Real-time RT-PCR was used to assess the pathological cardiac hypertrophy markers. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased the cardiac collagen content, and reduced the cardiac index in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the ratio of maximum early to late transmitral flow velocity in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the alpha-myosin heavy chain gene expression in both non-trained and trained groups, when compared with the respective vehicle-treated groups. Training reduced the beta-myosin heavy chain gene expression in the groups treated with vehicle and nandrolone. Only the association between training and nandrolone increased the expression of the skeletal alpha-actin gene and atrial natriuretic peptide in the left ventricle. This study indicated that nandrolone, whether associated with resistance training or not, induces cardiac hypertrophy, which is associated with enhanced collagen content, re-expression of fetal genes the in left ventricle, and impaired diastolic and systolic function. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    PubMed

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  15. Cell Population Kinetics of Collagen Scaffolds in Ex Vivo Oral Wound Repair

    PubMed Central

    Agis, Hermann; Collins, Amy; Taut, Andrei D.; Jin, Qiming; Kruger, Laura; Görlach, Christoph; Giannobile, William V.

    2014-01-01

    Biodegradable collagen scaffolds are used clinically for oral soft tissue augmentation to support wound healing. This study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds. Sponge type and gel type scaffolds with and without platelet-derived growth factor-BB (PDGF) were assessed in an hGF containing matrix. Morphology was evaluated with scanning electron microscopy, and hGF metabolic activity using MTT. We quantitated the population kinetics within the scaffolds based on cell density and distance from the scaffold border of DiI-labled hGFs over a two-week observation period. Gene expression was evaluated with gene array and qPCR. The sponge type scaffolds showed a porous morphology. Absolute cell number and distance was higher in sponge type scaffolds when compared to gel type scaffolds, in particular during the first week of observation. PDGF incorporated scaffolds increased cell numbers, distance, and formazan formation in the MTT assay. Gene expression dynamics revealed the induction of key genes associated with the generation of oral tissue. DKK1, CYR61, CTGF, TGFBR1 levels were increased and integrin ITGA2 levels were decreased in the sponge type scaffolds compared to the gel type scaffold. The results suggest that this novel model of oral wound healing provides insights into population kinetics and gene expression dynamics of biodegradable scaffolds. PMID:25397671

  16. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    PubMed

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  17. Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue

    PubMed Central

    Papachroni, Katerina K; Piperi, Christina; Levidou, Georgia; Korkolopoulou, Penelope; Pawelczyk, Leszek; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2010-01-01

    Abstract Connective tissue components – collagen types I, III and IV – surrounding the ovarian follicles undergo drastic changes during ovulation. Abnormal collagen synthesis and increased volume and density of ovarian stroma characterize the polycystic ovary syndrome (PCOS). During the ovulatory process, collagen synthesis is regulated by prolyl hydroxylase and lysyl oxidase (LOX) activity in ovarian follicles. LOX catalyzes collagen and elastin cross-linking and plays essential role in coordinating the control of ovarian extracellular matrix (ECM) during follicular development. We have recently shown accumulation of advanced glycation end products (AGEs), molecules that stimulate ECM production and abnormal collagen cross-linking, in ovarian tissue. However, the possible link between LOX and AGEs-induced signalling in collagen production and stroma formation in ovarian tissue from PCOS remains elusive. The present study investigates the hypothesis of AGE signalling pathway interaction with LOX gene activity in polycystic ovarian (PCO) tissue. We show an increased distribution and co-localization of LOX, collagen type IV and AGE molecules in the PCO tissue compared to control, as well as augmented expression of AGE signalling mediators/effectors, phospho(p)-ERK, phospho(p)-c-Jun and nuclear factor κB (NF-κB) in pathological tissue. Moreover, we demonstrate binding of AGE-induced transcription factors, NF-κB and activator protein-1 (AP-1) on LOX promoter, indicating a possible involvement of AGEs in LOX gene regulation, which may account for the documented increase in LOX mRNA and protein levels compared to control. These findings suggest that deposition of excess collagen in PCO tissue that induces cystogenesis may, in part, be due to AGE-mediated stimulation of LOX activity. PMID:19583806

  18. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    PubMed

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  19. Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants.

    PubMed

    Nguyen, Duy Tan; Ramwadhdoebe, Tamara H; van der Hart, Cor P; Blankevoort, Leendert; Tak, Paul Peter; van Dijk, Cornelis Niek

    2014-02-01

    A reattachment of the tibial remnant of the torn anterior cruciate ligament (ACL) to the posterior cruciate ligament is sometimes observed during surgery and apparently implies that the human ACL does have a healing response. The aim of this study was to investigate whether this reattachment tissue has similar histological characteristics of a healing response as the medial collateral ligament (MCL), which can heal spontaneously. Standard histology and immunostaining of α-smooth muscle actin and collagen type 3 was performed. The results shows that the reattached tissue has typical characteristics of a healing response: there attached ACL remnant could not be released by forceful traction; microscopy showed that the collagen fibers of the reattached tissue were disorganized with no preferred direction; increased neovascularization; the presence of lipid vacuoles; the mean number of cells within the biopsy tissue was 631±269 cells per mm2; and 68±20% was expressing α-SMA; semi-quantitative analysis of collagen type 3 expression showed that collagen type 3 had an high expression with an average score of 3. In conclusion, this study shows that the human proximal 1/3 ACL has an intrinsic healing response with typical histological characteristics similar to the MCL. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-Angiogenic Site for Islet Transplantation

    PubMed Central

    McBane, Joanne E.; Vulesevic, Branka; Padavan, Donna T.; McEwan, Kimberly A.; Korbutt, Gregory S.; Suuronen, Erik J.

    2013-01-01

    Islet transplantation to treat type 1 diabetes (T1D) has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1) hydrogels, +/- circulating angiogenic cells (CACs), were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7kPa vs. 0.4kPa elastic modulus, respectively), had more cross-links (9.2 vs. 7.4/µm2), and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18h compared to collagen (79% vs. 69%). In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF+ and CXCR4+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site. PMID:24204863

  1. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs.

    PubMed

    Lu, Yongbo; Kamel-El Sayed, Suzan A; Wang, Kun; Tiede-Lewis, LeAnn M; Grillo, Michael A; Veno, Patricia A; Dusevich, Vladimir; Phillips, Charlotte L; Bonewald, Lynda F; Dallas, Sarah L

    2018-06-01

    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  2. Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts.

    PubMed

    Nakamura, Kayo; Jinnin, Masatoshi; Harada, Miho; Kudo, Hideo; Nakayama, Wakana; Inoue, Kuniko; Ogata, Aki; Kajihara, Ikko; Fukushima, Satoshi; Ihn, Hironobu

    2016-10-01

    Exosomes are small vesicles shed from various cells. They contain proteins, lipids, and nucleic acids, and are regarded as a tool of cell-cell communication. To reveal the putative role of exosomes in systemic sclerosis (SSc), and to elucidate the effect of exosomes on wound healing. The expression of common markers for exosomes (CD63, CD9, and CD81) and type I collagen were examined with real-time PCR, immunohistochemical analysis, ELISA, immunoblotting, and flow cytometry. The effect of serum-derived exosomes on wound healing was tested on full-thickness wounds in the mid-dorsal skin of BALB/c mice. The expression levels of CD63 as well as CD9 and CD81 tended to be increased in SSc dermal fibroblasts compared to normal fibroblasts. Increased exosomes in a cultured media of SSc fibroblasts stimulated the expression levels of type I collagen in normal fibroblasts. As the mechanism, collagen-related microRNA levels in SSc fibroblast-derived exosomes were dysregulated, indicating that both the amount and the content of exosomes were altered in SSc. On the other hand, SSc sera showed significantly decreased exosome levels compared to normal sera. The frequencies of vascular involvements, including skin ulcers or pitting scars, were significantly increased in patients with decreased serum exosome levels. The healing of mice wounds was accelerated by treatment with serum-derived exosomes. Vascular abnormalities in SSc may account for the decreased serum exosome levels by the disturbed transfer of exosomes from the skin tissue to the blood stream. Our study suggests the possibility that SSc patients with vascular involvements have decreased serum exosome levels, which causes the delay of wound healing due to down-regulation of collagen, resulting in higher susceptibility to pitting scars and/or ulcers. Exosome research will lead to a detailed understanding of SSc pathogenesis and new therapeutic approaches. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Reduced Scleral TIMP-2 Expression Is Associated With Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development.

    PubMed

    Liu, Hsin-Hua; Kenning, Megan S; Jobling, Andrew I; McBrien, Neville A; Gentle, Alex

    2017-04-01

    The purpose of this study was to determine the endogenous regulation pattern of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the tree shrew sclera during myopia development and investigate the capacity of exogenous TIMP-2 to inhibit matrix metalloproteinase-2 (MMP-2) in vitro and both scleral collagen degradation and myopia development in vivo. TIMP-2 expression in the sclera during myopia development was assessed using polymerase chain reaction. In vitro TIMP-2 inhibition of MMP-2 was investigated using a gelatinase activity plate assay and zymography. Tree shrews were injected with a collagen precursor before undergoing monocular form deprivation and concurrent daily subconjunctival injections of either TIMP-2 or vehicle to the form-deprived eye. In vivo ocular biometry changes were monitored, and scleral tissue was collected after 12 days and assayed for collagen degradation. The development of myopia was associated with a mean reduction in TIMP-2 mRNA expression after 5 days of form deprivation (P < 0.01). Both activation and activity of MMP-2 were inhibited by TIMP-2 with an IC50 of 10 to 20 and 2 nM, respectively. In vivo exogenous addition of TIMP-2 significantly reduced myopia development (P < 0.01), due to reduced vitreous chamber elongation (P < 0.01). In vivo TIMP-2 treatment also significantly inhibited posterior scleral collagen degradation relative to vehicle-treated eyes (P < 0.01), with levels similar to those in control eyes. Myopia development in mammals is associated with reduced expression of TIMP-2, which contributes to increased degradative activity in the sclera. It follows that replenishment of this TIMP-2 significantly reduced the rate of both scleral collagen degradation and myopia development.

  4. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.

    PubMed

    Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville

    2006-01-01

    Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.

  5. Retinoic acid, hemin and hexamethylen bisacetamide interference with "in vitro" differentiation of chick embryo chondrocytes.

    PubMed

    Manduca, P; Abelmoschi, M L

    1992-01-01

    We have investigated the effect of all-trans Retinoic acid, and of substances (Hemine and Hexamethylene bisacetamide) which interfere with "in vitro" differentiation of mesenchyme derived cell lineages on the expression of specific markers of hyperthrophy in "in vitro" differentiating chick embryo chondrocytes. (Castagnola P., et al., 1986). Continuous treatment of chondrogenic cells in conditions allowing differentiation "in vitro" with Retinoic acid resulted in persistence of type I collagen synthesis and in lack of type X collagen and Ch 21 protein expression. Hemin treated cells secreted a reduced amount of type X collagen. HMBA treatment inhibited type X collagen expression and caused reduction of the ratio between type II collagen and Ch 21 synthesized. The data indicate an independent regulation of these markers during chondrocyte differentiation.

  6. Lumican Deficiency Results In Cardiomyocyte Hypertrophy With Altered Collagen Assembly

    PubMed Central

    Dupuis, Loren E.; Berger, Matthew G.; Feldman, Samuel; Doucette, Lorna; Fowlkes, Vennece; Chakravarti, Shukti; Thibaudeau, Sarah; Alcala, Nicolas E.; Bradshaw, Amy D.; Kern, Christine B.

    2015-01-01

    The ability of the heart to adapt to increased stress is dependent on modification of its extracellular matrix (ECM) architecture that is established during postnatal development as cardiomyocytes differentiate, a process that is poorly understood. We hypothesized that the small leucine-rich proteoglycan (SLRP) lumican (LUM), which binds collagen and facilitates collagen assembly in other tissues, may play a critical role in establishing the postnatal murine myocardial ECM. Although previous studies suggest LUM deficient mice (lum−/−) exhibit skin anomalies consistent with Ehlers-Danlos syndrome, lum−/− hearts have not been evaluated. These studies show LUM was immunolocalized to non-cardiomyocytes of the cardiac ventricles and its expression increased throughout development. Lumican deficiency resulted in significant (50%) perinatal death and further examination of the lum−/− neonatal hearts revealed an increase in myocardial tissue without a significant increase in cell proliferation. However cardiomyocytes from surviving postnatal day 0 (P0), 1 month (1 mo) and adult (4 mo) lum−/− hearts were significantly larger than their wild type (WT) littermates. Immunohistochemistry revealed that the increased cardiomyocyte size in the lum−/− hearts correlated with alteration of the cardiomyocyte pericellular ECM components collagenα1(I) and the class I SLRP decorin (DCN). Western blot analysis demonstrated that the ratio of glycosaminoglycan (GAG) decorated DCN to core DCN was reduced in P0 and 1 mo lum−/− hearts. There was also a reduction in the β and γ forms of collagenα1(I) in lum−/− hearts. While the total insoluble collagen content was significantly reduced, the fibril size was increased in lum−/− hearts, indicating LUM may play a role in collagen fiber stability and lateral fibril assembly. These results suggest that LUM controls cardiomyocyte growth by regulating the pericellular ECM and also indicates that LUM may coordinate multiple factors of collagen assembly in the murine heart. Further investigation into the role of LUM may yield novel therapeutic targets and/or biomarkers for patients with cardiovascular disease. PMID:25886697

  7. Independent modulation of collagen fibrillogenesis by decorin and lumican.

    PubMed

    Neame, P J; Kay, C J; McQuillan, D J; Beales, M P; Hassell, J R

    2000-05-01

    The leucine-rich proteoglycans (also known as "small, leucine-rich proteoglycans," or SLRPs) lumican and decorin are thought to be involved in the regulation of collagen fibril assembly. Preparation of these proteoglycans in chemical amounts without exposure to denaturants has recently been achieved by infecting HT-1080 cells with vaccinia virus that contains an expression cassette for these molecules. Addition of lumican and decorin to a collagen fibrillogenesis assay based on turbidity demonstrated that lumican accelerated initial fibril formation while decorin retarded initial fibril formation. At the end of fibrillogenesis, both proteoglycans resulted in an overall reduced turbidity, suggesting that fibril diameter was lower. The presence of both proteoglycans had a synergistic effect, retarding fibril formation to a greater degree than either proteoglycan individually. Competitive binding studies showed that lumican did not compete for decorin-binding sites on collagen fibrils. Both proteoglycans increased the stability of fibrils to thermal denaturation to approximately the same degree. These studies show that lumican does not compete for decorin-binding sites on collagen, that decorin and lumican modulate collagen fibrillogenesis, and that, in the process, they also enhance collagen fibril stability.

  8. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation

    PubMed Central

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-01-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. PMID:25495009

  9. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis.

    PubMed

    Hardie, William D; Davidson, Cynthia; Ikegami, Machiko; Leikauf, George D; Le Cras, Timothy D; Prestridge, Adrienne; Whitsett, Jeffrey A; Korfhagen, Thomas R

    2008-06-01

    Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.

  10. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  11. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    PubMed

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-06-16

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis.

  12. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation.

    PubMed

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Wound-healing Activity of Zanthoxylum bungeanum Maxim Seed Oil on Experimentally Burned Rats

    PubMed Central

    Li, Xiao-Qiang; Kang, Rong; Huo, Jun-Cheng; Xie, Yan-Hua; Wang, Si-Wang; Cao, Wei

    2017-01-01

    Background: The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is considered to be rich source of fatty acids, mainly oleic and linoleic acids, and has been used for the treatment of burns in Chinese medicine. Objective: We evaluated the healing efficacy of ZBSO and explored its possible mechanism on scalded rats. Materials and Methods: Sprague-Dawley rat models with deep second-degree burns were set up, and ZBSO (500 and 1000 μl/wound) was topically applied twice daily for 7 days and then once daily until wound healing. The therapeutic effects of ZBSO were evaluated by observing wound closure time, decrustation time, wound-healing ratio, and pathological changes. Collagen type-III, matrix metalloproteinase-2 (MMP-2), MMP-9, phospho-nuclear factor-κB (p-NF-κB) p65, inhibitor of NF-κB subunit α p-IκBα, and inhibitor of NF-κB subunit α (IκBα) expression were determined using Western blotting. Results: The ZBSO-treated group showed a higher wound-healing ratio and shorter decrustation and wound closure times than the untreated group. The topical application of ZBSO increased collagen synthesis as evidenced by an increase in hydroxyproline level and upregulated expression of collagen type-III on days 7, 14, and 21 posttreatment. A reduction in MMP-2 and MMP-9 expressions also confirmed the collagen formation efficacy of ZBSO. Furthermore, there was a significant increase in superoxide dismutase levels and a decrease in malondialdehyde levels in ZBSO-treated wounds. ZBSO also decreased tumor necrosis factor alpha, interleukin-1 (IL-1) β, and IL-6 levels in serum, upregulated IκBα, and downregulated p-NF-κB p65 and p-IκBα expression in vivo, indicating the anti-inflammatory action of ZBSO. Conclusion: ZBSO has significant potential to treat burn wounds by accelerating collagen synthesis and the anti-inflammatory cascade of the healing process. SUMMARY The seed oil of Zanthoxylum bungeanum Maxim (ZBSO) is rich of fatty acidsThe healing efficacy of ZBSO on experimentally scalded rats was evaluatedZBSO has significant potential to treat deep second-degree burn woundsZBSO could accelerate collagen synthesis and inhibit the inflammatory signaling. Abbreviations used: ECL: Enhanced chemiluminescence; ECM: Extracellular matrix; ELISA: Enzyme-linked immunosorbent assay; GC-MS: Gas chromatography-mass spectrometry; HRP: Horseradish peroxidase; HYP: Hydroxyproline; IκBα: Inhibitor of NF-κB subunit α; IL: Interleukin; MDA: Malondialdehyde; MMP: Matrix metalloproteinase-2; NF-κB: Nuclear factor-κB; SFE: Supercritical fluid extraction; SOD: Superoxide dismutase; SSD: Silver sulfadiazine; TCM: Traditional Chinese medicine; TNF: Tumor necrosis factor. PMID:28839358

  14. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased renal fibrosis in a mouse model of obstructive nephropathy.

    PubMed

    Muñoz-Félix, José M; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-02-01

    Tubulointerstitial fibrosis is characterized by an accumulation of extracellular matrix in the renal interstitium, myofibroblast activation, cell infiltration, and tubular cell apoptosis, leading to chronic renal failure. Activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β1 type I receptor with a pivotal role in endothelial proliferation and migration, but its role in the development of renal fibrosis is unknown. To assess this we used the unilateral ureteral obstruction model of tubulointerstitial fibrosis in ALK1 haploinsufficient (ALK1(+/-)) and wild-type mice. After 15 days, there was an increase in extracellular matrix protein expression in the obstructed kidneys from both ALK1(+/+) and ALK1(+/-) mice, but obstructed kidneys from ALK1(+/-) mice showed significantly higher expression of type I collagen than those from wild-type mice. Ureteral obstruction increased kidney myofibroblasts markers (α-smooth muscle actin and S100A4), without differences between mouse genotypes. ALK1 expression was increased after ureteral obstruction, and this increased expression was located in myofibroblasts. Moreover, cultured renal fibroblasts from ALK1(+/-) mice expressed more collagen type I and fibronectin than fibroblasts derived from wild-type mice. Thus, ALK1 modulates obstruction-induced renal fibrosis by increased extracellular matrix synthesis in myofibroblasts, but without differences in myofibroblast number.

  15. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production.

    PubMed

    Matsui, Futoshi; Babitz, Stephen A; Rhee, Audrey; Hile, Karen L; Zhang, Hongji; Meldrum, Kirstan K

    2017-01-01

    STAT3 is a transcription factor implicated in renal fibrotic injury, but the role of STAT3 in mesenchymal stem cell (MSC)-induced renoprotection during renal fibrosis remains unknown. We hypothesized that MSCs protect against obstruction-induced renal fibrosis by downregulating STAT3 activation and STAT3-induced matrix metalloproteinase-9 (MMP-9) expression. Male Sprague-Dawley rats underwent renal arterial injection of vehicle or MSCs (1 × 10 6 /rat) immediately before sham operation or induction of unilateral ureteral obstruction (UUO). The kidneys were harvested after 4 wk and analyzed for collagen I and III gene expression, collagen deposition (Masson's trichrome), fibronectin, α-smooth muscle actin, active STAT3 (p-STAT3), MMP-9, and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) expression. In a separate arm, the STAT3 inhibitor S3I-201 (10 mg/kg) vs. vehicle was administered to rats intraperitoneally just after induction of UUO and daily for 14 days thereafter. The kidneys were harvested after 2 wk and analyzed for p-STAT3 and MMP-9 expression, and collagen and fibronectin deposition. Renal obstruction induced a significant increase in collagen, fibronectin, α-SMA, p-STAT3, MMP-9, and TIMP-1 expression while exogenously administered MSCs significantly reduced these indicators of obstruction-induced renal fibrosis. STAT3 inhibition with S3I-201 significantly reduced obstruction-induced MMP-9 expression and tubulointerstitial fibrosis. These results demonstrate that MSCs protect against obstruction-induced renal fibrosis, in part, by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Copyright © 2017 the American Physiological Society.

  16. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons.

    PubMed

    Robinson, Kelsey A; Sun, Mei; Barnum, Carrie E; Weiss, Stephanie N; Huegel, Julianne; Shetye, Snehal S; Lin, Linda; Saez, Daniel; Adams, Sheila M; Iozzo, Renato V; Soslowsky, Louis J; Birk, David E

    2017-12-01

    The small leucine-rich proteoglycans (SLRPs), decorin and biglycan, are key regulators of collagen fibril and matrix assembly. The goal of this work was to elucidate the roles of decorin and biglycan in tendon homeostasis. Our central hypothesis is that decorin and biglycan expression in the mature tendon would be critical for the maintenance of the structural and mechanical properties of healthy tendons. Defining the function(s) of these SLRPs in tendon homeostasis requires that effects in the mature tendon be isolated from their influence on development. Thus, we generated an inducible knockout mouse model that permits genetic ablation of decorin and biglycan expression in the mature tendon, while maintaining normal expression during development. Decorin and biglycan expression were knocked out in the mature patellar tendon with the subsequent turnover of endogenous SLRPs deposited prior to induction. The acute absence of SLRP expression was associated with changes in fibril structure with a general shift to larger diameter fibrils in the compound knockout tendons, together with fibril diameter heterogeneity. In addition, tendon mechanical properties were altered. Compared to wild-type controls, acute ablation of both genes resulted in failure of the tendon at lower loads, decreased stiffness, a trend towards decreased dynamic modulus, as well as a significant increase in percent relaxation and tissue viscosity. Collagen fiber realignment was also increased with a delayed and slower in response to load in the absence of expression. These structural and functional changes in response to an acute loss of decorin and biglycan expression in the mature tendon demonstrate a significant role for these SLRPs in adult tendon homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal model

    PubMed Central

    Zou, Leilei; Liu, Rui; Zhang, Xiaohui; Chu, Renyuan; Dai, Jinhui; Zhou, Hao

    2014-01-01

    Purpose Scleral remodeling is an important mechanism underlying the development of myopia. Atropine, an antagonist of G protein-coupled muscarinic receptors, is currently used as an off-label treatment for myopia. Regulator of G-protein signaling 2 (RGS2) functions as an intracellular selective inhibitor of muscarinic receptors. In this study we measured scleral RGS2 expression and scleral remodeling in an animal model of myopia in the presence or absence of atropine treatment. Methods Guinea pigs were assigned to four groups: normal (free of form deprivation), form deprivation myopia (FDM) for 4 weeks, FDM treated with saline, and FDM treated with atropine. Biometric measurements were then performed. RGS2 expression levels and scleral remodeling, including scleral thickness and collagen type I expression, were compared among the four groups. Results Compared with normal eyes and contralateral control eyes, the FDM eyes had the most prominent changes in refraction, axial length, and scleral remodeling, indicating myopia. There was no significant difference between control and normal eyes. Hematoxylin and eosin staining showed that the scleral thickness was significantly thinner in the posterior pole region of FDM eyes compared to normal eyes. Real-time PCR and western blot analysis showed a significant decrease in posterior scleral collagen type I mRNA and protein expression in the FDM eyes compared to the normal eyes. The FDM eyes also had increased levels of RGS2 mRNA and protein expression in the sclera. Atropine treatment attenuated the FDM-induced changes in refraction, axial length, and scleral remodeling. Interestingly, atropine treatment significantly increased collagen type I mRNA expression but decreased RGS2 mRNA and protein expression in the sclera of the FDM eyes. Conclusions We identified a significant RGS2 upregulation and collagen type I downregulation in the sclera of FDM eyes, which could be partially attenuated by atropine treatment. Our data suggest that targeting dysregulated RGS2 may provide a novel strategy for development of therapeutic agents to suppress myopia progression. PMID:25018620

  18. Ameloblasts express type I collagen during amelogenesis.

    PubMed

    Assaraf-Weill, N; Gasse, B; Silvent, J; Bardet, C; Sire, J Y; Davit-Béal, T

    2014-05-01

    Enamel and enameloid, the highly mineralized tooth-covering tissues in living vertebrates, are different in their matrix composition. Enamel, a unique product of ameloblasts, principally contains enamel matrix proteins (EMPs), while enameloid possesses collagen fibrils and probably receives contributions from both odontoblasts and ameloblasts. Here we focused on type I collagen (COL1A1) and amelogenin (AMEL) gene expression during enameloid and enamel formation throughout ontogeny in the caudate amphibian, Pleurodeles waltl. In this model, pre-metamorphic teeth possess enameloid and enamel, while post-metamorphic teeth possess enamel only. In first-generation teeth, qPCR and in situ hybridization (ISH) on sections revealed that ameloblasts weakly expressed AMEL during late-stage enameloid formation, while expression strongly increased during enamel deposition. Using ISH, we identified COL1A1 transcripts in ameloblasts and odontoblasts during enameloid formation. COL1A1 expression in ameloblasts gradually decreased and was no longer detected after metamorphosis. The transition from enameloid-rich to enamel-rich teeth could be related to a switch in ameloblast activity from COL1A1 to AMEL synthesis. P. waltl therefore appears to be an appropriate animal model for the study of the processes involved during enameloid-to-enamel transition, especially because similar events probably occurred in various lineages during vertebrate evolution.

  19. Ac-SDKP suppresses epithelial-mesenchymal transition in A549 cells via HSP27 signaling.

    PubMed

    Deng, Haijing; Yang, Fang; Xu, Hong; Sun, Yue; Xue, Xinxin; Du, Shipu; Wang, Xiaojun; Li, Shifeng; Liu, Yan; Wang, Ruimin

    2014-08-01

    The synthetic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has been shown to be a modulator of molecular aspects of the fibrosis pathway. This study reveals that Ac-SDKP exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549), which are a source of myofibroblasts once exposed to TGF-β1, by decreasing the expression of heat shock protein 27 (HSP27). We used A549 cells in vitro to detect morphological evidence of epithelial-mesenchymal transition (EMT) by phase-contrast microscopy. Immunocytochemical and western blot analysis determined the distributions of cytokeratin 8 (CK8), α-smooth muscle actin (α-SMA), and SNAI1. Confocal laser scanning microscopy revealed a colocalization of HSP27 and SNAI1 on TGF-β1-induced A549 cells. These results also demonstrated that A549 cells became spindle-like when exposed to TGF-β1. Coincident with these morphological changes, expression levels of CK8 and E-cad decreased, while those of vimentin and α-SMA increased. This process was accompanied by increases in levels of HSP27, SNAI1, and type I and type III collagen. In vitro transfection experiments demonstrated that the inhibition of HSP27 in cultured A549 cells could decrease the expression of SNAI1 and α-SMA while increasing the expression of E-cad. A noticeable reduction in collagen types I and III was also evident. Our results found that Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mode of action of the immunostimulatory effect of collagen from jellyfish.

    PubMed

    Nishimoto, Sogo; Goto, Yoko; Morishige, Hitoshi; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi; Sugahara, Takuya

    2008-11-01

    We have previously demonstrated that collagen from jellyfish simulated immunoglobulin and cytokine production by human-human hybridoma line HB4C5 cells and by human peripheral blood lymphocytes (hPBL). The mode of action of the collagen as an immunostimulatory factor was investigated. The expression levels of immunoglobulin mRNAs in HB4C5 cells, and those of tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and transforming growth factor (TGF)-beta in hPBL were up-regulated by jellyfish collagen. In addition, this collagen activated IgM production by transcription-suppressed HB4C5 cells that had been treated with actinomycin D. This collagen also enhanced IgM production by translation-suppressed HB4C5 cells that had been treated with sodium fluoride, but was ineffective in accelerating IgM production by HB4C5 cells treated with cycloheximide. Moreover, the intracellular IgM level in HB4C5 cells treated with the post-translation inhibitor, monensin, was increased by this collagen. These results suggest that collagen from jellyfish stimulated not only the transcription activity, but also the translation activity for enhanced immunoglobulin and cytokine production.

  1. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization

    PubMed Central

    Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting

    2016-01-01

    Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques. PMID:26828485

  2. Aortic remodeling after transverse aortic constriction in mice is attenuated with AT1 receptor blockade.

    PubMed

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S; Peters, Andrew M; Brasier, Allan R; Milewicz, Dianna M

    2013-09-01

    Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta. Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-β1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-β signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.

  3. [Aliskiren inhibits proliferation of cardiac fibroblasts in AGT-REN double transgenic hypertensive mice in vitro].

    PubMed

    Wang, Li-Ping; Fan, Su-Jing; Li, Shu-Min; Wang, Xiao-Jun; Sun, Na

    2016-10-25

    The purpose of the present study is to explore the effect of aliskiren on the proliferation of cardiac fibroblasts (CFs) in AGT-REN double transgenic hypertensive (dTH) mice. The cultured CFs from AGT-REN dTH mice were divided into AGT-REN group (dTH) and aliskiren group (ALIS). Cultured CFs from C57B6 mice were served as control (WT). The effect of different concentration of aliskiren (1 × 10 -6 , 1 × 10 -7 , 1 × 10 -8 , 1 × 10 -9 mol/L) on CFs proliferation was determined by MTT assay. After treatment with 1 × 10 -7 mol/L aliskiren for 24 h, α-SMA, collagen I, III and NADPH oxidase (NOX) protein expression in CFs of AGT-REN dTH mice were detected by Western blot. The collagen synthesis in CFs was assessed by hydroxyproline kit. The expression of ROS was determined by DHE. Results showed that the blood pressure and plasma Ang II levels were significantly increased and CFs proliferation was significantly increased as well in AGT-REN dTH mice compared with WT group. However, aliskiren intervention decreased CFs proliferation, myofibroblast transformation, as well as the collagen I and III synthesis in CFs of AGT-REN dTH mice. Meanwhile, aliskiren inhibited ROS content and NOX2/NOX4 protein expression in CFs of AGT-REN dTH mice. These results suggest that aliskiren decreases the cell proliferation, myofibroblast transformation and collagen production in CFs of AGT-REN dTH mice, which might be through inhibition of oxidative stress response.

  4. The Effect of Hydrostatic Pressure on Three-Dimensional Chondroinduction of Human Adipose–Derived Stem Cells

    PubMed Central

    Mizuno, Shuichi; Murphy, George F.; Orgill, Dennis P.

    2009-01-01

    Background The optimal production of three-dimensional cartilage in vitro requires both inductive factors and specified culture conditions (e.g., hydrostatic pressure [HP], gas concentration, and nutrient supply) to promote cell viability and maintain phenotype. In this study, we optimized the conditions for human cartilage induction using human adipose–derived stem cells (ASCs), collagen scaffolds, and cyclic HP treatment. Methods Human ASCs underwent primary culture and three passages before being seeded into collagen scaffolds. These constructs were incubated for 1 week in an automated bioreactor using cyclic HP at 0–0.5 MPa, 0.5 Hz, and compared to constructs exposed to atmospheric pressure. In both groups, chondrogenic differentiation medium including transforming growth factor-β1 was employed. One, 2, 3, and 4 weeks after incubation, the cell constructs were harvested for histological, immunohistochemical, and gene expression evaluation. Results In histological and immunohistochemical analyzes, pericellular and extracellular metachromatic matrix was observed in both groups and increased over 4 weeks, but accumulated at a higher rate in the HP group. Cell number was maintained in the HP group over 4 weeks but decreased after 2 weeks in the atmospheric pressure group. Chondrogenic-specific gene expression of type II and X collagen, aggrecan, and SRY-box9 was increased in the HP group especially after 2 weeks. Conclusion Our results demonstrate chondrogenic differentiation of ASCs in a three-dimensional collagen scaffolds with treatment of a cyclic HP. Cyclic HP was effective in enhancing accumulation of extracellular matrix and expression of genes indicative of chondrogenic differentiation. PMID:19290804

  5. Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase

    PubMed Central

    Brammer, R D; Bramhall, S R; Eggo, M C

    2005-01-01

    Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur. PMID:16234817

  6. Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type II collagen and aggrecan mRNA expression.

    PubMed

    Smith, R L; Lin, J; Trindade, M C; Shida, J; Kajiyama, G; Vu, T; Hoffman, A R; van der Meulen, M C; Goodman, S B; Schurman, D J; Carter, D R

    2000-01-01

    The normal loading of joints during daily activities causes the articular cartilage to be exposed to high levels of intermittent hydrostatic pressure. This study quantified effects of intermittent hydrostatic pressure on expression of mRNA for important extracellular matrix constituents. Normal adult bovine articular chondrocytes were isolated and tested in primary culture, either as high-density monolayers or formed aggregates. Loaded cells were exposed to 10 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for periods of 2, 4, 8, 12, and 24 hrs. Other cells were intermittently loaded for a period of 4 hrs per day for 4 days. Semiquantitative reverse transcription polymerase chain reaction assays were used to assess mRNA signal levels for collagen types II and I and aggrecan. The results showed that type II collagen mRNA signal levels exhibited a biphasic pattern, with an initial increase of approximately five-fold at 4 and 8 hrs that subsequently decreased by 24 hrs. In contrast, aggrecan mRNA signal increased progressively up to three-fold throughout the loading period. Changing the loading profile to 4 hrs per day for 4 days increased the mRNA signal levels for type II collagen nine-fold and for aggrecan twenty-fold when compared to unloaded cultures. These data suggest that specific mechanical loading protocols may be required to optimally promote repair and regeneration of diseased joints.

  7. An endogenous tryptophan photo-product, FICZ, is potentially involved in photo-aging by reducing TGF-β-regulated collagen homeostasis.

    PubMed

    Murai, Mika; Tsuji, Gaku; Hashimoto-Hachiya, Akiko; Kawakami, Yoshihito; Furue, Masutaka; Mitoma, Chikage

    2018-01-01

    Persistent ultraviolet (UV) radiation in the form of sunlight causes photo-aging of the skin by reducing the production of type I collagen, the major constituent of the extracellular matrix of the dermis. Transforming growth factor (TGF)-β transforms dermal fibroblasts into α2-smooth muscle actin (ACTA2)-expressing myofibroblasts. Myofibroblasts produce a precursor form of type I collagen, type I procollagen (collagen I), consisting of pro-alpha1 (produced by the COL1A1 gene) and pro-alpha2 chains (produced by the COL1A2 gene). Smad2/3 is a key downstream molecule of TGF-β signaling. The mechanisms through which UV inhibits collagen I synthesis are not fully understood. 6-Formylindolo[3,2-b]carbazole (FICZ) is an endogenous tryptophan photo-metabolite generated by UV irradiation. FICZ is well known as a high-affinity ligand for aryl hydrocarbon receptor (AHR). However, the physiological roles of FICZ in photo-aging have yet to be addressed. To evaluate the effects of FICZ on the TGF-β-mediated ACTA2 and collagen I expression in normal human dermal fibroblasts (NHDFs). Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine the expression of ACTA2, COL1A1, and COL1A2 in NHDFs with or without FICZ and TGF-β. The phosphorylated Smad2/3 (pSmad2/3) protein levels in cytoplasmic or nuclear portions were investigated by western blot analysis. Immunofluorescence staining was conducted to evaluate pSmad2/3 localization, and F-actin staining with phalloidin was performed to visualize actin polymerization in myofibroblasts. The actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were analyzed in the presence of selective AHR antagonists or in AHR-knockdown NHDFs. We found that FICZ significantly inhibited the TGF-β-induced upregulation of mRNA and protein levels of ACTA2 and collagen I and actin polymerization in myofibroblasts. FICZ did not disturb the phosphorylation of Smad2/3. Notably, FICZ reduced the expression of pSmad2/3 in the nucleus, while it increased that in the cytoplasm, suggesting that it inhibits the nuclear translocation of pSmad2/3 induced by TGF-β. The inhibitory actions of FICZ on the TGF-β-mediated collagen I expression and nuclear translocation of pSmad2/3 were independent of AHR signaling. Another endogenous AHR agonist, kynurenine, also inhibited the TGF-β-mediated ACTA2 and collagen I upregulation in NHDFs in an AHR-independent manner; however, its effects were insignificant in comparison with those of FICZ. These findings suggest that the endogenous photo-product FICZ may be a key chromophore that involves in photo-aging. Downregulation of FICZ signaling is thus a potential strategy to protect against photo-aging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less

  9. The influence of chronic IL-6 exposure, in vivo, on rat Achilles tendon extracellular matrix.

    PubMed

    Katsma, Mark S; Patel, Shivam H; Eldon, Erica; Corbell, Kathryn A; Shimkus, Kevin L; Fluckey, James D; Carroll, Chad C

    2017-05-01

    When compared to placebo, acetaminophen (APAP) reduces tendon stiffness and collagen cross-linking. APAP also enhances the exercise-induced increase in peritendinous levels of IL-6. Elevated levels of IL-6 are associated with tendinopathy, thus we hypothesized that chronic, elevated peritendinous IL-6 would alter tendon extracellular matrix (ECM). IL-6 (∼3000pgml -1 ) was injected (3dwk -1 for 8-wks) into the Achilles peritendinous region of male Wistar rats (n=16) with the opposite leg serving as a sham. Fractional synthesis rates (FSR) were determined using deuterium oxide. Collagen (hydroxyproline) and hydroxylysl pyridinoline (HP) cross-linking were analyzed by HPLC. ECM and IL-6 related genes were evaluated using qRT-PCR. Relative to sham, collagen (Col) 1a1 but not Col3a1 expression was suppressed (47%) in tendons exposed to IL-6 (p<0.05). Lysyl oxidase (LOX) and MMP-1 expression were also reduced (37%) in IL-6 treated tendons (p<0.05). Relative to sham the expression of MMP-2, -3, -9, and TIMP-1 were not altered by IL-6 treatment (p>0.05). Interleukin-6 receptor subunit beta precursor (IL6st) was lower (16%) in IL-6 treated tendons when compared to sham (p<0.05). Suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (STAT3), and protein inhibitor of activated STAT 1 (Pias1) were not altered by IL-6 exposure (p>0.05). Neither collagen nor cross-linking content were altered by IL-6 (p>0.05). Additionally, IL-6 treatment did not alter tendon FSR. Chronic treatment with physiologically relevant levels of IL-6 suppresses expression of Col1a1 and LOX while also altering expression of select MMPs but does not alter Achilles tendon collagen synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers.

    PubMed

    Hanley, Christopher J; Noble, Fergus; Ward, Matthew; Bullock, Marc; Drifka, Cole; Mellone, Massimiliano; Manousopoulou, Antigoni; Johnston, Harvey E; Hayden, Annette; Thirdborough, Steve; Liu, Yuming; Smith, David M; Mellows, Toby; Kao, W John; Garbis, Spiros D; Mirnezami, Alex; Underwood, Tim J; Eliceiri, Kevin W; Thomas, Gareth J

    2016-02-02

    Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-β treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.

  11. Label-free nonenzymatic glycation monitoring of collagen scaffolds in type 2 diabetic mice by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Panpan; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Wang, Qiannan; Liu, Hao; Chen, Maosheng; Han, Xue

    2015-02-01

    Collagen is the key target of nonenzymatic glycation during physiopathological processes such as diabetes. The induced changes in the biochemical property of collagen by nonenzymatic glycation remain a major challenge to probe. This study investigated the use of confocal Raman microspectroscopy to label-free monitor the nonenzymatic glycation of collagen scaffolds from type 2 diabetic (T2D) mice at different timepoints (0, 4, 8, and 12 weeks). The glycated collagen scaffolds were obtained through the decellularized dermal matrix method to remove the epidermis layer, subcutaneous tissue, and cells in the dermis and to retain the collagen fibrils. Raman spectra showed no changes in Raman peak positions, which indicated that nonenzymatic glycation could produce no significant changes in the triple-helix structure of collagen in T2D mice. However, the relative intensity of the Raman bands at 921, 1033, 1244, 1274, 1346, 1635, and 1672 cm-1 increased as diabetic time progressed. Correlation analysis suggested that the spectra of these bands had a high positive correlation with the expression of anti-advanced glycation end products obtained by immunofluorescence imaging of the same collagen scaffolds. Confocal Raman microspectroscopy proves a potential tool to label-free monitor the collagen changes caused by nonenzymatic glycation in T2D mice.

  12. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

    PubMed Central

    Kean, Thomas J.; Dennis, James E.

    2015-01-01

    Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions Synoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage. PMID:26075742

  13. Rebamipide suppresses collagen-induced arthritis through reciprocal regulation of th17/treg cell differentiation and heme oxygenase 1 induction.

    PubMed

    Moon, Su-Jin; Park, Jin-Sil; Woo, Yun-Ju; Lim, Mi-Ae; Kim, Sung-Min; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Hee Jin; Lee, Weon Sun; Park, Sang-Hi; Jeong, Jeong-Hee; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La; Min, Jun-Ki

    2014-04-01

    Rebamipide, a gastroprotective agent, has the ability to scavenge reactive oxygen radicals. Increased oxidative stress is implicated in the pathogenesis of rheumatoid arthritis (RA). We undertook this study to investigate the impact of rebamipide on the development of arthritis and the pathophysiologic mechanisms by which rebamipide attenuates arthritis severity in a murine model of RA. Collagen-induced arthritis (CIA) was induced in DBA/1J mice. Anti-type II collagen antibody titers and interleukin-17 (IL-17) levels were determined using enzyme-linked immunosorbent assay. The expression of transcription factors was analyzed by immunostaining and Western blotting. Frequencies of IL-17-producing CD4+ T cells (Th17 cells) and CD4+CD25+FoxP3+ Treg cells were analyzed by flow cytometry. Rebamipide reduced the clinical arthritis score and severity of histologic inflammation and cartilage destruction in a dose-dependent manner. The joints isolated from rebamipide-treated mice with CIA showed decreased expression of nitrotyrosine, an oxidative stress marker. Rebamipide-treated mice showed lower circulating levels of type II collagen-specific IgG, IgG1, and IgG2a. Whereas the number of Th17 cells in spleens was decreased in rebamipide-treated mice with CIA, a significant increase in the number of Treg cells in spleens was observed. In vitro, rebamipide inhibited Th17 cell differentiation through STAT-3/retinoic acid receptor-related orphan nuclear receptor γt and reciprocally induced Treg cell differentiation through FoxP3. Rebamipide increased Nrf2 nuclear activities in murine CD4+ T cells and LBRM-33 murine T lymphoma cells. Heme oxygenase 1 (HO-1) expression in the spleens was markedly increased in rebamipide-treated mice. The inhibitory effects of rebamipide on joint inflammation are associated with recovery from an imbalance between Th17 cells and Treg cells and with activation of an Nrf2/HO-1 antioxidant pathway. Copyright © 2014 by the American College of Rheumatology.

  14. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  15. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    PubMed

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  16. Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes

    PubMed Central

    Kirsch, Thorsten; Nah, Hyun-Duck; Shapiro, Irving M.; Pacifici, Maurizio

    1997-01-01

    Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that hypertrophic chondrocytes can qualitatively modulate their production of matrix vesicles and only when induced to initiate mineralization, will release mineralization-competent matrix vesicles rich in annexin V and alkaline phosphatase. The occurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein may facilitate crystal growth after rupture of the matrix vesicle membrane; it may also offer a smooth transition from mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix. PMID:9166414

  17. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegami, Yasuhiko; Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya; Ohkawara, Bisei

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. Inmore » contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca{sup 2+} signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases expressions of Sox9, collagen type 2, and aggrecan through Wnt/β-catenin signaling. • We propose that Rspo2 activates Wnt/β-catenin to facilitate chondrocyte differentiation in endochondral ossification.« less

  18. Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Cai, Zhifeng; Liu, Mengmeng

    Aim: The objective of this study was to investigate the effects of urotensin II (UII) treatment on the proliferation and collagen synthesis of cultured rat pulmonary arterial smooth muscle cells (PASMCs) and to explore whether these effects are mediated by mitogen-activated protein kinase (MAPK) signaling pathways and early growth response 1 (Egr-1). Methods: The proliferation of cultured PASMCs stimulated with different doses of UII was detected by BrdU incorporation. The mRNA expression levels of procollagen I (procol I), procollagen III (procol III), extracellular regulated protein kinase 1/2 (ERK1/2), stress-stimulated protein kinase (Sapk), p38 MAPK (p38), and Egr-1 mRNA in culturedmore » PASMCs after treatment with UII, the UII-specific antagonist urantide, and the ERK1/2 inhibitor PD98059 were detected by real-time polymerase chain reaction (PCR), and the protein expression levels of procol I, procol III, phosphorylated (p)-ERK1/2, p-Sapk, p-p38, and Egr-1 were detected by Western blotting. Results: Treatment with UII increased the proliferation of cultured PASMCs in a dose-dependent manner (P < 0.05). However, treatment with urantide and PD98059 inhibited the promoting effect of UII on PASMC proliferation (P < 0.05). Real-time PCR analysis showed that UII up-regulated the expression of procol I, procol III, ERK1/2, Sapk, and Egr-1 mRNA (P < 0.05), but not p38 mRNA. However, the up-regulating effect of UII was inhibited by PD98059 and urantide. Western blotting analysis showed that UII increased the synthesis of collagen I, collagen III, p-ERK1/2, p-Sapk, and Egr-1, and these effects also were inhibited by PD98059 and urantide (P < 0.05). Conclusions: Egr-1 participates in the UII-mediated proliferation and collagen synthesis of cultured rat PASMCs via activation of the ERK1/2 signaling pathway.« less

  19. Wnt signaling is involved in human articular chondrocyte de-differentiation in vitro.

    PubMed

    Sassi, N; Laadhar, L; Allouche, M; Zandieh-Doulabi, B; Hamdoun, M; Klein-Nulend, J; Makni, S; Sellami, S

    2014-01-01

    Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.

  20. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus.

    PubMed

    Balasubramanian, Sivaraman Arumugam; Mohan, Sujatha; Pye, David Cecil; Willcox, Mark Duncan Perry

    2012-06-01

    To investigate the expression of proteases, proteolytic activity and cytokines in the tear film of people with keratoconus. Basal tears from people with keratoconus, from individuals who had undergone corneal collagen cross-linking for the treatment of keratoconus, and from normal controls were collected using a capillary tube. Corneal curvature of each subject was mapped. The total protein in tears was estimated. Levels and activity of proteases in the tears were analysed using specific antibody arrays and activity assays. The total tear protein level was significantly reduced in keratoconus (4.1 ± 0.9 mg/ml) compared with normals (6.7 ± 1.4 mg/ml) (p < 0.0001) or subjects who had undergone corneal collagen cross-linking (5.7 ± 2.3 mg/ml) (p < 0.005). Significantly (p < 0.05) increased tear expression of matrix metalloproteinases (MMP) -1, -3, -7, -13, interleukins (IL) -4, -5, -6, -8 and tumour necrosis factor (TNF) -α, -β were evident in keratoconus. Tear IL-6 was the only cytokine significantly (p < 0.05) increased in tears of keratoconus subjects compared with the collagen cross-linked group. No significant difference in tear proteases were observed between the normal and the cross-linked groups, although the expression of TNF-α was significantly (p < 0.05) increased in the cross-linked group compared with the controls. Elevated gelatinolytic (87.5 ± 33.6 versus 45.8 ± 24.6 FIU, p < 0.0001) and collagenolytic (6.1 ± 3.2 versus 3.6 ± 2.0 FIU, p < 0.05) activities were observed in tears from keratoconus compared with normal subjects. The activity of tear gelatinases (69.6 ± 22.2 FIU) and collagenases (5.7 ± 3.3 FIU) in the collagen cross-linked group was not significantly different compared with either keratoconus or normals. Tears of people with keratoconus had 1.9 times higher levels of proteolytic activity and over expression of several MMPs and cytokines compared with tears from controls. Further investigations are required to study the possible implications of these changes and whether they can be used to monitor disease progression or determine the success of corneal collagen cross-linking. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation.

    PubMed

    Baht, Gurpreet S; Hunter, Graeme K; Goldberg, Harvey A

    2008-09-01

    In bone, hydroxyapatite (HA) crystals are deposited onto the type I collagen scaffold by a mechanism that has yet to be elucidated. Bone sialoprotein (BSP) is an acidic phosphoprotein that is expressed at high levels in mineralized tissues, capable of binding type I collagen, and nucleating HA. Both bone-extracted and recombinant BSP (rBSP) bind with equal affinity to collagen. The nature of the BSP-collagen interaction and its role in HA nucleation are not known. We have used a solid-phase binding assay and affinity chromatography to characterize the BSP-collagen interaction. rBSP-binding affinities of triple-helical and fibrillar type I collagen were similar (K(D) approximately 13 nM), while that of heat-denatured type I collagen was lower (K(D) approximately 44 nM), indicating the importance of triple-helical structure in binding BSP. Pepsin treatment of collagen had no effect on rBSP binding, demonstrating that the telopeptides of collagen are not involved. The majority of collagen-bound rBSP was eluted by acetonitrile, indicating that hydrophobic interactions are principally responsible for binding. Using an HA-nucleation assay, it was shown that rBSP is ten-fold more potent in reconstituted fibrillar collagen gels than in agarose gels. Nucleating potency of a non-collagen-binding, HA-nucleating peptide [rBSP(134-206)] showed no difference in the two gel systems. The work here shows that optimal binding of rBSP requires collagen to be in a native, triple-helical structure, does not require the telopeptides, and is stabilized by hydrophobic interactions. Upon binding to collagen, rBSP displays an increase in nucleation potency, implying a co-operative effect of BSP and collagen in mineral formation.

  2. Nicotine promotes proliferation and collagen synthesis of chondrocytes isolated from normal human and osteoarthritis patients.

    PubMed

    Ying, Xiaozhou; Cheng, Shaowen; Shen, Yue; Cheng, Xiaojie; An Rompis, Ferdinand; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Peng, Lei; Tian, Xin Qiao; Lu, Chuan Zhu

    2012-01-01

    The aims of the study were to show the direct effect of nicotine with different concentrations (0, 25, 50, and 100 ng/ml) on chondrocytes isolated from normal human and osteoarthritis patients, respectively. Microscopic observation was performed during the culture with an inverted microscope. Methyl thiazolyl tetrazolium (MTT) assay method was adopted to observe the influence of nicotine on the proliferation of chondrocytes, and real-time PCR and ELISA were used to assay the mRNA and protein expression of type II collagen and aggrecan, respectively. We discovered that the OA chondrocytes were similar to fibroblasts in shape and grow slower than normal chondrocytes. The proliferation of the two kinds of chondrocytes was increased in a concentration-dependent manner and in a time-dependent manner (P<0.05). Also, we found that the mRNA level of type II collagen were upregulated under 25-100 ng/ml nicotine doses both in the two kinds of chondrocytes compared with control. The expression of protein levels of type II collagen were synthesized in line with the increase in mRNA. No effect was observed on aggrecan synthesis with any nicotine dose. We concluded that nicotine has the same effect on both chondrocytes, obtained either from osteoarthritis patients or from normal human, and the positive effect of smoking in OA may relate to the alteration in metabolism of chondrocytes.

  3. Withaferin-A Reduces Type I Collagen Expression In Vitro and Inhibits Development of Myocardial Fibrosis In Vivo

    PubMed Central

    Challa, Azariyas A.; Vukmirovic, Milica; Blackmon, John; Stefanovic, Branko

    2012-01-01

    Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5–1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis. PMID:22900077

  4. Prostaglandin E1 inhibits collagen expression in anti-thymocyte antibody-induced glomerulonephritis: possible role of TGF beta.

    PubMed

    Schneider, A; Thaiss, F; Rau, H P; Wolf, G; Zahner, G; Jocks, T; Helmchen, U; Stahl, R A

    1996-07-01

    To test whether or not prostaglandins mediate extracellular matrix formation in immune-mediated glomerular disease, rats with anti-thymocyte antibody-induced glomerulonephritis were treated with prostaglandin E1 (PGE1) (250 micrograms/twice daily/s.c.). Glomerular expression of collagen types III and IV was assessed by Northern blotting, immunohistology and Western blotting. Proliferation of glomerular cells was evaluated by staining for the proliferating cell nuclear antigen (PCNA) and consecutive cell counting. At day five after induction of the disease, glomerular mRNA levels of collagen types III and IV were three- to fivefold higher compared with non-nephritic controls. Similarly glomerular deposition of these collagens was markedly increased when assessed by immunohistology. The treatment of nephritic rats with PGE1 reduced the increased glomerular mRNA levels as well as the protein concentration and the deposition of extracellular collagens. The number of PCNA positive cells which was significantly higher in nephritic rats when compared with control animals (24 hr, nephritis 2.53 +/- 0.33 and Control 0.26 +/- 0.06, P = 0.011; 5 days, nephritis 5.10 +/- 1.13 and Control 0.75 +/- 0.08, cells per glomerular cross section, P = 0.03) was reduced by PGE1 (24 hr, nephritis+PGE1 0.44 +/- 0.30, P = 0.0001; 5 days, nephritis +/- PGE1 1.91 +/- 1.84 cells per glomerular cross section, P = 0.001). Prostaglandin E1 also ameliorated the glomerular infiltration of monocytes at 24 hours (nephritis 4.36 +/- 2.82, nephritis + PGE1 2.20 +/- 1.82, cells per glomerular cross section) and five days (nephritis 1.51 +/- 0.58, nephritis+PGE1 1.12 +/- 0.61, cells per glomerular cross section). To further characterize possible mechanisms by which PGE1 reduces extracellular matrix deposition, the glomerular expression of transforming growth factor (TGF-beta), and interleukin 1 beta (IL-1 beta) was assessed by Northern blotting. Nephritic glomeruli showed increased mRNA levels of TGF-beta at day 5 and IL-1 beta at 24 hours when compared with control kidneys. Treatment of the animals with PGE1 inhibited the mRNA expression of TGF-beta and IL-1 beta. These data demonstrate that PGE1 reduces the glomerular expression of extracellular matrix proteins in anti-thymocyte antibody-induced glomerulonephritis, suggesting a beneficial role of prostaglandins in this proliferative glomerular immune injury. The effects of PGE1 might be mediated by inhibition of TGF-beta and IL-1 beta production.

  5. Immunolocalization of Collagens (I and III) and Cartilage Oligomeric Matrix Protein in the Normal and Injured Equine Superficial Digital Flexor Tendon

    PubMed Central

    2013-01-01

    This is a descriptive study of tendon pathology with different structural appearances of repair tissue correlated to immunolocalization of cartilage oligomeric matrix protein (COMP) and type I and III collagens and expression of COMP mRNA. The material consists of nine tendons from seven horses (5–25 years old; mean age of 10 years) with clinical tendinopathy and three normal tendons from horses (3, 3, and 13 years old) euthanized for non-orthopedic reasons. The injured tendons displayed different repair-tissue appearances with organized and disorganized fibroblastic regions as well as areas of necrosis. The normal tendons presented distinct immunoreactivity for COMP and expression of COMP mRNA and type I collagen in the normal aligned fiber structures, but no immunolabeling of type III collagen. However, immunoreactivity for type III collagen was present in the endotenon surrounding the fiber bundles, where no expression of COMP could be seen. Immunostaining for type I and III collagens was present in all of the pathologic regions indicating repair tissue. Interestingly, the granulation tissues showed immunostaining for COMP and expression of COMP mRNA, indicating a role for COMP in repair and remodeling of the tendon after fiber degeneration and rupture. The present results suggest that not only type III collagen but also COMP is involved in the repair and remodeling processes of the tendon. PMID:23020676

  6. The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats.

    PubMed

    Yan, Jun-Feng; Huang, Wen-Jie; Zhao, Jian-Feng; Fu, Hui-Ying; Zhang, Gao-Yue; Huang, Xiao-Jun; Lv, Bo-Dong

    2017-01-01

    Erectile dysfunction (ED) is a common clinical disease that is difficult to treat. We previously found that hypoxia modulates the phenotype of primary corpus cavernosum smooth muscle cells (CCSMCs) in rats, but the underlying molecular mechanism is still unknown. Platelet-derived growth factor receptor (PDGFR)-related signaling pathways are correlated with cell phenotypic transition, but research has been focused more on vascular smooth muscle and tracheal smooth muscle and less on CCSMCs. Here, we investigated the role of PDGFR-related signaling pathways in penile CCSMCs, which were successfully isolated from rats and cultured in vitro. PDGF-BB at 5, 10, or 20 ng/ml altered CCSMC morphology from the original elongated, spindle shape to a broader shape and promoted the synthetic phenotype and expression of the related proteins vimentin and collagen-I, while inhibiting the contractile phenotype and expression of the related proteins smooth muscle (SM) α-actin (α-SMA) and desmin. Inhibition of PDGFR activity via siRNA or the PDGFR inhibitor crenolanib inhibited vimentin and collagen-I expression, increased α-SMA and desmin expression, and considerably inhibited serine-threonine protein kinase (AKT) and signal transducer and activator of transcription 3 (STAT3) phosphorylation. STAT3 knockdown promoted the contractile phenotype, inhibited vimentin and collagen-I expression, and increased α-SMA and desmin expression, whereas AKT knockdown did not affect phenotype-associated proteins. STAT3 overexpression in CCSMC cells weakened the suppressive effect of PDGFR inhibition on the morphology and phenotypic transformation induced by PDGF-BB. Through activation of the PDGFR/STAT3 signaling pathway, PDGF promoted the synthetic phenotype transition; thus, regulation of this pathway might contribute to ED therapy.

  7. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner.

    PubMed

    van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal

    2013-10-03

    Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.

  8. MMP-14 is necessary but not sufficient for invasion of three-dimensional collagen by human muscle satellite cells

    PubMed Central

    Lund, Dane K.; Mouly, Vincent

    2014-01-01

    The twenty-five known matrix metalloproteases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteases (TIMPs), mediate cell invasion through the extracellular matrix (ECM). In a comparative three-dimensional assay, we analyzed human and mouse satellite cells' competence to invade an artificial ECM (collagen I). We identified a single MMP that 1) is expressed by human muscle satellite cells; 2) is induced at the mRNA/protein level by adhesion to collagen I; and 3) is necessary for invasion into a collagen I matrix. Interestingly, murine satellite cells neither express this MMP, nor invade the collagen matrix. However, exogenous human MMP-14 is not sufficient to induce invasion of a collagen matrix by murine cells, emphasizing species differences. PMID:24898588

  9. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  10. Upregulated Expression of Integrin α1 in Mesangial Cells and Integrin α3 and Vimentin in Podocytes of Col4a3-Null (Alport) Mice

    PubMed Central

    Steenhard, Brooke M.; Vanacore, Roberto; Friedman, David; Zelenchuk, Adrian; Stroganova, Larysa; Isom, Kathryn; St. John, Patricia L.; Hudson, Billy G.; Abrahamson, Dale R.

    2012-01-01

    Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM. PMID:23236390

  11. Targeting Discoidin Domain Receptors in Prostate Cancer

    DTIC Science & Technology

    2016-08-01

    DDRs), a set of kinase receptors that signal in response to collagen . The project’s goal is to define the expression and therapeutic potential of...antibody, which blocks receptor activation by collagen I. Mice were inoculated with PC3 cells and anti-DDR1 or control antibody treatment. The study... collagen , the major organic component of the bone extracellular matrix. Purpose: To investigate the expression, therapeutic potential, and

  12. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells

    PubMed Central

    Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy

    2018-01-01

    Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391

  13. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    PubMed

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  15. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata

    PubMed Central

    Brokopp, Chad E.; Schoenauer, Roman; Richards, Peter; Bauer, Stefan; Lohmann, Christine; Emmert, Maximilian Y.; Weber, Benedikt; Winnik, Stephan; Aikawa, Elena; Graves, Kirk; Genoni, Michele; Vogt, Peter; Lüscher, Thomas F.; Renner, Christoph; Hoerstrup, Simon P.; Matter, Christian M.

    2011-01-01

    Aims Collagen degradation in atherosclerotic plaques with thin fibrous caps renders them more prone to rupture. Fibroblast activation protein (FAP) plays a role in arthritis and tumour formation through its collagenase activity. However, the significance of FAP in thin-cap human fibroatheromata remains unknown. Methods and results We detected enhanced FAP expression in type IV–V human aortic atheromata (n = 12), compared with type II–III lesions (n = 9; P < 0.01) and healthy aortae (n = 8; P < 0.01) by immunostaining and western blot analyses. Fibroblast activation protein was also increased in thin-cap (<65 µm) vs. thick-cap (≥65 µm) human coronary fibroatheromata (n = 12; P < 0.01). Fibroblast activation protein was expressed by human aortic smooth muscle cells (HASMC) as shown by colocalization on immunofluorescent aortic plaque stainings (n = 10; P < 0.01) and by flow cytometry in cell culture. Although macrophages did not express FAP, macrophage burden in human aortic plaques correlated with FAP expression (n = 12; R2= 0.763; P < 0.05). Enzyme-linked immunosorbent assays showed a time- and dose-dependent up-regulation of FAP in response to human tumour necrosis factor α (TNFα) in HASMC (n = 6; P < 0.01). Moreover, supernatants from peripheral blood-derived macrophages induced FAP expression in cultured HASMC (n = 6; P < 0.01), an effect abolished by blocking TNFα (n = 6; P < 0.01). Fibroblast activation protein associated with collagen-poor regions in human coronary fibrous caps and digested type I collagen and gelatin in vitro (n = 6; P < 0.01). Zymography revealed that FAP-mediated collagenase activity was neutralized by an antibody directed against the FAP catalytic domain both in HASMC (n = 6; P < 0.01) and in fibrous caps of atherosclerotic plaques (n = 10; P < 0.01). Conclusion Fibroblast activation protein expression in HASMC is induced by macrophage-derived TNFα. Fibroblast activation protein associates with thin-cap human coronary fibroatheromata and contributes to type I collagen breakdown in fibrous caps. PMID:21292680

  16. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy.

    PubMed

    Kang, Young-Mi; Choi, Yun-Rak; Yun, Chae-Ok; Park, Jin-Oh; Suk, Kyung-Soo; Kim, Hak-Sun; Park, Moon-Soo; Lee, Byung-Ho; Lee, Hwan-Mo; Moon, Seong-Hwan

    2014-04-01

    Dupuytren's disease is a fibroproliferative connective tissue disorder characterized by contracture of the palmer fascia of the hand. Relaxin (RLN) is a multifunctional factor which contributes to the remodeling of the pelvic ligament by inhibiting fibrosis and inflammatory activities. The aim of this study was to investigate the effect of the RLN gene on the inhibition of fibrosis in myofibroblastic cells. Myofibroblast cells with adenovirus LacZ (Ad-LacZ) as a marker gene or adenovirus relaxin (Ad-RLN) as therapeutic gene showed transgene expressions in beta-galactosidase assay and Western blot analysis. Myofibroblastic cells with Ad-RLN demonstrated a 22% and 48% reduction in collagen I and III mRNA expressions respectively, a 50% decrease in MMP-1, 70% decrease in MMP-2, 80% decrease in MMP-9, and a 15% reduction in MMP-13 protein expression compared with cultures with viral control and saline control. In addition, myofibroblastic cells with Ad-RLN showed a 40% decrease in TIMP 1 and a 15% increase in TIMP 3 protein expression at 48 h compared to cultures with viral control and saline control. Also, myofibroblastic cell with Ad-RLN demonstrated a 74% inhibition of fibronectin and a 52% decrease in total collagen synthesis at 48 h compared with cultures with viral control and saline control. In conclusion, the RLN gene render antifibrogenic effect on myofibroblastic cells from Dupuytren's nodule via direct inhibition of collagen synthesis not through collagenolytic pathway such as MMP-1, -13, TIMP 1, and 3. Therefore relaxin can be an alternative therapeutic strategy in initial stage of Dupuytren's disease by its antifibrogenic effect. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    PubMed Central

    Branly, Thomas; Contentin, Romain; Desancé, Mélanie; Jacquel, Thibaud; Bertoni, Lélia; Jacquet, Sandrine; Mallein-Gerin, Frédéric; Denoix, Jean-Marie; Audigié, Fabrice; Demoor, Magali

    2018-01-01

    Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the functionality of cartilage. These data provide evidence of a more stable chondrocyte phenotype when combining Col1a1 and Col1a2 siRNAs associated to a longer culture time in the presence of BMP-2 and TGF-β1, opening new opportunities for preclinical trials in the horse. In addition, because the horse is an excellent model for human articular cartilage disorders, the equine therapeutic approach developed here can also serve as a preclinical step for human medicine. PMID:29389887

  18. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index.

    PubMed

    Branly, Thomas; Contentin, Romain; Desancé, Mélanie; Jacquel, Thibaud; Bertoni, Lélia; Jacquet, Sandrine; Mallein-Gerin, Frédéric; Denoix, Jean-Marie; Audigié, Fabrice; Demoor, Magali; Galéra, Philippe

    2018-02-01

    Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1 : Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the functionality of cartilage. These data provide evidence of a more stable chondrocyte phenotype when combining Col1a1 and Col1a2 siRNAs associated to a longer culture time in the presence of BMP-2 and TGF-β1, opening new opportunities for preclinical trials in the horse. In addition, because the horse is an excellent model for human articular cartilage disorders, the equine therapeutic approach developed here can also serve as a preclinical step for human medicine.

  19. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation.

    PubMed

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-02-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  1. UV radiation-induced skin aging in hairless mice is effectively prevented by oral intake of sea buckthorn (Hippophae rhamnoides L.) fruit blend for 6 weeks through MMP suppression and increase of SOD activity.

    PubMed

    Hwang, In Sik; Kim, Ji Eun; Choi, Sun Il; Lee, Hye Ryun; Lee, Young Ju; Jang, Min Ju; Son, Hong Ju; Lee, Hee Seob; Oh, Chung Hun; Kim, Bae Hwan; Lee, Sang Hak; Hwang, Dae Youn

    2012-08-01

    Oxidative stress and oxidative photodamage induced by UV radiation can cause serious skin damage that is characterized by wrinkling, roughness, laxity and pigmentation. The effects of a sea buckthorn (Hippophae rhamnoides L.) fruit blend (SFB) containing sea buckthorn fruit extract, blueberry extract and collagen on UV-induced skin aging were examined by treating hairless mice for 6 weeks with UV irradiation and SFB administered orally. The effects of SFB were measured in the skin of these mice by phenotypical and histological analysis and western blotting. According to wrinkle formation analysis, the oral intake of SFB induced a decrease in wrinkle formation in the damaged skin of UV-irradiated mice. The thickness of the epidermis and dermis in the vitamin extracts (Vit)- and SFB-treated group was lower than that in the vehicle-treated group, but the group treated with SFB50 was the most effective group. The mice treated with the Vit- or SFB solution maintained a normal moisture content through the inhibition of transdermal water loss (TEWL) and an increase in skin moisture content. Furthermore, the levels of matrix metalloproteinase (MMP) and collagen protein expression were assessed in five groups to examine the mechanisms underlying the effects of SFB oral intake. The application of SFB induced a decrease in MMP-1 and -9 expression to the levels observed in the vehicle-treated group, but MMP-9 expression showed a much larger decrease than MMP-1. Furthermore, the expression of collagen-1 in the skin corresponded to MMP expression except for the SFB30-treated group, whereas the superoxide dismutase (SOD) activity was increased dramatically in the SFB50-treated group. These results suggest that SFB has potential as a protective and therapeutic drug candidate against skin aging that functions by regulating the moisture content, MMP expression levels and SOD activity.

  2. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress.

    PubMed

    Tondon, Abhishek; Kaunas, Roland

    2014-01-01

    Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their actin stress fibers oriented perpendicular to the direction of cyclic stretch on collagen-coated sheets, but oriented parallel to the stretch direction on collagen gels. There was significant alignment parallel to the direction of a steady increase in stretch for cells on collagen gels, while cells on collagen-coated sheets did not align in any direction. The extent of alignment was dependent on both strain rate and duration. Stretch-induced alignment on collagen gels was blocked by the myosin light-chain kinase inhibitor ML7, but not by the Rho-kinase inhibitor Y27632. We propose that active orientation of the actin cytoskeleton perpendicular and parallel to direction of stretch on stiff and soft substrates, respectively, are responses that tend to maintain intracellular tension at an optimal level. Further, our results indicate that cells can align along directions of matrix stress without collagen fibril alignment, indicating that matrix stress can directly regulate cell morphology.

  3. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  4. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.

    PubMed

    Nieto, Natalia; Rojkind, Marcos

    2007-02-01

    Alcoholic liver disease is associated with nutritional deficiency and it may aggravate within the context of fatty liver. We investigated the relationship between alcohol intake (whiskey binge drinking) and a choline-deficient diet (CD) and assessed whether stellate cells could contribute to liver injury in this model. Rats fed the CD diet plus whiskey showed increased liver damage compared to rats fed the CD diet, as demonstrated by H&E staining, elevated transaminases, steatosis, TNF-alpha levels, enhanced CYP2E1 activity, impaired antioxidant defense, elevated lipid peroxidation, and protein carbonyls. The combined treatment triggered an apoptotic response as determined by elevated Bax, caspase-3 activity, cytochrome-c release, and decreased Bcl-2 and Bcl-XL. Stellate cells were activated as increased expression of alpha-Sma was observed over that by the CD diet alone. The combined treatment shifted extracellular matrix remodeling towards a pro-fibrogenic response due to up-regulation of collagen I, TIMP1, and Hsp47 proteins, along with down-regulation of MMP13, MMP2, and MMP9 expression, proteases which degrade collagen I. These events were accompanied by increased phosphorylation of p38, a kinase that elevates collagen I. Repeated alcohol binges in the context of mild steatosis may promote activation of stellate cells and contribute to liver injury.

  5. A clinicopathological study of the expression of extracellular matrix components in urothelial carcinoma.

    PubMed

    Ioachim, Elli; Michael, Michalis; Stavropoulos, Nicolaos E; Kitsiou, Evangelia; Salmas, Marios; Malamou-Mitsi, Vasiliki

    2005-03-01

    To measure the immunohistochemical expression of the extracellular matrix (ECM) components tenascin, fibronectin, collagen type IV and laminin in urothelial carcinomas, and to correlate their expression with clinicopathological features to clarify the prognostic value of these molecules and their role in tumour progression. Tumour specimens obtained during transurethral resection of bladder tumour (TURBT) from 103 patients (82 men and 2 1 women, mean age 66.7 years, range 27-89) were studied retrospectively. The expression of tenascin, fibronectin, collagen type IV and laminin was correlated with clinicopathological features (tumour grade and stage, multiplicity, simultaneous in situ component, the proliferative activity as estimated by the two proliferation associated indices, Ki-67 and proliferating cell nuclear antigen, the recurrence rate, and the progression of invading tumour). Specimens investigated for tenascin expression from patients with superficial bladder cancers were categorized into 28 treated by TURBT only and 53 who had TURBT followed by intravesical instillations of interferon. Cytoplasmic tenascin expression was detected in tumour cells in 20% of specimens. Tenascin was expressed in the tumour stroma in 76% of specimens, and was positively correlated with tumour grade and stage. Stromal tenascin expression was positively correlated with proliferative activity, and with the expression of fibronectin and collagen type IV. Fibronectin was expressed in the tumour stroma in 89% of specimens and was positively correlated with tumour stage, proliferative activity, and expression of collagen type IV and laminin. Collagen type IV was expressed in 93% of specimens, and was positively correlated with tumour grade and stage. Laminin was expressed in 78% of specimens and had no significant correlation with the clinicopathological features. Patients treated with TURBT alone and who had low levels of tenascin had a longer tumour-free interval than those with high levels of tenascin. Levels of tenascin might be valuable for predicting the risk of early recurrence. The expression of tenascin, fibronectin and collagen type IV seems to be correlated with more aggressive tumour behaviour. Furthermore, their interrelationships could indicate that they are involved in the remodelling of bladder cancer tissue, probably influencing tumour progression.

  6. Gonadotropin-releasing hormone analogues inhibit leiomyoma extracellular matrix despite presence of gonadal hormones.

    PubMed

    Malik, Minnie; Britten, Joy; Cox, Jeris; Patel, Amrita; Catherino, William H

    2016-01-01

    To determine the effect of GnRH analogues (GnRH-a) leuprolide acetate (LA) and cetrorelix acetate on gonadal hormone-regulated expression of extracellular matrix in uterine leiomyoma three-dimensional (3D) cultures. Laboratory study. University research laboratory. Women undergoing hysterectomy for symptomatic leiomyomas. The 3D cell cultures, protein analysis, Western blot, immunohistochemistry. Expression of extracellular matrix proteins, collagen 1, fibronectin, and versican in leiomyoma cells 3D cultures exposed to E2, P, LA, cetrorelix acetate, and combinations for 24- and 72-hour time points. The 3D leiomyoma cultures exposed to E2 for 24 hours demonstrated an increased expression of collagen-1 and fibronectin, which was maintained for up to 72 hours, a time point at which versican was up-regulated significantly. Although P up-regulated collagen-1 protein (1.29 ± 0.04) within 24 hours of exposure, significant increase in all extracellular matrix (ECM) proteins was observed when the gonadal hormones were used concomitantly. Significant decrease in the amount of ECM proteins was observed on use of GnRH-a, LA and cetrorelix, with 24-hour exposure. Both the compounds also significantly decreased ECM protein concentration despite the presence of E2 or both gonadal hormones. This study demonstrates that GnRH-a directly affect the gonadal hormone-regulated collagen-1, fibronectin, and versican production in their presence. These findings suggest that localized therapy with GnRH-a may inhibit leiomyoma growth even in the presence of endogenous gonadal hormone exposure, thereby providing a mechanism to eliminate the hypoestrogenic side effects associated with GnRH-a therapy. Published by Elsevier Inc.

  7. Proline with or without hydroxyproline influences collagen concentration and regulates prolyl 4-hydroxylase α (I) gene expression in juvenile turbo ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Zhang, Kaikai; Mai, Kangsen; Xu, Wei; Zhou, Huihui; Liufu, Zhiguo; Zhang, Yanjiao; Peng, Mo; Ai, Qinghui

    2015-06-01

    This study was conducted to investigate the effect of dietary proline (Pro), and Pro and hydroxyproline (Hyp) in combination on the growth performance, total Hyp and collagen concentrations of tissues, and prolyl 4-hydroxylase α(I) (P4H α(I)) gene expression in juvenile turbot feeding high plant protein diets. A diet containing 50% crude protein and 12% crude lipid was formulated as the basal and control, on which other two protein and lipid contents identical experimental diets were formulated by supplementing the basal with either 0.75% Pro (Pro-0.75) or 0.75% Pro and 0.75% Hyp (Pro+Hyp). Four groups of fish in indoor seawater recirculating systems, 35 individuals each, were fed twice a day to apparent satiation for 10 weeks. The results showed that dietary Pro and Hyp supplementation had no significant effect on growth performance and feed utilization of juvenile turbot (P > 0.05). Total Hyp and collagen concentrations in muscle were significantly increased when dietary Pro and Hyp increased (P <0.05), and fish fed diet Pro+Hyp showed significantly higher free Hyp content in plasma than those fed other diets (P <0.05). The expression of P4H a(I) gene in liver and muscle was significantly up regulated in fish fed diet Pro-0.75 in comparison with control (P <0.05); however the gene was significantly down regulated in fish fed diet Pro+Hyp in muscle in comparison with fish fed diet Pro-0.75 (P <0.05). It can be concluded that supplement of crystal L-Pro and L-Hyp to high plant protein diets did not show positive effects on growth performance of juvenile turbot, but enhanced total collagen concentrations in muscle.

  8. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-β1/Smad3 pathway.

    PubMed

    Yang, Yong-Hua; Fang, Huan-Le; Zhao, Ming; Wei, Xiang-Lan; Zhang, Ning; Wang, Shun; Lu, Yi; Yu, Xiao-Jiang; Sun, Lei; He, Xi; Li, Dong-Ling; Liu, Jin-Jun; Zang, Wei-Jin

    2017-12-01

    It is well-accepted that inflammation plays an important role in the development of cardiac remodelling and that therapeutic approaches targeting inflammation can inhibit cardiac remodelling. Although a large amount of evidence indicates that activation of α7 nicotinic acetylcholine receptor (α7nAChR) causes an anti-inflammatory effect, the role of α7nAChR in cardiac remodelling and the underlying mechanism have not been established. To investigate the effect of the specific α7nAChR agonist, PNU282987, on cardiac remodelling induced by isoproterenol (ISO 60 mg/kg per day) in mice, the cardiomyocyte cross-sectional area (CSA) and collagen volume fraction were evaluated by hematoxylin and eosin (HE) and Masson staining, respectively. Cardiac function and ventricular wall thickness were measured by echocardiography. The protein expressions of collagen I, matrix metalloproteinase 9 (MMP-9), transforming growth factor β1 (TGF-β1), and Smad3 were analyzed by Western blot. ISO-induced cardiac hypertrophy, characterized by an increase in the heart weight/body weight ratio, CSA and ventricular wall thickness. Moreover, cardiac fibrosis indices, such as collagen volume fraction, MMP-9 and collagen I protein expression, were also increased by ISO. PNU282987 not only attenuated cardiac hypertrophy but also decreased the cardiac fibrosis induced by ISO. Furthermore, PNU282987 suppressed TGF-β1 protein expression and the phosphorylation of Smad3 induced by ISO. In conclusion, PNU282987 ameliorated the cardiac remodelling induced by ISO, which may be related to the TGF-β1/Smad3 pathway. These data imply that the α7nAChR may represent a novel therapeutic target for cardiac remodelling in many cardiovascular diseases. © 2017 John Wiley & Sons Australia, Ltd.

  9. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    PubMed

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.

    PubMed

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-06-15

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and its descendants lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of α-smooth muscle actin (αSMA) but not of collagen I α1 ( col1a1 ). Whereas loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3-dependent actin polymerization nor cofilin-dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction, and TGFβ-induced actin polymerization correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM;more » collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was regulated differentially by kinin receptor agonists in cultured CF and CMF. -- Highlights: ► B1 and B2 kinin receptors modulates collagen secretion in cardiac myofibroblast. ► TGF-β1 increases B1 kinin receptor expression levels in cardiac myofibroblast. ► B1 kinin receptor through COX-2 decreases collagen synthesis in cardiac myofibroblast.« less

  12. Increased α-Actinin-2 Expression in the Atrial Myocardium of Patients with Atrial Fibrillation Related to Rheumatic Heart Disease.

    PubMed

    Zhang, Lei; Zhang, Nan; Tang, Xuejiao; Liu, Fajin; Luo, Suxin; Xiao, Hua

    Atrial fibrosis, a marker of atrial structural remodeling, plays a critical role in atrial fibrillation (AF). α- Actinin-2 is associated with structural remodeling related to stretching. The transforming growth factor-β1 (TGF-β1)/Smad pathway plays an important role in atrial fibrosis. We investigated the effects of the TGF-β1/Smad signaling pathway on α-actinin-2 in atrial fibrosis in patients with AF. Forty-one right atrial specimens obtained from patients with rheumatic heart disease (RHD) were divided into a chronic (c)AF group, i.e. RHD + cAF (n = 29), and a sinus rhythm group, i.e. RHD + sinus rhythm (n = 12). Patients with congenital heart disease (CHD) and sinus rhythm who underwent heart surgery served as controls (n = 10). Fibrosis was assessed by histological examination, and expression of α-actinin-2, TGF-β1 and Smad2/phosphorylated Smad2 (p-Smad2) was evaluated by immunohistochemistry, quantitative real-time PCR and Western blotting. In rat atrial fibroblasts treated with TGF-β1, the collagen content was measured using hydroxyproline detection, and α-actinin-2 and p-Smad2 were evaluated by semiquantitative reverse-transcription PCR and Western blotting. The histology results revealed a significant increase in atrial fibrosis in AF patients. The collagen content, mRNA and protein expression levels of α-actinin-2 and the components of the TGF-β1/Smad signaling pathway were significantly gradually increased in the CHD + sinus rhythm, RHD + sinus rhythm and RHD + cAF groups (p < 0.05). The mRNA and protein levels of α-actinin-2 and TGF-β1 in RHD patients were positively correlated with the collagen volume fraction. A positive correlation between the expression of α-actinin-2 and TGF-β1 was also observed. In rat atrial fibroblasts treated with TGF-β1, the collagen content was greater than that in the control group (p < 0.05), and the expression levels of α- actinin-2 and p-Smad2 were also upregulated (p < 0.05). α-Actinin-2 expression was increased in the atrial tissues of patients with AF secondary to RHD. α-Actinin-2 was upregulated via the TGF-β1/Smad pathway in atrial fibroblasts, which suggests that it may be involved in TGF-β1/Smad pathway-induced atrial fibrosis in patients with AF. © 2016 S. Karger AG, Basel.

  13. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.

    PubMed

    Nguyen, Thuy-Uyen; Bashur, Chris A; Kishore, Vipuil

    2016-03-17

    Application of tissue-engineered vascular grafts (TEVGs) for the replacement of small-diameter arteries is limited due to thrombosis and intimal hyperplasia. Previous studies have attempted to address the limitations of TEVGs by developing scaffolds that mimic the composition (collagen and elastin) of native arteries to better match the mechanical properties of the graft with the native tissue. However, most existing scaffolds do not recapitulate the aligned topography of the collagen fibers found in native vessels. In the current study, based on the principles of isoelectric focusing, two different types of elastin (soluble and insoluble) were incorporated into highly oriented electrochemically aligned collagen (ELAC) fibers and the effect of elastin incorporation on the mechanical properties of the ELAC fibers and smooth muscle cell (SMC) phenotype was investigated. The results indicate that elastin incorporation significantly decreased the modulus of ELAC fibers to converge upon that of native vessels. Further, a significant increase in yield strain and decrease in Young's modulus was observed on all fibers post SMC culture compared with before the culture. Real-time polymerase chain reaction results showed a significant increase in the expression of α-smooth muscle actin and calponin on ELAC fibers with insoluble elastin, suggesting that incorporation of insoluble elastin induces a contractile phenotype in SMCs after two weeks of culture on ELAC fibers. Immunofluorescence results showed that calponin expression increased with time on all fibers. In conclusion, insoluble elastin incorporated ELAC fibers have the potential to be used for the development of functional TEVGs for the repair and replacement of small-diameter arteries.

  14. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate.

    PubMed

    Wagner, Eric R; Bravo, Dalibel; Dadsetan, Mahrokh; Riester, Scott M; Chase, Steven; Westendorf, Jennifer J; Dietz, Allan B; van Wijnen, Andre J; Yaszemski, Michael J; Kakar, Sanjeev

    2015-11-01

    Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer "neoligament" seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell-cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p < 0.05). Cells had a low baseline expression of ALP and GAG, but increased expression of total collagen when induced by the ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p < 0.01) instead of FBS (p < 0.05). FGF-2 and PL also significantly increased immunostaining of tenascin-C and collagen at 2 and 4 weeks compared with human fibroblasts. Our results demonstrate that AMSCs proliferate and eventually produce a collagen-rich extracellular matrix on porous PCLF scaffolds. This novel scaffold has potential in stem cell engineering and ligament regeneration.

  15. Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-β/Smad signaling in hypertrophic scar fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Department of Pediatric Surgery, Shanghai Children’s Medical Center, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127; Chu, J.

    2015-03-15

    The transforming growth factor-β1 (TGF-β)-mediated signaling pathway is believed to be closely associated with wound healing and scar formation, in which TRAP1-like protein (TLP) plays a role in regulating the balance of Smad2 vs. Smad3 signaling. Our previous study revealed the relation between TLP and collagen synthesis in normal human skin fibroblasts. Here, we present a detailed analysis of the effects of TLP on the process of hypertrophic scar formation and contraction. To explore and verify a contribution of TLP to the pathological mechanism of hypertrophic scar fibroblasts (HSFb), we constructed lentiviral vectors that either overexpressed TLP or encoded smallmore » hairpin RNAs (shRNAs) targeting TLP, then we transfected them into HSFb. TLP knockdown in HSFb resulted in reduced levels of cell contraction, type I and type III collagen mRNA transcripts and protein expression, and higher levels of fibronectin (FN) compared to control groups. In addition, knockdown of TLP promoted the phosphorylation of Smad3 but repressed Smad2 and Erk-1/2 phosphorylation in human hypertrophic scar fibroblasts compared to control groups. The reduction of TLP did not interfere with HSF proliferative ability, but exogenous TLP cooperated with TGF-β1 to increase cell viability. Together, our findings demonstrate evidence for a contribution of TLP expression in hypertrophic scar formation and contraction. - Highlights: • TLP acted different roles in the activating of Smad2- and Smad3-dependent signaling. • TLP may induce TGF-β1-mediated collagens expression through Smad signalings and MAPK signaling. • TLP may enhance HSFb contraction by increasing the expression of α-SMA. • Exogenous TLP can cooperate with TGF-β1 to increase cell viability.« less

  16. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    PubMed Central

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  17. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    PubMed

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Rheumatic Heart Disease and Myxomatous Degeneration: Differences and Similarities of Valve Damage Resulting from Autoimmune Reactions and Matrix Disorganization.

    PubMed

    Martins, Carlo de Oliveira; Demarchi, Lea; Ferreira, Frederico Moraes; Pomerantzeff, Pablo Maria Alberto; Brandao, Carlos; Sampaio, Roney Orismar; Spina, Guilherme Sobreira; Kalil, Jorge; Cunha-Neto, Edecio; Guilherme, Luiza

    2017-01-01

    Autoimmune inflammatory reactions leading to rheumatic fever (RF) and rheumatic heart disease (RHD) result from untreated Streptococcus pyogenes throat infections in individuals who exhibit genetic susceptibility. Immune effector mechanisms have been described that lead to heart tissue damage culminating in mitral and aortic valve dysfunctions. In myxomatous valve degeneration (MXD), the mitral valve is also damaged due to non-inflammatory mechanisms. Both diseases are characterized by structural valve disarray and a previous proteomic analysis of them has disclosed a distinct profile of matrix/structural proteins differentially expressed. Given their relevance in organizing valve tissue, we quantitatively evaluated the expression of vimentin, collagen VI, lumican, and vitronectin as well as performed immunohistochemical analysis of their distribution in valve tissue lesions of patients in both diseases. We identified abundant expression of two isoforms of vimentin (45 kDa, 42 kDa) with reduced expression of the full-size protein (54 kDa) in RHD valves. We also found increased vitronectin expression, reduced collagen VI expression and similar lumican expression between RHD and MXD valves. Immunohistochemical analysis indicated disrupted patterns of these proteins in myxomatous degeneration valves and disorganized distribution in rheumatic heart disease valves that correlated with clinical manifestations such as valve regurgitation or stenosis. Confocal microscopy analysis revealed a diverse pattern of distribution of collagen VI and lumican into RHD and MXD valves. Altogether, these results demonstrated distinct patterns of altered valve expression and tissue distribution/organization of structural/matrix proteins that play important pathophysiological roles in both valve diseases.

  19. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy.

    PubMed

    Behzad, Hayedeh; Sharma, Aishwariya; Mousavizadeh, Rouhollah; Lu, Alex; Scott, Alex

    2013-01-01

    We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.

  20. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model.

    PubMed

    Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J

    2007-05-01

    Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.

  1. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy.

    PubMed

    Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-01-01

    Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.

  2. Effects of the combined extracts of Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in the asthmatic rats with the treatment of budesonide.

    PubMed

    Tang, Xiufeng; Nian, Honglei; Li, Xiaoxi; Yang, Yan; Wang, Xiujuan; Xu, Liping; Shi, Haotian; Yang, Xinwei; Liu, Renhui

    2017-08-01

    Asthma is characterized by chronic airway inflammation, leading to structura1 changes in the airway, collectively termed airway remodeling. Airway remodeling is thought to contribute to airway hyper responsiveness and irreversible airflow limitation. The combination of Herba Epimedii (HE) and Fructus Ligustri Lucidi (FLL) decoction and the systemic administration of glucocorticoids (GC) had a synergistic inhibitory action on airway inflammation in the asthmatic model rats. However, the effects of the combination on airway remodeling have not been studied and compared. In the present study, we investigated the effects of the co-administration of combined extracts of HE and FLL with inhaled GC (budesonide) on airway remodeling in the rat asthmatic model induced by ovalbumin (OVA). Male Sprague-Dawley rats were sensitized to intraperitoneal OVA followed by repetitive OVA challenge for 7 weeks. Treatments included extracts of HE and FLL (Extracts for short, 100 mg/kg by gastric perfusion), budesonide (1 mg budesonide suspension in 50 ml sterile physiological saline, 3 rats in an ultrasonic nebulizer by nebulized inhabation with a flow of 1.6 ml/min for 30 min), and co-administration of extracts of HE and FLL with budesonide (Co-administration for short) for 4 weeks. Lung histomorphometry and bronchoalveolar lavage fluid (BALF) cell count were assessed 24 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-5 and IgE were measured by ELISA. Expressions of Collagen I and Collagen III were tested by immunohistology. Expressions of transforming growth factor (TGF) -β1, TGF-β2 and Smads mRNA were measured by quantitative real-time PCR. Extracts, budesonide and Co-administration significantly reduced allergen-induced increases in the serum levels of IL-4, IL-5 and IgE, the number of eosinophils in BALF, goblet cell hyperplasia, Collagen III integral optical density (IOD) and the mRNA expression of TGF-β2 and Smad2. Extracts and Co-administration could depress the IOD level of Collagen I and the positive area of Collagen I and Collagen III. Budesonide and Co-administration significantly alleviated the thickening of airway wall. Only Co-administration significantly decreased collagen deposition according to the morphometry of Masson's-stained lung sections, the thickening of airway smooth muscle layer, the number of lymphocytes in BALF and the mRNA expression of TGF-β1 and Smad3, and this was associated with a significant increase in levels of Smad7 mRNA. The findings suggested that the combination of budesonide and the herbal extracts had a better synergistic effect on airway remodeling in OVA-reduced asthma rats than the single use of budesonide.

  3. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds

    PubMed Central

    Parmar, Paresh A.; St-Pierre, Jean-Philippe; Chow, Lesley W.; Puetzer, Jennifer L.; Stoichevska, Violet; Peng, Yong Y.; Werkmeister, Jerome A.; Ramshaw, John A. M.; Stevens, Molly M.

    2017-01-01

    Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as “blank slate” collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220

  4. Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture

    PubMed Central

    Cheng, Mingyu; Wang, Hao; Yoshida, Ryu

    2010-01-01

    Collagen–platelet (PL)-rich plasma composites have shown in vivo potential to stimulate anterior cruciate ligament (ACL) healing at early time points in large animal models. However, little is known about the cellular mechanisms by which the plasma component of these composites may stimulate healing. We hypothesized that the components of PL-rich plasma (PRP), namely the PLs and PL-poor plasma (PPP), would independently significantly influence ACL cell viability and metabolic activity, including collagen gene expression. To test this hypothesis, ACL cells were cultured in a collagen type I hydrogel with PLs, PPP, or the combination of the two (PRP) for 14 days. The inclusion of PLs, PPP, and PRP all significantly reduced the rate of cell apoptosis and enhanced the metabolic activity of fibroblasts in the collagen hydrogel. PLs promoted fibroblast-mediated collagen scaffold contraction, whereas PPP inhibited this contraction. PPP and PRP both promoted cell elongation and the formation of wavy fibrous structure in the scaffolds. The addition of only PLs or only plasma proteins did not significantly enhance gene expression of collagen types I and III but the combination, as PRP, did. Our findings suggest that the addition of both PLs and plasma proteins to collagen hydrogel may be useful in stimulating ACL healing by enhancing ACL cell viability, metabolic activity, and collagen synthesis. PMID:19958169

  5. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    PubMed

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  6. Silibinin inhibits myofibroblast transdifferentiation in human tenon fibroblasts and reduces fibrosis in a rabbit trabeculectomy model.

    PubMed

    Chen, Yi-Hao; Liang, Chang-Min; Chen, Ching-Long; Chen, Jiann-Torng; Chang, Yun-Hsiang; Lu, Da-Wen; Chien, Ke-Hung; Tai, Ming-Cheng

    2013-11-01

    To investigate the effect of silibinin in myofibroblast transdifferentiation and in animal trabeculectomy models. The effect of silibinin on the expression of α-smooth muscle actin (α-SMA) and vimentin in response to transforming growth factor-β1 (TGF-β1) was determined in human tenon fibroblasts (HTFs). Cell migration and collagen contraction arrays were used to demonstrate the functionality of silibinin-modulated HTFs. ELISA analysis was used to determine the effect of silibinin on the release of type 1 collagen and connective tissue growth factor (CTGF). The effect of silibinin on the activation of the TGF-β receptor-related pathway was evaluated by Western blotting. A rabbit model of trabeculectomy was established to assess the effect of silibinin in vivo. TGF-β1 elevated the expression of α-SMA and vimentin in HTFs; this elevation was inhibited by silibinin. TGF-β1 increased cell migration and collagen contraction of HTFs, which were also suppressed by silibinin. The production of both CTGF and type 1 collagen in TGF-β1-treated HTFs was inhibited by silibinin. The effects of silibinin on TGF-β1-stimulated HTFs were mediated via the down-regulation of TGF-β receptor-related SMAD signalling pathways. In the rabbit model of trabeculectomy, silibinin increased the period of decreasing intraocular pressure after trabeculectomy and reduced the production of collagen and α-SMA at the site of blebs in vivo. Silibinin inhibited the TGF-β receptor-related signalling pathway in TGF-β-treated HTFs and several of the downstream events associated with myofibroblast transdifferentiation. Silibinin also improved the outcome of trabeculectomies by reducing the fibrotic response in the bleb tissue in vivo. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts.

    PubMed

    Zhang, Yang; Lin, Zhe; Foolen, Jasper; Schoen, Ingmar; Santoro, Alberto; Zenobi-Wong, Marcy; Vogel, Viola

    2014-11-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis. Copyright © 2014. Published by Elsevier B.V.

  8. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue.

    PubMed

    Jakobsen, Rune B; Shahdadfar, Aboulghassem; Reinholt, Finn P; Brinchmann, Jan E

    2010-10-01

    Treatment of focal lesions of the articular cartilage of the knee using chondrocytes in a hyaluronic acid (HA) scaffold is already being investigated in clinical trials. An alternative may be to use mesenchymal stem cells (MSC). We have compared articular chondrocytes with MSC from human bone marrow (BM) and adipose tissue (AT), all cultured in HA scaffolds, for their ability to express genes and synthesize proteins associated with chondrogenesis. The cells were expanded in monolayer cultures. After seeding into the scaffold, the chondrocytes were maintained in medium, while the two MSC populations were given a chondrogenic differentiation medium. Chondrogenesis was assessed by real-time RT-PCR for chondrocyte-associated genes, by immunohistochemistry and by ELISA for collagens in the supernatant. Redifferentiation of the dedifferentiated chondrocytes in the HA scaffold was shown by a modest increase in type II collagen mRNA (COL2A1) and reduction in COL1A1. BM-MSC expressed 600-fold higher levels of COL2A1 than chondrocytes after 3 weeks in the scaffold. The levels of aggrecan (AGC1) and COL1A1 were similar for chondrocyte and BM-MSC scaffold cultures, while COL10A1 was higher in the BM-MSC. AT-MSC expressed levels of COL2A1 and COL1A1 similar to chondrocytes, but less AGC1 and COL10A1. Surprisingly, little collagen II protein was observed in the scaffold. Instead, collagen II was found in the culture medium. Chondrogenesis in HA scaffolds was more efficient using BM-MSC than AT-MSC or chondrocytes. Some of the secreted collagen II escaped entrapment in the extracellular space and was detected in the culture medium.

  9. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production.

    PubMed

    Owida, H A; De Las Heras Ruiz, T; Dhillon, A; Yang, Y; Kuiper, N J

    2017-12-01

    Adult articular chondrocytes are surrounded by a pericellular matrix (PCM) to form a chondron. The PCM is rich in hyaluronan, proteoglycans, and collagen II, and it is the exclusive location of collagen VI in articular cartilage. Collagen VI anchors the chondrocyte to the PCM. It has been suggested that co-culture of chondrons with mesenchymal stromal cells (MSCs) might enhance extracellular matrix (ECM) production. This co-culture study investigates whether MSCs help to preserve the PCM and increase ECM production. Primary bovine chondrons or chondrocytes or rat MSCs were cultured alone to establish a baseline level for ECM production. A xenogeneic co-culture monolayer model using rat MSCs (20, 50, and 80%) was established. PCM maintenance and ECM production were assessed by biochemical assays, immunofluorescence, and histological staining. Co-culture of MSCs with chondrons enhanced ECM matrix production, as compared to chondrocyte or chondron only cultures. The ratio 50:50 co-culture of MSCs and chondrons resulted in the highest increase in GAG production (18.5 ± 0.54 pg/cell at day 1 and 11 ± 0.38 pg/cell at day 7 in 50:50 co-culture versus 16.8 ± 0.61 pg/cell at day 1 and 10 ± 0.45 pg/cell at day 7 in chondron monoculture). The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI. Together, this implies that MSCs directly or indirectly inhibited HtrA1 activity and the co-culture of MSCs with chondrons enhanced ECM synthesis and the preservation of the PCM.

  10. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    PubMed

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  11. Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice

    PubMed Central

    2013-01-01

    Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542

  12. Filamin A regulates the organization and remodeling of the pericellular collagen matrix.

    PubMed

    Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A

    2016-10-01

    Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.

  13. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing.

    PubMed

    Ramanathan, Giriprasath; Muthukumar, Thangavelu; Tirichurapalli Sivagnanam, Uma

    2017-11-05

    Exploring the importance of nanofibrous scaffold with traditionally important medicine as a wound dressing material prevents infection and aids in faster healing of wounds. In the present study, the Collagen (COL) from the marine fish skin was extracted and employed for coating the Poly(3-hydroxybutyric acid) (P)-Gelatin (G) nanofibrous scaffold with a bioactive Coccinia grandis extract (CPE) fabricated through electrospinning. Further, the fabricated collagen coated nanofibrous scaffold (PG-CPE-COL) applied to the experimental wound of rats and the wound healing was analyzed with by physiochemical and biological techniques. The increased level of hydroxyproline, hexosamine and uronic acid was observed in PG-CPE-COL treated than the other groups. The CPE and collagen in the nanofibrous scaffold accelerates the wound healing and thereby reduced the inflammation caused by the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in wound healing. The nanofibrous scaffold has influenced the expression of various growth factors such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor (TGF-β). In addition, the PG-CPE-COL nanofibrous scaffold increases the deposition of collagen synthesis and accelerates reepithelialization. Thus, the results suggest that the collagen coated nanofibrous scaffold with bioactive traditional medicine enhanced the faster healing of wound. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cadherin Composition and Multicellular Aggregate Invasion In Organotypic Models of Epithelial Ovarian Cancer Intraperitoneal Metastasis

    PubMed Central

    Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon

    2017-01-01

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis. PMID:28628116

  15. Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts.

    PubMed

    Galicka, Anna; Krętowski, Rafał; Nazaruk, Jolanta; Cechowska-Pasko, Marzanna

    2014-09-01

    The collagen metabolism alterations triggered by reactive oxygen species are involved in the development of various connective tissue diseases and skin aging. This study was designed to examine whether (E)-anethole possesses a protective effect on H2O2-induced alterations in collagen metabolism as well as whether it can prevent apoptosis in human skin fibroblasts. In cells treated with 300 µM H₂O₂, a decrease in collagen biosynthesis of 54% was observed. Pretreatment of cells with 0.5 µM anethole for 1 h completely prevented this alteration. Changes at the protein level positively correlated with alterations of type I collagen mRNA expression. We have shown that H2O2 caused increase in the activity of MMP-2 and MMP-9 as well as that an increase in MMP-2 activity can contribute to the 8% decrease in the amount of collagen secreted into the medium. The most efficient suppression of these changes was observed in the presence of 0.5 µM of anethole. At 10 µM, in addition to suppression, an inhibitory effect of anethole on MMP-9 activity was documented. Additionally, the 60% H₂O₂-induced decrease in cell viability was suppressed by 1 µM of anethole and a 4-fold increase in cell apoptosis was suppressed by 0.5 µM of anethole. Our results suggest that anethole, which is a small lipophilic and non-toxic molecule with the ability to prevent H₂O₂-induced collagen metabolism alterations and apoptosis in human skin fibroblasts, would prove useful in the development of effective agents in pharmacotherapy of oxidative stress-related skin diseases.

  16. [Expression of collagen and elastin fibers in the rectum of patients with obstructed defecation syndrome and its significance].

    PubMed

    Li, Juan; Lin, Hongcheng; Ren, Donglin

    2015-12-01

    To detect the expression of collagen and elastin fibers in the rectum of patients with obstructive defecation syndrome (ODS), and to explore the possible role of these fibers in the pathogenesis of ODS. The rectum specimens of 20 patients with ODS were collected. These patients had undergone stapled transanal rectal resection (STARR) surgery in our hospital since 2012. Full-thickness rectal specimens were stained with Masson and EVG staining to show collagen and elastin fibers. As the control, rectum specimens of 20 patients with severe prolapsed hemorrhoids also undergoing STARR surgery in our hospital during the same period were collected. Masson staining showed that the structure of collagen fibers in submucosa was slender, area decreased [(13.88±7.02)% vs. (30.98±3.46)%, P<0.01], and the expression level was significantly lower in ODS group compared with control group. EVG staining also showed that collagen fiber area of ODS patients was reduced compared with control group [(17.18±7.24)% vs. (27.04±9.65)%, P<0.01]. Meanwhile EVG staining revealed that elastic fibers were fragmented in ODS group and the expression level was lower compared with control group [(1.20±1.39)% vs. (1.47±1.06)%], whereas the difference was not statistically significant(P>0.05). The expression level of collagen fibers in patients with ODS is significantly reduced, which may play an important role in the pathogenesis of ODS.

  17. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    PubMed

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  18. Calcium alginate enhances wound healing by up-regulating the ratio of collagen types I/III in diabetic rats

    PubMed Central

    Wang, Tao; Gu, Qisheng; Zhao, Jun; Mei, Jiacai; Shao, Mingzhe; Pan, Ye; Zhang, Jian; Wu, Haisheng; Zhang, Zhen; Liu, Fang

    2015-01-01

    Calcium alginate has been proved to favor the skin ulcer healing and collagen synthesis was a critical factor for the wound closure. The present study was to elucidate the mechanism of calcium alginate on the diabetes skin ulceration. Calcium alginate dressing was applied daily on the full-thickness exercising wound created on the back of diabetic rat model as Alg-group (n=6), and the vaseline dressing was used as control (n=6). Rats were respectively sacrificed and the wound tissues were removed and used for the evaluation of various biochemical analysis contained collagen (type I and III) by Western blotting and hydroxyproline level changes by ELISA assay at 3 d, 7 d and 14 d after wounding. The expression of skin collagen I in Alg-group was enhanced from day 3 (0.66±0.25 vs. 0.42±0.09, P<0.05) to day 14 (1.09±0.14 vs. 0.78±0.16, P<0.05). However, no significant difference of collagen III expression was found between two groups during wound healing (P>0.05). And the ratio of collagen I/III in Alg-group was greater than that of Vas-group at day 7 (1.07±0.31 vs. 0.77±0.11, P<0.05) and 14 (1.18±0.30 vs. 0.83±0.14, P<0.05). The hydroxyproline level in skin homogenate of Alg-group was higher than that of Vas-group from day 3 (30.29±0.92 ng/ml vs. 27.52±0.83 ng/ml, P<0.05) to day 14 (89.58±4.97 ng/ml vs. 79.30±4.42 ng/ml, P<0.05). Calcium alginate accelerates the process of wound healing through improving type I collagen synthesis and increasing ratio of collagen I/III in diabetic rats. PMID:26261545

  19. viking: identification and characterization of a second type IV collagen in Drosophila.

    PubMed

    Yasothornsrikul, S; Davis, W J; Cramer, G; Kimbrell, D A; Dearolf, C R

    1997-10-01

    We have taken an enhancer trap approach to identify genes that are expressed in hematopoietic cells and tissues of Drosophila. We conducted a molecular analysis of two P-element insertion strains that have reporter gene expression in embryonic hemocytes, strain 197 and vikingICO. This analysis has determined that viking encodes a collagen type IV gene, alpha2(IV). The viking locus is located adjacent to the previously described DCg1, which encodes collagen alpha1(IV), and in the opposite orientation. The alpha2(IV) and alpha1(IV) collagens are structurally very similar to one another, and to vertebrate type IV collagens. In early development, viking and DCg1 are transcribed in the same tissue-specific pattern, primarily in the hemocytes and fat body cells. Our results suggest that both the alpha1 and alpha2 collagen IV chains may contribute to basement membranes in Drosophila. This work also provides the foundation for a more complete genetic dissection of collagen type IV molecules and their developmental function in Drosophila.

  20. Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression.

    PubMed

    Eghbali, M; Weber, K T

    1990-07-17

    The extracellular matrix of the myocardium contains an elaborate structural matrix composed mainly of fibrillar types I and III collagen. This matrix is responsible for the support and alignment of myocytes and capillaries. Because of its alignment, location, configuration and tensile strength, relative to cardiac myocytes, the collagen matrix represents a major determinant of myocardial stiffness. Cardiac fibroblasts, not myocytes, contain the mRNA for these fibrillar collagens. In the hypertrophic remodeling of the myocardium that accompanies arterial hypertension, a progressive structural and biochemical remodeling of the matrix follows enhanced collagen gene expression. The resultant significant accumulation of collagen in the interstitium and around intramyocardial coronary arteries, or interstitial and perivascular fibrosis, represents a pathologic remodeling of the myocardium that compromises this normally efficient pump. This report reviews the structural nature, biosynthesis and degradation of collagen in the normal and hypertrophied myocardium. It suggests that interstitial heart disease, or the disproportionate growth of the extracellular matrix relative to myocyte hypertrophy, is an entity that merits greater understanding, particularly the factors regulating types I and III collagen gene expression and their degradation.

  1. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.

    PubMed

    Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2018-04-19

    In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.

  2. Pathogenesis of mitral valve disease in mucopolysaccharidosis VII dogs.

    PubMed

    Bigg, Paul W; Baldo, Guilherme; Sleeper, Meg M; O'Donnell, Patricia A; Bai, Hanqing; Rokkam, Venkata R P; Liu, Yuli; Wu, Susan; Giugliani, Roberto; Casal, Margret L; Haskins, Mark E; Ponder, Katherine P

    2013-11-01

    Mucopolysaccharidosis VII (MPS VII) is due to the deficient activity of β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiovascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed. Electron microscopy demonstrated that collagen fibrils were of normal diameter, but failed to align into large parallel arrays. mRNA analysis demonstrated a modest reduction in the expression of genes that encode collagen or collagen-associated proteins such as the proteoglycan decorin which helps collagen fibrils assemble, and a marked increase for genes that encode proteases such as cathepsins. Indeed, enzyme activity for cathepsin B (CtsB) was 19-fold normal. MPS VII dogs that received neonatal intravenous injection of a gamma retroviral vector had an improved signal for structurally-intact collagen, and reduced CtsB activity relative to that seen in untreated MPS VII dogs. We conclude that MR in untreated MPS VII dogs was likely due to abnormalities in MV collagen structure. This could be due to upregulation of enzymes that degrade collagen or collagen-associated proteins, to the accumulation of GAGs that compete with proteoglycans such as decorin for binding to collagen, or to other causes. Further delineation of the etiology of abnormal collagen structure may lead to treatments that improve biomechanical properties of the MV and other tissues. © 2013.

  3. Pathogenesis of Mitral Valve Disease in Mucopolysaccharidosis VII Dogs

    PubMed Central

    Bigg, Paul W.; Baldo, Guilherme; Sleeper, Meg M.; O'Donnell, Patricia A.; Bai, Hanqing; Rokkam, Venkata R.P.; Liu, Yuli; Wu, Susan; Giugliani, Roberto; Casal, Margret L.; Haskins, Mark E.; Ponder, Katherine P.

    2013-01-01

    Mucopolysaccharidosis VII (MPS VII) is due to deficient activity of β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiavascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed. Electron microscopy demonstrated that collagen fibrils were of normal diameter, but failed to align into large parallel arrays. mRNA analysis demonstrated a modest reduction in the expression of genes that encode collagen or collagen-associated proteins such as the proteoglycan decorin which helps collagen fibrils assemble, and a marked increase for genes that encode proteases such as cathepsins. Indeed, enzyme activity for cathepsin B (CtsB) was 19-fold normal. MPS VII dogs that received neonatal intravenous injection of a gamma retroviral vector had an improved signal for structurally-intact collagen, and reduced CtsB activity relative to that seen in untreated MPS VII dogs. We conclude that MR in untreated MPS VII dogs was likely due to abnormalities in MV collagen structure. This could be due to upregulation of enzymes that degrade collagen or collagen-associated proteins, to the accumulation of GAGs that compete with proteoglycans such as decorin for binding to collagen, or to other causes. Further delineation of the etiology of abnormal collagen structure may lead to treatments that improve biomechanical properties of the MV and other tissues. PMID:23856419

  4. Rosmarinic acid induces rabbit articular chondrocyte differentiation by decreases matrix metalloproteinase-13 and inflammation by upregulating cyclooxygenase-2 expression.

    PubMed

    Eo, Seong-Hui; Kim, Song Ja

    2017-09-18

    Matrix metalloproteinases (MMPs) are known to play an important role in the degradation of the extracellular matrix and the pathological progression of osteoarthritis (OA). The natural polyphenolic compound rosmarinic acid (Ros. A) has been shown to suppress the inhibitory activity of matrix metalloproteinases (MMPs). However, the effects of Ros. A on OA have not been investigated. In the current study, primary articular chondrocytes were cultured from rabbit articular cartilage and treated with Ros. A. Phenotypic characterization was performed by western blotting to assess specific markers, prostaglandin E 2 (PGE 2 ) assays, and alcian blue staining to measure sulfated-proteoglycan production. We report that in rabbit articular chondrocytes, Ros. A increased type II collagen, sulfated-proteoglycan, cyclooxygenase-2 (COX-2), and PGE 2 production in a dose- and time-dependent manner. Furthermore, Ros. A suppressed the expression of MMP-13. In addition, treatment with Ros A activated extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling pathways. Inhibition of MMP-13 enhanced Ros. A-induced type II collagen expression and sulfated-proteoglycan synthesis but COX-2 and PGE 2 production were unchanged. Ros. A-mediated up-regulation of ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which prevented induction of the associated inflammatory response. Inhibition of p38 kinase with SB203580 enhanced the increase in type II collagen expression via Ros. A-mediated down-regulation of MMP-13. Results suggest that ERK-1/2 regulates Ros. A-induced inflammation and that p38 regulates differentiation by inhibiting MMP-13 in rabbit articular chondrocytes.

  5. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells.

    PubMed

    Li, Q S; Meng, F Y; Zhao, Y H; Jin, C L; Tian, J; Yi, X J

    2017-08-01

    This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464-471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2. © 2017 Yi et al.

  6. Discoidin Domain Receptor-1 Deficiency Attenuates Atherosclerotic Calcification and Smooth Muscle Cell-Mediated Mineralization

    PubMed Central

    Ahmad, Pamela J.; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y.; Giachelli, Cecilia M.; Bendeck, Michelle P.

    2009-01-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1−/−;Ldlr−/− and Ddr1+/+;Ldlr−/− mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor α staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1+/+ smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1−/− smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification. PMID:19893047

  7. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization.

    PubMed

    Ahmad, Pamela J; Trcka, Daniel; Xue, Siming; Franco, Christopher; Speer, Mei Y; Giachelli, Cecilia M; Bendeck, Michelle P

    2009-12-01

    Intimal calcification is a feature of advanced atherosclerotic disease that predicts a two- to eightfold increase in the risk of coronary events. Type I collagen promotes vascular smooth muscle cell-mediated calcification, although the mechanism by which this occurs is unknown. The discoidin domain receptor 1 (DDR1) is a collagen receptor that is emerging as a critical mediator of atherosclerosis. To determine whether DDR1 is involved in intimal calcification, we fed male Ddr1(-/-);Ldlr(-/-) and Ddr1(+/+);Ldlr(-/-) mice an atherogenic diet for 6, 12, or 24 weeks. DDR1 deficiency significantly reduced the calcium content of the aortic arch, and microcomputed tomography demonstrated a significant decrease in hydroxyapatite deposition after 24 weeks of atherogenic diet. Reduced calcification was correlated with decreases in macrophage accumulation and tumor necrosis factor alpha staining, suggesting that the reduction in calcification was in part due to decreased inflammation. The chondrogenic markers type II collagen, type X collagen, and Sox-9 were expressed within the mineralized foci. An in vitro assay performed with vascular smooth muscle cells revealed that DDR1 was required for cell-mediated calcification of the matrix, and Ddr1(+/+) smooth muscle cells expressed more alkaline phosphatase activity, whereas Ddr1(-/-) smooth muscle cells expressed elevated levels of mRNA for nucleotide pyrophosphatase phosphodiesterase 1, an inhibitor of tissue mineralization. Taken together, our results demonstrate that DDR1 mediates an important mechanism for atherosclerotic calcification.

  8. [Emodin inhibits the proliferation, transdifferentiation and collagen synthesis of pulmonary fibroblasts].

    PubMed

    Liu, Lijing; Yin, Huiming; He, Jianbin; Xie, Maofeng; Wang, Zaiyan; Xiao, Hua

    2016-07-01

    Objective To explore the effect of emodin on the proliferation, differentiation into myofibroblasts and collagen synthesis of pulmonary fibroblasts and the underlying mechanisms. Methods Human pulmonary fibroblasts MRC-5 were cultured in vitro, then the cells were inoculated with dimethyl sulfoxide (DMSO) added with 0, 10, 20, 40, 80 and 160 μmol/L emodin for 24, 48 and 72 hours. Inhibitory rate of cell proliferation was analyzed by MTT assay. Based on the results of cell proliferation experiment, MRC-5 cells were treated with DMSO (control group) and 40, 80 μmol/L emodin (in DMSO) for 48 hours. Fluorescence real-time quantitative PCR was then used to measure the mRNA expressions of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), a disintegrin-like and metalloproteinase with thrombospondin type 1 motif (ADAMTS-1), collagen type 1 (Col1) and collagen type 3 (Col3). The protein expressions of the above mentioned factors were also measured by Western blotting. Results In a concentration- and time-dependent manner, emodin inhibited MRC-5 cell proliferation. After 48 hours of co-culture, in comparison with control group, the mRNA and protein expression levels of α-SMA, TGF-β1, Col1 and Col3 significantly decreased, while the mRNA and protein expression levels of ADAMTS-1 significantly increased in 40 and 80 μmol/L emodin-treated groups. Moreover, in comparison with 40 μmol/L emodin-treated group, the mRNA and protein expressions of α-SMA, TGF-β1, Col1 and Col3 were significantly downregulated, but ADAMTS-1 mRNA and protein expressions were significantly upregulated in 80 μmol/L emodin-treated group. Conclusion Emodin can block pulmonary fibroblast proliferation and differentiation into myofibroblasts, and reduce the synthesis of Col1 and Col3 by inhibiting TGF-β1/ADAMTS-1 signaling pathway.

  9. Suppression of type I collagen in human scleral fibroblasts treated with extremely low-frequency electromagnetic fields

    PubMed Central

    Wang, Jie; Cui, Jiefeng

    2013-01-01

    Purpose To investigate the expression differences of type I collagen (COL1A1) and its underlying mechanisms in human fetal scleral fibroblasts (HFSFs) that were treated with conditioned medium from retinal pigment epithelial (RPE) cells under extremely low-frequency electromagnetic fields (ELF-EMFs). Methods The ELF-EMFs used in this study were established by slidac and artificial coils. Growth of the treated HFSFs was evaluated by a cell-counting kit-8 assay. The expression of COL1A1 and matrix metalloproteinases-2 (MMP-2) in the treated HFSFs was detected by reverse transcription PCR (RT-PCR) and western blot, and the expression of transforming growth factor-β2 (TGF-β2) and basic fibroblast growth factor-2 (FGF-2) in RPE cells exposed to EMFs was detected by RT-PCR. The expression of COL1A1 and MMP-2 in HFSFs was further confirmed by immunofluorescence staining. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2 also called p44/p42 mitogen-activated protein kinases [MAPK]) and p38 in HFSFs was measured by western blot. Results We found that exposure to ELF-EMFs resulted in a decreased proliferation rate of HFSFs and that addition of RPE supernatant medium could enhance this effect. Compared with that of the control cells, a significant decrease in collagen synthesis was detected in HFSFs under ELF-EMFs. However, the expression of MMP-2 was upregulated, which could be further enhanced via an RPE supernatant additive. The activities of ERK1/2 and p38 were significantly increased in HFSFs exposed to ELF-EMFs, and this effect could be enhanced by RPE supernatant medium additive. Conclusions Our results suggested that ELF-EMFs can inhibit the expression of type I collagen in HFSFs and contribute to the remodeling of the sclera. PMID:23592926

  10. Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis.

    PubMed

    Sassi, Nadia; Gadgadi, Nadia; Laadhar, Lilia; Allouche, Mohamed; Mourali, Slim; Zandieh-Doulabi, Behrouz; Hamdoun, Moncef; Nulend, Jenneke Klein; Makni, Sondès; Sellami, Slaheddine

    2014-02-01

    During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.

  11. Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon.

    PubMed

    Su, Jianmin; Cole, James; Fox, Michael A

    2017-02-01

    Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1 - / - ), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1 - / - brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.

  12. Early Diagnosis and Intervention Strategies for Post-Traumatic Heterotopic Ossification in Severely Injured Extremities

    DTIC Science & Technology

    2014-10-01

    Adipoq, BMP4, Col4a3, IGF2, MyoD1, Smad3); 3-20 fold lower elevation of expression of Col1a1 ; and 3-10 fold higher expression of MMP9 and Spp1...XI, alpha 1 COL1A1 collagen, type I, alpha 1 COL2A1 collagen, type II, alpha 1 COL4A3 collagen, type IV, alpha 3 COMP cartilage oligomeric matrix

  13. Transforming Growth Factor β1 Induces the Expression of Collagen Type I by DNA Methylation in Cardiac Fibroblasts

    PubMed Central

    Pan, Xiaodong; Chen, Zhongpu; Huang, Rong; Yao, Yuyu; Ma, Genshan

    2013-01-01

    Transforming growth factor-beta (TGF-β), a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1) expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs) were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression. PMID:23560091

  14. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids.

    PubMed

    Joshi, Jyotsna; Mahajan, Gautam; Kothapalli, Chandrasekhar R

    2018-04-17

    Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue. © 2018 Wiley Periodicals, Inc.

  15. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma.

    PubMed

    Makino, Katsunari; Jinnin, Masatoshi; Hirano, Ayaka; Yamane, Keitaro; Eto, Mitsuhiko; Kusano, Takamitsu; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2013-04-15

    Systemic and localized scleroderma (SSc and LSc) is characterized by excessive deposition of collagen and tissue fibrosis in the skin. Although they have fundamental common characteristics including autoimmunity, little is known about the exact mechanism that mediates the excessive collagen expression in these disorders. In the current study, we tried to evaluate the possibility that microRNAs (miRNAs) play some roles in the pathogenesis of fibrosis seen in these diseases. miRNA expression patterns were evaluated by miRNA array analysis, real-time PCR, and in situ hybridization. The function of miRNAs in dermal fibroblasts was assessed using miRNA inhibitors, precursors, or protectors. In the mouse model of bleomycin-induced dermal sclerosis, the overexpression of miRNAs was performed by i.p. miRNA injection. We demonstrated let-7a expression was downregulated in SSc and LSc skin both in vivo and in vitro, compared with normal or keloid skin. The inhibition or overexpression of let-7a in human or mouse skin fibroblasts affected the protein expression of type I collagen or luciferase activity of collagen 3'-untranslated region. Also, we found let-7a was detectable and quantitative in the serum and investigated serum let-7a levels in patients with SSc or LSc. let-7a concentration was significantly decreased in these patients, especially in LSc patients. Moreover, we revealed that the intermittent overexpression of let-7a in the skin by i.p. miRNA injection improved the skin fibrosis induced by bleomycin in mice. Investigation of more detailed mechanisms of miRNA-mediated regulation of collagen expression may lead to new therapeutic approaches against SSc and LSc.

  16. The effects of PPARδ agonist and zinc on ovariectomized rats' vagina.

    PubMed

    Takacs, Peter; Jaramillo, Sindy; Zhang, Yanping; Datar, Ram; Williams, Anthony; Olczyk, Joseph; Candiotti, Keith; Medina, Carlos A

    2013-01-01

    This study aimed to measure the effects of peroxisome proliferator-activated receptor-δ (PPARδ) agonist GW501516 (GW) and zinc sulfate (ZS) on ovariectomized rats' vaginal histomorphology and collagen expression. Two weeks after ovariectomy, rats received daily treatment with vaginal suppositories containing placebo, ZS, GW, ZS with GW, or estradiol for 2 weeks. Macroscopic measurements were taken and the midsection of the vagina was used for histology. Immunofluorescence was performed with antibodies against collagen I, III, and anti-actin or collagen I and V and anti-actin. Gene expression analysis of 3 collagen genes was performed by qRT-PCR. Macroscopic measurements revealed that the genital hiatus was narrower in the ZS and ZS with GW groups, and the vagina was significantly longer in the animals treated with GW, ZS with GW, and estradiol compared to the placebo group. Microscopic measurements of the vaginal layers showed that the lamina propria and the vaginal muscularis were significantly thicker in the ZS and ZS with GW group compared to the placebo.The ratio of vaginal Col1a1/Col3a1 mRNA expression was significantly up-regulated by ZS with GW compared to placebo, whereas the ratio of vaginal Col1a1/Col5a1 expression was significantly up-regulated by ZS, GW, and ZS with GW. The ratio of vaginal collagen I/III protein expression was significantly up-regulated by ZS and ZS with GW, whereas the ratio of vaginal collagen I/V expression was significantly up-regulated by estradiol, ZS, and ZS with GW compared to control. Vaginal suppositories containing zinc and PPARδ agonist significantly altered the vagina of ovariectomized rats.

  17. Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space.

    PubMed

    Chen, Yulong; Guo, Houfu; Terajima, Masahiko; Banerjee, Priyam; Liu, Xin; Yu, Jiang; Momin, Amin A; Katayama, Hiroyuki; Hanash, Samir M; Burns, Alan R; Fields, Gregg B; Yamauchi, Mitsuo; Kurie, Jonathan M

    2016-12-09

    Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147-1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space*

    PubMed Central

    Chen, Yulong; Guo, Houfu; Terajima, Masahiko; Banerjee, Priyam; Liu, Xin; Yu, Jiang; Momin, Amin A.; Katayama, Hiroyuki; Hanash, Samir M.; Burns, Alan R.; Fields, Gregg B.; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2016-01-01

    Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147–1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology. PMID:27803159

  19. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice.

    PubMed

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging.

  20. Dysregulation of collagen production in diabetes following recurrent skin injury: contribution to the development of a chronic wound.

    PubMed

    Caskey, Robert C; Zgheib, Carlos; Morris, Michael; Allukian, Myron; Dorsett-Martin, Wanda; Xu, Junwang; Wu, Wenjie; Liechty, Kenneth W

    2014-01-01

    Recurrent injury has been implicated in the development of chronic diabetic wounds. We have developed a chronic diabetic wound model based upon recurrent injury in diabetic mice. We hypothesized that dysregulation of collagen production at both the mRNA and microRNA levels contributes to the development of chronic diabetic wounds. To test this, both diabetic and nondiabetic mice were made to undergo recurrent injury. Real-time PCR for TGF-β1, SMAD-3, Col1α1, Col3α1, microRNA-25, and microRNA-29a and Western blot for collagen I and III were performed 7 days following each injury. Diabetic wounds displayed decreased collagen at all time points. This was associated with dysregulated collagen production at both the gene and microRNA levels at all time points. Following the final injury, however, diabetic collagen production significantly improved. This appeared to be due to a substantial decrease in both microRNAs as well as an increase in the expression of collagen pathway genes. That dysregulated collagen production progressed throughout the course of wounding suggests that this is one factor contributing to the development of chronic diabetic wounds. Future studies using this model will allow for the determination of other factors that may also contribute to the development and/or persistence of chronic diabetic wounds. © 2014 by the Wound Healing Society.

  1. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  2. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.

    PubMed

    Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael

    2018-03-13

    Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.

  3. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.

    PubMed

    Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad

    2015-11-01

    Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiacmore » fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen formation. ► Aspirin decreases the transcription of angiotensin II type 1 receptor by inhibiting NADPH oxidase–NF-κB pathway. ► The inhibition of angiotensin II type 1 receptor expression may be the basis for reduction in fibroblast growth and collagen formation. ► The effects of aspirin appear to be mediated via its salicylate moiety.« less

  5. Focal Experimental Injury Leads to Widespread Gene Expression and Histologic Changes in Equine Flexor Tendons

    PubMed Central

    Jacobsen, Else; Dart, Andrew J.; Mondori, Takamitsu; Horadogoda, Neil; Jeffcott, Leo B.; Little, Christopher B.; Smith, Margaret M.

    2015-01-01

    It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required. PMID:25837713

  6. In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats.

    PubMed

    Fujiwara, Ken; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2010-12-01

    Type I and III collagens widely occur in the rat anterior pituitary gland and are the main components of the extracellular matrix (ECM). Although ECM components possibly play an important role in the function of the anterior pituitary gland, little is known about collagen-producing cells. Type I collagen is a heterotrimer of two α1(I) chains (the product of the col1a1 gene) and one α2(I) chain (the product of the col1a2 gene). Type III collagen is a homotrimer of α1(III) chains (the product of the col3a1 gene). We used in situ hybridization with digoxigenin-labeled cRNA probes to examine the expression of col1a1, col1a2, and col3a1 mRNAs in the pituitary gland of adult rats. mRNA expression for these collagen genes was clearly observed, and cells expressing col1a1, col1a2, and col3a1 mRNA were located around capillaries in the gland. We also investigated the possible double-staining of collagen mRNA and pituitary hormones, S-100 protein (a marker of folliculo-stellate cells), or desmin (a marker of pericytes). Col1a1 and col3a1 mRNA were identified in desmin-immunopositive cells. Thus, only pericytes produce type I and III collagens in the rat anterior pituitary gland.

  7. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate.

    PubMed Central

    Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.

    1994-01-01

    The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747

  8. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiangtao; Department of Orthopaedics, Yantaishan Hospital, 91 Jiefang Road, Yantai, Shandong 264001; Sun, Bing

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1more » and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.« less

  9. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis.

    PubMed

    Han, Ying; Yue, Lanzhu; Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L; Epling-Burnette, Pearlie K

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs.

  10. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis

    PubMed Central

    Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L.; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs. PMID:28135282

  11. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair.

    PubMed

    Lazarini, Mariana; Bordeaux-Rego, Pedro; Giardini-Rosa, Renata; Duarte, Adriana S S; Baratti, Mariana Ozello; Zorzi, Alessandro Rozim; de Miranda, João Batista; Lenz Cesar, Carlos; Luzo, Ângela; Olalla Saad, Sara Teresinha

    2017-10-01

    Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

  12. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin.

    PubMed

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-09-25

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.

  13. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin

    PubMed Central

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-01-01

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging. PMID:28946661

  14. Reduced Dermatopontin Expression Is a Molecular Link Between Uterine Leiomyomas and Keloids

    PubMed Central

    Catherino, William H.; Leppert, Phyllis C.; Stenmark, Matthew H.; Payson, Mark; Potlog-Nahari, Clariss; Nieman, Lynnette K.; Segars, James H.

    2014-01-01

    Uterine leiomyomas are prevalent estrogen-responsive clonal tumors, but the specific genetic alterations that contribute to their development have not been elucidated. To identify genes involved in the formation of leiomyomas, we used global expression profiling to compare clonal tumors with normal myometrium. Contrary to expectation, genes involved in estrogen action were not differentially expressed between leiomyoma and normal myometrium. Genes encoding extracellular-matrix proteins were prominently featured, suggesting their involvement in formation of a myofibroblast phenotype. Analysis of the extracellular matrix in the leiomyomas revealed a disordered collagen fibril orientation. Expression of the collagen-binding protein dermatopontin was found to be consistently decreased in leiomyoma by both reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time RT-PCR (mean underexpression = 9.41-fold) regardless of leiomyoma size, leiomyoma location, patient race, and patient age. This expression pattern was observed in 11 subjects and a total of 23 leiomyoma: myometrium pairs. Decreased expression of dermatopontin was also associated with keloid formation, a fibrotic disease that shares epidemiologic similarities with leiomyoma. Immunohistochemical studies of leiomyomas and keloids demonstrated reduced levels of dermatopontin in both tissues. In addition, ultrastructural analysis revealed that the orientation of the collagen fibrils in the keloid tissues strongly resembled that in the leiomyomas. Reduction in dermatopontin was associated with an increase in transforming growth factor–β3 (TGFB3) mRNA levels in leiomyomas, whereas other genes involved in dermatopontin signaling were not differentially expressed. These findings suggest that leiomyoma development involves a myofibroblast cell phenotype characterized by dysregulation of genes encoding extracellular-matrix proteins. In particular, decreased expression of dermatopontin represents a molecular link between the leiomyoma and keloid phenotypes. PMID:15139000

  15. Obesity/Type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response

    PubMed Central

    Ackerman, Jessica E.; Geary, Michael B.; Orner, Caitlin A.; Bawany, Fatima

    2017-01-01

    Type II Diabetes (T2DM) dramatically impairs the tendon healing response, resulting in decreased collagen organization and mechanics relative to non-diabetic tendons. Despite this burden, there remains a paucity of information regarding the mechanisms that govern impaired healing of diabetic tendons. Mice were placed on either a high fat diet (T2DM) or low fat diet (lean) and underwent flexor tendon transection and repair surgery. Healing was assessed via mechanical testing, histology and changes in gene expression associated with collagen synthesis, matrix remodeling, and macrophage polarization. Obese/diabetic tendons healed with increased scar formation and impaired mechanical properties. Consistent with this, prolonged and excess expression of extracellular matrix (ECM) components were observed in obese/T2DM tendons. Macrophages are involved in both inflammatory and matrix deposition processes during healing. Obese/T2DM tendons healed with increased expression of markers of pro-inflammatory M1 macrophages, and elevated and prolonged expression of M2 macrophages markers that are involved in ECM deposition. Here we demonstrate that tendons from obese/diabetic mice heal with increased scar formation and increased M2 polarization, identifying excess M2 macrophage activity and matrix synthesis as a potential mechanism of the fibrotic healing phenotype observed in T2DM tendons, and as such a potential target to improve tendon healing in T2DM. PMID:28686669

  16. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate

    PubMed Central

    Wagner, Eric R.; Bravo, Dalibel; Dadsetan, Mahrokh; Riester, Scott M.; Chase, Steven; Westendorf, Jennifer J.; Dietz, Allan B.; van Wijnen, Andre J.; Yaszemski, Michael J.

    2015-01-01

    Purpose: Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer “neoligament” seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. Methods: We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell–cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). Results: AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p < 0.05). Cells had a low baseline expression of ALP and GAG, but increased expression of total collagen when induced by the ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p < 0.01) instead of FBS (p < 0.05). FGF-2 and PL also significantly increased immunostaining of tenascin-C and collagen at 2 and 4 weeks compared with human fibroblasts. Summary: Our results demonstrate that AMSCs proliferate and eventually produce a collagen-rich extracellular matrix on porous PCLF scaffolds. This novel scaffold has potential in stem cell engineering and ligament regeneration. PMID:26413793

  17. Stromal fibroblasts are associated with collagen IV in scar tissues of alkali-burned and lacerated corneas.

    PubMed

    Ishizaki, M; Shimoda, M; Wakamatsu, K; Ogro, T; Yamanaka, N; Kao, C W; Kao, W W

    1997-04-01

    Corneal wound healing frequently leads to the formation of opaque scar tissue. We examined whether stromal fibroblastic cells of injured corneas express collagen IV and contributes to the formation of a basal lamina-like structure. Rabbits were anesthetized, and central corneal alkali burn (8 mm in diameter; 1 M NaOH, 1 min) or laceration (8 mm long) were produced. The injured corneas, which had healed for 1, 7, 21 and 45 days, were subjected to histological and immunohistochemical studies with goat anti-collagen IV antibodies, using light and electron microscopy, and in situ hybridization with an antisense digoxigenin-labeled riboprobe of collagen alpha 1(IV) mRNA. For comparison, twenty-day-old fetal corneas were subjected to immunohistochemical study and transmission electron microscopy (TEM). TEM examinations revealed that the stromal collagenous matrix was organized in orthogonal lamellae during corneal development, whereas that of alkali-burned cornea, which had healed for 3 weeks, was disorganized. The stroma of twenty-day-old fetal cornea was not labeled by the anti-collagen IV antibodies. In contrast, one week after injury, specific collagen IV immunostaining was detected in the injured stroma. As the healing proceeded (21-45 days), the antibodies reacted with fibroblastic cells and the extracellular matrix of scar tissues located in the anterior portion of alkali-burned corneas, as well as the posterior portion of lacerated corneas. The middle portion of the stromal tissues was weakly labeled by the anti-collagen IV antibodies with the exception of the blood vessel wall. Immuno-electron microscopic study showed that collagen IV and fibronectin were closely associated with the fibroblastic cells. In situ hybridization demonstrated that epithelial and endothelial cells and fibroblastic cells in the wounded corneal stroma and retro-corneal membrane expressed alpha 1(IV) mRNA, whereas in normal corneas the expression of alpha 1(IV) mRNA was limited to epithelial and endothelial cells. The enhanced expression of collagen IV by the fibroblastic cells in the stroma of injured corneas is consistent with the notion that they may contribute to the formation of basal lamina-like structures in injured corneas.

  18. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimira, Yoshifumi, E-mail: kimira@josai.ac.jp; Ogura, Kana; Taniuchi, Yuri

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicatemore » that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.« less

  19. Regional differences of tibial and femoral cartilage in the chondrocyte gene expression, immunhistochemistry and composite in different stages of osteoarthritis.

    PubMed

    Lahm, A; Dabravolski, D; Spank, H; Merk, H; Esser, J; Kasch, R

    2017-04-01

    The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive. The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement. 60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically. In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan GAG content and aggrecan Real Time PCR is mainly weak. Tibial and femoral cartilage in contrast to patellar cartilage both are preferential exposed to compressive stresses, but presence of menisci affects the load distribution at the tibial side, which creates varying conditions for the different cartilage surfaces in the knee. As directly measured Poissońs ratio in tibial cartilage is higher but Younǵs modulus is lower than in femoral cartilage, different resulting feedback amplification loops interact with proceeding cartilage damage. The initial loss of aggrecan may support Matrix metalloproteinases (Mmps) in the access to the collagen network and the considerably differing mechanical properties at both joint surfaces result in varying increased synthesis and release of matrix degrading enzymes. The present study has identified a selection of events which reflect the response of cartilage structure and composite, chondrocytes itself and their productivity to changes in mechanical stress depending on the anatomical site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    PubMed

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Collagen type XI alpha1 may be involved in the structural plasticity of the vertebral column in Atlantic salmon (Salmo salar L.).

    PubMed

    Wargelius, A; Fjelldal, P G; Nordgarden, U; Grini, A; Krossøy, C; Grotmol, S; Totland, G K; Hansen, T

    2010-04-01

    Atlantic salmon (Salmo salar L.) vertebral bone displays plasticity in structure, osteoid secretion and mineralization in response to photoperiod. Other properties of the vertebral bone, such as mineral content and mechanical strength, are also associated with common malformations in farmed Atlantic salmon. The biological mechanisms that underlie these changes in bone physiology are unknown, and in order to elucidate which factors might be involved in this process, microarray assays were performed on vertebral bone of Atlantic salmon reared under natural or continuous light. Eight genes were upregulated in response to continuous light treatment, whereas only one of them was upregulated in a duplicate experiment. The transcriptionally regulated gene was predicted to code for collagen type XI alpha1, a protein known to be involved in controlling the diameter of fibrillar collagens in mammals. Furthermore, the gene was highly expressed in the vertebrae, where spatial expression was found in trabecular and compact bone osteoblasts and in the chordoblasts of the notochordal sheath. When we measured the expression level of the gene in the tissue compartments of the vertebrae, the collagen turned out to be 150 and 25 times more highly expressed in the notochord and compact bone respectively, relative to the expression in the trabecular bone. Gene expression was induced in response to continuous light, and reduced in compressed vertebrae. The downregulation in compressed vertebrae was due to reduced expression in the compact bone, while expression in the trabecular bone and the notochord was unaffected. These data support the hypothesis that this gene codes for a presumptive collagen type XI alpha1, which may be involved in the regulatory pathway leading to structural adaptation of the vertebral architecture.

  2. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling.

    PubMed

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-04-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.

  3. [Effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction].

    PubMed

    Tan, Wenqing; Wang, Wei; Zheng, Xuan; Chen, Jiying; Yuan, Xiangning; Zhang, Fangfang; Wang, Shuting; Tao, Lijian

    2018-05-28

    To investigate the effect of fluorofenidone on renal interstitial fibrosis in rats with unilateral ureteral obstruction (UUO) and to observe the effect of fluorofenidone on the expressions of collagen type I (Col I), collagen type III (Col III), α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), platelet derived growth factor (PDGF) in the renal tissues of UUO rats.
 Methods: Male Sprague-Dawley (SD) rats were randomly divided into a sham-operated group, a UUO group, and a flurofenidone group (n=5). UUO model was induced by ligating the left ureter in rats. The rats were treated with 125 mg/(kg.d) fluorofenidone by gastric gavage in the fluorofenidone group at 24 h before the operation, and the rats were treated with the identical dose of 0.5% sodium carboxyl methyl cellulose (CMC-Na) in the other 2 groups. The rats were sacrificed at 14 days after UUO. Pathological changes of the renal tissue were observed by HE and Masson staining, the mRNA expressions of Col I, Col III, α-SMA, PDGF and CTGF were detected by real-time PCR, and the protein expressions of Col I, Col III, PDGF and CTGF were detected by immunohistochemical staining.
 Results: The renal interstitial damage index, relative collagen area and mRNA and protein expressions of Col I and Col III in the renal tissues of the rats in the UUO group significantly increased (P<0.05), and fluorofenidone could reduce these indexes (P<0.05). Compared with the sham-operated group, the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF in the renal tissues of the rats in the UUO group were increased, but fluorofenidone could decrease the protein expressions of α-SMA, PDGF, CTGF and the mRNA expressions of PDGF and CTGF (P<0.05).
 Conclusion: Fluorofenidone (125 mg/kg.d) could attenuate renal interstitial fibrosis through inhibition of fibroblast proliferation, myofibroblastic activation, PDGF and CTGF expression.

  4. Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative (Emdogain®)

    PubMed Central

    Kwon, Yong-Dae; Choi, Hyun-jung; Lee, Heesu; Lee, Jung-Woo; Weber, Hans-Peter

    2014-01-01

    PURPOSE The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD 25 µg/mL, and (3) with EMD 100 µg/mL on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-β1 was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS From MTT assay, HGF showed more proliferation in EMD 25 µg/mL group than control and EMD 100 µg/mL group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD 25 µg/mL group and EMD 100 µg/mL group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-β1 was increased at EMD 100 µg/mL. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD 25 µg/mL. CONCLUSION Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-β1 in high concentration levels. CLINICAL RELEVANCE With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants. PMID:25352963

  5. Osthole Inhibits Proliferation and Induces Catabolism in Rat Chondrocytes and Cartilage Tissue.

    PubMed

    Du, Guoqing; Song, Yi; Wei, Lei; Li, Linghui; Wang, Xuezong; Xu, Qinguang; Zhan, Hongsheng; Cao, Yuelong; Zheng, Yuxin; Ding, Daofang

    2015-01-01

    Cartilage destruction is thought to be the major mediator of osteoarthritis. Recent studies suggest that inhibition of subchrondral bone loss by anti-osteoporosis (OP) drug can protect cartilige erosion. Osthole, as a promising agent for treating osteoporosis, may show potential in treating osteoarthritis. The purpose of this study was to investigate whether Osthole affects the proliferation and catabolism of rat chondrocytes, and the degeneration of cartilage explants. Rat chondrocytes were treated with Osthole (0 μM, 6.25 μM, 12.5 μM, and 25 μM) with or without IL1-β (10ng/ml) for 24 hours. The expression levels of type II collagen and MMP13 were detected by western Blot. Marker genes for chondrocytes (A-can and Sox9), matrix metalloproteinases (MMPs), aggrecanases (ADAMTS5) and genes implicated in extracellular matrix catabolism were evaluated by qPCR. Cell proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA) expression and fluorescence activated cell sorter. Wnt7b/β-catenin signaling was also investigated. Cartilage explants from two-week old SD rats were cultured with IL-1β, Osthole and Osthole plus IL-1β for four days and glycosaminoglycan (GAG) synthesis was assessed with toluidine blue staining and Safranine O/Fast Green FCF staining, collagen type II expression was detected by immunofuorescence. Osthole reduced expression of chondrocyte markers and increased expression of MMP13, ADAMTS5 and MMP9 in a dose-dependent manner. Catabolic gene expression levels were further improved by Osthole plus IL-1β. Osthole inhibited chondrocyte proliferation. GAG synthesis and type II collagen were decreased in both the IL-1β groups and the Osthole groups, and significantly reduced by Osthole plus IL-1β. Our data suggested that Osthole increases the catabolism of rat chondrocytes and cartilage explants, this effect might be mediated through inhibiting Wnt7b/β-catenin pathway. © 2015 S. Karger AG, Basel.

  6. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    PubMed Central

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693

  7. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    NASA Astrophysics Data System (ADS)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  8. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.

    PubMed

    Ahmed, Maqsood; Ramos, Tiago André da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-07

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  9. Tissue-associated self-antigens containing exosomes: Role in allograft rejection.

    PubMed

    Sharma, Monal; Ravichandran, Ranjithkumar; Bansal, Sandhya; Bremner, Ross M; Smith, Michael A; Mohanakumar, T

    2018-06-15

    Exosomes are extracellular vesicles that express self-antigens (SAgs) and donor human leukocyte antigens. Tissue-specific exosomes can be detected in the circulation following lung, heart, kidney and islet cell transplantations. We collected serum samples from patients who had undergone lung (n = 30), heart (n = 8), or kidney (n = 15) transplantations to isolate circulating exosomes. Exosome purity was analyzed by Western blot, using CD9 exosome-specific markers. Tissue-associated lung SAgs, collagen V (Col-V) and K-alpha 1 tubulin (Kα1T), heart SAgs, myosin and vimentin, and kidney SAgs, fibronectin and collagen IV (Col-IV), were identified using western blot. Lung transplant recipients diagnosed with bronchiolitis obliterans syndrome had exosomes with higher expression of Col-V (4.2-fold) and Kα1T (37.1-fold) than stable. Exosomes isolated from heart transplant recipients diagnosed with coronary artery vasculopathy had a 3.9-fold increase in myosin and a 4.7-fold increase in vimentin compared with stable. Further, Kidney transplant recipients diagnosed with transplant glomerulopathy had circulating exosomes with a 2-fold increased expression of fibronectin and 2.5-fold increase in Col-IV compared with stable. We conclude that circulating exosomes with tissue associated SAgs have the potential to be a noninvasive biomarker for allograft rejection. Copyright © 2018. Published by Elsevier Inc.

  10. Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy

    PubMed Central

    Taubenberger, Anna; Cisneros, David A.; Friedrichs, Jens; Puech, Pierre-Henri; Muller, Daniel J.

    2007-01-01

    We have characterized early steps of α2β1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of α2β1 as a collagen type I receptor, α2β1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas α2β1-negative CHO wild-type cells adhered poorly. Probing CHO-A2 cell detachment forces over a contact time range of 600 s revealed a nonlinear adhesion response. During the first 60 s, cell adhesion increased slowly, and forces associated with the smallest rupture events were consistent with the breakage of individual integrin–collagen bonds. Above 60 s, a fraction of cells rapidly switched into an activated adhesion state marked by up to 10-fold increased detachment forces. Elevated overall cell adhesion coincided with a rise of the smallest rupture forces above the value required to break a single-integrin–collagen bond, suggesting a change from single to cooperative receptor binding. Transition into the activated adhesion mode and the increase of the smallest rupture forces were both blocked by inhibitors of actomyosin contractility. We therefore propose a two-step mechanism for the establishment of α2β1-mediated adhesion as weak initial, single-integrin–mediated binding events are superseded by strong adhesive interactions involving receptor cooperativity and actomyosin contractility. PMID:17314408

  11. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs.

    PubMed

    Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E

    2010-06-01

    Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.

  12. Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure.

    PubMed

    Heyland, Jan; Wiegandt, Katharina; Goepfert, Christiane; Nagel-Heyer, Stefanie; Ilinich, Eduard; Schumacher, Udo; Pörtner, Ralf

    2006-10-01

    Since articular cartilage is subjected to varying loads in vivo and undergoes cyclic hydrostatic pressure during periods of loading, it is hypothesized that mimicking these in vivo conditions can enhance synthesis of important matrix components during cultivation in vitro. Thus, the influence of intermittent loading during redifferentiation of chondrocytes in alginate beads, and during cartilage formation was investigated. A statistically significant increased synthesis of glycosaminoglycan and collagen type II during redifferentiation of chondrocytes embedded in alginate beads, as well as an increase in glycosaminoglycan content of tissue-engineered cartilage, was found compared to control without load. Immunohistological staining indicated qualitatively a high expression of collagen type II for both cases.

  13. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kairui; Zhang, Sheng; Li, Qianqian

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aimsmore » to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.« less

  14. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen.

    PubMed

    Drechsler, C C; Kunze, A; Kureshi, A; Grobe, G; Reichl, S; Geerling, G; Daniels, J T; Schrader, S

    2017-03-01

    Ocular surface disorders, such as pterygium, cicatricial pemphigoid and external disruptions, can cause severe inflammation, scarring, fornix shortening as well as ankyloblepharon. Current treatments do not resolve these conditions sufficiently. The aim of this study was to evaluate clinical applicability and suitability of plastic compressed collagen to serve as a substrate for the expansion of human conjunctival epithelial cells in order to develop an epithelialized conjunctival substitute for fornix reconstruction. Human conjunctival epithelial cells were expanded on plastic compressed collagen gels. Epithelial cell characteristics were evaluated by haematoxylin and eosin staining, electron microscopy and cytokeratin expression. The expression of putative epithelial progenitor cell markers p63α, ABCG2 and CK15 was assessed by immunostaining. The proliferative capacity and clonal growth of the cells was evaluated before (P0) and after expansion (P1) on the plastic compressed collagen gels by colony forming efficiency assay. The potential clinical applicability of this gel substitutes was evaluated by assessment of their biomechanical properties as well as their surgical handling. Human conjunctival epithelial cells cultured on plastic and plastic compressed collagen gels formed a confluent cell layer and expressed CK19. The cells showed expression of the putative epithelial progenitor cell markers p63α, ABCG2 and CK15 and sustained colony forming ability. The compressed collagen gels showed a high ultimate tensile strength and elasticity and the surgical handling of gels was comparable to amniotic membrane. An epithelialized conjunctival tissue construct on the basis of compressed collagen might therefore be a promising alternative bioartificial tissue substitute for conjunctival reconstruction. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Distribution of pericellular matrix molecules in the temporomandibular joint and their chondroprotective effects against inflammation

    PubMed Central

    Chu, Wern Cui; Zhang, Shipin; Sng, Timothy J; Ong, Yu Jie; Tan, Wen-Li; Ang, Vivien Y; Foldager, Casper B; Toh, Wei Seong

    2017-01-01

    The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) investigate the effects of PCM molecules on chondrocytes against inflammation in osteoarthritis. Four zones (fibrous, proliferating, mature and hypertrophic) of condylar cartilage and three bands (anterior, intermediate and posterior) of disc were analysed by immunohistochemistry for the presence of PCM molecules in rat TMJs. Isolated chondrocytes were pre-treated with PCM molecules before being subjected to interleukin (IL)-1β treatment to stimulate inflammation. The responses of the chondrocytes were analysed using gene expression, nitric oxide release and matrix metalloproteinase (MMP)-13 production measures. Histomorphometric analyses revealed that the highest areal deposition of collagen VI (67.4%), collagen IV (45.7%) and laminin (52.4%) was in the proliferating zone of TMJ condylar cartilage. No significant difference in the distribution of PCM molecules was noted among the three bands of the TMJ disc. All three PCM molecules were expressed intracellularly by chondrocytes cultured in the monolayer. Among the PCM molecules, pre-treatment with collagen VI enhanced cellular proliferation, ameliorated IL-1β-induced MMP-3, MMP-9, MMP-13 and inducible nitric oxide synthase gene expression, and attenuated the downregulation of cartilage matrix genes, including collagen I, aggrecan and cartilage oligomeric matrix protein (COMP). Concurrently, collagen VI pretreatment inhibited nitric oxide and MMP-13 production. Our study demonstrates for the first time the distribution and role of PCM molecules, particularly collagen VI, in the protection of chondrocytes against inflammation. PMID:28282029

  16. Cathepsin S is associated with degradation of collagen I in abdominal aortic aneurysm.

    PubMed

    Klaus, Veronika; Schmies, Fadwa; Reeps, Christian; Trenner, Matthias; Geisbüsch, Sarah; Lohoefer, Fabian; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2018-06-01

    Cathepsins have been described in the pathogenesis of abdominal aortic aneurysm (AAA), their exact role, especially in collagen degradation, is still unclear. The aim of the present study was therefore to analyse relevant cathepsins in human AAA tissue samples in relation to collagen I, III, and their degradation products. Samples from 37 AAA patients obtained from elective open surgical repair and eight healthy non-aneurysmatic aortas from kidney donors were included. Expression of cathepsins B, D, K, L, S, cystatin C, collagen I and III, their degraded products C-Telopeptide of type 1 and 3 collagen (CTX-I, CTX-III), cellular markers for leukocytes (CD45), T cells (CD3), macrophage scavenger receptor-1 (MSR-1), synthetic, and contractile smooth muscle cells (SMCs) (smoothelin: SMTH, collagen I and III, myosin heavy chain: MHC, embryonic smooth muscle myosin heavy chain: SMemb) were determined at messenger RNA (mRNA) level, using SYBRGreen-based quantitative PCR and at protein level using enzyme-linked immunosorbent assay (ELISA). Expression of cathepsins B, D, L, and S at mRNA level was significantly elevated in AAA compared to control aorta (1.7-fold, p = 0.025; 2.5-fold, p = 0.002; 2.6-fold, p = 0.034; and 7.0-fold, p = 0.003). Expression of cathepsin S correlated significantly with leukocytes and macrophages (ρ = 0.398, p = 0.033 and ρ = 0.422, p = 0.020), synthetic SMCs were significantly associated with cathepsins B, D, and L (ρ = 0.522, p = 0.003; ρ = 0.431, p = 0.015 and ρ = 0.467, p = 0.008). At protein level, cathepsins B and S were elevated in AAA compared to controls (5.4-fold, p = 0.001 and 7.3-fold, p < 0.001). Significant correlations were observed between collagen I, its degraded product, and cathepsin S (r = -0.350, p = 0.034 and r = +0.504, p < 0.001). Expression of cathepsin B was associated with SMCs, expression of cathepsin S with inflammatory cells. Particularly cathepsin S was associated with the degradation product of collagen I and thus might be involved in the progression of AAA. Furthermore, cathepsin S correlated with inflammatory cells.

  17. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components.

    PubMed

    Qing, Chang; Wei-ding, Cui; Wei-min, Fan

    2011-04-01

    Chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs). This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.

  18. Suramin, Genistein and Collagen Matrix (DuraGen) for Delayed Adjustment after Strabismus Surgery: Which One is Best?

    PubMed

    Oktem, Caglar; Oto, Sibel; Toru, Serap; Bakar, Coskun; Ozdemir, Handan; Akova, Yonca Aydin

    2016-01-01

    To evaluate the efficacy and safety of suramin, genistein and collagen matrix for the prevention of inflammation, the reduction of fibrosis and the delay in adjustment after strabismus surgery on a rabbit model. By using an adjustable suture technique, a recession of the superior rectus muscle (SRM) was made in 36 eyes of 18 rabbits. Three study groups were created using genistein, suramin and collagen matrix (n = 6 per group). Two control groups utilized dimethyl sulphoxide (DMSO) (n = 6) and balanced salt solution (n = 12). The adjustments and measurements were made on days 2, 7, 14. After enucleation was done on day 21, the degree of inflammation was evaluated quantitatively in histopathological sections and immunohistochemical investigations were performed for tissue expression of cytoplasmic vascular endothelial growth factor (VEGF), MAC 387, TGF-β and bFGF. The adhesions between conjunctiva and SRM were significantly less in the collagen matrix and suramin groups (p = 0.002) and adhesions between the sclera and SRM were considerably reduced in the genistein and DMSO groups (p = 0.006) on day 7. Force exerted for adjustment was significantly less in the collagen matrix and suramin groups on day 14 (p = 0.006). Expression of b-FGF was significantly lower in the conjunctival epithelium in the suramin and genistein groups (p = 0.0001 for both). TGF-β was significantly lower (p = 0.001) in the suramin group and VEGF expression was totally absent. MAC 387 expression was lower in the genistein and suramin groups (p = 0.0001). Suramin, genistein and collagen matrix successfully reduce adhesions, and facilitate adjustment following recession surgery. Both suramin and genistein effectively suppress growth factor expression, while collagen matrix offers the longest time interval for adjustability after strabismus surgery.

  19. Expression of matrix metalloproteinase-2 and metalloproteinase-9 in the skin of dogs with visceral leishmaniasis.

    PubMed

    Jacintho, Ana Paula Prudente; Melo, Guilherme D; Machado, Gisele F; Bertolo, Paulo Henrique Leal; Moreira, Pamela Rodrigues Reina; Momo, Claudia; Souza, Thiago A; Vasconcelos, Rosemeri de Oliveira

    2018-06-01

    The skin is the first organ to be infected by the parasite in canine visceral leishmaniasis. The enzyme matrix metalloproteinase (MMP) acts towards degradation of the extracellular matrix (ECM) and modulation of the inflammatory response against many kinds of injuries. The aims of this study were to evaluate the expression of MMP-2 and MMP-9 through immunohistochemistry and zymography on the skin (muzzle, ears, and abdomen) of dogs that were naturally infected by Leishmania spp. and to compare these results with immunodetection of the parasite and with alterations to the dermal ECM. Picrosirius red staining was used to differentiate collagen types I and III in three regions of the skin. The parasite load, intensity of inflammation, and production of MMP-2 (latent) and MMP-9 (active and latent) were higher in the ear and muzzle regions. MMP-9 (active) predominated in the infected group of dogs and its production was significantly different to that of the control group. Macrophages, lymphocytes, and plasma cells predominated in the dermal inflammation and formed granulomas in association with degradation of mature collagen (type I) and with discrete deposition of young collagen (type III). This dermal change was more pronounced in dogs with high parasite load in the skin. Therefore, it was concluded that the greater parasite load and intensity of inflammation in the skin led consequently to increased degradation of mature collagen, caused by increased production of MMPs, particularly active MMP-9, in dogs with visceral leishmaniasis. This host response profile possibly favors systemic dissemination of the parasite.

  20. Enhancement of matrix metalloproteinases 2 and 9 accompanied with neurogenesis following collagen glycosaminoglycan matrix implantation after surgical brain injury.

    PubMed

    Hsu, Wei-Cherng; Yu, Chun-Hsien; Kung, Woon-Man; Huang, Kuo-Feng

    2018-06-01

    Surgical brain injury may result in irreversible neurological deficits. Our previous report showed that partial regeneration of a traumatic brain lesion is achieved by implantation of collagen glycosaminoglycan (CGM). Matrix metalloproteinases (MMPs) may play an important role in neurogenesis but there is currently a lack of studies displaying the relationship between the stimulation of MMPs and neurogenesis after collagen glycosaminoglycan implantation following surgical brain trauma. The present study was carried out to further examine the expression of MMP2 and MMP9 after implantation of collagen glycosaminoglycan (CGM) following surgical brain trauma. Using the animal model of surgically induced brain lesion, we implanted CGM into the surgical trauma. Rats were thus divided into three groups: (1) sham operation group: craniotomy only; (2) lesion (L) group: craniotomy + surgical trauma lesion; (3) lesion + CGM (L + CGM) group: CGM implanted following craniotomy and surgical trauma lesion. Cells positive for SOX2 (marker of proliferating neural progenitor cells) and matrix metalloproteinases (MMP2 and MMP9) in the lesion boundary zone were assayed and analyzed by immunofluorescence and ELISA commercial kits, respectively. Our results demonstrated that following implantation of CGM after surgical brain trauma, significant increases in MMP2 + /SOX2 + cells and MMP9 + /SOX2 + cells were seen within the lesion boundary zone in the L + CGM group. Tissue protein concentrations of MMP2 and MMP9 also increased after CGM scaffold implantation. These findings suggest that implantation of a CGM scaffold alone after surgical brain trauma can enhance the expression of MMP2 and MMP9 accompanied by neurogenesis.

  1. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation.

    PubMed

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-06-01

    Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.

  2. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation

    PubMed Central

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-01-01

    Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. PMID:28450292

  3. Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra.

    PubMed

    Deutzmann, R; Fowler, S; Zhang, X; Boone, K; Dexter, S; Boot-Handford, R P; Rachel, R; Sarras, M P

    2000-11-01

    The body wall of hydra (a member of the phylum Cnidaria) is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Previous studies have established that cell-ECM interactions are important for morphogenesis and cell differentiation in this simple metazoan. The ECM of hydra is particularly interesting because it represents a primordial form of matrix. Despite progress in our understanding of hydra ECM, we still know little about the nature of hydra collagens. In the current study we provide a molecular, biochemical and functional analysis of a hydra fibrillar collagen that has similarity to vertebrate type I and type II collagens. This fibrillar collagen has been named hydra collagen-I (Hcol-I) because of its structure and because it is the first ECM collagen to be identified in hydra. It represents a novel member of the collagen family. Similar to vertebrate type I and II collagens, Hcol-I contains an N-terminal propeptide-like domain, a triple helical domain containing typical Gly-X-Y repeats and a C-terminal propeptide domain. The overall identity to vertebrate fibrillar collagens is about 30%, while the identity of the C-terminal propeptide domain is 50%. Because the N-terminal propeptide domain is retained after post-translational processing, Hcol-I does not form thick fibers as seen in vertebrates. This was confirmed using transmission electron microscopy to study rotary shadow images of purified Hcol-I. In addition, absence of crucial lysine residues and an overall reduction in proline content, results in reduced crosslinking of fibrils and increased flexibility of the molecule, respectively. These structural changes in Hcol-I help to explain the flexible properties of hydra ECM. Immunocytochemical studies indicate that Hcol-I forms the 10 nm fibrils that comprise the majority of molecules in the central fibrous zone of hydra ECM. The central fibrous zone resides between the two subepithelial zones where hydra laminin is localized. While previous studies have shown that basal lamina components like laminin are expressed by the endoderm, in situ hybridisation studies show that Hcol-I mRNA expression is restricted to the ectoderm. Hcol-I expression is upregulated during head regeneration, and antisense studies using thio-oligonucleotides demonstrated that blocking the translation of Hcol-I leads to a reversible inhibition of head morphogenesis during this regenerative process. Taken in total, the data presented in this study indicate that Hcol-I is required for morphogensis in hydra and represents a novel fibrillar collagen whose structural characteristics help to explain the unique biophysical properties of hydra ECM. Interestingly, the structure of Hcol-I mimics what is seen in Ehlers-Danlos syndrome type VII in humans; an inherited pathological condition that leads to joint and skin abnormalities. Hcol-I therefore illustrates an adaptive trait in which the normal physiological situation in hydra translates into a pathological condition in humans.

  4. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice

    PubMed Central

    Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil

    2014-01-01

    BACKGROUND/OBJECTIVES Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression. PMID:25110559

  5. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice.

    PubMed

    Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil; Hwang, Jae-Kwan

    2014-08-01

    Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression.

  6. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2010-07-01

    We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.

  7. Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma.

    PubMed

    Januskevicius, Andrius; Vaitkiene, Simona; Gosens, Reinoud; Janulaityte, Ieva; Hoppenot, Deimante; Sakalauskas, Raimundas; Malakauskas, Kestutis

    2016-06-13

    Recent studies have suggested that eosinophils may have a direct effect on airway smooth muscle cells (ASMC), causing their proliferation in patients with asthma, but the precise mechanism of the interaction between these cells remains unknown. We propose that changes in Wnt signaling activity and extracellular matrix (ECM) production may help explain these findings. Therefore, the aim of this study was to investigate the effect of eosinophils from asthmatic and non-asthmatic subjects on Wnt-5a, transforming growth factor β1 (TGF-β1), and ECM protein (fibronectin and collagen) gene expression and ASMC proliferation. A total of 18 subjects were involved in the study: 8 steroid-free asthma patients and 10 healthy subjects. Peripheral blood eosinophils were isolated using centrifugation and magnetic separation. An individual co-culture of eosinophils with human ASMC was prepared for each study subject. Adhesion of eosinophils to ASMC (evaluated by assaying eosinophil peroxidase activity) was determined following various incubation periods (30, 45, 60, 120, and 240 min). The expression of Wnt-5a, TGF-β1, and ECM protein genes in ASMC was measured using quantitative real-time polymerase chain reaction (PCR) after 24 h of co-culture. Proliferation of ASMC was measured using the Alamar blue method after 48 h and 72 h of co-culture with eosinophils. Eosinophils from asthmatic subjects demonstrated increased adhesion to ASMC compared with eosinophils from healthy subjects (p < 0.05) in vitro. The expression of Wnt-5a, TGF-β1, collagen, and fibronectin genes in ASMC was significantly higher after 24 h of co-culture with eosinophils from asthmatic subjects, while co-culture of ASMC with eosinophils from healthy subjects increased only TGF-β1 and fibronectin gene expression. ASMC proliferation was augmented after co-culture with eosinophils from asthma patients compared with co-culture with eosinophils from healthy subjects (p < 0.05). Eosinophils enhance Wnt-5a, TGF-β1, fibronectin, and collagen gene expression in ASMC and promote proliferation of these cells in asthma. ClinicalTrials.gov Identifier: NCT02648074 .

  8. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  9. Involvement of CD147 in alveolar bone remodeling and soft tissue degradation in experimental periodontitis.

    PubMed

    Yang, D; Liu, R; Liu, L; Liao, H; Wang, C; Cao, Z

    2017-08-01

    The objective of this study was to investigate the possible roles of clusters of differentiation 147 (CD147) in bone resorption and mineralization through the bone markers of bone sialoprotein, osteocalcin, osteopontin and alkaline phosphatase (ALP), trabecular structure of alveolar bone and number of osteoclasts. We also investigated the effects of CD147 on inflammation and collagen breakdown. Twenty-eight male Wistar rats were randomly divided into four groups of seven animals each: healthy group, periodontitis group, periodontitis + saline group and periodontitis + anti-CD147 groups. Hematoxylin and eosin staining were used for histological assessment. Alveolar bone loss and trabecula microstructure were evaluated using micro-computed tomography. Collagen fiber breakdown was assessed via picrosirius red staining. Tartrate-resistant acid phosphatase staining was conducted for osteoclast analysis. The expressions of ALP, bone sialoprotein, osteocalcin and osteopontin were evaluated using immunohistochemistry. Anti-CD147 treatment significantly inhibited alveolar bone loss and osteoclastogenesis, and improved the bone volume/tissue volume, and the trabecular thickness of alveolar bone. Histological staining revealed that anti-CD147 significantly reduced the infiltration of inflammation and limited the fractions of degraded areas in collagen fibers. The expression of bone markers (ALP, bone sialoprotein, osteocalcin and osteopontin) was enhanced by anti-CD147 treatment. The results of the anti-CD147 treatment indicate that CD147 was involved in alveolar bone mineralization, osteoclastogenesis and trabecular microstructure. The inhibition of CD147 could increase the expression level of osteogenic markers, alveolar bone crest height and suppressed collagen fiber degradation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Toll like receptor 4: A novel signaling pathway during renal fibrogenesis

    PubMed Central

    Campbell, Matthew T.; Hile, Karen L; Zhang, Hongji; Asanuma, Hiroshi; Vanderbrink, Brian A.; Rink, Richard R.; Meldrum, Kirstan K.

    2010-01-01

    Background The toll like receptor (TLR) family serves an important regulatory role in the innate immune system, and recent evidence has implicated TLR signaling in the pro-inflammatory response of a variety of endogenous and exogenous stimuli within the kidney. The role of TLR signaling in fibrotic renal injury; however, remains unknown. Materials and Methods C3H/HeJ TLR4 hyporesponsive mice (TLR4Lps-d) or WT controls (C3H/Heou/J) underwent either sham operation or 1 week of unilateral ureteral obstruction (UUO). The kidneys were harvested and tissues were analyzed for TLR4 expression (Western Blot; RTPCR), E-cadherin and α-SMA expression (Western Blot), fibroblast accumulation (fibroblast specific protein (FSP-1+) staining), renal fibrosis (collagen I RTPCR, total collagen assay, Masson's trichrome staining), cytokine gene expression (tumor necrosis factor-α (TNF-α) and transforming growth factor-beta1 (TGF-β1) RTPCR), and pSMAD2 and integrin α1 expression (Western Blot). Results Mice with intact TLR4 signaling demonstrate a significant increase in TLR4 expression, α-SMA expression, fibroblast accumulation, collagen deposition, and interstitial fibrosis, and a significant decrease in E-cadherin expression in response to UUO. TLR4 deficient mice; however, exhibit a significant reduction in obstruction-induced α-SMA expression, fibroblast accumulation, and renal fibrosis, with preservation of E-cadherin expression. TLR4's influence on fibroblast accumulation and renal fibrosis occurred independent of any alterations in TNF-α,TGF-β1, or pSMAD2 expression, but did involve alterations integrin α1 expression. Conclusion TLR4 appears to be a significant mediator of fibrotic renal injury. While TLR4 signaling is recognized as a critical component of the innate immune response, this is the first study to demonstrate a novel role for TLR4 in renal fibroblast accumulation and tubulointerstitial fibrosis. PMID:20089260

  11. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism.

  12. Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model

    PubMed Central

    Wong, Kayleigh; Trudel, Guy; Laneuville, Odette

    2018-01-01

    Objectives A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren’s and Peyronie’s contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model. Materials and methods Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III. Results/conclusion Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° (p-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining (p<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged (p>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM. PMID:29317799

  13. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    PubMed

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  14. Inducing articular cartilage phenotype in costochondral cells

    PubMed Central

    2013-01-01

    Introduction Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source. Methods In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming growth factor β1 (TGF-β1), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix content, superficial zone protein (SZP), and mechanical properties. Results Hyaline articular cartilage was generated, demonstrating the presence of type II collagen and SZP, and the absence of type I collagen. TGF-β1 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by 75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-β1 with C-ABC synergistically increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were observed between C-ABC/TGF-β1 dual treatment and HP/C-ABC/TGF-β1. Conclusions Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded, redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical properties, and induced SZP expression, key characteristics of functional articular cartilage. PMID:24330640

  15. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  16. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    PubMed

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  17. Transfer of the α5(IV) Collagen Chain Gene to Smooth Muscle Restores in Vivo Expression of the α6(IV) Collagen Chain in a Canine Model of Alport Syndrome

    PubMed Central

    Harvey, Scott J.; Zheng, Keqin; Jefferson, Barbara; Moak, Peter; Sado, Yoshikazu; Naito, Ichiro; Ninomiya, Yoshifumi; Jacobs, Robert; Thorner, Paul S.

    2003-01-01

    X-linked Alport syndrome is a progressive renal disease caused by mutations in the COL4A5 gene, which encodes the α5(IV) collagen chain. As an initial step toward gene therapy for Alport syndrome, we report on the expression of recombinant α5(IV) collagen in vitro and in vivo. A full-length cDNA-encoding canine α5(IV) collagen was cloned and expressed in vitro by transfection of HEK293 cells that synthesize the α1(IV) and α2(IV), but not the α3(IV) to α6(IV) collagen chains. By Northern blotting, an α5(IV) mRNA transcript of 5.2 kb was expressed and the recombinant protein was detected by immunocytochemistry. The chain was secreted into the medium as a 190-kd monomer; no triple helical species were detected. Transfected cells synthesized an extracellular matrix containing the α1(IV) and α2(IV) chains but the recombinant α5(IV) chain was not incorporated. These findings are consistent with the concept that the α5(IV) chain requires one or more of the α3(IV), α4(IV), or α6(IV) chains for triple helical assembly. In vivo studies were performed in dogs with X-linked Alport syndrome. An adenoviral vector containing the α5(IV) transgene was injected into bladder smooth muscle that lacks both the α5(IV) and α6(IV) chains in these animals. At 5 weeks after injection, there was expression of both the α5(IV) and α6(IV) chains by smooth muscle cells at the injection site in a basement membrane distribution. Thus, this recombinant α5(IV) chain is capable of restoring expression of a second α(IV) chain that requires the presence of the α5(IV) chain for incorporation into collagen trimers. This vector will serve as a useful tool to further explore gene therapy for Alport syndrome. PMID:12598321

  18. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Hao; Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC; Department of Biomedical Engineering, I-Shou University, Taiwan, ROC

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porousmore » collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.« less

  19. Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood-brain barrier.

    PubMed

    Rodríguez-Arias, Marta; Montagud-Romero, Sandra; Rubio-Araiz, Ana; Aguilar, María A; Martín-García, Elena; Cabrera, Roberto; Maldonado, Rafael; Porcu, Francesca; Colado, María Isabel; Miñarro, José

    2017-01-01

    Social stress in adulthood enhances cocaine self-administration, an effect that has been related with an increase in extracellular signal-regulated kinase and p38α mitogen-activated protein kinase phosphorylation. A detrimental effect of cocaine on blood-brain barrier (BBB) integrity has also been reported. This study evaluates the effects of repeated social defeat (RSD) during adolescence on the reinforcing and motivational effects of cocaine in adult mice and the changes induced by RSD on BBB permeability. Cocaine self-administration, conditioned place preference and quantitative analysis of claudin-5, laminin, collagen-IV and IgG immunoreactivity took place 3 weeks after RSD. Mice socially defeated during adolescence developed conditioned place preference and exhibited reinstated preference with a non-effective dose of cocaine (1 mg/kg). RSD mice needed significantly more sessions than control animals for the preference induced by 25 mg/kg of cocaine to be extinguished. However, acquisition of cocaine self-administration (0.5 mg/kg per injection) was delayed in the RSD group. Mice exposed to RSD displayed significant changes in BBB structure in adulthood, with a marked reduction in expression of the tight junction protein claudin-5 and an increase in basal laminin degradation (reflected by a decrease in laminin and collagen-IV expression) in the nucleus accumbens and hippocampus. The detrimental effect induced by cocaine (25 mg/kg) on collagen-IV expression in the hippocampus was more pronounced in RSD mice. In summary, our findings suggest that stress and cocaine can increase the long-term vulnerability of the brain to subsequent environmental insults as a consequence of a sustained disruption of the BBB. © 2015 Society for the Study of Addiction.

  20. Topical Administration of Oxygenated Hemoglobin Improved Wound Healing in an Ischemic Rabbit Ear Model.

    PubMed

    Xie, Ping; Jia, Shengxian; Tye, Ross; Xu, Wei; Zhong, Aimei; Hong, Seok J; Galiano, Robert D; Mustoe, Thomas A

    2016-02-01

    Localized oxygen deficiency plays a central role in the pathogenesis of chronic wounds; thus, rectifying localized ischemia with oxygen therapy has been postulated to be an integral aspect of the management of chronic wounds. The efficacy of a novel approach for oxygen therapy on chronic wound healing was evaluated. Oxygen was delivered to ischemic wounds by means of the topical application of oxygenated, chemically modified bovine hemoglobin (IKOR 2084) in a validated rabbit ear ischemic wound model. The wound healing was evaluated histologically by measuring epithelial gap and neo-granulation tissue area. In situ expression of endothelial cells (CD31) and proliferative cells (Ki-67) was examined by immunohistochemistry analysis. The mRNA of vascular endothelial growth factor, endothelial nitric oxide synthase, and matrix metalloproteinase-9 was quantified by real-time reverse-transcriptase polymerase chain reaction. The collagen was detected by Sirius red staining. In comparison with topical application of saline, the administration of oxygenated IKOR 2084 increases wound reepithelialization and formation of neo-granulation tissue in a dose-dependent manner, and cellular proliferation (Ki-67). Conversely, the administration of deoxygenated IKOR 2084 aggravated the ischemic wound healing process. Moreover, the topical administration of oxygenated IKOR 2084 induces angiogenesis as evidenced by concomitant increases in CD31 protein and vascular endothelial growth factor and endothelial nitric oxide synthase mRNA expression in treated wounds. Oxygenated IKOR 2084 administration also increased collagen deposition in wounds, with decreases in the expression of matrix metalloproteinase-9 mRNA. This study suggests that the topical application of oxygenated IKOR 2084 ameliorates the reparative progress of ischemic wounds through enhanced angiogenesis, cellular proliferation, and collagen deposition.

  1. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb Protein Switches Its Activity from Auto-aggregation to Biofilm Formation.

    PubMed

    Miljkovic, Marija; Bertani, Iris; Fira, Djordje; Jovcic, Branko; Novovic, Katarina; Venturi, Vittorio; Kojic, Milan

    2016-01-01

    AggLb is the largest (318.6 kDa) aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains) and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody), an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III, and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  2. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    PubMed

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  3. The Protective Effect of Baicalin against UVB Irradiation Induced Photoaging: An In Vitro and In Vivo Study

    PubMed Central

    Yin, Zhi-qiang; Hu, Yan-yan; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan; Zhou, Bing-rong

    2014-01-01

    Objective This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. Methods We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we analyzed epidermal thickness, collagen expression and the mRNA and protein levels of type I collagen, type III collagen, interstitial collagenase (MMP-1 and MMP-3) in UVB exposed dorsal mice skin. The aging condition in human dermal fibroblasts was determined by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The G1 phase cell growth arrest was analyzed by flow cytometry. The senescence-related protein levels of p16INK-4a, p21WAF-1, and p53 and protein levels of phosphorylated histone H2AX were estimated by Western blotting. Results Topically application of baicalin treatment reduced UVB-induced epidermal thickening of mouse skin and also result in an increase in the production of collagen I and III, and a decrease in the expression of MMP-1 and MMP-3. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with baicalin demonstrated a decrease in the expression of SA-β-gal, a increase in the cell viability, a decrease in the G1 phase cell proportion, a downregulation in the level of senescence-associated and γ-H2AX proteins. However, Baicalin had no difference in the normal fibroblasts without UVB irradiation and long-term Baicalin incubation of UVB-SIPS fibroblasts gave no effects on the cell proliferation. Conclusions Taken together, these results suggest that baicalin significantly antagonizes photoaging induced by UVB in vivo and in vitro, indicating the potential of baicalin application for anti-photoaging treatment. PMID:24949843

  4. The protective effect of baicalin against UVB irradiation induced photoaging: an in vitro and in vivo study.

    PubMed

    Zhang, Jia-an; Yin, Zhi; Ma, Li-wen; Yin, Zhi-qiang; Hu, Yan-yan; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan; Zhou, Bing-rong

    2014-01-01

    This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we analyzed epidermal thickness, collagen expression and the mRNA and protein levels of type I collagen, type III collagen, interstitial collagenase (MMP-1 and MMP-3) in UVB exposed dorsal mice skin. The aging condition in human dermal fibroblasts was determined by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The G1 phase cell growth arrest was analyzed by flow cytometry. The senescence-related protein levels of p16INK-4a, p21WAF-1, and p53 and protein levels of phosphorylated histone H2AX were estimated by Western blotting. Topically application of baicalin treatment reduced UVB-induced epidermal thickening of mouse skin and also result in an increase in the production of collagen I and III, and a decrease in the expression of MMP-1 and MMP-3. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with baicalin demonstrated a decrease in the expression of SA-β-gal, a increase in the cell viability, a decrease in the G1 phase cell proportion, a downregulation in the level of senescence-associated and γ-H2AX proteins. However, Baicalin had no difference in the normal fibroblasts without UVB irradiation and long-term Baicalin incubation of UVB-SIPS fibroblasts gave no effects on the cell proliferation. Taken together, these results suggest that baicalin significantly antagonizes photoaging induced by UVB in vivo and in vitro, indicating the potential of baicalin application for anti-photoaging treatment.

  5. Juvenile porcine temporomandibular joint: Three different cartilaginous structures?

    PubMed

    Tabeian, Hessam; Bakker, Astrid D; de Vries, Teun J; Zandieh-Doulabi, Behrouz; Lobbezoo, Frank; Everts, Vincent

    2016-12-01

    The temporomandibular joint (TMJ) consists of three cartilaginous structures: the fossa, disc, and condyle. In juvenile idiopathic arthritis (JIA), inflammation of the TMJ leads to destruction of the condyle, but not of the fossa or the disc. Such a different effect of inflammation might be related to differences in matrix composition of the cartilaginous structures. The matrix composition of the three TMJ structures was analyzed in juvenile porcine samples and in an in vitro system of cells isolated from each anatomical structure embedded in 3% agarose gels. The matrix of all three anatomical structures of the TMJ contained collagen type I and its gene expression was maintained after isolation. The condyle and the fossa stained positive for collagen type II and proteoglycans, but the condyle contained considerably more collagen type II and proteoglycans than the fossa. The disc contained neither collagen type II protein nor expression of its gene, and the disc did not stain positive for proteoglycans. Aggrecan gene expression was lower in the disc compared to condyle and fossa cell-isolates. In general, the cell-isolates in vitro closely mimicked the characteristic features found in the tissue. The collagen type II content of the condyle clearly distinguished this cartilaginous structure from the disc and fossa. Since autoimmunity against collagen type II is associated with JIA, the relatively abundant presence of this type of collagen in the condyle might provide an explanation why primarily this cartilaginous structure of the TMJ is affected in JIA patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Anti-ageing effects of dentifrices containing anti-oxidative, anti-inflammatory, and anti-bacterial agents (Tomarina®) on gingival collagen degradation in rats.

    PubMed

    Koichiro, Irie; Tomofuji, Takaaki; Ekuni, Daisuke; Endo, Yasumasa; Kasuyama, Kenta; Azuma, Tetsuji; Tamaki, Naofumi; Yoneda, Toshiki; Morita, Manabu

    2014-01-01

    Previous studies have demonstrated the relationship between ageing and oxidative stress. In this study, we examined the effects of topical application of a dentifrice containing anti-oxidative, anti-inflammatory, and anti-bacterial agents (Tomarina®) to the gingival surface on gingival collagen degradation in rats. Fischer 344 male rats (4 or 8 months old) were divided into two groups: experimental group and control group. Tomarina® (the experimental group) or control dentifrice (the control group) was applied 5 days per week for 2 months. In the control group, gingival collagen density decreased with ageing. In the experimental group, the collagen density did not change with ageing, and was greater than that in the control group at 10 months of age (p < 0.0083). In addition, the control group showed an increase in serum oxidative stress with ageing. The experimental group also showed increased serum oxidative stress, but the value was lower than the control group at 10 months of age (p < 0.0083). Furthermore, low expressions of protein oxidative damage in the periodontal tissue were observed in the experimental group, compared to the control group at 6 months and 10 months. These findings indicate that Tomarina® might suppress the effects of ageing on gingival collagen degradation, by decreasing oxidative stress in the rat model.

  7. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice

    PubMed Central

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging. PMID:28301572

  8. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    PubMed

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  9. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro.

    PubMed

    Li, Hui; Huang, Linjian; Xie, Qianyang; Cai, Xieyi; Yang, Chi; Wang, Shaoyi; Zhang, Min

    2017-01-01

    To investigate the effects of gradient mechanical pressure on chondrocyte proliferation, apoptosis, and the expression of markers of chondrogenesis and chondrocyte hypertrophy. Mandibular condylar chondrocytes from 5 rabbits were cultured in vitro, and pressed with static pressures of 50kPa, 100kPa, 150kPa and 200kPa for 3h, respectively. The chondrocytes cultured without pressure (0kPa) were used as control. Cell proliferation, apoptosis, and the expression of aggrecan (AGG), collagen II (COL2), collagen X (COL10), alkaline phosphatase (ALP) were investigated. Ultrastructures of the pressurized chondrocytes under transmission electron microscopy (TEM) were observed. Chondrocyte proliferation increased at 100kPa and decreased at 200kPa. Chondrocyte apoptosis increased with peak pressure at 200kPa in a dose-dependent manner. Chondrocyte necrosis increased at 200kPa. The expression of AGG increased at 200kPa. The expression of COL2 decreased at 50kPa and increased at 150kPa. The expression of COL10 and ALP increased at 150kPa. Ultrastructure of the pressurized chondrocytes under TEM showed: at 100kPa, cells were enlarged with less cellular microvillus and a bigger nucleus; at 200kPa, cells shrank with the sign of apoptosis, and apoptosis cells were found. The mechanical loading of 150kPa is the moderate pressure for chondrocyte: cell proliferation and apoptosis is balanced, necrosis is reduced, and chondrogenesis and chondrocyte hypertrophy are promoted. When the pressure is lower, chondrogenesis and chondrocyte hypertrophy are inhibited. At 200kPa, degeneration of cartilage is implied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Maternal obesity in the ewe increases cardiac ventricular expression of glucocorticoid receptors, proinflammatory cytokines and fibrosis in adult male offspring

    PubMed Central

    Odhiambo, John F.; McCormick, Richard J.; Nathanielsz, Peter W.; Ford, Stephen P.

    2017-01-01

    Obesity during human pregnancy predisposes offspring to obesity and cardiovascular disease in postnatal life. In a sheep model of maternal overnutrition/obesity we have previously reported myocardial inflammation and fibrosis, as well as cardiac dysfunction in late term fetuses, in association with chronically elevated blood cortisol. Significant research has suggested a link between elevated glucocorticoid exposure in utero and hypertension and cardiovascular disease postnatally. Here we examined the effects of maternal obesity on myocardial inflammation and fibrosis of their adult offspring. Adult male offspring from control (CON) mothers fed 100% of National Research Council (NRC) recommendations (n = 6) and male offspring from obese mothers (MO) fed 150% NRC (n = 6), were put on a 12-week ad libitum feeding challenge then necropsied. At necropsy, plasma cortisol and left and right ventricular thickness were markedly increased (P<0.05) in adult male MO offspring. Myocardial collagen content and collagen-crosslinking were greater (P<0.05) in MO offspring compared to CON offspring in association with increased mRNA and protein expression of glucocorticoid receptors (GR). No group difference was found in myocardial mineralocorticoids receptor (MR) protein expression. Further, mRNA expression for the proinflammatory cytokines: cluster of differentiation (CD)-68, transforming growth factor (TGF)-β1, and tumor necrosis factor (TNF)-α were increased (P < 0.05), and protein expression of CD-68, TGF-β1, and TNF-α tended to increase (P<0.10) in MO vs. CON offspring. These data provide evidence for MO-induced programming of elevated plasma cortisol and myocardial inflammation and fibrosis in adult offspring potentially through increased GR. PMID:29267325

  11. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.

    PubMed

    Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R

    2006-08-18

    Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.

  12. Changes in diaphragm muscle collagen gene expression after acute unilateral denervation

    NASA Technical Reports Server (NTRS)

    Gosselin, L. E.; Sieck, G. C.; Aleff, R. A.; Martinez, D. A.; Vailas, A. C.

    1995-01-01

    The purpose of the present study was to examine the effects of acute (3 days) unilateral diaphragm denervation (DNV) on 1) levels of alpha 1(I) and alpha 1(III) procollagen mRNA; 2) collagen concentration [hydroxyproline (HYP)]; 3) amount of the nonreducible collagen cross-link hydroxylysylpyridinoline (HP); and 4) the passive force-length relationship of the muscle. The levels of alpha 1(I) and alpha 1(III) procollagen mRNA, HYP concentration, and amount of HP were measured in muscle segments from the midcostal region of DNV and intact (INT) hemidiaphragms of adult male Fischer 344 rats (250-300 g). The in vitro passive force-length relationship of DNV and INT hemidiaphragm was determined by lengthening and shortening the diaphragm muscle segments from 85 to 115% of optimal length at a constant velocity (0.6 optimal length/s). Three days after DNV, the level of alpha 1(I) procollagen mRNA was increased over 15-fold in the DNV hemidiaphragm compared with INT (P < 0.05), whereas the level of alpha 1(III) procollagen mRNA was increased by approximately sixfold in the DNV hemidiaphragm compared with INT (P < 0.05). Collagen (HYP) concentration did not differ between groups, averaging 8.7 and 8.9 micrograms/mg dry wt for the DNV and INT hemidiaphragms, respectively. In addition, there was no difference in the amount of the mature nonreducible collagen cross-link HP between the DNV and INT hemidiaphragms (0.66 vs. 0.76 mole HP/mole collagen, respectively). The amount of passive force developed during lengthening did not differ between DNV and INT hemidiaphragms. These data indicate that acute DNV of the hemidiaphragm is associated with an increase in the mRNA level of the two principal fibrillar collagen phenotypes in skeletal muscle. However, despite extensive muscle remodeling, the passive force-length relationship of the DNV hemidiaphragm is unaffected compared with the INT muscle.

  13. A new class of animal collagen masquerading as an insect silk

    PubMed Central

    Sutherland, Tara D.; Peng, Yong Y.; Trueman, Holly E.; Weisman, Sarah; Okada, Shoko; Walker, Andrew A.; Sriskantha, Alagacone; White, Jacinta F.; Huson, Mickey G.; Werkmeister, Jerome A.; Glattauer, Veronica; Stoichevska, Violet; Mudie, Stephen T.; Haritos, Victoria S.; Ramshaw, John A. M.

    2013-01-01

    Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials. PMID:24091725

  14. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    PubMed

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  15. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    PubMed

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  16. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis.

    PubMed Central

    Lee, C. S.; Montebello, J.; Georgiou, T.; Rode, J.

    1994-01-01

    Changes in the basement membrane are present in various neoplastic conditions such as neurofibrosarcoma, cervical carcinoma, colorectal cancers and hepatoblastoma. This study examines the expression of type IV collagen in the basement membrane, using an immunohistochemical method, in the normal pancreas (n = 10), chronic pancreatitis (n = 15) and pancreatic adenocarcinoma (n = 30). The formalin fixed, paraffin embedded tissue was sectioned and pretreated with protease prior to immunostaining for type IV collagen. There was a statistically significant difference in type IV collagen expression between pancreatic carcinoma and chronic pancreatitis (P = 0.0001; chi 2 test with continuity correction). In pancreatic adenocarcinoma, type IV collagen distribution in the basement membrane was discontinuous and irregular or absent around individual or groups of neoplastic cells (n = 30). Most cases of chronic pancreatitis showed continuous pattern of basement membrane type IV collagen around residual ducts (n = 10). In the normal pancreas, only one of the ten cases showed discontinuous basement membrane around pancreatic ducts, while in the rest of the cases, the pattern was continuous. This study suggests that there is abnormal distribution of type IV collagen in the basement membrane in pancreatic carcinoma, which may be related to either abnormal deposition or degradation of the collagen. Immunostaining for type IV collagen may be of some diagnostic use for distinguishing pancreatic adenocarcinoma from problematic cases of chronic pancreatitis. Images Figure 1 Figure 2 Figure 3 PMID:8199008

  17. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    PubMed Central

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  18. [27- Hydroxycholesterol reverses estradiol induced inhibition of platelet aggregation in postmenopausal women].

    PubMed

    Rocha, Gladys; Sierralta, Walter; Valladares, Luis

    2016-11-01

    The decline of estrogen levels increases cardiovascular risk in women. Platelets express estrogen receptors and 17β-estradiol- (E2) can produce a protective effect on thrombus formation. The hydroxylation of cholesterol generates several sterols and 27-hydroxycholesterol (27HC) predominates in circulation. To evaluate the effect of 27HC as an endogenous antagonist of the anti-aggregating properties of E2 in platelets of postmenopausal women. Platelet function of postmenopausal women was evaluated ex-vivo. Platelets pre-incubated with 27HC in the presence or absence of E2, were stimulated with collagen. Aggregation was evaluated using turbidimetry using a Chrono-log aggregometer. Collagen-stimulated platelet aggregation was significantly inhibited by E2. The inhibitory effect of E2 on collagen-stimulated platelet aggregation was significantly reversed in the presence of 27HC. The suppressive effect of E2 on platelet aggregation is inhibited by 27HC, which could contribute to increase cardiovascular risk in postmenopausal women.

  19. Localization of type IV collagen a 1 to a 6 chains in basement membrane during mouse molar germ development.

    PubMed

    Nagai, N; Nakano, K; Sado, Y; Naito, I; Gunduz, M; Tsujigiwa, H; Nagatsuka, H; Ninomiya, Y; Siar, C H

    2001-10-01

    The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.

  20. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts.

    PubMed

    Kutty, Jaishankar K; Webb, Ken

    2010-01-01

    The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high-frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulphated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture, relative to static controls. Cellular remodelling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition and improving vocal quality. 2009 John Wiley & Sons, Ltd.

Top