Sample records for increased conversion ratio

  1. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGES

    Quan, Jiannong; Liu, Yangang; Liu, Quan; ...

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM 2.5), nitrate (NO 3), sulfate (SO 4), ammonium (NH 4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO 2), and ozone (O 3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (N ratio) andmore » S from SO 2 to sulfate (S ratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO 2 to their corresponding particle phases in the late haze period. Further analysis shows that N ratio and S ratio increased with increasing RH, with N ratio and S ratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of N ratio and S ratio to O 3: the conversion ratios increase with decreasing O 3 concentration when O 3 concentration is lower than <15 ppb but increased with increasing O 3 when O 3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO 2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM 2.5 concentration.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.

    The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less

  3. Tri-reforming of surrogate blogs over Ni/Mg/ceria-zirconia/alumina pellet catalysts

    DOE PAGES

    Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.; ...

    2018-01-23

    The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less

  4. Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron

    NASA Astrophysics Data System (ADS)

    Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.

    2017-11-01

    The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- < S2O82-/Fe0 < Solar/S2O82-/Fe0. The influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.

  5. Analysis of the rationale for, and consequences of, nonprofit and for-profit ownership conversions.

    PubMed Central

    Mark, T L

    1999-01-01

    OBJECTIVES: To examine percursors to private hospitals conversion, both from nonprofit status to for-profit status and from for-profit to nonprofit status, as well as the effect of hospital conversions on hospital profitability, efficiency, staffing, and the probability of closure. DATA SOURCES: The Health Care Financing Administration's Medicare Cost Reports and the American Hospital Association's Annual Survey of Hospitals. STUDY DESIGN: Bivariate and multivariate analyses comparing conversion hospitals to nonconversion hospitals over time were conducted. DATA EXTRACTION METHODS: The study sample consisted of all private acute care hospital conversions that occurred from 1989 through 1992. PRINCIPAL FINDINGS: Hospitals that converted had significantly lower profit margins prior to converting than did nonconversion hospitals. This was particularly true for nonprofit to for-profit conversions. After converting, both nonprofit and for-profit hospitals significantly improved their profitability. Nonprofit to for-profit hospital conversions were associated with a decrease in the ratio of staff to patients. No association was found between for-profit to nonprofit conversion and staff-to-patient ratios. The difference seems partially attributed to the fact that nonprofit hospitals that converted had higher staff ratios than the industry average. For-profit to nonprofit hospital conversions were associated with an increase in the ratio of registered nurses to patients and administrators to patients, despite the fact that nonprofit and for-profit hospitals did not differ in these ratios. CONCLUSIONS: The improvement in financial performance following hospital conversions may be a benefit to the community that policymakers want to consider when regulating hospital conversions. PMID:10201853

  6. [Conversion ratio between intravenous oxycodone/hydrocotarnine and sustained-release oral oxycodone in patients with cancer pain].

    PubMed

    Kokubun, Hideya; Nakamura, Kazuyo; Fukawa, Misako; Matoba, Motohiro; Hoka, Sumio; Yago, Kazuo

    2007-12-01

    The demand for oxycodone increases in the treatment of patients with cancer pain, but there is no injection formulation containing oxycodone as a single ingredient in Japan. Instead, we have an oxycodone/hydrocotarnine compound product. Long ago, hydrocotarnine was added to enhance the analgesic effect of oxycodone. However, the mechanism of hydrocotarnine is unclear, and few studies have mentioned the conversion ratio between intravenous and oral oxycodone. In the present study, in order to define the conversion ratio between them, we investigated 18 patients treated by intravenous or oral oxycodone and changed to another administration route during their treatment. We surveyed the change in pain level and adverse effects before and after changing the administration route. The conversion ratio from oral oxycodone to intravenous oxycodone/hydrocotarnine was 0.71+/-0.12 (mean+/-S. D.), and no obvious change in adverse effect was observed.

  7. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  8. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  9. Gasification of empty fruit bunch with carbon dioxide in an entrained flow gasifier for syngas production

    NASA Astrophysics Data System (ADS)

    Rahmat, N. F. H.; Rasid, R. A.

    2017-06-01

    The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

  10. Optimum dietary arginine:lysine ratio for broiler chickens is altered during heat stress in association with changes in intestinal uptake and dietary sodium chloride.

    PubMed

    Brake, J; Balnave, D; Dibner, J J

    1998-12-01

    1. The effects of varying the dietary arginine:lysine (Arg:Lys) ratio for broiler chickens at thermoneutral and high temperatures was studied in a series of 5 experiments which measured intestinal epithelial transport or evaluated growth and food efficiency with practical diets or diets supplemented with L-arginine free base. 2. The growth studies showed that increasing the Arg:Lys ratio at high temperatures produced consistent improvements in food conversion without any loss in growth. 3. Increasing dietary sodium chloride concentration reduced the Arg:Lys ratio necessary for optimum food conversion. 4. Food conversion responses were improved whether L-arginine free base was used as a dietary supplement in place of an inert filler or practical diets with differing ingredients were used to vary the Arg:Lys ratio. 5. In the presence of an equimolar concentration of lysine the uptake of arginine by the intestinal epithelium of heat-stressed broilers was reduced significantly compared with that of broilers at thermoneutral temperatures. 6. The results indicate that the ideal amino acid balance for broilers varies with ambient temperature.

  11. beta-Mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions.

    PubMed

    Lee, J T; Bailey, C A; Cartwright, A L

    2003-12-01

    High concentrations of guar meal in broiler chicken diets reduce body weight and feed efficiency. The increased intestinal viscosity that is responsible for reduced measures of performance results from residual guar gum present in guar meal. Two experiments were designed to study the effects of 2 guar meal fractions at 3 different concentrations, germ (0, 5.0, and 7.5%) and hull (0, 2.5, and 5.0%), and the effectiveness of a beta-mannanase at three levels (0, 1x, and 4x; 1x = 1.09 x 10(5) units/ kg) on broiler growth and feed conversion. Growth and performance were measured as a function of intestinal viscosity. Addition of the germ fraction to rations did not reduce body weight, although feed conversion ratio was increased at 7.5% of the diet. Intestinal viscosity also increased significantly at this level. Enzyme addition significantly reduced intestinal viscosity. Due to an interaction that was present between hull and enzyme concentration, each treatment was compared separately. Inclusion of the hull fraction significantly reduced body weight at both levels of inclusion and increased feed conversion ratio at 5% inclusion. Addition of the enzyme significantly increased body weight and reduced feed conversion ratio in diets containing guar hull fractions. Supplementation of beta-mannanase to feeds containing either fraction of guar meal reduced intestinal viscosity and alleviated the deleterious effects associated with guar meal feeding.

  12. Optical thermometry using fluorescence intensities multi-ratios in NaGdTiO4:Yb3+/Tm3+ phosphors

    NASA Astrophysics Data System (ADS)

    Zhou, Aihua; Song, Feng; Song, Feifei; Feng, Ming; Adnan, Khan; Ju, Dandan; Wang, Xueqing

    2018-04-01

    The NaGdTiO4:Yb3+/Tm3+ phosphor has been effectively synthesized by the traditional solid-state reaction method and its down-conversion and up-conversion luminescence properties were systematically studied. The results indicate that the electric dipole-dipole interaction is the main mechanism for the luminescence quenching. The fact that the ratios of the up-conversion intensities, i.e., I795nm/I798nm, I807nm/I798nm, and I812nm/I798nm, increase linearly with temperature (100 K-300 K) provides us a simple and accurate temperature measurement method. Multi-ratios can be more accurate than using only one ratio, allowing for self-referenced temperature determination. It's promising for NaGdTiO4: Yb3+/Tm3+ to be used for optical temperature sensors.

  13. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  14. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  15. The Effect of Sugarcane Bagassès Size on the Properties of Pretreatment and Enzymatic Hydrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Guoqiang; Li, Jun

    2017-06-01

    The influence of milled bagasse particle size on their reducing sugar and lignin content during dilute acid hydrolysis followed by enzymolysis was investigated. The biomass crystal structures of hydrolyzed residues and enzymolyzed substrates were studied with X-ray diffractometry (XRD). The results showed that the conversion ratio of reducing sugar declined with decreasing milled bagasse particle size. The conversion ratio of reducing sugar after acid hydrolysis decreased from 31.3% to 28.9%. The smaller of the milled bagasse particle size was, the higher of the klason lignin content of hydrolyzed residuals was, which resulted in a decline in conversion ratio of reducing sugar during enzymolysis. In this study, the optimal size of milled bagasse particles was 10 to 20 meshes. The total reducing sugar conversion ratio was 61.5%, consisting of 31.3% in hydrolysis and 30.2% in enzymolysis. After hydrolysis, the specific surface area and pore size increased, and the fiber length was shortened. The inner microfiber bundles were exposed, which improved the accessibility of cellulase and the efficiency of enzymolysis.

  16. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  17. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor

    NASA Astrophysics Data System (ADS)

    Seo, Yong-Seog; Seo, Dong-Joo; Seo, Yu-Taek; Yoon, Wang-Lai

    The objective of this study is to investigate numerically a compact steam methane reforming (SMR) system integrated with a water-gas shift (WGS) reactor. Separate numerical models are established for the combustion part, SMR and WGS reaction bed. The concentration of species at the exits of the SMR and WGS bed, and the temperatures in the WGS bed are in good agreement with the measured data. Heat transfer to the catalyst beds and the catalytic reactions in the SMR and WGS catalyst bed are investigated as a function of the operation parameters. The conversion of methane at the exit of the SMR catalyst bed is calculated to be 87%, and the carbon monoxide concentration at the outlet of the WGS bed is estimated to be 0.45%. The effects of the cooling heat flux at the outside wall of the system and steam-to-carbon (S/C) ratio are also examined. As the cooling heat flux increases, both the methane conversion and carbon monoxide content are reduced in the SMR bed, and the carbon monoxide conversion is improved in the WGS bed. Both methane conversion and carbon dioxide reduction increase with increasing steam-to-carbon ratio.

  18. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI

    NASA Astrophysics Data System (ADS)

    Ab-Rahman, Mohammad Syuhaimi; Swedan, Abdulhameed Almabrok

    2017-12-01

    The emergence of new services and data exchange applications has increased the demand for bandwidth among individuals and commercial business users at the access area. Thus, vendors of optical access networks should achieve a high-capacity system. This study demonstrates the performance of an integrated configuration of one to four multi-wavelength conversions at 10 Gb/s based on cross-phase modulation using semiconductor optical amplifier integrated with Mach-Zehnder interferometer. The Opti System simulation tool is used to simulate and demonstrate one to four wavelength conversions using one modulated wavelength and four probes of continuous wave sources. The wavelength converter processes are confirmed through investigation of the input and output characteristics, optical signal-to-noise ratio, conversion efficiency, and extinction ratio of new modulated channels after separation by demultiplexing. The outcomes of the proposed system using single channel indicate that the capacity can increase from 10 Gb/s to 50 Gb/s with a maximum number of access points increasing from 64 to 320 (each point with 156.25 Mb/s bandwidth). The splitting ratio of 1:16 provides each client with 625 Mb/s for the total number of 80 users. The Q-factor and bit error rate curves are investigated to confirm and validate the modified scheme and prove the system performance of the full topology of 25 km with 1/64 splitter. The outcomes are within the acceptable range to provide the system scalability.

  19. Clinical predictors of conversion to bipolar disorder in a prospective longitudinal familial high-risk sample: focus on depressive features.

    PubMed

    Frankland, Andrew; Roberts, Gloria; Holmes-Preston, Ellen; Perich, Tania; Levy, Florence; Lenroot, Rhoshel; Hadzi-Pavlovic, Dusan; Breakspear, Michael; Mitchell, Philip B

    2017-11-07

    Identifying clinical features that predict conversion to bipolar disorder (BD) in those at high familial risk (HR) would assist in identifying a more focused population for early intervention. In total 287 participants aged 12-30 (163 HR with a first-degree relative with BD and 124 controls (CONs)) were followed annually for a median of 5 years. We used the baseline presence of DSM-IV depressive, anxiety, behavioural and substance use disorders, as well as a constellation of specific depressive symptoms (as identified by the Probabilistic Approach to Bipolar Depression) to predict the subsequent development of hypo/manic episodes. At baseline, HR participants were significantly more likely to report ⩾4 Probabilistic features (40.4%) when depressed than CONs (6.7%; p < .05). Nineteen HR subjects later developed either threshold (n = 8; 4.9%) or subthreshold (n = 11; 6.7%) hypo/mania. The presence of ⩾4 Probabilistic features was associated with a seven-fold increase in the risk of 'conversion' to threshold BD (hazard ratio = 6.9, p < .05) above and beyond the fourteen-fold increase in risk related to major depressive episodes (MDEs) per se (hazard ratio = 13.9, p < .05). Individual depressive features predicting conversion were psychomotor retardation and ⩾5 MDEs. Behavioural disorders only predicted conversion to subthreshold BD (hazard ratio = 5.23, p < .01), while anxiety and substance disorders did not predict either threshold or subthreshold hypo/mania. This study suggests that specific depressive characteristics substantially increase the risk of young people at familial risk of BD going on to develop future hypo/manic episodes and may identify a more targeted HR population for the development of early intervention programs.

  20. An ultrasound-assisted system for the optimization of biodiesel production from chicken fat oil using a genetic algorithm and response surface methodology.

    PubMed

    Fayyazi, E; Ghobadian, B; Najafi, G; Hosseinzadeh, B; Mamat, R; Hosseinzadeh, J

    2015-09-01

    Biodiesel is a green (clean), renewable energy source and is an alternative for diesel fuel. Biodiesel can be produced from vegetable oil, animal fat and waste cooking oil or fat. Fats and oils react with alcohol to produce methyl ester, which is generally known as biodiesel. Because vegetable oil and animal fat wastes are cheaper, the tendency to produce biodiesel from these materials is increasing. In this research, the effect of some parameters such as the alcohol-to-oil molar ratio (4:1, 6:1, 8:1), the catalyst concentration (0.75%, 1% and 1.25% w/w) and the time for the transesterification reaction using ultrasonication on the rate of the fatty acids-to-methyl ester (biodiesel) conversion percentage have been studied (3, 6 and 9 min). In biodiesel production from chicken fat, when increasing the catalyst concentration up to 1%, the oil-to-biodiesel conversion percentage was first increased and then decreased. Upon increasing the molar ratio from 4:1 to 6:1 and then to 8:1, the oil-to-biodiesel conversion percentage increased by 21.9% and then 22.8%, respectively. The optimal point is determined by response surface methodology (RSM) and genetic algorithms (GAs). The biodiesel production from chicken fat by ultrasonic waves with a 1% w/w catalyst percentage, 7:1 alcohol-to-oil molar ratio and 9 min reaction time was equal to 94.8%. For biodiesel that was produced by ultrasonic waves under a similar conversion percentage condition compared to the conventional method, the reaction time was decreased by approximately 87.5%. The time reduction for the ultrasonic method compared to the conventional method makes the ultrasonic method superior. Copyright © 2015. Published by Elsevier B.V.

  1. Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings.

    PubMed Central

    Macfarlane, Craig; Adams, Mark A; Hansen, Lee D

    2002-01-01

    The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing. PMID:12137581

  2. Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2014-01-01

    Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.

  3. Characteristics of Catalytic Gasification of Natural Coke with H2O in a Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Lin, L. S.; Zhao, C. S.; Wang, S.; Zhu, G.; Xiang, W. G.

    The experimental investigation on gasification characteristics of natural coke from Peicheng, Jiangsu with steam were conducted in a fluidized bed gasifier setup. The effects of several parameters, in terms of the catalyst type, the catalyst mixed manner and the dosage of catalyst over coke on the yield, the components, the heating value of fuel gas and the carbon conversion rate were examined. Results indicate that the fluidized bed gasification technology could overcome the shortcomings of natural coke. Ca-, Fe- and Cu-based nitrates could improve the gasification reaction effectively with a little difference, they could be listed in a descending sequence as follows: Cu-based>Fe-based>Ca-based according to their catalytic effect. The influences of Fe/Ca ratio and Cu/Ca ratio on gasification are similar, gas yield, carbon conversion rate and gas heating value per hour increase as Fe/Ca ratio or Cu/Ca ratio increases, but all of them go up first and then drop with decrease in Fe/Cu ratio. When the dosage of Ca-, Fe- and Cu-based nitrates mixed with the ratio of Ca/Fe/Cu= 10/35/55 is 3%, the best catalytic effect is achieved.

  4. Feed-conversion ratio of finisher pigs in the USA.

    PubMed

    Losinger, W C

    1998-10-09

    Although the feed-conversion ratio is recognized as a prominent indicator of profitability for pork producers, only 212 (50.7%) of 418 producers who were asked the feed-conversion ratio for finisher pigs provided a response during the USA National Animal Health Monitoring System 1995 National Swine Study. Of these, 126 (59.4%) producers furnished a feed-conversion ratio which they characterized as having been calculated from records, while 86 (40.6%) gave a response that they characterized as estimated or guessed. Feed-conversion ratios ranged from 2.18 to 5.91 kg of feed fed for each kg of live-body weight gained during the grower/finisher phase, with a mean of 3.28 and a standard deviation of 0.52. Stepwise regression revealed the following management factors to be associated with improved feed-conversion ratios: > or = 3 different rations fed during the grower/finisher phase (P < 0.01); no rations mixed on the farm (P < 0.05); and not giving chlortetracycline in feed or water as a disease preventive or growth promotant (P < 0.01). In addition, operations where > or = 3000 pigs entered the grower/finisher-production phase during the six-month period prior to interview had a better mean feed-conversion ratio than operations where < 3000 pigs entered the grower/finisher phase (P < 0.01).

  5. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  6. Reconnection in Compressible Plasmas: Extended Conversion Region

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.; Zenitani, S.

    2011-01-01

    The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, delta = d/L, approaches unity. In a previous paper the vicinity of the dissipation site ("diffusion region") was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio delta is associated with increasing compression, increasing reconnect ion rate for low Beta, but slightly decreasing rate for higher Beta, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower Beta. Deviations from the traditional Sweet-Parker limit delta approaches 0 become significant for R(sub m) approx < 10, where R(sub m) is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small gamma, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for delta much < 1,nu(sub A) we find that in this limit the outflow speed is given by the Alfven speed nu(sub A) in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing delta the conversion to enthalpy flux becomes more and more dominant.

  7. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  8. Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout.

    PubMed

    Zhang, Huiyan; Likun, Peter Keliona Wani; Xiao, Rui

    2018-03-15

    Catalytic fast pyrolysis (CFP) of bagasse and bio-plastic (chicken feather keratin) and their mixtures were conducted to produce aromatic hydrocarbons over a HZSM-5, USY, and dual-catalysts layout. The effects of temperature, co-feeding ratios, feed-to-catalyst ratios and dual catalysts on hydrocarbon yields and selectivities were investigated. The results show a general improvement in the aromatic hydrocarbons yields in all cases compared to non-catalytic and pure biomass pyrolysis. The aromatic hydrocarbons increased by 10 fold with the increase of temperature from 400°C to 700°C. The aromatic yields increased 1.5 times at co-feeding, 2.0 greater at feed/HZSM-5 ratio of 1:6, 1.2 times at feed/USY ratio of 1:16, and 2.66 times at USY/HZSM-5 scenario. The selectivities towards benzene increased, at higher co-feeding ratios, while that of toluene shows an opposite trend. Xylenes selectivities were less sensitive to the changes of co-feeding ratios. In contrast, the USY catalyst only produced little amount of toluene and xylenes. The dual catalyst design (USY/HZSM-5) resulted in the highest aromatic yields, than other catalyst design scenarios. The pyrolysis temperature is a significant parameter for hydrocarbon production. Co-feeding bagasse and bio-plastic enhanced biomass conversion to aromatic compounds. For any type of zeolite catalyst, there was an optimum feed-to-catalyst ratio that generated maximum hydrocarbons. Dual catalyst layout shows a new opportunity for efficient conversion of biomass materials into hydrocarbons. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  11. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process.

    PubMed

    Kim, Dong Won; Ha, Sang Ho; Moon, Myung Jun; Lim, Kwon Taek; Ryu, Young Bok; Lee, Sun Do; Lee, Man Sig; Hong, Seong-Soo

    2015-01-01

    Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K.

  12. Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens

    PubMed Central

    Chang, Cicero L. T.; Chung, Chih-Yao; Kuo, Chih-Horng; Kuo, Tien-Fen; Yang, Chu-Wen; Yang, Wen-Chin

    2016-01-01

    In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria. PMID:26765226

  13. 76 FR 2727 - Proposed Collection of Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... attrition, as well as what information or education needs would increase the conversion ratio. An online... description of collection: To understand which factors are driving recruitment attrition, as well as what...

  14. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon.

    PubMed

    Liu, Liyan; Zhang, Yu; Tan, Wei

    2014-05-01

    Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70°C) after 9 min of ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A double-blind, randomized comparative study to investigate the morphine to hydromorphone conversion ratio in Japanese cancer patients

    PubMed Central

    Inoue, Satoshi; Saito, Yoji; Tsuneto, Satoru; Aruga, Etsuko; Ogata, Takeshi; Uemori, Mitsutoshi

    2018-01-01

    Abstract Objective To confirm the morphine to hydromorphone conversion ratio for hydromorphone (DS-7113b) immediate-release tablets in cancer patients who achieved pain control with oral morphine. Methods This was a multicenter, active-controlled, randomized, double-blind, parallel-group, comparative study (July 2013 to December 2014) at 39 Japanese sites. Seventy-one patients (aged >20 years) who had achieved pain control with morphine 60 mg/day and 90 mg/day were randomly allocated 1:1 to hydromorphone immediate-release tablets at a dose converted at a hydromorphone:morphine ratio of 1:5 or 1:8, respectively, and treated for up to 5 days. The efficacy was evaluated as the pain control ratio. Results The pain control ratio in the full analysis set was 83.3% (25/30) in the conversion ratio 1:5 group and 95.0% (38/40) in the conversion ratio 1:8 group, and both groups demonstrated highly successful pain control. The incidence of adverse events was 46.7% (14/30) in the conversion ratio 1:5 group and 58.5% (24/41) in the 1:8 group; the difference was not clinically relevant. Frequently observed adverse events (incidence ≥5%) were nausea, vomiting, diarrhea, somnolence and dyspnea. Conclusions A high pain control ratio was maintained by a switch at either conversion ratio, and no notable difference was observed in the incidence of adverse events. A switch from morphine to hydromorphone is effective at a dose converted at ratios of 1:5 and 1:8. PMID:29635632

  16. Using Spatial Correlations of SPDC Sources for Increasing the Signal to Noise Ratio in Images

    NASA Astrophysics Data System (ADS)

    Ruíz, A. I.; Caudillo, R.; Velázquez, V. M.; Barrios, E.

    2017-05-01

    We experimentally show that, by using spatial correlations of photon pairs produced by Spontaneous Parametric Down-Conversion, it is possible to increase the Signal to Noise Ratio in images of objects illuminated with those photons; in comparison, objects illuminated with light from a laser present a minor ratio. Our simple experimental set-up was capable to produce an average improvement in signal to noise ratio of 11dB of Parametric Down-Converted light over laser light. This simple method can be easily implemented for obtaining high contrast images of faint objects and for transmitting information with low noise.

  17. Simultaneous parametric generation and up-conversion of entangled optical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r

    A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less

  18. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  19. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study.

    PubMed

    He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing

    2015-09-01

    Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level. Copyright © 2015. Published by Elsevier B.V.

  1. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability.

    PubMed

    Posada-Pérez, Sergio; Ramírez, Pedro J; Evans, Jaime; Viñes, Francesc; Liu, Ping; Illas, Francesc; Rodriguez, José A

    2016-07-06

    The ever growing increase of CO2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo2C and Au/δ-MoC catalysts provides evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO2 conversion. A control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.

  2. Highly active Au/δ-MoC and Cu/δ-MoC catalysts for the conversion of CO 2: The metal/C ratio as a key factor defining activity, selectivity, and stability

    DOE PAGES

    Posada-Pérez, Sergio; Ramírez, Pedro J.; Evans, Jaime; ...

    2016-06-16

    The ever growing increase of CO 2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO 2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO 2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/β-Mo 2C and Au/δ-MoC catalysts providesmore » evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO 2 conversion. Here, a control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.« less

  3. Increased x-ray conversion efficiency from ultra high contrast, relativistic laser pulse irradiation of large aspect ratio, vertically aligned nanowires

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Kaymak, V.; Pukhov, A.; Capeluto, M. G.; Wang, Y.; Wang, S.; Rockwood, A.; Curtis, A.; Rocca, J. J.

    2016-10-01

    Recent experiments at Colorado State University have shown that the effective trapping of clean, Joule-level fs laser pulses of relativistic intensity in arrays of high aspect ratio aligned nanowire creates multi-kev, near solid density, large scale (>4um deep) plasmas. The drastically decreased radiative life time and increased hydrodynamic cooling time from these plasmas increases the x-ray conversion efficiency. We measured a record conversion efficiency of 10% into hv>1KeV photons (2pi steradians), and of 0.3% for hv>6KeV. The experiments used Au and Ni nanowires of 55nm, 80nm and 100nm in diameter with 12% of solid density irradiated by high contrast (>1012) pulses of 60fs FWHM duration from a frequency doubled Ti:Sa laser at intensities of I =5x1019Wcm-2. We also present preliminary results on x-ray emission from Rhodium nanowires in the 19-22KeV range and demonstrate the potential of this picosecond X-ray source in flash radiography. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079.

  4. Synthesis and Characterization of Poly (styrene-co-butyl acrylate)/Silica Aerogel Nanocomposites by in situ AGET ATRP: Investigating Thermal Properties

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Fazli, Yousef

    2017-10-01

    Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.

  5. In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1

    PubMed Central

    Mazelis, Mendel; Pratt, Helen M.

    1976-01-01

    l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine. PMID:16659431

  6. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  7. Increasing Teacher Diversity: Growing Your Own through Partnerships

    ERIC Educational Resources Information Center

    Schmitz, Steven A.; Nourse, Steven W.; Ross, Molly E.

    2012-01-01

    That the student population in public schools is becoming increasingly diverse is not all that surprising. Studies indicate that in less than three decades, a majority of children will likely belong to race-ethnic minorities. Conversely, teacher candidates are not keeping pace with the diversity ratio of students in the PK-12 public school…

  8. Vacancy-oxygen defects in p-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Londos, C. A.; Chroneos, A.

    2014-10-01

    Oxygen-vacancy defects and, in particular, the VO pairs (known as A-centers) are common defects in silicon (Si) with a deleterious impact upon its properties. Although oxygen-vacancy defects have been extensively studied in Si there is far less information about their properties in p-type doped silicon germanium (Si1-xGex). Here, we use Fourier transform infrared spectroscopy to determine the production and evolution of oxygen-vacancy defects in p-type Si1-xGex. It was determined that the increase of Ge content affects the production and the annealing behavior of the VO defect as well as its conversion to the VO2 defect. In particular, both the VO production and the VO annealing temperature are reduced with the increase of Ge. The conversion ratio [VO2]/[VO] also decreases with the increase of x, although the ratios [VO3]/[VO2] and [VO4]/[VO3] show a tendency to increase for larger Ge contents. The results are discussed in view of recent experimental and theoretical studies in Si and Si1-xGex.

  9. Effect of flash release treatment on phenolic extraction and wine composition.

    PubMed

    Morel-Salmi, Cécile; Souquet, Jean-Marc; Bes, Magali; Cheynier, Véronique

    2006-06-14

    The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.

  10. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome.

    PubMed

    Spychala, Monica S; Venna, Venugopal Reddy; Jandzinski, Michal; Doran, Sarah J; Durgan, David J; Ganesh, Bhanu Priya; Ajami, Nadim J; Putluri, Nagireddy; Graf, Joerg; Bryan, Robert M; McCullough, Louise D

    2018-05-07

    Objective Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. Methods Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S rRNA analysis of bacterial content. Results We found that the microbiota is altered after experimental stroke in young mice, and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (P<0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, P<0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, P<0.001) increased survival and improved recovery following MCAO. Interpretation Aged biome increased the levels of systemic pro-inflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. This article is protected by copyright. All rights reserved. © 2018 American Neurological Association.

  11. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2009-05-01

    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.

  12. [Effect of biological pretreatment with Trametes vesicolor on the enzymatic hydrolysis of softwood and hardwood].

    PubMed

    Yu, Hongbo; Zhang, Xiaoyu

    2009-07-01

    We evaluated the effect of biological pretreatment with white rot fungus Trametes vesicolor on the enzymatic hydrolysis of two wood species, Chinese willow (Salix babylonica, hardwood) and China-fir (Cunninghamia lanceolata, softwood). The result indicated that the pretreated woods showed significant increases in the final conversion ratios of enzymatic hydrolysis (4.78-fold for hardwood and 4.02-fold for softwood). In order to understand the role of biological pretreatment we investigated the enzyme-substrate interactions. Biological pretreatment enhanced the substrate accessibility to cellulase but not always correlated with the initial conversion rate. However, the change of the conversion rate decreased dramatically with increased desorption values after biological pretreatment. Thus, the biological pretreatment slowed down the declines in conversion rates during enzymatic hydrolysis by reducing the irreversible adsorption of cellulase and then improved the enzymatic hydrolysis. Moreover, the decreases of the irreversible adsorption may be attributed to the partial lignin degradation and alteration in lignin structure after biological pretreatment.

  13. Optimization of Neutral Atom Imagers

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.

    2008-01-01

    The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.

  14. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal.

    PubMed

    Solomon, Shola Gabriel; Ataguba, Gabriel Arome; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly ( p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences ( p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  15. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal

    PubMed Central

    Solomon, Shola Gabriel; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter. PMID:28239492

  16. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGES

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; ...

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  17. Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Yao, Xiaomei; Li, Hao; Yu, Qingsong; Wang, Yong

    2012-01-01

    Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32° to 35°C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance. PMID:23018084

  18. Particulate matter is associated with sputum culture conversion in patients with culture-positive tuberculosis.

    PubMed

    Chen, Kuan-Yuan; Chuang, Kai-Jen; Liu, Hui-Chiao; Lee, Kang-Yun; Feng, Po-Hao; Su, Chien-Ling; Lin, Chii-Lan; Lee, Chun-Nin; Chuang, Hsiao-Chi

    2016-01-01

    Emerging risk factors for tuberculosis (TB) infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 μg/m(3) increase in particulate matter of ≤10 μm in aerodynamic diameter (PM10) resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01-1.08, P<0.05). The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R (2)=0.94, P<0.05). However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 μg/m(3) PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07-1.84, P<0.05). In conclusion, chronic exposure to ≥50 μg/m(3) PM10 may prolong the sputum culture conversion of TB patients with sputum-positive cultures.

  19. Alternative Payment Models Should Risk-Adjust for Conversion Total Hip Arthroplasty: A Propensity Score-Matched Study.

    PubMed

    McLawhorn, Alexander S; Schairer, William W; Schwarzkopf, Ran; Halsey, David A; Iorio, Richard; Padgett, Douglas E

    2017-12-06

    For Medicare beneficiaries, hospital reimbursement for nonrevision hip arthroplasty is anchored to either diagnosis-related group code 469 or 470. Under alternative payment models, reimbursement for care episodes is not further risk-adjusted. This study's purpose was to compare outcomes of primary total hip arthroplasty (THA) vs conversion THA to explore the rationale for risk adjustment for conversion procedures. All primary and conversion THAs from 2007 to 2014, excluding acute hip fractures and cancer patients, were identified in the National Surgical Quality Improvement Program database. Conversion and primary THA patients were matched 1:1 using propensity scores, based on preoperative covariates. Multivariable logistic regressions evaluated associations between conversion THA and 30-day outcomes. A total of 2018 conversions were matched to 2018 primaries. There were no differences in preoperative covariates. Conversions had longer operative times (148 vs 95 minutes, P < .001), more transfusions (37% vs 17%, P < .001), and longer length of stay (4.4 vs 3.1 days, P < .001). Conversion THA had increased odds of complications (odds ratio [OR] 1.75; 95% confidence interval [CI] 1.37-2.24), deep infection (OR 4.21; 95% CI 1.72-10.28), discharge to inpatient care (OR 1.52; 95% CI 1.34-1.72), and death (OR 2.39; 95% CI 1.04-5.47). Readmission odds were similar. Compared with primary THA, conversion THA is associated with more complications, longer length of stay, and increased discharge to continued inpatient care, implying greater resource utilization for conversion patients. As reimbursement models shift toward bundled payment paradigms, conversion THA appears to be a procedure for which risk adjustment is appropriate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Selection of broilers for increased innate immune markers: Past strategies and looking ahead

    USDA-ARS?s Scientific Manuscript database

    Economic efficiency demanded by the poultry industry has pushed selection towards high production with improved feed conversion ratios (FCR) and high yield; however, selection based heavily on growth characteristics and other phenotypic traits has adversely affected immune competence. Despite incre...

  1. Internal combustion engine controls for reduced exhausts contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.R. Jr.

    1974-06-04

    An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less

  2. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  3. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  4. Gasification of refinery sludge in an updraft reactor for syngas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less

  5. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  6. Isomerization of n-hexane and n-pentane mixture on Pt-alumina catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhi, M.A.; Al-Mutawalli, F.S.; Al-Sammarie, E.A.

    A mixture of n-hexane and n-penane (1:1) by volume was isomerized on commercial Pt-alumina catalyst in a continuously fixed-bed reactor at atmospheric pressure. The effect of temperature, LHSV, hydrogen/hyrocarbon molar ratio and chlorine concentration were studied. It was found that the yield of isohexanes and isopentane increases with increasing the chloride added up to 0.1 and 0.2 mole % CCl/sub 4/ respectively. The rate of isomerization became slower at higher concentrations. Isomerization activity of the catalyst increases with increasing temperature ranging between 350-400/sup 0/C. The yield of isomers decrease with increasing temperature above 400/sup 0/C. The relative conversion of n-hexanemore » in the mixture was found to be more than the conversion of pure n-hexane at the same conditions.« less

  7. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    PubMed

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. dc analysis and design of zero-voltage-switched multi-resonant converters

    NASA Astrophysics Data System (ADS)

    Tabisz, Wojciech A.; Lee, Fred C.

    Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.

  9. Survey of pain specialists regarding conversion of high-dose intravenous to neuraxial opioids

    PubMed Central

    Gorlin, Andrew W; Rosenfeld, David M; Maloney, Jillian; Wie, Christopher S; McGarvey, Johnathan; Trentman, Terrence L

    2016-01-01

    The conversion of high-dose intravenous (IV) opioids to an equianalgesic epidural (EP) or intrathecal (IT) dose is a common clinical dilemma for which there is little evidence to guide practice. Expert opinion varies, though a 100 IV:10:EP:1 IT conversion ratio is commonly cited in the literature, especially for morphine. In this study, the authors surveyed 724 pain specialists to elucidate the ratios that respondents apply to convert high-dose IV morphine, hydromorphone, and fentanyl to both EP and IT routes. Eighty-three respondents completed the survey. Conversion ratios were calculated and entered into graphical scatter plots. The data suggest that there is wide variation in how pain specialists convert high-dose IV opioids to EP and IT routes. The 100 IV:10 EP:1 IT ratio was the most common answer of survey respondent, especially for morphine, though also for hydromorphone and fentanyl. Furthermore, more respondents applied a more aggressive conversion strategy for hydromorphone and fentanyl, likely reflecting less spinal selectivity of those opioids compared with morphine. The authors conclude that there is little consensus on this issue and suggest that in the absence of better data, a conservative approach to opioid conversion between IV and neuraxial routes is warranted. PMID:27703394

  10. Seeking to Improve Low Energy Neutral Atom Detection in Space

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  11. Studies on the feeding of cupric sulfate pentahydrate, cupric citrate, and copper oxychloride to broiler chickens.

    PubMed

    Ewing, H P; Pesti, G M; Bakalli, R I; Menten, J F

    1998-03-01

    Male commercial broiler strain chickens were fed either a control diet (based on corn and soybean meal) or the control diet supplemented with cupric sulfate pentahydrate, copper oxychloride, or cupric citrate in two experiments conducted in floor pens. In Experiment 1, feeding copper at 125 mg/kg diet for 42 d significantly increased broiler growth; and the response from cupric citrate was significantly better than either cupric sulfate or copper oxychloride. In Experiment 2, the inclusion of copper from cupric citrate was reduced to 63 mg/kg and the length of the experiment was increased to 56 d. Cupric sulfate pentahydrate and copper oxychloride treatments increased weight gain by 4.9% and cupric citrate increased weight gain by 9.1%. The feed conversion ratios (grams of feed:grams of gain of live birds) in the birds fed copper were not significantly different from those fed the basal diet (P > 0.05) unless corrections were made for the weights of the dead birds; the adjusted feed conversion ratios (grams of feed:grams of gain of live birds + grams of gain of mortalities) for the copper-treated birds in Experiments 1 and 2 were 5.2 and 7.6% lower, respectively, than the ratios of birds fed the basal diets. Plasma copper levels increased in supplemented chicks by 35% in Experiment 1 and 24% in Experiment 2. Liver copper levels in both experiments were increased by 26% with copper supplementation. Mortality was not affected by dietary treatment in either experiment (P > 0.05).

  12. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  13. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Conversion of blood androgens to estrogens in normal adult men and women

    PubMed Central

    Longcope, Christopher; Kato, Tatsuo; Horton, Richard

    1969-01-01

    Continuous infusions of Δ4-androstenedione-7-3H and testosterone-7-3H have been used to demonstrate that these androgens are converted to estrone and 17β-estradiol, and contribute to the circulating blood levels of these estrogens in normal males and females. The conversion ratio (ratio of concentrations of radioactivity of free product steroid [χ-PRO] and free precursor steroid [χ-PRE], both corrected for recoveries, after an infusion of radioactive precursor steroid) for androstenedione (precursor) to estrone (product) is 0.013 in males and 0.007 in females, and the conversion ratio for testosterone (precursor) to estradiol (product) is 0.0018 in males and 0.005 in females. The transfer constant, [ρ]BBAE1, for androstenedione conversion to estrone ([ρ]BBAE1 = per cent of infused androstenedione, precursor, converted to estrone, product, when infusion and measurement are both in blood) is 1.35% in males and 0.74% in females, and the transfer constant, [ρ]BBTE2, for testosterone conversion to estradiol is 0.39% in males and 0.15% in females. Whether measured as conversion ratio or transfer constant, the peripheral aromatization of androstenedione takes place to a greater degree than that of testosterone, and, for the respective androgens, both the conversion ratio and [ρ]BB value are greater in males than females. For the androgen interconversions, [ρ]BBAT is 4.5% in males and 2.2% in females; [ρ]BBTA is 8.2% in males and 12.0% in females. Studies on the distribution coefficients (effective concentration in red cells/plasma) for precursor radioactivity were also made. In both males and females the distribution coefficient for androstenedione is 0.16-0.17 while that of testosterone is 0.01-0.03. PMID:5355335

  15. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  16. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  17. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment.

    PubMed

    Jessen, Frank; Wiese, Birgitt; Bachmann, Cadja; Eifflaender-Gorfer, Sandra; Haller, Franziska; Kölsch, Heike; Luck, Tobias; Mösch, Edelgard; van den Bussche, Hendrik; Wagner, Michael; Wollny, Anja; Zimmermann, Thomas; Pentzek, Michael; Riedel-Heller, Steffi G; Romberg, Heinz-Peter; Weyerer, Siegfried; Kaduszkiewicz, Hanna; Maier, Wolfgang; Bickel, Horst

    2010-04-01

    Subjective memory impairment (SMI) is receiving increasing attention as a pre-mild cognitive impairment (MCI) condition in the course of the clinical manifestation of Alzheimer disease (AD). To determine the risk for conversion to any dementia, dementia in AD, or vascular dementia by SMI, graded by the level of SMI-related worry and by the temporal association of SMI and subsequent MCI. Longitudinal cohort study with follow-up examinations at 1(1/2) and 3 years after baseline. Primary care medical record registry sample. A total of 2415 subjects without cognitive impairment 75 years or older in the German Study on Aging, Cognition and Dementia in Primary Care Patients. Conversion to any dementia, dementia in AD, or vascular dementia at follow-up 1 or follow-up 2 predicted by SMI with or without worry at baseline and at follow-up 2 predicted by different courses of SMI at baseline and MCI at follow-up 1. In the first analysis, SMI with worry at baseline was associated with greatest risk for conversion to any dementia (hazard ratio [HR], 3.53; 95% confidence interval [CI], 2.07-6.03) or dementia in AD (6.54; 2.82-15.20) at follow-up 1 or follow-up 2. The sensitivity was 69.0% and the specificity was 74.3% conversion to dementia in AD. In the second analysis, SMI at baseline and MCI at follow-up 1 were associated with greatest risk for conversion to any dementia (odds ratio [OR], 8.92; 95% CI, 3.69-21.60) or dementia in AD (19.33; 5.29-70.81) at follow-up 2. Furthermore, SMI at baseline and amnestic MCI at follow-up 1 increased the risk for conversion to any dementia (OR, 29.24; 95% CI, 8.75-97.78) or dementia in AD (60.28; 12.23-297.10), with a sensitivity of 66.7% and a specificity of 98.3% for conversion to dementia in AD. The prediction of dementia in AD by SMI with subsequent amnestic MCI supports the model of a consecutive 3-stage clinical manifestation of AD from SMI via MCI to dementia.

  18. Prediction of local recurrence in colorectal carcinoma: an LDH isoenzymatic assay.

    PubMed Central

    Langvad, E.; Jemec, B.

    1975-01-01

    In a previous study of colorectal carcinoma, the LDH isoenzyme pattern was determined in 420 tissue biopsies from 36 surgical specimens. The LDHIV/LDHII ratio was increased in tumour tissue, but in a number of cases increased ratios were found in the morphologically uninvolved tissue as well. This was especially pronounced in cases with multiple tumours. The isoenzymatic changes were interpreted therefore as a possible indicator of an early process of malignant conversion. In order to test this hypothesis the original material has been reviewed after observation periods ranging from 5 to 7 years. It appears that the mean LDHVI/LDHII isoenzyme ratio of resection edge biopsies is high (0-92) in patients succumbing with local recurrence, differing significantly (P less than 0-01) from the corresponding mean ratio (0-66) in patients clinically cured. PMID:1174443

  19. Association of triglyceride-to-high density lipoprotein cholesterol ratio to cardiorespiratory fitness in men.

    PubMed

    Vega, Gloria Lena; Grundy, Scott M; Barlow, Carolyn E; Leonard, David; Willis, Benjamin L; DeFina, Laura F; Farrell, Stephen W

    Both triglyceride-to-high density lipoprotein cholesterol (TG/HDL-C) and cardiorespiratory fitness (CRF) impart risk for all-cause morbidity and mortality independently of conventional risk factors. To determine prevalence and/or incidence of high TG/HDL-C ratio in men with low CRF. Clinical characteristics and CRF were used to determine prevalence of a TG/HDL-C ratio ≥ 3.5 (high ratio) in 13,954 men of the Cooper Center Longitudinal Study. High-ratio conversion was determined in 10,424 men with normal baseline TG/HDL-C ratio. Hazard ratio (HR) of incident high TG/HDL-C was adjusted for age and waist girth. Men with low CRF had the highest prevalence of a high TG/HDL-C ratio. In the population with normal TG/HDL-C, age-adjusted HR of incident high TG/HDL-C ratio was 2.77 times higher in men with lowest CRF than in those with highest CRF. Incidence of conversion of normal to high ratio was 5.5% per year in low CRF population, compared with 1.7% in high CRF subjects. Incidence HR was independent of waist girth. Men who converted from normal to high TG/HDL-C ratio during the follow-up period had increased number of metabolic risk factors and a higher prevalence of metabolic syndrome. Men who did not convert to a high TG/HDL-C ratio retained a low prevalence of metabolic syndrome risk factors. A high TG/HDL-C ratio is common in men with low CRF. Metabolic syndrome also is common among those with a high ratio. Copyright © 2016 National Lipid Association. All rights reserved.

  20. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    NASA Astrophysics Data System (ADS)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and experimental results indicating that the underlying assumption of the simple model of conversion of hydrocarbons to CO and H 2 followed by equilibrium reconstitution to methane appears to be reasonable one.

  1. Various aspects of ultrasound assisted emulsion polymerization process.

    PubMed

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [Metabolic disturbance of tryptophan-nicotinamide conversion pathway by putative endocrine disruptors, bisphenol A and styrene monomer].

    PubMed

    Fukuwatari, Tsutomu; Toriochi, Mai; Ohta, Mari; Sasaki, Ryuzo; Shibata, Katsumi

    2004-02-01

    Bisphenol A, a monomer of polycarbonate plastics, disturbed the conversion pathway of the amino acid tryptophan to the vitamin nicotinamide. The conversion ratio of tryptophan to nicotinamide was reduced to 1/15 by feeding a diet containing 1% bisphenol A. A putative disturbing reaction is kynurenine-->3-hydroxykynurenine, which is catalyzed by kynurenine monohydroxylase. This is an FAD-enzyme and requires NADPH as a coenzyme. Styrene monomer (1% addition to a normal diet) did not affect the food intake or the body weight, but slightly reduced the conversion ratio of tryptophan-nicotinamide.

  3. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,

  4. Principles of signal conditioning.

    PubMed

    Finkel, A; Bookman, R

    2001-05-01

    It is rare for biological, physiological, chemical, electrical, or physical signals to be measured in the appropriate format for recording and interpretation. Usually, a signal must be conditioned to optimize it for both of these functions. This overview describes the fundamentals of signal filtering, how to prepare signals for A/D conversion, signal averaging to increase the signal-to-noise ratio, line frequency pickup (hum), peak-to-peak and rms noise measurements, blanking, audio monitoring, testing of electrodes and the common-mode rejection ratio.

  5. Type II iodothyronine deiodinase provides intracellular 3,5,3'-triiodothyronine to normal and regenerating mouse skeletal muscle.

    PubMed

    Marsili, Alessandro; Tang, Dan; Harney, John W; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico; Larsen, P Reed

    2011-11-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T(3) under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T(4)-to-T(3) conversion increases during differentiation in C(2)C(12) myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given (125)I-T(4) and (131)I-T(3), the intracellular (125)I-T(3)/(131)I-T(3) ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the (125)I-T(3)/(131)I-T(3) ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in (125)I-T(3)/(131)I-T(3) ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of (125)I-T(3) is doubled after skeletal muscle injury. Thus, D2-mediated T(4)-to-T(3) conversion generates significant intracellular T(3) in normal mouse skeletal muscle, with the increased T(3) required for muscle regeneration being provided by increased D2 synthesis, not by T(3) from the circulation.

  6. Type II iodothyronine deiodinase provides intracellular 3,5,3′-triiodothyronine to normal and regenerating mouse skeletal muscle

    PubMed Central

    Marsili, Alessandro; Tang, Dan; Harney, John W.; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico

    2011-01-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T4) to 3,5,3′-triiodothyronine (T3), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T3 under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T4-to-T3 conversion increases during differentiation in C2C12 myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given 125I-T4 and 131I-T3, the intracellular 125I-T3/131I-T3 ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the 125I-T3/131I-T3 ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in 125I-T3/131I-T3 ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of 125I-T3 is doubled after skeletal muscle injury. Thus, D2-mediated T4-to-T3 conversion generates significant intracellular T3 in normal mouse skeletal muscle, with the increased T3 required for muscle regeneration being provided by increased D2 synthesis, not by T3 from the circulation. PMID:21771965

  7. Effects of biodiesel on continuous regeneration DPF characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Xie, Hui; Gao, Guoyou; Wang, Wei; Hui, Chun

    2017-06-01

    A critical requirement for the implementation of DPF on a modern engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. In order to study the influence of biodiesel on the Regenerating Characteristics of Continuously Regeneration DPF, Bench test were carried out to investigate the BET of a continuously regeneration DPF assembled with a diesel engine fueled with neat diesel and biodiesel. Test results show that at the same engine operation conditions the fuel consumption is higher for biodiesel case, and also the intake air quantity and boost pressure are lower; the BET for the Diesel fuel is about 310 ° while it is about 250 ° for the Biodiesel case. When the engine is at the low torque and low exhaust temperature operation condition, CO conversion rate is extremely low, NO2/NOX ratio is small; with the increase of torque and exhaust temperature, CO conversion and NO2/NOX ratio increased significantly, and the maximum NO2/NOX ratio (about 35%) has been measured at 350 °. In addition, the DPF has better filtration efficiency for biodiesel PM, and the use of biodiesel to engine assembled with DPF has significant benefits.

  8. Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer

    NASA Astrophysics Data System (ADS)

    An, Gil Woo; Mahadik, Mahadeo A.; Chae, Weon-Sik; Kim, Hyun Gyu; Cho, Min; Jang, Jum Suk

    2018-05-01

    The vertically aligned TiO2 nanorod arrays (NRA) with manipulated aspect ratio were hydrothermally synthesized by changing the amount of the titanium (Ti) precursor in the initial growth solution. FE-SEM images show the optimum morphology, density and aspect ratio of the well-aligned TB-1.2 NRs on the surface of the FTO substrate. The UV-vis-absorption measurements revealed that a sample prepared at TB-1.2 can provide an increased light trapping effect. PEC analyses demonstrated that the TiO2 nanorods deposited at TB-1.2 of Titanium butoxide show a relatively high PEC conversion efficiency (3.5 times) compared with the TB-0.8 prepared TiO2 at a 1.0 V versus RHE. The higher PEC performance is believed to be the result of an enhancement of the optimum aspect ratio, light trapping, an efficient charge separation, and the high carrier transport in the vertically aligned TiO2 NRs. Further, the PEC based organic dye degradation experiments showed 77% and 94% removal of Orange II and methylene blue respectively. Additionally, 109 μmol h-1 cm-2 hydrogen generations were attributed using optimized vertically aligned TiO2 NRA's. Thus, the appropriate morphology manipulated the TiO2 NRAs are useful for solar conversion applications.

  9. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  10. Novozyme 435-catalyzed efficient acylation of 3-n-butylphthalide in organic medium.

    PubMed

    He, Laping; Sun, Jiong; Xu, Yan; Sun, Zhihao; Zheng, Changge

    2008-01-01

    Novozyme 435 could catalyze efficient acylation of 3-n-butylphthalide in organic medium. The conversion of 3-n-butylphthalide increased with the increase of hydrophobicity of solvent below that of hexane. The more available solvent was hexane. Salt hydride could control fixed water activity. The optimum water activity was 0.62. And the optimum of reaction time, velocity of agitation, dosage of Novozyme 435 and acetic anhydride to 3-n-butylphtrhalide molar ratio were 48 hours, 150 rpm, 8 mg/mL and 8:1, respectively. The conversion of 48.9% could be obtained at a water activity of 0.62 in hexane. Furthermore, Novozyme 435 had an enantioselective acylation of racemic 3-n-butylphthalide by original analysis.

  11. Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: principles of operation

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Zaibel, Reuven; Narkiss, Niv; Ben-Ezra, Shalva; Chayet, Haim; Shahar, Nir; Sternklar, Shmuel; Tsadka, Sagie; Prucnal, Paul R.

    2005-12-01

    In this paper we investigate the wavelength conversion and regeneration properties of a tunable all-optical signal regenerator (TASR). In the TASR, the wavelength conversion is done by a semiconductor optical amplifier, which is incorporated in an asymmetric Sagnac loop (ASL). We demonstrate both theoretically and experimentally that the ASL regenerates the incident signal's bit pattern, reduces its noise, increases the extinction ratio (which in many aspects is equivalent to noise reduction) and improves its bit-error rate. We also demonstrate the general behavior of the TASR with a numerical simulation.

  12. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    PubMed

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion

    DOE PAGES

    Aston, John E.; Thompson, David N.; Westover, Tyler L.

    2016-08-30

    Lignocellulosic biomass is a sustainable energy source that can help meet the increasing demand for biofuels in the United States. However, the quality and availability of such feedstocks greatly affects their suitability for downstream conversion. This work reports the effects of dilute-acid leaching at various solid loadings, temperatures and acid loadings on the quality of a traditional biochemical feedstock, corn stover, as a potential feedstock for thermochemical conversions. At 5 wt% solids, dilute-acid leaching was observed to effectively remove 97.3% of the alkali metals and alkaline earth metals that can negatively affect degradation pathways during pyrolysis and result in greatermore » yield of non-condensable gases. In addition, up to 98.4% of the chlorine and 88.8% of the phosphorus, which can cause equipment corrosion and foul upgrading catalysts, respectively, were removed. At 25°C in the absence of acid, only 6.8% of the alkali metals and alkaline earth metals were removed; however 88.0% of chloride was still removed. The ratio of alkaline/acidic ash species has been suggested to proportionately relate to slagging in biopower applications. The initial alkali/acid ratio of the ash species present in the untreated corn stover was 0.38 (significant slagging risk). At 5 wt% solids, this ratio was decreased to 0.18 (moderate slagging risk) at 0 wt% acid and 90°C, and was decreased to 0.07, 0.08 and 0.06 at 0.5 wt% acid at 25°C, 50°C and 90°C, respectively (little or no slagging risk). Increasing the acid loading to 1.0% only slightly decreased the measured alkali/acid ratio of remaining ash species. Lastly, the results presented here show that a water wash or dilute-acid preprocessing step can improve corn stover quality for pyrolysis, hydrothermal liquefaction and biopower.« less

  14. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aston, John E.; Thompson, David N.; Westover, Tyler L.

    Lignocellulosic biomass is a sustainable energy source that can help meet the increasing demand for biofuels in the United States. However, the quality and availability of such feedstocks greatly affects their suitability for downstream conversion. This work reports the effects of dilute-acid leaching at various solid loadings, temperatures and acid loadings on the quality of a traditional biochemical feedstock, corn stover, as a potential feedstock for thermochemical conversions. At 5 wt% solids, dilute-acid leaching was observed to effectively remove 97.3% of the alkali metals and alkaline earth metals that can negatively affect degradation pathways during pyrolysis and result in greatermore » yield of non-condensable gases. In addition, up to 98.4% of the chlorine and 88.8% of the phosphorus, which can cause equipment corrosion and foul upgrading catalysts, respectively, were removed. At 25°C in the absence of acid, only 6.8% of the alkali metals and alkaline earth metals were removed; however 88.0% of chloride was still removed. The ratio of alkaline/acidic ash species has been suggested to proportionately relate to slagging in biopower applications. The initial alkali/acid ratio of the ash species present in the untreated corn stover was 0.38 (significant slagging risk). At 5 wt% solids, this ratio was decreased to 0.18 (moderate slagging risk) at 0 wt% acid and 90°C, and was decreased to 0.07, 0.08 and 0.06 at 0.5 wt% acid at 25°C, 50°C and 90°C, respectively (little or no slagging risk). Increasing the acid loading to 1.0% only slightly decreased the measured alkali/acid ratio of remaining ash species. Lastly, the results presented here show that a water wash or dilute-acid preprocessing step can improve corn stover quality for pyrolysis, hydrothermal liquefaction and biopower.« less

  15. Effect of increasing levels of apparent metabolizable energy on laying hens in barn system.

    PubMed

    Kang, Hwan Ku; Park, Seong Bok; Jeon, Jin Joo; Kim, Hyun Soo; Park, Ki Tae; Kim, Sang Ho; Hong, Eui Chul; Kim, Chan Ho

    2018-04-12

    This experiment was to investigate the effect of increasing levels of apparent metabolizable energy (AMEn) on the laying performance, egg quality, blood parameter, blood biochemistry, intestinal morphology, and apparent total tract digestibility (ATTD) of energy and nutrients in diets fed to laying hens. A total of three-hundred twenty 33-week-old Hy-Line Brown laying hens (Gallus domesticus) were evenly assigned to four experimental diets of 2,750, 2,850, 2,950, and 3,050 kcal AMEn/kg in floor with deep litter of rice hulls. There were four replicates of each treatment, each consisting of 20 birds in a pen. AMEn intake was increased (linear, p < 0.05) with inclusion level of AMEn in diets increased. Feed intake and feed conversion ratio were improved (linear, p < 0.01), but hen-day egg production tended to be increased as increasing level of AMEn in diets increased. During the experiment, leukocyte concentration and blood biochemistry (total cholesterol, triglyceride, glucose, total protein, calcium, asparate aminotransferase (AST), and alanine transferase (ALT) were not influenced by increasing level of AMEn in diets. Gross energy and ether extract were increased (linear, p < 0.01) with inclusion level of AMEn in diets increased. Laying hens fed high AMEn diet (i.e., 3,050 kcal/kg in the current experiment) tended to overconsume energy with a positive effect on feed intake, feed conversion ratio, nutrient digestibility, and intestinal morphology but not in egg production and egg mass.

  16. Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive

    NASA Astrophysics Data System (ADS)

    Setianto, W. B.; Wibowo, T. Y.; Yohanes, H.; Illaningtyas, F.; Anggoro, D. D.

    2017-05-01

    Synthesis of glycerol mono-laurate (GML) has been performed using esterification reaction of glycerol and lauric acid. The reaction was performed at the condition of temperature of 120-140 °C within 7 hour, variation of molar ratio of glycerol - lauric acid, and was using heterogeneous catalyst of zeolist Y. Without catalyst dealumination the maximum acid conversion was 78%, with GML contained in the sample was 38.6%, and it was obtained at the reaction condition of 140 oC, 15wt% catalyst, and 8:1 molar ratio of glycerol - lauric acid. At the same condition, using dealuminated catalyst, the maximum acid conversion was increased up to 98%, with GML contained in the sample was 50.4%. The GML antibacterial activity was examined. It was observed that the GML has antibacterial activity against gram positive bacterial such as B. cereus and S. aureus.

  17. Implications of Fast Reactor Transuranic Conversion Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

    2010-11-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to floatmore » while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.« less

  18. Underestimating the Alcohol Content of a Glass of Wine: The Implications for Estimates of Mortality Risk

    PubMed Central

    Britton, Annie; O’Neill, Darragh; Bell, Steven

    2016-01-01

    Aims Increases in glass sizes and wine strength over the last 25 years in the UK are likely to have led to an underestimation of alcohol intake in population studies. We explore whether this probable misclassification affects the association between average alcohol intake and risk of mortality from all causes, cardiovascular disease and cancer. Methods Self-reported alcohol consumption in 1997–1999 among 7010 men and women in the Whitehall II cohort of British civil servants was linked to the risk of mortality until mid-2015. A conversion factor of 8 g of alcohol per wine glass (1 unit) was compared with a conversion of 16 g per wine glass (2 units). Results When applying a higher alcohol content conversion for wine consumption, the proportion of heavy/very heavy drinkers increased from 28% to 41% for men and 15% to 28% for women. There was a significantly increased risk of very heavy drinking compared with moderate drinking for deaths from all causes and cancer before and after change in wine conversion; however, the hazard ratios were reduced when a higher wine conversion was used. Conclusions In this population-based study, assuming higher alcohol content in wine glasses changed the estimates of mortality risk. We propose that investigator-led cohorts need to revisit conversion factors based on more accurate estimates of alcohol content in wine glasses. Prospectively, researchers need to collect more detailed information on alcohol including serving sizes and strength. Short summary The alcohol content in a wine glass is likely to be underestimated in population surveys as wine strength and serving size have increased in recent years. We demonstrate that in a large cohort study, this underestimation affects estimates of mortality risk. Investigator-led cohorts need to revisit conversion factors based on more accurate estimates of alcohol content in wine glasses. PMID:27261472

  19. Effects of a dietary complex of humic and fulvic acids (FeedMAX 15) on the health and production of feedlot cattle destined for the Australian domestic market.

    PubMed

    Cusack, P M V

    2008-01-01

    To examine the effects of a dietary humic and fulvic acid complex, FeedMAX 15, on the health, growth rate, feed conversion ratio, and carcase characteristics of feedlot cattle. Cattle, in eight pens of 125 animals each, were fed either a diet containing a humic and fulvic acid complex (FeedMAX 15, FeedMAX Industries, Toowoomba, Queensland) or the same diet without the additive. Control or FeedMAX 15 diets were allocated to each pen at random. Individual cattle were allocated alternately to control or treatment pens based on order of presentation. Comparisons of disease incidence, mortality, feed intake, growth rate, feed conversion ratio, fat depth, dressing percentage, meat colour, fat colour and marbling were made at the conclusion of the feeding period. No differences were found between cattle fed FeedMAX 15 and cattle not fed the additive in entry body weight (P = 0.99), exit body weight (P = 0.91), dressing percentage (P = 0.66), P8 fat depth (P = 0.57), meat colour (P = 0.67), marbling (P = 0.70), all diseases (P = 0.64), bovine respiratory disease (P = 0.91), or mortalities (P = 1.0). Cattle fed FeedMAX 15 reached the market specifications for body weight and fat depth in fewer mean days (P = 0.0001), had a greater average daily gain (P = 0.05), a lower feed conversion ratio (P = 0.05) and whiter fat (P < 0.0001). Feeding the humic and fulvic acid complex, FeedMAX 15, at 0.055 g per kg body weight per day, can increase growth rate and feed conversion efficiency in feedlot cattle.

  20. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  1. Economic impact of generic substitution of lamotrigine: projected costs in the US using findings in a Canadian setting.

    PubMed

    LeLorier, Jacques; Duh, Mei Sheng; Paradis, Pierre Emmanuel; Latrémouille-Viau, Dominick; Lefebvre, Patrick; Manjunath, Ranjani; Sheehy, Odile

    2008-04-01

    Generic substitution may not always save health care costs for antiepileptic drugs (AED). (1) To examine the economic impacts of generic substitution of lamotrigine in Canada; and (2) to convert observed Canadian costs to a United States (US) setting. Health claims from Québec's health plan (RAMQ) between 08/2002 and 07/2006 were analyzed. Patients with > or = 1 epilepsy claim and treated with branded lamotrigine (Lamictal) before generic entry were selected. Health care costs ($/person-year) were compared during periods of branded and generic use of lamotrigine. Two cost-conversion methods were employed; one using purchasing power parities, US/Canada service use ratios, and exchange rate, and another employing Canadian health care utilization and US unit costs. 671 patients were observed during 1650.9 and 291.2 person-years of branded and generic use of lamotrigine, respectively. The generic-use period was associated with an increase in overall costs (2006 constant Canadian dollars) relative to brand use (C$7902 vs. C$6419/person-year; cost ratio (CR) = 1.22; p = 0.05), despite the lower cost of generic lamotrigine. Non-lamotrigine costs were 33% higher in the generic period (p = 0.013). Both conversion methods yielded increases in total projected health care costs excluding lamotrigine (2006 constant US dollars) during the generic period (Method 1: cost difference: US$1758/person-year, CR = 1.33, p = 0.01); Method 2: cost difference: US$2516, CR = 1.39, p = 0.004). Study limitations pertain to treatment differences, indicators used for conversion and possible claim inaccuracies. Use of generic lamotrigine in Canada was significantly associated with increased overall medical costs compared to brand use. Projected overall US health care costs would likely increase as well.

  2. Comparative study of biological activity of four botulinum toxin type A preparations in mice.

    PubMed

    Chung, Myung Eun; Song, Dae Heon; Park, Joo Hyun

    2013-01-01

    Units of available botulinum toxin preparations are not interchangeable, and the dose-conversion ratios between such preparations remain controversial. To compare the efficacy and safety of four botulinum toxin type A preparations. Murine gastrocnemius compound muscle action potentials (CMAPs) were recorded before and after injecting the four botulinum toxin preparations (onabotulinumtoxinA, abobotulinumtoxinA, new botulinum toxin, and incobotulinumtoxinA). In all preparations, CMAP amplitudes decreased until 4 days after receiving the injection and then gradually recovered. On postinjection day 84, the amplitudes returned to baseline in all groups except the high-dose groups. CMAP amplitude in the contralateral limb also decreased up to postinjection days 4 to 7 and then gradually returned to baseline by postinjection day 28. The dose-conversion ratio between onabotulinumtoxinA and abobotulinumtoxinA was determined to be 1:2.6; previous reports of 1:3 were considered too high. A dose-conversion ratio between onabotulinumtoxinA and new botulinum toxin of 1:1 was deemed appropriate. OnabotulinumtoxinA and incobotulinumtoxinA demonstrated a dose-conversion ratio of 1:1.07. The efficacy of incobotulinumtoxinA was slightly lower than that of onabotulinumtoxinA. These dose-conversion ratios are applicable solely from an efficacy standpoint and not for safety. This study was conducted in mice, so it may not translate perfectly to human applications. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  3. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    PubMed

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  5. Early changes in fiber profile and capillary density in long-term stimulated muscles.

    PubMed

    Hudlická, O; Dodd, L; Renkin, E M; Gray, S D

    1982-10-01

    Predominantly fast skeletal muscles of rabbits [tibialis anterior (TA), extensor digitorum longus (EDL)] were stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz continuously) for 8 h/day for 2--4 days. Such stimulation is known to convert all glycolytic fibers to oxidative and to increase capillary density. Our aim was to study early stages of conversion to investigate the factors responsible for the changes. Staining of quick-frozen sections for myosin ATPase, succinic dehydrogenase, and alkaline phosphatase was used to study the distribution of different fiber types and to measure fiber cross-sectional areas, capillaries per square millimeter, and capillary-to-fiber ratios in each fiber category. TA but not EDL showed conversion of fast glycolytic to fast oxidative fibers after 2 days, more after 4 days of stimulation. In both muscles, the largest fast glycolytic fibers were diminished in number after stimulation. There was significant increase in total capillaries per square millimeter after 4 days and some increase after 2 days of stimulation. The increase in capillaries per square millimeter exceeded the increase in the number of fibers per square millimeter, and since there was no change in mean fiber area, the increase is attributed to capillary growth. In EDL, there was an increase in the number of capillaries supplying both fast glycolytic and fast oxidative fibers, suggesting that capillary growth precedes fiber type conversion. In TA, the number of capillaries supplying fast oxidative fibers was increased but that to fast glycolytic fibers, was not. This is consistent with capillary growth simultaneous with or following fiber conversion. In both TA and EDL the number of capillaries perfused after contraction was higher in stimulated muscles, suggesting that increased capillary flow contributed to capillary growth.

  6. Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine

    PubMed Central

    Amerah, A. M.; Ravindran, V.

    2015-01-01

    The aim of the present experiment was to examine the effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two levels of betaine supplementation (0 and 960 g betaine/t of feed) without or with coccidia challenge. Each treatment was fed to 8 cages of 8 male broilers (Ross 308) for 1 to 21d. On d 14, birds in the 2 challenged groups received mixed inocula of Eimeria species from a recent field isolate, containing approximately 180,000 E. acervulina, 6,000 E. maxima, and 18,000 E. tenella oocysts. At 21d, digesta from the terminal ileum was collected for the determination of dry matter, energy, nitrogen, amino acids, starch, fat, and ash digestibilities. Lesion scores in the different segments of the small intestine were also measured on d 21. Performance and nutrient digestibility data were analyzed by two-way ANOVA. Lesion score data were analyzed using Pearson chi-square test to identify significant differences between treatments. Orthogonal polynomial contrasts were used to assess the significance of linear or quadratic models to describe the response in the dependent variable to total lesion scores. Coccidia challenge reduced (P < 0.0001) the weight gain and feed intake, and increased (P < 0.0001) the feed conversion ratio. Betaine supplementation had no effect (P > 0.05) on the weight gain or feed intake, but lowered (P < 0.05) the feed conversion ratio. No interaction (P > 0.05) between coccidia challenge and betaine supplementation was observed for performance parameters. Betaine supplementation increased (P < 0.05) the digestibility of dry matter, nitrogen, energy, fat, and amino acids only in birds challenged with coccidia as indicated by the significant interaction (P < 0.0001) between betaine supplementation and coccidia challenge. The main effect of coccidia challenge reduced (P < 0.05) starch digestibility. Betaine supplementation improved (P < 0.05) starch digestibility regardless of the coccidia challenge. For each unit increase in the total lesion score, there was a linear (P < 0.001) decrease in digestibility of mean amino acids, starch, and fat by 3.8, 3.4 and 16%, respectively. Increasing total lesion scores resulted in a quadratic (P < 0.05) decrease in dry matter digestibility and ileal digestible energy. No lesions were found in the intestine or ceca of the unchallenged treatments. In the challenged treatments, betaine supplementation reduced (P < 0.01) the lesion scores at the duodenum, lower jejunum, and total lesion scores compared to the treatment without supplements. In conclusion, coccidia challenge lowered the digestibility of energy and nutrients and increased the feed conversion ratio of broilers. However, betaine supplementation reduced the impact of coccidia challenge and positively affected nutrient digestibility and the feed conversion ratio. PMID:25691757

  7. Oxidative coupling of methane over a Sr-promoted La{sub 2}O{sub 3} catalyst supported on a low surface area porous catalyst carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Uphade, B.S.; Mulla, S.A.R.

    1997-09-01

    Oxidative coupling of methane (OCM) to higher hydrocarbons over Sr-promoted La{sub 2}O{sub 3} supported on commercial low surface area porous catalyst carriers at 800 and 850 C and a space velocity of 102,000 cm{sup 3}/g{center_dot}h has been thoroughly investigated. Effects of support, catalyst particle size, linear gas velocity, Sr/La ratio, CH{sub 4}/O{sub 2} ratio in the feed, and catalyst dilution by inert solid particles on the conversion, yield, or selectivity and product ratios (C{sub 2}H{sub 4}/C{sub 2}H{sub 6} and CO/CO{sub 2}) in the OCM process have been studied. The catalysts have been characterized for their basicity, acidity, and oxygen chemisorptionmore » by the TPD of CO{sub 2}, ammonia, and oxygen, respectively, from 50 to 950 C and also characterized for their surface area. The supported catalysts showed better performance than the unsupported one. The best OCM results (obtained over Sr-La{sub 2}O{sub 3}/SA-5205 with a Sr/La ratio of 0.3 at a space velocity of 102,000 cm{sup 3}/g{center_dot}h) are 30.1% CH{sub 4} conversion with 65.6% selectivity for C{sub 2+} (or 19.7% C{sub 2+}-yield) at 850 C (CH{sub 4}/O{sub 2} = 16.0). The basicity is strongly influenced by the Sr/La ratio; the supported catalysts showed the best performance for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence on the OCM process. However, the influence of linear gas velocity and particle size is found to be small; it results mainly from the temperature gradient in the catalyst. The catalyst dilution has beneficial effects for achieving a higher C{sub 2}H{sub 4}/C{sub 2}H{sub 6} ratio and also for reducing the hazardous nature of the OCM process because of the coupling of the exothermic oxidative conversion reactions and the endothermic thermal cracking reactions and also due to the increased heat transfer area.« less

  8. The effect of amino acid lysine and methionine addition on feed toward the growth and retention on mud crab (Scylla serrata)

    NASA Astrophysics Data System (ADS)

    Alissianto, Y. R.; Sandriani, Z. A.; Rahardja, B. S.; Agustono; Rozi

    2018-04-01

    High market demand of mud crab (Scylla serrata) encourages farmers to increase the production of mud crab. However, mud crab can not synthesize essential amino acids, so it is necessary to supply essential amino acids such as lysine and methionine in the diet. This study aims to determine the effect of lysine and methionine on feeds to increase growth and retention of mud crabs (Scylla serrata). In this study the amount of lysine amino acid and methionine added to the trash fish diet were: P0 (0: 0%); P1 (0.75: 0.75%); P2 (1: 1%); P3 (1.25: 1.25%); P4 (1.5: 1.5%) with the ratio of lysine and methionine 1: 1. The parameters observed in this study were Survival Rate (SR), Specific Growth Rate (SGR), Feed Conversion Ratio (FCR), Efficiency Feed (EF), protein retention and energy retention. The results of the 35-day maintenance study showed significant differences (P <0.05) against Specific Growth Rate (SGR), Feed Conversion Ratio (FCR), Efficiency Feed (EF), protein retention and no significant effect (P> 0.05) on energy retention and Survival Rate (SR) on mud crab. The best results in this study were found in P4 treatment with addition of lysine amino acids and methionine (1.5: 1.5%).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B.K.; Campbell, K.D.

    Methane oxidative coupling studies were carried out in an atmospheric quartz reactor at temperatures between 700 and 800/degree/C. New catalysts prepared and studied included doped alkaline earth catalysts, lanthanide oxides, and proprietary catalysts. Neodymium oxide, Nd/sub 2/O/sub 3/, was found to be as active and selective as samarium oxide, Sm/sub 2/O/sub 3/, in contrast to literature reports. Proprietary Union Carbide catalysts (UCC-S:1) showed initial methane conversions and C/sub 2/ selectivities comparable to literature catalysts. Atypically low carbon dioxide to carbon monoxide ratios (typically ten times lower than those seen in the literature or other catalysts tested) and high ethylene tomore » ethane ratios (3 to 6 compared to typical literature ratios below 1) were obtained. These results are interesting because ethylene is more valuable than ethane and carbon monoxide is more valuable than carbon dioxide. With these UCC-S:1 catalysts, rapid deactivation was coupled with an observed shift in product ratios toward those more typical in the literature. Initial cases for process conceptualization studies were selected. The Comparison Case will consist of the conversion sequence from methane to synthesis gas to methanol to olefins to liquid hydrocarbon fuels. Case 1 will consist of the conversion of methane to ethylene and ethane. Case 2 will be the direct conversion of methane to C/sub 2/'s followed by conversion to liquid hydrocarbon fuels. 7 figs., 18 tabs.« less

  10. Faba beans and peas in poultry feed: economic assessment.

    PubMed

    Proskina, Liga; Cerina, Sallija

    2017-10-01

    Broiler diets mainly consist of cereals and protein-rich feed sources; in the EU-27, poultry farming consumes 24% of the total amount of protein-rich feedstuffs. Since the EU produces only 30% of the total quantity of protein crops used for feed, it is necessary to promote the use of traditional European protein crops (beans, peas) for feed in livestock farming. The research aim is to identify economic gains from the production of broiler chicken meat, replacing soybean meal with domestic faba beans and field peas in broiler chicken diets. Adding field peas and faba beans to the broiler feed ration resulted in a significant live weight increase (5.74-11.95%) at the selling age, a decrease in the feed conversion ratio by 0.61-6.06%, and decrease in the product unit cost (15.34-37.06%) as well as an increase in the production efficiency factor (8.70-48.54), compared with the control group. The optimum kind of legume species used in the broiler diet was peas, which were added in the amount of 200 g kg -1 , resulting in live weight gain, a decrease in the feed conversion ratio and an increase in the production efficiency factor. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Beta-Cryptoxanthin- and alpha-carotene-rich foods have greater apparent bioavailability than beta-carotene-rich foods in Western diets

    USDA-ARS?s Scientific Manuscript database

    Background: Beta-carotene (BC), beta-cryptoxanthin (CX) and alpha-carotene (AC) are common carotenoids that form vitamin A (VA). Conversion ratios for VA formation have been set at 12:1 for BC- and 24:1 for CX- and AC-rich foods, respectively. These conversion ratios are based on chemical structure...

  12. Switch From Epoetin Beta to Darbepoetin Alfa Treatment of Anemia in Taiwanese Hemodialysis Patients: Dose Equivalence by Hemoglobin Stratification.

    PubMed

    Liao, Shang-Chih; Hung, Cheng-Chieh; Lee, Chien-Te; Lee, Chih-Hsiung; Lee, Chin-Chan; Lin, Chun-Liang; Sun, Chiao-Yin; Cheng, Ben-Chung; Yang, Chih-Chao; Wu, Chien-Hsing; Chen, Jin-Bor

    2016-08-01

    This multicenter study was designed to assess the hemoglobin (Hb) stability and conversion ratio of the switch from epoetin beta to darbepoetin alfa in Taiwanese hemodialysis (HD) patients. A total of 135 HD patients were enrolled and randomized with intravenous darbepoetin alfa or epoetin beta. The study duration was 24 weeks. Equivalent doses and conversion ratios were assessed with respect to Hb stratification: low Hb (≥8.0 g/dL to ≤10.0 g/dL) and high Hb (>10.0 g/dL to ≤11.0 g/dL). The results showed stable Hb levels in the study period. At week 24, the conversion ratio was higher for high Hb than low Hb (296.4 IU/dose epoetin beta: 1 µg/dose darbepoetin alfa. vs. 277.2 IU/dose epoetin beta: 1 µg/dose darbepoetin alfa). In conclusion, the conversion ratio in the present study was higher than 1 µg: 200 IU for darbepoetin alfa: epoetin for treating anemia in Taiwanese HD patients. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  13. Laparoscopic colon resection trends in utilization and rate of conversion to open procedure: a national database review of academic medical centers.

    PubMed

    Simorov, Anton; Shaligram, Abhijit; Shostrom, Valerie; Boilesen, Eugene; Thompson, Jon; Oleynikov, Dmitry

    2012-09-01

    This study aims to examine trends of utilization and rates of conversion to open procedure for patients undergoing laparoscopic colon resections (LCR). This study is a national database review of academic medical centers and a retrospective analysis utilizing the University HealthSystem Consortium administrative database-an alliance of more than 300 academic and affiliate hospitals. A total of 85,712 patients underwent colon resections between October 2008 and December 2011. LCR was attempted in 36,228 patients (42.2%), with 5751 patients (15.8%) requiring conversion to an open procedure. There was a trend toward increasing utilization of LCR from 37.5% in 2008 to 44.1% in 2011. Attempted laparoscopic transverse colectomy had the highest rate of conversion (20.8%), followed by left (20.7%), right (15.6%), and sigmoid (14.3%) colon resections. The rate of utilization was highest in the Mid-Atlantic region (50.5%) and in medium- to large-sized hospitals (47.0%-49.0%).Multivariate logistic regression has shown that increasing age [odds ratio (OR) = 4.8, 95% confidence interval (CI) = 3.6-6.4], male sex (OR = 1.2, 95% CI = 1.1-1.3), open as compared with laparoscopic approach (OR = 2.6, 95%, CI = 2.3-3.1), and greater severity of illness category (OR = 27.1, 95% CI = 23.0-31.9) were all associated with increased mortality and morbidity and prolonged length of hospital stay. There is a trend of increasing utilization of LCR, with acceptable conversion rates, across hospitals in the United States over the recent years. When feasible, attempted LCR had better outcomes than open colectomy in the immediate perioperative period.

  14. The endocrine disrupting alkylphenols and 4,4'-DDT interfere with estrogen conversion and clearance by mouse liver cytosol.

    PubMed

    El-Hefnawy, Talal; Hernandez, Claudia; Stabile, Laura P

    2017-09-01

    Endocrine disrupting chemicals (EDCs) are ubiquitous compounds known for negative impacts on reproductive functions and for increasing cancer risk. EDCs are believed to cause the harmful effects in part through their inappropriate low-affinity binding to steroid receptors and other possible non-receptor mediated paradigms, however there is a need to further elucidate other mechanisms involving the direct and indirect impact of EDCs on reproductive functions. We examined the metabolism of 17β-estradiol (E2) and estrone (E1) by cell-free hepatic cytosol in the presence of alkylphenols (nonylphenol/NP and 4-tert-octylphenol/tOP), Dichlorodiphenyltrichloroethane (4,4'-DDT) and other EDCs. Tandem liquid chromatography mass spectrometry was utilized to quantitatively assess the impact of each EDC on estrogen clearance, inter-conversions and downstream metabolism by mouse liver cytosol. The results revealed that NP and tOP (0.1-3μg/mL) significantly reduced the hepatic cytosol clearance and biotransformation of estrogens with inclination for accumulating E2, the stronger estrogen form, than E1. Alkylphenols also caused up to a 34-fold increase in the E2/E1 ratio possibly by suppressing the hepatic E2→E1 conversion by 17β-hydroxysteroid dehydrogenase (17βHSD) types 2, 4 while displaying a weaker inhibition of E1→E2 conversion by type 1, 17βHSD. On the other hand, the pesticide 4,4'-DDT was a weaker inhibitor of clearance of estrogens by the cytosol preparations when compared to alkylphenols, whereas chemicals such as phthalates and atrazine were ineffective. Our data suggest that exposure to NP, tOP and DDT can indirectly increase the estrogenic load by suppressing the hepatic clearance of estrogens and by elevating the E2/1 ratio and could therefore increase the risk of reproductive lesions. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Effect of dietary inclusion of sorghum milling waste on growth response, nutrient utilisation, gut characteristics and cecal microflora of weaner rabbits.

    PubMed

    Oso, Oladele A; Sobayo, Richard; Jegede, Vincent; Fafiolu, Adeboye; Iyasere, Oluwaseun Serah; Dele, Peter; Bamgbose, Adeyemi; Cecilia, Adesida

    2011-06-01

    Growth response, nutrient digestibility and cecal microflora of 80 male, mixed breed weaner rabbits fed with varying dietary inclusions of sorghum milling waste (SMW) was investigated. Four experimental diets were formulated such that SMW was included at 0 (control), 100, 200 and 300 g/kg, respectively. Each dietary treatment was performed on 20 rabbits. Feed intake increased (P < 0.05) while final live weight and feed conversion ratio of rabbits decreased (P < 0.05) following increased dietary inclusion of SMW. Rabbits fed with 100 and 200 g/kg SMW had similar feed conversion ratios, weight gain, crude fiber, dry matter and crude protein digestibility values. Rabbits fed with 300 g/kg SMW recorded the lowest (P < 0.05) hot carcass weight, dressing percentage and rack weight. Similar dressing percentage and rack weight were recorded for rabbits fed with control diet, 100 and 200 g/kg SMW. The weight of cecal content increased (P < 0.05) with increased dietary inclusion levels of SMW. Rabbits fed with 300 g/kg SMW recorded the lowest (P < 0.05) coliform and lactobaccillus counts. Dietary inclusion of up to 200 g/kg SMW supported improved growth response and carcass yield without imposing any detrimental effect on cecal microflora. © 2011 The Authors; Animal Science Journal © 2011 Japanese Society of Animal Science.

  16. Three junction holographic micro-scale PV system

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.

    2016-09-01

    In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.

  17. Synthesis and characterization of Cu-Zn/TiO2 for the photocatalytic conversion of CO2 to methane.

    PubMed

    Rana, Adeem Ghaffar; Ahmad, Waqar; Al-Matar, Ali; Shawabkeh, Reyad; Aslam, Zaheer

    2017-05-01

    Different Cu-Zn/TiO 2 catalysts were synthesized by using the wet impregnation method. The prepared catalysts were used for the conversion of CO 2 into methane by photocatalysis. Various characterization techniques were used to observe the surface morphology, crystalline phase, Brunauer-Emmett-Teller (BET) surface area, presence of impregnated Cu and Zn, and functional group. Scanning electron microscope analysis showed spherical morphology, and slight agglomeration of catalyst particles was observed. BET analysis revealed that the surface area of the catalyst was decreased from 10 to 8.5 m 2 /g after impregnation of Cu and Zn over TiO 2 support. Synergetic effect of Cu and Zn over TiO 2 support (Cu 2.6 /TiO 2 , Zn 0.5 /TiO 2 and Cu 2.6 -Zn 0.5 /TiO 2 ) and the effects of Cu loading (0, 1.8, 2.1, 2.6 and 2.9 wt%) were also investigated at different feed molar ratios of H 2 /CO 2 (2:1 and 4:1). The Cu 2.6 -Zn 0.5 /TiO 2 catalyst showed a maximum conversion of 14.3% at a feed molar ratio of 4. The addition of Zn over the catalyst surface increased the conversion of CO 2 from 10% to 14.3% which might be due to synergy of Cu and Zn over TiO 2 support.

  18. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.

    PubMed

    Buratti, C; Barbanera, M; Bartocci, P; Fantozzi, F

    2015-06-01

    The influence of the addition of cellulosic ethanol residue (CER) on the combustion of Indonesian sub-bituminous coal was analyzed by non isothermal thermo-gravimetric analysis (TGA). The effect of blends ratio (5%, 10%, 15% and 20%), interaction mechanism, and heating rate (5°C/min, 10°C/min, 15°C/min, 20°C/min) on the combustion process was studied. The results show that the increase of the blending ratio allows to achieve the increase of the combustibility index from 7.49E-08 to 5.26E-07 at the blending ratio of 20%. Two types of non-isothermal kinetic analysis methods (Ozawa-Flynn-Wall and Vyazovkin) were also applied. Results indicate that the activation energy of the blends decreases with increasing the conversion rate. In particular, the blending ratio of 20% confirms to have the better combustion performance, with the average value of the activation energy equal to 41.10 kJ/mol obtained by Ozawa-Flynn-Wall model and 31.17 kJ/mol obtained by Vyazovkin model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  20. The impact of anxiety on the progression of mild cognitive impairment to dementia in Chinese and English data bases: a systematic review and meta-analysis.

    PubMed

    Li, Xiao-Xue; Li, Zheng

    2018-01-01

    It remains unclear whether or not anxiety increases the risk of dementia in people with mild cognitive impairment (MCI). The aim of this systematic review and meta-analysis was to investigate the risk of dementia among people with MCI and anxiety compared with those with MCI and no anxiety. The hazard ratio of conversion to dementia in people with anxiety and MCI was compared with those without anxiety and was calculated using a generic inverse variance method with fixed effect models. Eleven studies from the English and Chinese databases were included, seven of which were included in the meta-analysis. The pooled hazard ratio of conversion to dementia was 1.18 95% CI [1.07, 1.31] (p = 0.002) in the group of MCI plus anxiety compared with those without anxiety. The results suggest that anxiety increases the risk of progression to dementia in people with MCI. Future interventions targeting anxiety management in vulnerable people with MCI may reduce the risk of dementia. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Intraoperative Conversion From Partial to Radical Nephrectomy: Incidence, Predictive Factors, and Outcomes.

    PubMed

    Petros, Firas G; Keskin, Sarp K; Yu, Kai-Jie; Li, Roger; Metcalfe, Michael J; Fellman, Bryan M; Chang, Courtney M; Gu, Cindy; Tamboli, Pheroze; Matin, Surena F; Karam, Jose A; Wood, Christopher G

    2018-06-01

    To evaluate preoperative and intraoperative predictors of conversion to radical nephrectomy (RN) in a cohort of patients undergoing a planned partial nephrectomy (PN) for renal cell carcinoma (RCC). A single-center, retrospective review was conducted using our PN database that includes patients who were scheduled to undergo PN (regardless of the approach) but were converted to RN between August 1990 and December 2016. Reasons for conversion were collected from the operative report. Patient demographics and perioperative variables were compared with the successful PN group. Univariate and multivariate logistic regression analyses were conducted to assess predictors of conversion. A total of 1857 patients were scheduled to undergo PN. Of these patients, 90 (5%) were converted to RN. The multivariate model showed that larger tumor size (odds ratio [OR] = 1.20, P = .040), higher RENAL nephrometry score (OR = 1.41, P = .001), hilar tumor or renal sinus invasion (OR = 2.80, P = .004), laparoscopic PN (OR = 7.34, P <.001), intraoperative bleeding (OR = 19.62, P <.001), positive surgical margin (OR = 31.85, P <.001), and advanced pathologic tumor-stage (T3 or T4) (OR = 7.29, P <.001) were associated with increased odds of intraoperative conversion to RN. The rate of conversion to RN was low in patients who were scheduled to undergo PN in this series. Larger tumor size with increasing complexity, hilar tumor location or renal sinus invasion, locally advanced tumors, laparoscopic PN but not robotic PN, bleeding complication, and positive surgical margin were associated with intraoperative conversion from scheduled PN to RN. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Quantitative Detection of Prostatic-Specific Antigens by Using Scanning Electron Microscopy for the Analysis of Protein Chips.

    PubMed

    Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju

    2017-04-01

    We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.

  3. Change in plasma Aß peptides and onset of dementia in adults with Down syndrome.

    PubMed

    Schupf, N; Zigman, W B; Tang, M-X; Pang, D; Mayeux, R; Mehta, P; Silverman, W

    2010-11-02

    To examine changes in levels of plasma amyloid-β (Aβ) peptides, Aβ42 and Aβ40, in relation to onset of Alzheimer disease (AD) in adults with Down syndrome (DS). Plasma Aβ42 and Aβ40 were measured at initial examination and at follow-up in a community-based cohort of 225 adults with DS who did not have dementia at baseline and were assessed for cognitive/functional abilities and health status and followed at 14- to 20-month intervals. We used Cox proportional hazards modeling to estimate the cumulative incidence of AD by Aβ peptide change group (increasing, no change, or decreasing), adjusting for covariates. Sixty-one (27.1%) of the participants developed AD. At follow-up, a decrease in Aβ42 levels, a decrease in the Aβ42/Aβ40 ratio, and an increase in Aβ40 levels were related to conversion to AD. Compared with the group with increasing levels of Aβ42, the likelihood of developing AD was 5 times higher for those whose plasma Aβ42 levels decreased over follow-up (hazard ratio [HR] = 4.9, 95% confidence interval [CI] 2.1-11.4). Decreasing Aβ42/Aβ40 was also strongly related to AD risk (HR = 4.9, 95% CI 1.8-13.2), while decreasing Aβ40 was associated with lower risk (HR = 0.4, 95% CI 0.2-0.9). Among adults with DS, decreasing levels of plasma Aβ42, a decline in the Aβ42/Aβ40 ratio, or increasing levels of Aβ40 may be sensitive indicators of conversion to AD, possibly reflecting compartmentalization of Aβ peptides in the brain.

  4. Microwave-assisted direct synthesis of butene from high-selectivity methane

    NASA Astrophysics Data System (ADS)

    Lu, Yi-heng; Li, Kang; Lu, Yu-wei

    2017-12-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.

  5. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation

    NASA Astrophysics Data System (ADS)

    Zyman, Z.; Rokhmistrov, D.; Glushko, V.

    2012-08-01

    A new insight on the conversion of an amorphous calcium phosphate, ACP, to hydroxyapatite, HA, has been proposed. The ACP has been precipitated under appropriate conditions of the nitrous method (low concentrations of reactants, pH>10, 25 °С, fast mixing). The ACP to HA conversion has been found to commence immediately after the ACP precipitation. The conversion reveals itself in the first detected shift of the diffuse maximum from 29.5° 2θ (ACP) to about 32° 2θ (the position of principal peaks of HA) in the XRD patterns for the precipitates of 2 min-6 h lifetimes. The precipitates are biphasic mixtures of ACP and nanocrystalline HA, nHA, with increasing nHA/ACP ratio for longer lifetimes. Characteristics of the simulated XRD profiles calculated proceeding on such a picture are excellently confirmed by experimental results. At the end of the conversion, HA nanocrystals start growing. This follows from the appearance of broadened diffraction maxima, which gradually sharpen, along with the appearance and gradual increase of splitting of the initially featureless υ3 and υ4PO43- bands in the IR spectra of precipitates with their aging (after 6 h of the precipitation). Based on the detected structural and compositional peculiarities of ACP in the early stage of precipitation, a cell model for the HA crystallization has been proposed. Proceeding on the model, the principal data in this and earlier studies, considering the ACP to HA conversion as an internal rearrangement process in the ACP particles, has been reasonably explained.

  6. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  7. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed

    2005-05-15

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatiticmore » phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.« less

  8. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    NASA Astrophysics Data System (ADS)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  9. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    PubMed

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    PubMed

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  11. The Production of Biodiesel from Cottonseed Oil Using Rhizopus oryzae Whole Cell Biocatalysts

    NASA Astrophysics Data System (ADS)

    Athalye, Sneha Kishor

    Biodiesel is an environmentally friendly alternative to fossil fuels which have become increasingly expensive in recent times. An alternate approach to alkaline biodiesel production is needed as catalyst miscibility with the glycerol by-product, generation of large amounts of waste water, and saponification of the feedstock are major disadvantages associated with the process. Lipases are water soluble enzymes which act as catalysts in many lipid based reactions. Reuse of lipases can significantly reduce cost of enzymatic biodiesel production; however retention of lipolytic activity still remains a challenge. Use of microbial cells immobilized on various surfaces like sponge, foam and plastics as biocatalysts instead of extracted enzyme could help overcome this problem. A novel, rigid biomass support with high surface area made from recyclable polyethylene (Bioblok(TM)) was used in this study. Several fungal and bacterial species have been reported to possess appreciable levels of lipase activity. The biomass production and immobilization as well as lipase activity of three different species; Candida rugosa (ATCC #38772), Aspergillus oryzae (ATCC #58299), and Rhizopus oryzae (ATTC #34612) were tested. C. rugosa did not attach well to the support particles while A.oryzae had lower biomass accumulation of 6.1 g (dry cell wt)/L compared to 11.8 g (dry cell wt)/L for R.oryzae. Hence Rhizopus oryzae, fungal specie with cell surface bound lipase was selected for the current study. The study investigated the influence of media composition and growth time of the R.oryzae whole cell biocatalysts, immobilized on the BSPs, for FAME production from cottonseed oil. R.oryzae BSPs grown in basal media supplemented with 1% (w/v) of glucose or oil or both for 48 h, 72 h or 90 h were used in a 36 h transesterification reaction with cottonseed oil and methanol. BSPs grown in both glucose and oil supplemented medium for 72 h had the highest conversion of 22.4% (wt/wt) and a biomass accumulation of 15.6 g (dry cell wt)/L. A reduction in dynamic viscosity of the reaction mixture from 47.3 centipoise to 30.6 centipoise was observed. The impact of moisture addition to the reaction mixture and use of ethanol as acylating agent on R.oryzae BSP fatty acid alkyl ester production was also tested. The presence of 10 wt % moisture in the reaction system had a significant effect (p ≤ 0.05) on the transesterification reaction with ethanol unlike methanol. Fatty acid ethyl ester concentration tripled from 39.3 to 129.1 g/L when moisture was added during transesterification .When oil to acyl acceptor ratio was increased from 1:3 and 1:6 to determine effect of excess alcohol on conversion, an ester conversion of 128.1 g/L for methanol and 129.1 g/L for ethanol were observed. Use of excess amount of acylating agent had a significant adverse effect (p ≤ 0.05) on the overall FAAE production due to deactivation of lipases on contact with large amounts of insoluble alcohol in the oil phase of the reaction. The effect of short chain alcohols on the enzymatic transesterification of cottonseed oil using freeze dried Rhizopus oryzae biomass was examined with and without water addition using methanol, ethanol, 1-Propanol and 1-Butanol at various molar ratios. 1- Butanol in the absence of water resulted in a significantly higher (p . 0.1) conversion of cottonseed oil to 12.5 % fatty acid butyl esters (FABEs). Addition of 10 % water to the reaction mixture significantly reduced (p ≤ 0.1) conversion. No significant difference (p > 0.1) between the conversions was observed for time points after 24 h for a 72 h reaction. 1- Butanol in ratios higher than 3:1 to cottonseed oil had a significant impact (p ≤ 0.1) on conversion. Increasing the amount of biomass used during the reaction lead to significantly higher conversion (p ≤ 0.1). The highest conversion of 27.9 % was observed for the transesterification reaction between cottonseed oil and 1-Butanol, in a 1:6 molar ratio, in the absence of water, when 100 mg of freeze dried R.oryzae biomass was used. The present study concluded that R.oryzae biomass attached better to the Bioblok. material and had highest lipase activity when grown in presence of oil and glucose for 72h. Addition of water to the reaction system gave higher fatty acid alkyl ester conversion when whole immobilized R.oryzae BSPs were used but absence of water promoted conversion with freeze dried biomass.

  12. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis showmore » consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.« less

  13. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  14. Involvement of oxidative stress in subacute toxicity induced by fumonisin B1 in broiler chicks.

    PubMed

    Poersch, A B; Trombetta, F; Braga, A C M; Boeira, S P; Oliveira, M S; Dilkin, P; Mallmann, C A; Fighera, M R; Royes, L F F; Oliveira, M S; Furian, A F

    2014-11-07

    Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium spp. It has been reported to be a potential cause of liver cancer in rats and esophageal cancer in humans. The underlying mechanisms of FB1 toxicity are thought to be related to the inhibition of ceramide synthase, causing an accumulation of sphingosine (SO) and sphinganine (SA), which in turn may cause tissue functional impairment and the development of oxidative stress. Therefore, in this study, we investigate the effects of an FB1-contaminated diet on markers of oxidative stress in chick liver. A total of 24 male broiler chicks (Cobb 500) were fed a standard control diet or a diet contaminated with FB1 (100mg/kg) for 21 days, starting on postnatal day one. The feed and animals were weighed on days 0, 7, 14 and 21 to estimate the feed conversion ratio, and at 21 days, the liver weight and liver relative weight were determined. At the end of the experiment, samples of blood and liver were collected. The blood was used to quantify the SA/SO ratio, and the liver was used to determine the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST); ascorbic acid levels (VitC), non-protein thiol (NPSH) levels and TBARS content were also determined. The FB1 diet increased the liver weight, liver relative weight, feed conversion and SA/SO ratio. Furthermore, hepatic TBARS levels, Vit C content and CAT activity were also increased. Conversely, the activities of SOD, GST and NPSH levels, in the liver were not altered by the mycotoxin-contaminated diet. In summary, we showed that subacute exposure of broiler chicks to FB1 induced liver oxidative stress concomitantly with SA/SO accumulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Steam conversion of liquefied petroleum gas and methane in microchannel reactor

    NASA Astrophysics Data System (ADS)

    Dimov, S. V.; Gasenko, O. A.; Fokin, M. I.; Kuznetsov, V. V.

    2018-03-01

    This study presents experimental results of steam conversion of liquefied petroleum gas and methane in annular catalytic reactor - heat exchanger. The steam reforming was done on the Rh/Al2O3 nanocatalyst with the heat applied through the microchannel gap from the outer wall. Concentrations of the products of chemical reactions in the outlet gas mixture are measured at different temperatures of reactor. The range of channel wall temperatures at which the ratio of hydrogen and carbon oxide in the outlet mixture grows substantially is determined. Data on the composition of liquefied petroleum gas conversion products for the ratio S/C = 5 was received for different GHVS.

  16. Optimization of 2-ethylhexyl palmitate production using lipozyme RM IM as catalyst in a solvent-free system.

    PubMed

    Richetti, Aline; Leite, Selma G F; Antunes, Octávio A C; de Souza, Andrea L F; Lerin, Lindomar A; Dallago, Rogério M; Paroul, Natalia; Di Luccio, Marco; Oliveira, J Vladimir; Treichel, Helen; de Oliveira, Débora

    2010-04-01

    This work reports the application of a lipase in the 2-ethylhexyl palmitate esterification in a solvent-free system with an immobilized lipase (Lipozyme RM IM). A sequential strategy was used applying two experimental designs to optimize the 2-ethylhexyl palmitate production. An empirical model was then built so as to assess the effects of process variables on the reaction conversion. Afterwards, the operating conditions that optimized 2-ethylhexyl palmitate production were established as being acid/alcohol molar ratio 1:3, temperature of 70 degrees C, stirring rate of 150 rpm, 10 wt.% of enzyme, leading to a reaction conversion as high as 95%. From this point, a kinetic study was carried out evaluating the effect of acid:alcohol molar ratio, the enzyme concentration and the temperature on product conversion. The results obtained in this step permit to verify that an excess of alcohol (acid to alcohol molar ratio of 1:6), relatively low enzyme concentration (10 wt.%) and temperature of 70 degrees C, led to conversions next to 100%.

  17. Wetlands and Agriculture in Africa: Major Sources of N2O?

    NASA Astrophysics Data System (ADS)

    Gettel, G. M.

    2015-12-01

    Papyrus wetlands in East Africa are rapidly being converted to agricultural production in an effort to increase food security. This conversion is often seasonal, with wetlands being used for grazing and crop production of maize, sugarcane, and rice during dry seasons, and flooding occurring during wet seasons. An important question with respect to greenhouse gas production is whether wetland conversion to agriculture increases N2O fluxes. This trend has been shown in temperate regions where increased N2O fluxes are positively related to low soil C:N ratios, especially when soil moisture content remains high. In order to examine whether denitrification contributes to N2O flux, we measured potential denitrification rates (PDR by acetylene block method) in intact papyrus wetlands and agricultural converted wetlands in Kenya, Tanzania, Uganda, and Rwanda, and also performed multivariate analysis to relate soil characteristics to PDR. Agricultural land-cover types included maize, sugarcane, rice, and grazing. Results showed that intact wetlands are potentially important sources of N2O, as PDR in papyrus vegetation were consistently the highest (p<0.05; 128 - 601 μg N2O g DW-1 hour-1) while grazing sites showed the lowest (0.1 - 0.5 μg N2O g DW-1 hour-1). Rates were second highest in rice fields (2.3 - 303 μg N2O g DW-1 hour-1), and intermediate in maize and sugarcane (6.5 - 75 μmg N2O g DW-1 hour-1 and 5 - 30 μg N2O g DW-1 hour-1 respectively). PDR across all sites was inversely related to soil C:N ratio, with nitrate consistently limiting PDR in the wetland sites while soil carbon limited PDR in agricultural sites. This is seemingly in contrast with other findings that show that lower C:N ratios result in high N2O fluxes from drained wetland sites. However, flux measurements along with more realistic process-based measurements of denitrification are urgently needed to more fully understand the effect of agricultural conversion of wetlands in East Africa.

  18. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.« less

  19. The Potential of Biodiesel Production derived from Fish Waste

    NASA Astrophysics Data System (ADS)

    Farzana Samat, Amira; Amirah Safiah Muhamad, Nor; Rasib, Nur Aziera Abd; Hassan, Siti Aminah Mohd; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur

    2018-03-01

    Petroleum based diesel is one of the largest greenhouse emitters in the worlds based on its contribution to more likely of all carbon, methane and other greenhouse emissions. Besides, the depletion of fossil fuel that indirectly increased its price has force the global oil industry not to be so dependent on the fossil fuel but instead start focusing on alternative sources. Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant from combustion equipment. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded part of fish and if refined through a series of pretreatment process. The refined marine fish oil undergoes esterification process to reduce the amount of free fatty acid. The oil was then transesterified with methanol and sodium hydroxide as an alkaline catalyst that will speed up the conversion of oil to methyl ester. The three process parameters considered for this study were reaction time, reaction temperature and methanol to oil molar ratio. Biodiesel obtained was then analyzed using gas chromatography (GC). Statistical analyses were performed using SPSS software. The data obtained was analyzed by using one way analysis of variance (ANOVA) repeated measure. The results obtained showed that the conversion of FAME yield is the highest at reaction time 180 minutes, reaction temperature 60°C and methanol to oil molar ratio at 15:1 with FAME yield 80.16%, 80.03% and 80.39%. Thus, it can be concluded that the conversion of biodiesel increased as the reaction time, temperature and

  20. Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine.

    PubMed

    Amerah, A M; Ravindran, V

    2015-04-01

    The aim of the present experiment was to examine the effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. The experimental design was a 2×2 factorial arrangement of treatments evaluating two levels of betaine supplementation (0 and 960 g betaine/t of feed) without or with coccidia challenge. Each treatment was fed to 8 cages of 8 male broilers (Ross 308) for 1 to 21d. On d 14, birds in the 2 challenged groups received mixed inocula of Eimeria species from a recent field isolate, containing approximately 180,000 E. acervulina, 6,000 E. maxima, and 18,000 E. tenella oocysts. At 21d, digesta from the terminal ileum was collected for the determination of dry matter, energy, nitrogen, amino acids, starch, fat, and ash digestibilities. Lesion scores in the different segments of the small intestine were also measured on d 21. Performance and nutrient digestibility data were analyzed by two-way ANOVA. Lesion score data were analyzed using Pearson chi-square test to identify significant differences between treatments. Orthogonal polynomial contrasts were used to assess the significance of linear or quadratic models to describe the response in the dependent variable to total lesion scores. Coccidia challenge reduced (P<0.0001) the weight gain and feed intake, and increased (P<0.0001) the feed conversion ratio. Betaine supplementation had no effect (P>0.05) on the weight gain or feed intake, but lowered (P<0.05) the feed conversion ratio. No interaction (P>0.05) between coccidia challenge and betaine supplementation was observed for performance parameters. Betaine supplementation increased (P<0.05) the digestibility of dry matter, nitrogen, energy, fat, and amino acids only in birds challenged with coccidia as indicated by the significant interaction (P<0.0001) between betaine supplementation and coccidia challenge. The main effect of coccidia challenge reduced (P<0.05) starch digestibility. Betaine supplementation improved (P<0.05) starch digestibility regardless of the coccidia challenge. For each unit increase in the total lesion score, there was a linear (P<0.001) decrease in digestibility of mean amino acids, starch, and fat by 3.8, 3.4 and 16%, respectively. Increasing total lesion scores resulted in a quadratic (P<0.05) decrease in dry matter digestibility and ileal digestible energy. No lesions were found in the intestine or ceca of the unchallenged treatments. In the challenged treatments, betaine supplementation reduced (P<0.01) the lesion scores at the duodenum, lower jejunum, and total lesion scores compared to the treatment without supplements. In conclusion, coccidia challenge lowered the digestibility of energy and nutrients and increased the feed conversion ratio of broilers. However, betaine supplementation reduced the impact of coccidia challenge and positively affected nutrient digestibility and the feed conversion ratio. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.

  1. Guar meal germ and hull fractions differently affect growth performance and intestinal viscosity of broiler chickens.

    PubMed

    Lee, J T; Bailey, C A; Cartwright, A L

    2003-10-01

    High concentrations of guar meal in poultry diets deleteriously affect growth, feed intake, and digesta viscosity. These effects are attributed to residual gum in the meal. A 2 x 5 factorial experiment investigated the impacts of two guar meal fractions (germ and hull) at five inclusion levels (0, 2.5, 5.0, 7.5, and 10.0%) on intestinal viscosity, measures of growth, and feed conversion in broiler chickens fed to 20 d of age. Growth and feed conversion ratio were not affected by inclusion of as much as 7.5% of the germ fraction into poultry diets, while inclusion of the hull fraction reduced growth at all concentrations. The hull fraction increased intestinal viscosity at all inclusion levels fed, although feed conversion was not affected until the inclusion rate exceeded 5.0%. The germ fraction significantly increased intestinal viscosity at 7.5 and 10% inclusion rates. When germ fraction was fed, relative organ weights remained constant through all concentrations except for the ventriculus and duodenum at 7.5 and 10% inclusion levels. Relative pancreas weight was significantly increased at the 10% level of the hull fraction. Increases in intestinal viscosity corresponded with growth depression. These results suggest that residual gum was responsible for some deleterious effects seen when guar meal was fed. The germ fraction was a superior ingredient when compared with the hull fraction. The guar meal germ fraction constituting as much as 7.5% of the diet supported growth and feed conversion measures similar to those observed with a typical corn-soybean poultry ration.

  2. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio.

    PubMed

    Ross, Jaime M; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J; Olson, Lars

    2010-11-16

    At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.

  3. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

    PubMed Central

    Li, Kuo-Tseng; Yen, Ruey-Hsiang

    2018-01-01

    Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432

  4. Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production.

    PubMed

    Kopittke, Peter M; Dalal, Ram C; Finn, Damien; Menzies, Neal W

    2017-06-01

    Quantifying changes in stocks of C, N, P, and S in agricultural soils is important not only for managing these soils sustainably as required to feed a growing human population, but for C and N, they are also important for understanding fluxes of greenhouse gases from the soil environment. In a global meta-analysis, 102 studies were examined to investigate changes in soil stocks of organic C, total N, total P, and total S associated with long-term land-use changes. Conversion of native vegetation to cropping resulted in substantial losses of C (-1.6 kg m -2 , -43%), N (-0.15 kg m -2 , -42%), P (-0.029 kg m -2 , -27%), and S (-0.015 kg m -2 , -33%). The subsequent conversion of conventional cropping systems to no-till, organic agriculture, or organic amendment systems subsequently increased stocks, but the magnitude of this increase (average of +0.47 kg m -2 for C and +0.051 kg m -2 for N) was small relative to the initial decrease. We also examined the conversion of native vegetation to pasture, with changes in C (-11%), N (+4.1%), and P (+25%) generally being modest relative to changes caused by conversion to cropping. The C:N ratio remained relatively constant irrespective of changes in land use, whilst in contrast, the C:S ratio decreased by 21% in soils converted to cropping - this suggesting that biochemical mineralization is of importance for S. The data presented here will assist in the assessment of different agricultural production systems on soil stocks of C, N, P, and S - this information assisting not only in quantifying the effects of existing agricultural production on these stocks, but also allowing for informed decision-making regarding the potential effects of future land-use changes. © 2016 John Wiley & Sons Ltd.

  5. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis.

    PubMed

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-02-01

    In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T 2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T 2 lesions (P = 0.918), periventricular T 2 lesions (P = 0.580) or gadolinium-enhancing T 1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Quantifying Blood Loss and Transfusion Risk After Primary vs Conversion Total Hip Arthroplasty.

    PubMed

    Newman, Jared M; Webb, Matthew R; Klika, Alison K; Murray, Trevor G; Barsoum, Wael K; Higuera, Carlos A

    2017-06-01

    Primary total hip arthroplasty (THA) and conversion THA may result in substantial blood loss, sometimes necessitating transfusion. Despite the complexities of the latter, both are grouped in the same category for quality assessment and reimbursement. This study's purpose was to compare both blood loss and transfusion risk in primary and conversion THA and identify their associated predictors. A total of 1616 patients who underwent primary and conversion THA at a single hospital from 2009-2013 were reviewed (primary THA = 1575; conversion THA = 41). Demographics, comorbidities, and perioperative data were collected from electronic records. Blood loss was calculated using a validated method. Transfusion triggers were based on standardized criteria. Separate multivariable regression models for blood loss and transfusion were performed. Conversion THA patients were younger (P = .002), had lower age-adjusted Charlson scores (P = .006), longer surgeries (P < .001), higher blood loss (P < .001), and more transfusions (P < .001). Primary and conversion THA groups were different in terms of surgical approach (P < .001), anesthesia type (P = .002), and venous thromboembolism prophylaxis (P = .01). Compared to primary THA, conversion THA had an average 478.9 mL higher blood loss (P = .003) and increased adjusted odds ratio of 3.2 (P = .019) for transfusion. Conversion THA leads to higher blood loss and transfusion compared with primary THA. These differences were quantified in the present study and showed consistent results between the 2 metrics. The differences between these procedures should be addressed during quality assurance because conversion THA is associated with higher resource utilization, which is important in the allocation of resources and tiered reimbursement strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of 5,5'-diphenylhydantoin on thyroxine and 3,5,3'-triiodothyronine concentrations in several tissues of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder-van der Elst, J.Pv.; van der Heide, D.

    1990-01-01

    We studied the effect of 5,5'-diphenylhydantoin (phenytoin, DPH) on the metabolism of thyroid hormones, the intracellular concentration of T4, and the source and concentration of T3. Two groups of six male Wistar rats received a continuous infusion of 10 ml saline/rat. day. One group received DPH in their food (50 mg/kg BW) for 20 days. For both groups (125I)T4 and (131I)T3 were added to the infusion fluid for the last 10 and 7 days, respectively. At isotopic equilibrium the rats were bled and perfused. Compared to the controls, plasma T4 and T3 in the DPH group were reduced (22% andmore » 31%, respectively); TSH did not change. The rate of production of T4 and the plasma appearance rate for T3 were decreased. Thyroidal T3 production was markedly reduced. From the increased (125I)T3/(125I)T4 ratio for plasma, it follows that total body conversion was enhanced. The tissue T4 concentrations decreased in parallel with the plasma T4 level. Total T3 was reduced in all organs. In tissues in which local conversion does not occur, i.e. heart and muscle, the decrease reflected the decrease in plasma T3. In the liver both plasma-derived T3 and locally produced T3 were diminished. In cerebellum and brain the plasma-derived T3 pool was even smaller than was expected from the decrease in plasma T3. This was partly compensated by an increase in local conversion. Only for these two organs was the decrease in the tissue/plasma ratio for (131I)T3 significant. Our results suggest tissue hypothyroidism, caused by a decrease in the production of T4 and T3, which is partly compensated by increased conversion in several organs. The transport of T3 into cerebellum and brain is disturbed, which can be attributed to the mode of action of DPH.« less

  8. Costs Associated With Intravenous Darbepoetin Versus Epoetin Therapy in Hemodialysis Patients: A Randomized Controlled Trial

    PubMed Central

    Woodland, Andrea L.; Murphy, Sean W.; Curtis, Bryan M.; Barrett, Brendan J.

    2017-01-01

    Background: Anemia of chronic kidney disease is associated with adverse outcomes and a reduced quality of life. Erythropoiesis-stimulating agents (ESAs) have improved anemia management, and 2 agents are available in Canada, epoetin alfa (EPO) and darbepoetin alfa (DA). EPO and DA are considered equally effective in achieving target hemoglobin (Hb), but it is not clear whether there is a cost difference. There have been few head-to-head comparisons; most published studies are observational switch studies. Objective: To compare the cost of DA and EPO and to determine the dose conversion ratio over a 12-month period. Design: Randomized controlled trial. Setting: Canadian outpatient hemodialysis center. Patients: Eligible patients were adult hemodialysis patients requiring ESA therapy. Measurements: The primary outcome was ESA cost (Can$) per patient over 12 months. Secondary outcomes included the dose conversion ratio, deviation from target ranges in anemia indices, iron dose and cost, and time and number of dose changes. Methods: An open-label randomized controlled trial of intravenous (IV) DA versus EPO was conducted in 50 hemodialysis patients. Participants underwent a minimum 6-week run-in phase followed by a 12-month active study phase. ESA and iron were dosed using a study algorithm. Results: The median cost was $4179 (interquartile range [IQR]: $2416-$5955) for EPO and $2303 (IQR: $1178-$4219) for DA with a difference of $1876 (P = .02). The dose conversion ratio was 280:1 (95% confidence interval [CI]: 197-362:1) at the end of the run-in phase, 360:1 (95% CI: 262-457:1) at the 3-month point of the active phase, and 382:1 (95% CI: 235-529:1) at the 6-month point of the active phase. There were no significant differences between the 2 groups in weekly iron dose, Hb, serum ferritin, or transferrin saturation. The number of dose changes and the time to Hb stability were similar. Limitations: Results may not be generalizable to hemodialysis units without algorithm-based anemia management, with subcutaneous ESA administration, or to the nondialysis chronic kidney disease population. The effective conversion ratio between EPO and DA is known to increase at higher doses; the Hb targets used in the study were slightly higher than those recommended today so it is possible that the doses used were also higher. Because of this, the cost savings estimated for DA could differ somewhat from the savings realizable in current practice. Conclusions: In this study of hemodialysis patients with comparable anemia management, IV DA cost $1876 less per year per patient than IV EPO. The dose conversion ratio was greater than 350:1 by the 3-month point. Trial registration: ClinicalTrials.gov (NCT02817555). PMID:28717516

  9. Microwave-assisted direct synthesis of butene from high-selectivity methane

    PubMed Central

    Li, Kang; Lu, Yu-wei

    2017-01-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261

  10. Imidazolium-Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented Increase of Catalytic Activity after Recycling.

    PubMed

    Calabrese, Carla; Liotta, Leonarda F; Carbonell, Esther; Giacalone, Francesco; Gruttadauria, Michelangelo; Aprile, Carmela

    2017-03-22

    Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after three cycles. The other two catalysts containing a p-xylyl linker and a bromide anion and different CNHs/bVImiX ratios showed an unprecedented increase of activity after recycling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    PubMed

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.; De Vos, Alexis; Desoete, Bart

    2001-02-01

    A detailed balance solar energy conversion model offering a single treatment of both photovoltaic and photothermal conversion is expounded. It includes a heat rejection mechanism. The effect of multiple impact ionizations on the solar cell efficiency is reconsidered by including the constraints dictated by the first law of thermodynamics (which already exist in the model) and it improves of course the solar cell efficiency. However the upper bound efficiencies previously derived are too optimistic as they do not take into consideration the necessary increase in solar cell temperature. The cell efficiency operating under unconcentrated radiation is a few percent lower than in the ideal case (i.e., with perfect cooling). Wider band gap materials are recommended for those applications where the cell cooling is not effective. The best operation of naturally ventilated cells is under unconcentrated or slightly concentrated solar radiation. Increasing the (forced) ventilation rate allows an increase of the optimum concentration ratio. Additional effects such as the radiation reflectance and radiative pair recombination efficiency are also considered. A sort of threshold minimum band gap depending on the last effect is emphasized: materials with band gaps narrower than this threshold are characterized by very low cell efficiency.

  13. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures.

    PubMed

    Liu, Shurong; Berns, Anne E; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH 2 OH) to nitrous oxide (N 2 O) is a possible mechanism of N 2 O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO 2 ) and organic matter (OM) content of soil as well as soil pH are important control variables of N 2 O formation in the soil. But until now, their combined effect on abiotic N 2 O formation from NH 2 OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO 2 and OM, respectively, and quantified the interactive effects of the three variables on the NH 2 OH-to-N 2 O conversion ratio (R NH2OH-to-N2O ). Furthermore, the effect of OM quality on R NH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO 2 and OM on R NH2OH-to-N2O . In general, increasing MnO 2 and decreasing pH increased R NH2OH-to-N2O , while increasing OM content was associated with a decrease in R NH2OH-to-N2O . Organic matter quality also affected R NH2OH-to-N2O . However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  14. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  15. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis

    PubMed Central

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-01-01

    Abstract In established multiple sclerosis, tissue abnormality—as assessed using magnetization transfer ratio—increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1–5 mm and 6–10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1–5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus −0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T2 lesions (P = 0.918), periventricular T2 lesions (P = 0.580) or gadolinium-enhancing T1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. PMID:28043954

  16. Properties of gasification-derived char and its utilization for catalytic tar reforming

    NASA Astrophysics Data System (ADS)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst were investigated. An increase in reaction temperature led to an increase in removal of most tar components except naphthalene. High pressure promoted the catalytic conditioning of lignin tar. Hydrogen promoted the conversion of lignin into non-condensable gas.

  17. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    PubMed

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D) conversion ratio by MNR M3N2 was 94% in the conversion system with soybean oil as reaction media to promote the solubility of phytosterols. The ratio of NAD + /NADH is an important factor for the transformation of phytosterols. Expression of NADH: flavin oxidoreductase and water-forming NADH oxidase in MNR improved AD (D) production. Besides the manipulation of key enzyme activities, which included in phytosterols degradation pathways, maintenance the balance of redox also played an important role in promoting steroid biotransformation. The recombinant MNR strain may be useful in industrial production.

  18. Integrative Cardiac Health Project, Windber Research Institute

    DTIC Science & Technology

    2014-07-01

    laparoscopically placed adjustable gastric banding (LAGB) baseline (5) and one year (5), control baseline (5) and one year (5). OD260/280 ratios...coverage and detection of 3-4 million CpG sites . All samples had a bisulfite conversion rate of >98.25%; number of CpG (methylated) sites per sample...methylation) and hyper-methylated (increasing methylation) sites in the three groups were identified. For LAGB patients, a heat map based on

  19. Effects of dietary lysine and methionine supplementation on ross 708 male broilers from 21 to 42 days of age (III): serum metabolites, hormones, and their relationship with growth performance

    USDA-ARS?s Scientific Manuscript database

    A previous study has shown that a limited increase of lysine (Lys) and methionine (Met) in broiler diets may improve feed conversion ratio (FCR), BW, carcass yield, and breast meat yield. This study was conducted to determine the effects of dietary Lys and Met supplementation on various blood serum ...

  20. All-solution-processed PbS quantum dot solar modules

    NASA Astrophysics Data System (ADS)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a

  1. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    NASA Astrophysics Data System (ADS)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  2. Lipase of Aspergillus niger NCIM 1207: A Potential Biocatalyst for Synthesis of Isoamyl Acetate.

    PubMed

    Mhetras, Nutan; Patil, Sonal; Gokhale, Digambar

    2010-10-01

    Commercial lipase preparations and mycelium bound lipase from Aspergillus niger NCIM 1207 were used for esterification of acetic acid with isoamyl alcohol to obtain isoamyl acetate. The esterification reaction was carried out at 30°C in n-hexane with shaking at 120 rpm. Initial reaction rates, conversion efficiency and isoamyl acetate concentration obtained using Novozyme 435 were the highest. Mycelium bound lipase of A. niger NCIM 1207 produced maximal isoamyl acetate formation at an alcohol/acid ratio of 1.6. Acetic acid at higher concentrations than required for the critical alcohol/acid ratio lower than 1.3 and higher than 1.6 resulted in decreased yields of isoamyl acetate probably owing to lowering of micro-aqueous environmental pH around the enzyme leading to inhibition of enzyme activity. Mycelium bound A. niger lipase produced 80 g/l of isoamyl acetate within 96 h even though extremely less amount of enzyme activity was used for esterification. The presence of sodium sulphate during esterification reaction at higher substrate concentration resulted in increased conversion efficiency when we used mycelium bound enzyme preparations of A. niger NCIM 1207. This could be due to removal of excess water released during esterification reaction by sodium sulphate. High ester concentration (286.5 g/l) and conversion (73.5%) were obtained within 24 h using Novozyme 435 under these conditions.

  3. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  4. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    PubMed

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xianhui; Walker, Devin; Maiti, Debtanu

    Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less

  6. Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.

    2008-08-01

    Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.

  7. Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology.

    PubMed

    Shieh, C J; Chang, S W

    2001-03-01

    Hexyl acetate, a short-chain ester with fruity odor, is a significant green note flavor compound and widely used in the food industry. The ability for immobilized lipase from Mucor miehei (Lipozyme IM-77) to catalyze the transesterification of hexanol with triacetin was investigated in this study. Response surface methodology and five-level-five-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, such as reaction time (2-10 h), temperature (25-65 degrees C), enzyme amount (10-50%; 0.024-0.118 BAUN), substrate molar ratio of triacetin to hexanol (1:1 to 3:1), and added water content (0-20%) on percentage molar conversion of hexyl acetate. The results showed that reaction temperature and substrate molar ratio were the most important parameters and that added water content had less of an effect on percent molar conversion. On the basis of canonical analysis, optimum synthesis conditions were as follows: reaction time, 7.7 h; temperature, 52.6 degrees C; enzyme amount, 37.1% (0.089 BAUN); substrate molar ratio, 2.7:1; and added water, 12.5%. The predicted value was 88.9% molar conversion, and the actual experimental value was 86.6% molar conversion.

  8. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni Mingjiang, E-mail: xiaohanxi_2@163.com; Xiao Hanxi; Chemistry and Chemical Engineering School, Hunan University of Science and Technology, Xiangtan

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The combustion efficiency of waste printed circuit boards (PCBs) depends on temperature, excess air factor, and high temperature zone residence time. Temperature has the most significant impact. Under the proposed condition, combustion of waste PCBs alone is quite complete within the furnace. Black-Right-Pointing-Pointer High temperature prompts a more complete bromine release and conversion. When temperature is high enough, 99.9% organobrominated compounds, the potential precursors for brominated dixoins formation, are destroyed efficiently and convert to inorganic bromine in flue gas, as HBr and Br{sub 2}. Black-Right-Pointing-Pointer Temperature has crucial influence over the inhibition of HBr conversion to Br{sub 2},more » while the oxygen partial pressure plays a reverse role in the conversion to a very small extent. Increasing temperature will decrease the volume percentage ratio of Br{sub 2}/HBr in flue gas greatly. Black-Right-Pointing-Pointer The thermodynamic equilibrium approach of bromine conversion was investigated. The two forms of inorganic bromine in flue gas substantially reach thermodynamic equilibrium within 0.25 s. Under the proposed operating condition, the reaction of Br transfer and conversion finish. - Abstract: High temperature combustion experiments of waste printed circuit boards (PCBs) were conducted using a lab-scale system featuring a continuously-fed drop tube furnace. Combustion efficiency and the occurrence of inorganic bromine (HBr and Br{sub 2}) were systematically studied by monitoring the main combustion products continuously. The influence of furnace temperature (T) was studied from 800 to 1400 Degree-Sign C, the excess air factor (EAF) was varied from 1.2 to 1.9 and the residence time in the high temperature zone (RT{sub HT}) was set at 0.25, 0.5, or 0.75 s. Combustion efficiency depends on temperature, EAF and RT{sub HT}; temperature has the most significant effect. Conversion of organic bromine from flame retardants into HBr and Br{sub 2} depends on temperature and EAF. Temperature has crucial influence over the ratio of HBr to Br{sub 2}, whereas oxygen partial pressure plays a minor role. The two forms of inorganic bromine seem substantially to reach thermodynamic equilibrium within 0.25 s. High temperature is required to improve the combustion performance: at 1200 Degree-Sign C or higher, an EAF of 1.3 or more, and a RT{sub HT} exceeding 0.75 s, combustion is quite complete, the CO concentration in flue gas and remained carbon in ash are sufficiently low, and organobrominated compounds are successfully decomposed (more than 99.9%). According to these results, incineration of waste PCBs without preliminary separation and without additives would perform very well under certain conditions; the potential precursors for brominated dioxins formation could be destroyed efficiently. Increasing temperature could decrease the volume percentage ratio of Br{sub 2}/HBr in flue gas greatly.« less

  9. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    PubMed

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  11. Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling.

    PubMed

    Salvi, Harshada M; Kamble, Manoj P; Yadav, Ganapati D

    2018-02-01

    With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.

  12. Sodium alginate-grafted β-cyclodextrins as a matrix for immobilized Arthrobacter simplex for cortisone acetate biotransfromation

    NASA Astrophysics Data System (ADS)

    Shen, Yanbing; Niu, Lulu; Yu, Ziqi; Wang, Min; Shang, Zhihua; Yang, Yan

    2018-06-01

    Cyclodextrins (CDs) are used to resolve the low aqueous solubility of steroids, but the high cost of CDs is still a limiting factor in biotransformation process. This study, which is based on grafting and immobilization techniques, focused on synthesizing for the first time sodium alginate (SA)-grafted β-CD (SA-β-CD) and alginate-grafted β-CD for the immobilization of Arthrobacter simplex (ASP) cells (SA-β-CD-cells) and subsequent recycling of CDs and cells. FTIR spectium and X-ray diffraction proved that β-CD was successfully grafted with SA, whereas the grafting yield of β-CD was 10.3 μmol g-1. SA-β-CD could increase the solubility of CA by 3.5-fold, whereas the transformation rate was enhanced by 10%. The conversion ratio of CA was over 92% after the SA-β-CD recycling for nine cycles. In addition, after SA-β-CD-cells were applied in biocatalytic reactions for eight cycles, the conversion ratio of CA was over 90%. These advantages suggest great potential for using both grafting and immobilized techniques in steroid transformation.

  13. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.).

    PubMed

    Rehman, Kashif Ur; Cai, Minmin; Xiao, Xiaopeng; Zheng, Longyu; Wang, Hui; Soomro, Abdul Aziz; Zhou, Yusha; Li, Wu; Yu, Ziniu; Zhang, Jibin

    2017-07-01

    World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sex Differences in Children's Conversation.

    ERIC Educational Resources Information Center

    Esposito, Anita

    1979-01-01

    The recorded conversations of 40 preschool children in small groups were analyzed for interruptions, overlaps, lapses, and gaps. Significant differences were found between heterogeneous and homogeneous groups for interruptions, with boys interrupting girls at a two to one ratio. (Author/RL)

  15. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Harutyunyan, Boris

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the twomore » SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.« less

  16. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters.

    PubMed

    Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping

    2018-07-01

    Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Application of Fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation.

    PubMed

    Irinislimane, Ratiba; Belhaneche-Bensemra, Naima

    2012-12-01

    Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.

  18. Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios.

    PubMed

    Randolph, Luc D; Steinhaus, Johannes; Möginger, Bernhard; Gallez, Bernard; Stansbury, Jeffrey; Palin, William M; Leloup, Gaëtane; Leprince, Julian G

    2016-02-01

    The use of a Type I photoinitiator (monoacylphosphine oxide, MAPO) was described as advantageous in a model formulation, as compared to the conventional Type II photoinitiator (Camphorquinone, CQ). The aim of the present work was to study the kinetics of polymerization of various composite mixtures (20-40-60-80 mol%) of bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (BisGMA/TegDMA) containing either CQ or MAPO, based on real-time measurements and on the characterization of various post-cure characteristics. Polymerization kinetics were monitored by Fourier-transform near-infrared spectroscopy (FT-NIRS) and dielectric analysis (DEA). A range of postcure properties was also investigated. FT-NIRS and DEA proved complementary to follow the fast kinetics observed with both systems. Autodecceleration occurred after ≈1 s irradiation for MAPO-composites and ≈5-10 s for CQ-composites. Conversion decreased with increasing initial viscosity for both photoinitiating systems. However despite shorter light exposure (3s for MAPO vs 20s for CQ-composites), MAPO-composites yielded higher conversions for all co-monomer mixtures, except at 20 mol% BisGMA, the less viscous material. MAPO systems were associated with increased amounts of trapped free radicals, improved flexural strength and modulus, and reduced free monomer release for all co-monomer ratios, except at 20 mol% BisGMA. This work confirms the major influence of the initiation system both on the conversion and network cross-linking of highly-filled composites, and further highlights the advantages of using MAPO photoinitiating systems in highly-filled dimethacrylate-based composites provided that sufficient BisGMA content (>40 mol%) and adapted light spectrum are used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    PubMed

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  20. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  1. Carbon costs and benefits of Indonesian rainforest conversion to plantations.

    PubMed

    Guillaume, Thomas; Kotowska, Martyna M; Hertel, Dietrich; Knohl, Alexander; Krashevska, Valentyna; Murtilaksono, Kukuh; Scheu, Stefan; Kuzyakov, Yakov

    2018-06-19

    Land-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha -1 , 159 Mg C ha -1 , and 174 Mg C ha -1 , respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles.

  2. [Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].

    PubMed

    Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia

    2014-01-01

    Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.

  3. Synthesis of bioadditives of fuels from biodiesel-derived glycerol by esterification with acetic acid on solid catalysts.

    PubMed

    Bedogni, Gabriel A; Acevedo, Mauro D; Aguzín, Federico; Okulik, Nora B; Padró, Cristina L

    2017-07-07

    In this paper, glycerol esterification with acetic acid (AA) was studied on several solid acid catalysts: Al 2 O 3 , Al-MCM-41, HPA/SiO 2 , HBEA, Amberlyst 15 and Amberlyst 36 with the aim of determining the reaction conditions and the nature of the surface acid sites required to produce selectively triacetylglycerol (triacetin). The acidity of the catalysts (nature, density and strength of acid sites) was characterized by temperature-programmed desorption of NH 3 and FTIR of adsorbed pyridine. Al 2 O 3 (Lewis acidity) did not show any activity in the reaction. In contrast, highest activity and selectivity to the triacetylated product (triacetin) were obtained on catalysts with Brønsted acidity: Amberlyst 15 and Amberlyst 36. The effect of temperature and molar ratio of AA to glycerol was studied, and the results showed that both parameters have a significant impact on the production of the desired product. Glycerol conversion rate and selectivity to triacetin increased when temperature or AA to glycerol molar ratio were increased, reaching a triacetin yield on Amberlyst 36 of 44% at 393 K and AA to glycerol molar ratio of 6. Deactivation and reusability of Amberlyst 36 were evaluated by performing consecutive catalytic tests. The presence of some irreversible deactivation due to sulfur loss was observed. In addition, the feasibility of using crude glycerol from biodiesel production as reactant was also investigated. Conversion of crude pretreated glycerol yielded values of triacetin and diacetin similar to those obtained with the commercial pure glycerol although at a lower rate.

  4. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio

    PubMed Central

    Ross, Jaime M.; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J.; Olson, Lars

    2010-01-01

    At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes. PMID:21041631

  6. KWU's high conversion reactor concept - An economical evolution of modern pressurized water reactor technology toward improved uranium ore utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markl, H.; Goetzmann, C.A.; Moldaschl, H.

    The Kraftwerk Union AG high conversion reactor represents a quasi-standard PWR with fuel assemblies of more or less uniformly enriched fuel rods, arranged in a tight hexagonal array with a pitch-to-diameter ratio p/d approx. = 1.12. High fuel enrichment as well as a high conversion ratio of --0.9 will provide the potential for high burnup values up to 70 000 MWd/tonne and a low fissile material consumption. The overall objective of the actual RandD program is to have the technical feasibility, including that for licensibility, established by the early 1990s as a prerequisite for deciding whether to enter a demonstrationmore » plant program.« less

  7. Diabetes Reduces the Rate of Sputum Culture Conversion in Patients With Newly Diagnosed Multidrug-Resistant Tuberculosis

    PubMed Central

    Salindri, Argita D.; Kipiani, Maia; Kempker, Russell R.; Gandhi, Neel R.; Darchia, Lasha; Tukvadze, Nestani; Blumberg, Henry M.; Magee, Matthew J.

    2016-01-01

    Background. Diabetes is a risk factor for active tuberculosis (TB), but little is known about the relationship between diabetes and multidrug-resistant (MDR) TB. We aimed to assess risk factors for primary MDR TB, including diabetes, and determine whether diabetes reduced the rate of sputum culture conversion among patients with MDR TB. Methods. From 2011 to 2014, we conducted a cohort study at the National Center for Tuberculosis and Lung Diseases in Tbilisi, Georgia. Adult (≥35 years) patients with primary TB were eligible. Multidrug-resistant TB was defined as resistance to at least rifampicin and isoniazid. Patients with capillary glycosylated hemoglobin (HbA1c) ≥ 6.5% or previous diagnosis were defined to have diabetes. Polytomous regression was used to estimate the association of patient characteristics with drug resistance. Cox regression was used to compare rates of sputum culture conversion in patients with and without diabetes. Results. Among 318 patients with TB, 268 had drug-susceptibility test (DST) results. Among patients with DST results, 19.4% (52 of 268) had primary MDR TB and 13.4% (36 of 268) had diabetes. In multivariable analyses, diabetes (adjusted odds ratio [aOR], 2.51; 95% confidence interval [CI], 1.00–6.31) and lower socioeconomic status (aOR, 3.51; 95% CI, 1.56–8.20) were associated with primary MDR TB. Among patients with primary MDR TB, 44 (84.6%) converted sputum cultures to negative. The rate of sputum culture conversion was lower among patients with diabetes (adjusted hazard ratio [aHR], 0.34; 95% CI, .13–.87) and among smokers (aHR, 0.16; 95% CI, .04–.61). Conclusions. We found diabetes was associated with an increased risk of primary MDR TB; both diabetes and smoking were associated with a longer time to sputum culture conversion. PMID:27419188

  8. Conversion-electron spectroscopy and gamma-gamma angular correlation measurements in 116Sn

    NASA Astrophysics Data System (ADS)

    Cross, D. S.; Pore, J. L.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Churchman, R.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Miller, D. T.; Noakes, B.; Petrache, C. M.; Starosta, K.; Svensson, C. E.; Voss, P.; Wang, Z.-M.; Wilson, J. M.; Wood, J. L.; Yates, S. W.

    2017-11-01

    The 116Sn nucleus was studied via the β- decay of 116In utilizing the 8π spectrometer and its auxiliary detectors at TRIUMF-ISAC. The resulting K-shell conversion coefficients, K/L ratios, and multipole mixing ratios are presented. The 23+ → 21+ 931 keV and 22+ → 21+ 819 keV transition mixing ratios were re-measured and found to be δ = +1.8_{-0.5}^{+0.7} and -1.83(8), respectively. Newly measured mixing ratios for transitions among the low-lying I^{π} = 4+ states in 116Sn, when combined with γ-ray intensity data, suggest that the 2529 keV 42+ state possesses a neutron broken-pair admixture in addition to its dominant proton 2p-2h component.

  9. Analysing Time to Event Data in Dementia Prevention Trials: The Example of the GuidAge Study of EGb761.

    PubMed

    Scherrer, B; Andrieu, S; Ousset, P J; Berrut, G; Dartigues, J F; Dubois, B; Pasquier, F; Piette, F; Robert, P; Touchon, J; Garnier, P; Mathiex-Fortunet, H; Vellas, B

    2015-12-01

    Time-to-event analysis is frequently used in medical research to investigate potential disease-modifying treatments in neurodegenerative diseases. Potential treatment effects are generally evaluated using the logrank test, which has optimal power and sensitivity when the treatment effect (hazard ratio) is constant over time. However, there is generally no prior information as to how the hazard ratio for the event of interest actually evolves. In these cases, the logrank test is not necessarily the most appropriate to use. When the hazard ratio is expected to decrease or increase over time, alternative statistical tests such as the Fleming-Harrington test, provide a better sensitivity. An example of this comes from a large, five-year randomised, placebo-controlled prevention trial (GuidAge) in 2854 community-based subjects making spontaneous memory complaints to their family physicians, which evaluated whether treatment with EGb761 can modify the risk of developing AD. The primary outcome measure was the time to conversion from memory complaint to Alzheimer's type dementia. Although there was no significant difference in the hazard function of conversion between the two treatment groups according to the preplanned logrank test, a significant treatment-by-time interaction for the incidence of AD was observed in a protocol-specified subgroup analysis, suggesting that the hazard ratio is not constant over time. For this reason, additional post hoc analyses were performed using the Fleming-Harrington test to evaluate whether there was a signal of a late effect of EGb761. Applying the Fleming-Harrington test, the hazard function for conversion to dementia in the placebo group was significantly different from that in the EGb761 treatment group (p = 0.0054), suggesting a late effect of EGb761. Since this was a post hoc analysis, no definitive conclusions can be drawn as to the effectiveness of the treatment. This post hoc analysis illustrates the interest of performing another randomised clinical trial of EGb761 explicitly testing the hypothesis of a late treatment effect, as well as of using of better adapted statistical approaches for long term preventive trials when it is expected that prevention cannot have an immediate effect but rather a delayed effect that increases over time.

  10. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    PubMed

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite calorimeter in an 80 MeV/A carbon ion beam. This conversion consists of the product of two contributions: the water-to-graphite electronic mass collision stopping power ratio, which is equal to 1.115, and the fluence correction factor which varies linearly with depth, as k(fl, all) = 0.9995 + 0.0048(zw-eq). The latter has been determined on the basis of experiments and numerical simulations.

  11. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount ofmore » lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.« less

  12. Effect of cationic lipid composition on properties of oligonucleotide/emulsion complexes: Physico-chemical and release studies.

    PubMed

    Martini, Erico; Fattal, Elias; de Oliveira, Mônica Cristina; Teixeira, Helder

    2008-03-20

    This paper describes the influence of cationic lipid composition on physico-chemical properties of complexes formed between oligonucleotides (ON) and cationic emulsions. Formulations containing medium chain triglycerides, egg lecithin, increasing amounts of either oleylamine (OA) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and water were prepared by a spontaneous emulsification procedure. ON adsorption on emulsions was evidenced by the inversion of the zeta-potential, the increase in droplet size, and the morphology of the oil droplet examined through transmission electron microscopy. Adsorption isotherms showed a higher amount of ON adsorbed on emulsions containing DOTAP when compared to emulsions containing OA. In a final step, the role of the main parameters, which may in fact influence the ON release rate from emulsions, was investigated. ON were progressively released from emulsions with an increase in dilution ratio and remained quite similar for both OA and DOTAP emulsions over time. Conversely, the effect of the cationic lipid composition was observed upon increasing the charge ratio of complexes. ON release at a same charge ratio was lower from emulsions containing DOTAP (bearing dioleyl chains) than from those containing OA (bearing monoleyl chain).

  13. Modelling microbial exchanges between forms of soil nitrogen in contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Pansu, M.; Machado, D.; Bottner, P.; Sarmiento, L.

    2014-02-01

    Although nitrogen (N) is often combined with carbon (C) in organic molecules, C passes from the air to the soil through plant photosynthesis, whereas N passes from the soil to plants through a chain of microbial conversions. However, dynamic models do not fully consider the microorganisms at the centre of exchange processes between organic and mineral forms of N. This study monitored the transfer of 14C and 15N between plant materials, microorganisms, humified compartments, and inorganic forms in six very different ecosystems along an altitudinal transect. The microbial conversions of the 15N forms appear to be strongly linked to the previously modelled C cycle, and the same equations and parameters can be used to model both C and N cycles. The only difference is in the modelling of the flows between microbial and inorganic forms. The processes of mineralization and immobilization of N appear to be regulated by a two-way microbial exchange depending on the C : N ratios of microorganisms and available substrates. The MOMOS (Modelling of Organic Matter of Soils) model has already been validated for the C cycle and also appears to be valid for the prediction of microbial transformations of N forms. This study shows that the hypothesis of microbial homeostasis can give robust predictions at global scale. However, the microbial populations did not appear to always be independent of the external constraints. At some altitudes their C : N ratio could be better modelled as decreasing during incubation and increasing with increasing C storage in cold conditions. The ratio of potentially mineralizable-15N/inorganic-15N and the 15N stock in the plant debris and the microorganisms was modelled as increasing with altitude, whereas the 15N storage in stable humus was modelled as decreasing with altitude. This predicts that there is a risk that mineralization of organic reserves in cold areas may increase global warming.

  14. Valine needs in starting and growing Cobb (500) broilers.

    PubMed

    Tavernari, F C; Lelis, G R; Vieira, R A; Rostagno, H S; Albino, L F T; Oliveira Neto, A R

    2013-01-01

    Two independent experiments were conducted with male Cobb × Cobb 500 broilers to determine the optimal valine-to-digestible-lysine ratio for broiler development. We conducted a randomized block experiment with 7 treatments, each with 8 replicates of 25 starter birds (8 to 21 d of age) and 20 finisher (30 to 43 d of age) birds. To prevent any excess of digestible lysine, 93% of the recommended level of digestible lysine was used to evaluate the valine-to-lysine ratio. The utilized levels of dietary digestible lysine were 10.7 and 9.40 g/kg for the starting and growing phases, respectively. A control diet with 100% of the recommended level of lysine and an adequate valine-to-lysine ratio was also used. The feed intake, weight gain, feed conversion ratio, and carcass parameters were evaluated. The treatments had no significant effect on the feed intakes or carcass parameters in the starter and finisher phases. However, during both of the studied phases, we observed a quadratic effect on weight gain and the feed conversion ratio. The broilers of both phases that were fed test diets with the lower valine-to-lysine (Val/Lys) ratio had poorer performance compared with those broilers fed control diets. However, when higher Val/Lys ratios were used for the starting and growing broilers that were fed test diets, the 2 groups had similar performance. During the starting phase, in broilers that were fed a higher Val/Lys ratio, weight gain, and the feed conversion ratio improved by 5.5% compared with broilers fed the basal diets. The broilers in the growing phase also had improved performance (by 7 to 8%) when the test diets had higher Val/Lys ratios. Based on the analysis of the starter phase data, we concluded that the optimal digestible Val/Lys ratio for Cobb × Cobb 500 broilers is 77%, whereas for birds in the finisher phase (30 to 43 d of age), a digestible Val/Lys ratio of 76% is suggested.

  15. The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types

    PubMed Central

    Lamb, Bernard C.; Ghikas, Aglaia

    1979-01-01

    In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926

  16. Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice-wheat rotation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad

    2017-12-01

    Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was <1.42. The contribution of WFPS and dissolved organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.

  17. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jie, E-mail: jie.wang2@osumc.edu; Osei, Kwame

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostaticmore » balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin to insulin despite the levels of PC1/3 and PC2 proteins were not reduced somehow. The findings demonstrate that the perturbation of PIHO results in defects in the subsequent conversion process of proinsulin and is a contributor to the occurrence of disproportionate hyperproinsulinemia in diabetes.« less

  18. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  19. Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

    PubMed Central

    Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir

    2017-01-01

    The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570

  20. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.-H.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardware completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio.

  1. The effect of reduced calorie diets, with and without fat, and the use of xylanase on performance characteristics of broilers between 0 and 42 days.

    PubMed

    O'Neill, H V Masey; Mathis, G; Lumpkins, B S; Bedford, M R

    2012-06-01

    When decreasing the energy value of broiler diets, nonstarch polysaccharide degrading enzymes, such as xylanase, are often used. In doing so, they are assigned an energy value and considered to contribute energy to the diet. The aim of this study was to determine the effect of decreasing energy in a broiler diet by 100 kCal/kg on performance and whether the expected drop in performance could be recovered with the use of xylanase. Two formulations were used to provide decreased energy diets, both with and without supplementary fat. Six hundred 1-d-old male Cobb broilers were placed in a 2 × 3 full factorial design in 5 randomized complete blocks. The treatments were enzyme dose at 0 or 16,000 U/kg, and the 3 different diets [positive control (PC), negative control 1, without fat (NC1), and negative control 2 with fat (NC2)]. At no point were there any interactions between diet type and enzyme inclusion; where there was an effect of xylanase, it was consistent regardless of the diet type. There was a significant effect of diet type on feed intake between d 0 to 35; NC1 and NC2 had significantly increased feed intake compared with the PC (P = 0.006). The feed conversion ratio was significantly increased in birds fed the negative control diets during 0 to 35 d and 0 to 42 d (P = 0.003 and P = 0.002, respectively). However, feed conversion ratio was significantly improved by the addition of enzyme during periods 0 to 35 d and 0 to 42 d. There were no significant main effects between d 0 and 21 (all responses P > 0.1). Liveability was not affected by any of the treatments (P > 0.1). Decreasing energy in broiler diets results in worsened performance. The use of xylanase may improve feed conversion ratio. The use of some fat may help, so the whole diet composition should be considered in conjunction with enzyme dose to achieve the best advantage.

  2. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    PubMed

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.

  3. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    PubMed Central

    Sun, Li-rui; Wang, Yan; Xia, Chun-gu

    2017-01-01

    The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification. PMID:28421196

  4. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    PubMed

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  5. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  7. Enzymatic conversion of waste cooking oils into alternative fuel--biodiesel.

    PubMed

    Chen, Guanyi; Ying, Ming; Li, Weizhun

    2006-01-01

    Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40 degrees C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88-90%.

  8. Enhanced photochemical conversion of NO2 to HONO on humic acids in the presence of benzophenone.

    PubMed

    Han, Chong; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2017-12-01

    The photochemical conversion of NO 2 to HONO on humic acids (HA) in the presence of benzophenone (BP) was investigated using a flow tube reactor coupled to a NO x analyzer at ambient pressure. BP significantly enhanced the reduction of NO 2 to HONO on HA under simulated sunlight, as shown by the increase of NO 2 uptake coefficient (γ) and HONO yield with the mass ratio of BP to HA. The γ and HONO yield on the mixtures of HA and BP obviously depended on the environmental conditions. Both γ and HONO yield increased with the increase of irradiation intensity and temperature, whereas they decreased with pH. The γ exhibited a negative dependence on the NO 2 concentration, which had slight influences on the HONO yield. There were maximum values for the γ and HONO yield at relative humidity (RH) of 22%. Finally, atmospheric implications about the photochemical reaction of NO 2 and HA in the presence of photosensitive species were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Self-assembly behaviour of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization

    PubMed Central

    Wallace, Stephanie J.; Li, Jian; Nation, Roger L.; Prankerd, Richard J.; Velkov, Tony; Boyd, Ben J.

    2010-01-01

    Colistin is an amphiphilic antibiotic that has re-emerged into clinical use due to the increasing prevalence of difficult-to-treat Gram-negative infections. The existence of self-assembling colloids in solutions of colistin and its derivative prodrug, colistin methanesulfonate (CMS) was investigated. Colistin and CMS reduced the air-water interfacial tension, and dynamic light scattering (DLS) studies showed the existence of 2.07 ± 0.3 nm aggregates above 1.5 mM for colistin, and of 1.98 ± 0.36 nm aggregates for CMS above 3.5 mM (mean ± SD). Above the respective critical micelle concentrations (CMC) the solubility of azithromycin, a hydrophobic antibiotic, increased approximately linearly with increasing surfactant concentration (5:1 mol ratio colistin:azithromycin), suggestive of hydrophobic domains within the micellar cores. Rapid conversion of CMS to colistin occurred below the CMC (60 % over 48 hr), while conversion above the CMC was less than 1 %. The formation of colistin and CMS micelles demonstrated in this study is the proposed mechanism for solubilization of azithromycin and the concentration-dependent stability of CMS. PMID:20302384

  10. Space/Frequency Conversions in Image Processing and Transmission.

    DTIC Science & Technology

    1981-11-01

    particularly with respect to the signal-to- noise ratio of the processed outputs. Devejlmnnt 9i a 1megtg fO-g s *&t~i egM2&Y conversion image_ aEggMsinLg: One...slowiv, whil e tle spatial impulse r-on i Ix~v; t) is vairied rapidly Iit *I tat tern recognitiont steartcl operaitioti. Under thiese c’irc-umstances, 11...electronic) will he incapable of recording the image with good signal-to- noise ratio. In what follows, we consider two approaches to producing these

  11. Effect of forage inclusion and particle size in diets of neonatal lambs on performance and rumen development.

    PubMed

    Norouzian, M A; Valizadeh, R

    2014-12-01

    A slaughter experiment was conducted to determine the effects of alfalfa particle size on rumen morphology and performance of lambs. Twenty-four Balouchi lambs aged 21 days (9.1 ± 1.1 kg) were randomly fed control (diet without alfalfa hay; CON) and mixed rations containing 15% finely ground (FINE; 2 mm) and 15% coarsely chopped alfalfa hay (LONG; 3 to 4 cm). After a 63 days feeding period, nine animals (three per treatment) were slaughtered to obtain ruminal tissue samples for morphological analyses. Alfalfa particle size did not affect (p > 0.05) papillae density, height, width, epithelium depth and surface area. Coarse alfalfa decreased the stratum corneum and increased (p < 0.05) muscle depth compared with fine and control diets. Neither DNA content and nor RNA concentration of rumen tissue was affected by feeding different diets. Forage particle size did not affect the blood concentration of glucose, urea nitrogen (BUN), beta-hydroxybutyric acid (BHBA) and non-esterified fatty acids (NEFA). Dry matter intake and feed conversion ratio were higher for control diet; however, there were no significant differences between treatments for average daily gain. These data suggest that coarse alfalfa significantly reduces the stratum corneum and increases muscularity of rumen wall and tended to better feed conversion ratio. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  12. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads.

    PubMed

    Gilani, Saeedeh L; Najafpour, Ghasem D; Heydarzadeh, Hamid D; Moghadamnia, Aliakbar

    2017-06-01

    S-naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2-ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween-80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2-ethoxyethanol, isooctane and Tween-80 were 3:7 and 0.1% (v/v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively. © 2017 Wiley Periodicals, Inc.

  13. High production of D-tagatose by the addition of boric acid.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2007-01-01

    An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.

  14. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids: Influence of operational variables and polar lipid content.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro A; Jiménez Callejón, María J; Esteban Cerdán, Luis; Martín Valverde, Lorena; Castillo López, Beatriz; Molina Grima, Emilio

    2015-01-01

    Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.

  16. A Novel Method for Preparing Auxetic Foam from Closed-cell Polymer Foam Based on Steam Penetration and Condensation (SPC) Process.

    PubMed

    Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao

    2018-05-31

    Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.

  17. On the optical evaluation of the EL2 deep level concentration in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    A practical procedure for the evaluation of the Fermi energy in semi-insulating (SI)GaAs from electrical measurements is presented. This procedure makes it possible to reliably extend the determination of the major deep level (EL2) concentration, by near-infrared absorption measurements, to SIGaAs. Employing this procedure, it is shown that the EL2 concentration in Czochralski-grown GaAs increases monotonically with increasing As/Ga ratio (throughout the conversion from SI n type to semiconducting p-type crystals) rather than abruptly as previously proposed.

  18. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    NASA Astrophysics Data System (ADS)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a structure involved in the recycling through the liquefaction plant if it is being installed. As a result of this study, results obtained from oil + gas data shows that when distilled water is used instead of tetraline during liquefaction of EL combined with manure, abundant crude hydrogen transfer takes place not because of using distilled water as a solvent but only with manure considered as a hydrogen sources. Furthermore, while adding manure into coal of liquefaction is also an alternative for current oil production.

  19. Growth performance and carcass characteristics of growing ram lambs fed sweet sorghum bagasse-based complete rations varying in roughage-to-concentrate ratios.

    PubMed

    Kumari, Nagireddy Nalini; Reddy, Yerradoddi Ramana; Blummel, Michel; Nagalakshmi, Devanaboyina; Monika, Thamatam; Reddy, Belum Venkata Subba; Reddy, Chintalapani Ravinder

    2013-02-01

    Different roughage-to-concentrate ratios of sweet sorghum bagasse (SSB) (a by-product of the biofuel industry)-based complete diets were assessed. Twenty four growing Nellore × Deccani ram lambs aged about 3 months (average body wt., 10.62 ± 0.25 kg) were randomly allotted to four complete rations (CR) varying in roughage-to-concentrate ratios viz. 60:40 (CR-I), 50:50 (CR-II), 40:60 (CR-III) and 30:70(CR-IV) for a period of 180 days. The feed intake was comparable among the lambs fed different experimental complete diets. Average daily weight gain (in grams) was 77.31 ± 4.90, 81.76 ± 5.16, 85.83 ± 2.83 and 86.30 ± 3.25, and feed conversion ratio (in kilograms of feed per kilogram gain) averaged 11.42 ± 0.68, 10.57 ± 0.64, 10.17 ± 0.37 and 9.96 ± 0.38 in ram lambs fed CR-I, CR-II, CR-III and CR-IV rations, respectively. Statistically, differences in daily weight gain and feed conversion ratio among the lambs fed four experimental rations were not significant (P > 0.05). The cost per kilogram gain was significantly (P < 0.01) higher in ram lambs fed CR-IV and CR-III rations compared to CR-I ration, and it was comparable between CR-I and CR-II rations. Dressing percentage averaged 44.90 ± 0.15, 42.57 ± 0.72, 43.67 ± 0.16 and 44.42 ± 0.76 for the respective diets. No significant difference and trend was observed in preslaughter weight, empty body weight, carcass weights, dressing percentage, wholesale cuts and edible and non-edible portions of experimental animals. Similarly, no significant variation could be seen in bone and meat yield (in per cent) and their ratios in various wholesale cuts among the dietary treatments. The roughage-to-concentrate ratio did not affect the chemical composition of meat; however, the fat content of meat was linearly increased with increase in the proportion of concentrate in the diets. The results of the experiment indicated that SSB can be included at 60 % level in the complete diet for economical mutton production from growing Nellore × Deccani ram lambs.

  20. Quantity discrimination in canids: Dogs (Canis familiaris) and wolves (Canis lupus) compared.

    PubMed

    Miletto Petrazzini, Maria Elena; Wynne, Clive D L

    2017-11-01

    Accumulating evidence indicates that animals are able to discriminate between quantities. Recent studies have shown that dogs' and coyotes' ability to discriminate between quantities of food items decreases with increasing numerical ratio. Conversely, wolves' performance is not affected by numerical ratio. Cross-species comparisons are difficult because of differences in the methodologies employed, and hence it is still unclear whether domestication altered quantitative abilities in canids. Here we used the same procedure to compare pet dogs and wolves in a spontaneous food choice task. Subjects were presented with two quantities of food items and allowed to choose only one option. Four numerical contrasts of increasing difficulty (range 1-4) were used to assess the influence of numerical ratio on the performance of the two species. Dogs' accuracy was affected by numerical ratio, while no ratio effect was observed in wolves. These results align with previous findings and reinforce the idea of different quantitative competences in dogs and wolves. Although we cannot exclude that other variables might have played a role in shaping quantitative abilities in these two species, our results might suggest that the interspecific differences here reported may have arisen as a result of domestication. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. OTEC Potential of East Nusa Tenggara Province in Indonesia

    NASA Astrophysics Data System (ADS)

    Widyartono, M.; Rahmadian, R.

    2018-04-01

    Indonesia is the largest archipelago country in the world, located between Indian Ocean and Pacific Ocean. Indonesia has more than 17000 islands with 70 per cent of the region is ocean. The Growth of the economic and population in Indonesia increasing the demand of the electricity annually, in 2015 alone electricity consumption in Indonesia reaching 200 TWh and will continue increasing every year. However, East Nusa Tenggara Province electrification ratio only around 58.64%, this is the second lowest ratio in Indonesia. This electrification ratio describes the level of availability of electrical energy for the community. Power Plant with renewable source placement in East Nusa Tenggara Province or smaller district need to be prioritise to cope with the low electrification ratio. Renewable sources for power plant have a good potential to work with, in example wind power, solar power, geothermal, or biomass. In addition, another renewable source that not yet known is from the ocean itself. Ocean Thermal Energy Conversion (OTEC) is one of the renewable source method from ocean. This paper will uncover the potential of OTEC in East Nusa Tenggara province so it will bring possibility to build an OTEC power plant in the future.

  2. NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas

    DOE PAGES

    Zhao, Xianhui; Walker, Devin; Maiti, Debtanu; ...

    2017-12-22

    Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less

  3. Carbon to organic matter ratios for soils in Rocky Mountain coniferous forests

    Treesearch

    Theresa B. Jain; Russell T. Graham; David L. Adams

    1997-01-01

    Vegetation type, soils, climate, and conversion ratios influence estimates of terrestrial C. Our objectives were to (i) determine carbon to organic matter (C/OM) ratios for brown cubical rotten wood, litter, surface humus, soil wood, and mineral soils; (ii) evaluate the validity of using 0.58 and 0.50 ratios for estimating C in mineral and organic soil components,...

  4. Effect of Conjugated Linoleic Acid Feeding on the Growth Performance and Meat Fatty Acid Profiles in Broiler: Meta-analysis

    PubMed Central

    Cho, Sangbuem; Ryu, Chaehwa; Yang, Jinho; Mbiriri, David Tinotenda; Choi, Chang-Weon; Chae, Jung-Il; Kim, Young-Hoon; Shim, Kwan-Seob; Kim, Young Jun; Choi, Nag-Jin

    2013-01-01

    The effect of conjugated linoleic acid (CLA) feeding on growth performance and fatty acid profiles in thigh meat of broiler chicken was investigated using meta-analysis with a total of 9 studies. Overall effects were calculated by standardized mean differences between treatment (CLA fed) and control using Hedges’s adjusted g from fixed and random effect models. Meta-regression was conducted to evaluate the effect of CLA levels. Subgroups in the same study were designated according to used levels of CLA, CP levels or substituted oils in diets. The effects on final body weight, weight gain, feed intake and feed conversion ratio were investigated as growth parameters. Total saturated and unsaturated fatty acid concentrations and C16:0, C18:0, C18:2 and C18:3 concentrations in thigh meat of broiler chicken were used as fatty acid profile parameters. The overall effect of CLA feeding on final weight was negative and it was only significant in fixed effect model (p<0.01). Significantly lower weight gain, feed intake and higher feed conversion ratio compared to control were found (p<0.05). CLA feeding on the overall increased total saturated fatty acid concentration in broilers compared to the control diet (p<0.01). Total unsaturated fatty acid concentration was significantly decreased by CLA feeding (p<0.01). As for individual fatty acid profiles, C16:0, C18:0 and C18:3 were increased and C18:2 was significantly decreased by CLA feeding (p<0.01). In conclusion, CLA was proved not to be beneficial for improving growth performance, whereas it might be supposed that CLA is effective modulating n-6/n-3 fatty acids ratio in thigh meat. However, the economical compensation of the loss from suppressed growth performance and increased saturated fatty acids with the benefit from enhanced n-6/n-3 ratio should be investigated in further studies in order to propose an appropriate use of dietary CLA in the broiler industry. PMID:25049878

  5. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions.

    PubMed

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7% sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS (P<0.05). Body weight and feed intake were not influenced significantly by dietary vitamin E and Se (P>0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E (P<0.05). The liver and lymphoid organ weights as well as IgM and IgG, antibody titers for primary and secondary antibody responses to SRBC were reduced significantly under HS (P<0.05). Heat stress also resulted in a significant increase in H/L ratio (P<0.05). Dietary vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers (P<0.05). The HS birds also showed an improved antibody titer in secondary response with high concentration of Se (P<0.05). Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions (P < 0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers (P<0.05).

  6. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions

    NASA Astrophysics Data System (ADS)

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS ( P < 0.05). Body weight and feed intake were not influenced significantly by dietary vitamin E and Se ( P > 0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E ( P < 0.05). The liver and lymphoid organ weights as well as IgM and IgG, antibody titers for primary and secondary antibody responses to SRBC were reduced significantly under HS ( P < 0.05). Heat stress also resulted in a significant increase in H/L ratio ( P < 0.05). Dietary vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers ( P < 0.05). The HS birds also showed an improved antibody titer in secondary response with high concentration of Se ( P < 0.05). Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions ( P < 0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers ( P < 0.05).

  7. [Transformation of baicalin and wogonoside through liquid fermentation with Bacillus natto].

    PubMed

    Long, Hou-ning; Zhang, Shuo; Yao, Lei; Zhang, Min; Wang, Peng-jiao; Meng, Xiao-xia; Gao, Xiu; Zhang, Rong-ping

    2015-12-01

    This experiment aimed to explore and research the process of preparing baicalein and wogonin through liquid fermentation with Bacillus natto. Active enzymes of produced by B. natto was used for the biological transformation of baclin and wogonoside, in order to increase the content of the haicalein and wogonin in the scutellaria. With the content of the baicalein and wogonin as evaluating indexes, the effects of carbon source, nitrogen source, the types and suitable concentration of inorganic salt, medium pH, granularities of medical materials, liquid volume in flask, shaking speed, liquid-to-solid ratio, fermentation time on the fermentation process were studied. The optimal process conditions for liquid fermentation of scutellaria were 1.0% of peptone, 0.05% of NaCl, pH at 6, the granularities of medical materials of the scutellaria screened through 40-mesh sifter, 33% of liquid, shaker incubator speed at 200 r x min(-1), liquid-to-solid ratio of 5:1, temperature at 37 degrees C, fermentation for 6 days, baclin's conversion rate at 97.6% and wogonoside's conversion rate at 97% in the scutellaria. According to the verification test, the process was stable and feasible, and could provide data reference for the industrial production.

  8. Effect of feed supplement containing earthworm meal (Lumbricus rubellus) on production performance of quail (Coturnix coturnix japonica)

    NASA Astrophysics Data System (ADS)

    Istiqomah, L.; Sakti, A. A.; Suryani, A. E.; Karimy, M. F.; Anggraeni, A. S.; Herdian, H.

    2017-12-01

    The objective of this study was to evaluate the effect of feed supplement (FS) contained earthworm meal (EWM) on production performance of laying quails. Twenty weeks-old of 360 Coturnix coturnix japonica quails were used in a Completely Randomized Design (CRD) with three dietary treatments A = CD (control without FS), B = CD + 0.250 % of FS, and C = CD + 0.375 % of FS during 6 weeks of experimental period. Each treatment in 4 equal replicates in which 30 quails were randomly allocated into 12 units of cages. Variable measured were feed intake, feed conversion ratio, feed efficiency, mortality rate, hen day production, egg weight, and egg uniformity. Data were statistically analyzed by One Way ANOVA and the differences among mean treatments are analysed using Duncan’s Multiple Range Test (DMRT). The results showed that administration of 0.375% FS based on earthworm meal, fermented rice bran, and skim milk impaired the feed conversion ratio and increased the feed efficiency. The experimental treatments did not effect on feed intake, mortality, hen day production, egg weight, and egg uniformity of quail. It is concluded that administration of feed supplement improved the growth performance of quail.

  9. Protein Production Through Microbial Conversion of Rice Straw by Multi-Strain Fermentation.

    PubMed

    Jia, Jinru; Chen, Huayou; Wu, Bangguo; Cui, Fengjie; Fang, Hua; Wang, Hongcheng; Ni, Zhong

    2018-06-20

    Multi-strain mixed fermentation can provide a relatively complete lignocellulosic enzyme system compared with single-strain fermentation. This study was firstly to screen strains which have a strong ability to hydrolyse rice straw (RS) enzymatically and enrich true protein (TP). Then, the conditions in the process of SSF, including the optimum inoculum size of mixed strains, inoculation ratio, and different inoculation time of N. crassa 14-8, were optimized. The experimental results showed that the highest TP content could be obtained by using N. crassa 14-8, C. utilis, and P. chrysosporium as mixed strains, and 5 mM Mn 2+ and 50 mM veratryl alcohol were used as inducers of lignin peroxidase (LiP) to improve the efficiency of enzymatic hydrolysis. When N. crassa 14-8 was inoculated 1 day later than P. chrysosporium, the total inoculum size was 10%, and the optimum ratio of N. crassa 14-8 to P. chrysosporium was 1:2, the maximum TP yield (8.89%) was obtained, with 123.37% of its increase rate. This work proposed a technique with potential application in large-scale feedstuff protein conversion.

  10. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and ..beta..-5 linkage contents, while it had positive ones with ..beta..-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  11. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Dumitrache, Alexandru; Muchero, Wellington

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoatemore » (PB) and β–5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. In conclusion, this study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.« less

  12. Ethanol Conversion to Hydrocarbons on HZSM-5: Effect of Reaction Conditions and Si/Al Ratio on the Product Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2014-11-17

    The Conversion of ethanol to hydrocarbon over HZSM-5 zeolite with different Si/Al ratios was investigated under various reaction conditions. The catalyst with a higher Si/Al ratio (low acid density) deactivated faster and generated more unsaturated compounds at a similar time-on-stream. Temperature affects the catalytic activity with respect to liquid hydrocarbon generation and the hydrocarbon product composition. At lower temperatures (~300°C), the catalyst deactivated faster with respect to the liquid hydrocarbon formation. Higher temperatures (~400°C) reduced the formation of liquid range hydrocarbons and formed more gaseous fractions. Weight hourly space velocity was also found to affect product selectivity with higher weightmore » hourly space velocity leading to a higher extent of ethylene formation. The experimental results were analyzed in terms of the product composition and the coke content with respect to catalyst time-on-stream and compared with the catalyst lifetime with respect to the variables tested on the conversion of ethanol to hydrocarbon.« less

  13. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  14. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture.

    PubMed

    Rezaei, M; Karimi Torshizi, M A; Rouzbehan, Y

    2011-09-01

    The effects of different levels of micronized insoluble fiber (MIF) on broiler performance and litter moisture were assessed in 320 one-day-old male broilers (Ross 308). Feed was supplemented with 0, 0.3, 0.4, or 0.5% MIF during both the starter (1 to 14 d) and grower (15 to 42 d) periods. Supplementation of MIF was associated with dose dependent increases in daily BW gain and feed conversion ratio throughout the experimental period (P < 0.01), whereas feed intake was not influenced by MIF concentration. As MIF content increased, the relative weight of digestive organs was not changed (P > 0.05). Supplementation of MIF resulted in dose dependent increases in the ileal villus height:crypt depth ratio and number of goblet cells (P < 0.05), and a dose dependent decrease in litter moisture beginning during the third week (P < 0.01). These findings indicate that inclusion of 0.5% MIF in feed resulted in the greatest improvements in broiler performance, intestinal morphology, and litter moisture.

  15. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less

  16. Charging system with galvanic isolation and multiple operating modes

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  17. Conversion of energy in cross-sectional divergences under different conditions of inflow

    NASA Technical Reports Server (NTRS)

    Peters, H

    1934-01-01

    This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.

  18. Effect of composition and calcination temperature of ceria-zirconia-alumina mixed oxides on catalytic performances of ethanol conversion

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.

    2017-02-01

    In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.

  19. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1984-01-01

    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  20. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural

    PubMed Central

    Hossain, Gazi Sakir; Yuan, Haibo; Li, Jianghua; Shin, Hyun-dong; Wang, Miao; Du, Guocheng; Chen, Jian

    2016-01-01

    ABSTRACT 2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. IMPORTANCE In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica. This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica. PMID:27795308

  1. The dissolution kinetics of industrial brine sludge wastes from a chlor-alkali industry as a sorbent for wet flue gas desulfurization (FGD).

    PubMed

    Masilela, E; Lerotholi, L; Seodigeng, T; Rutto, H

    2018-02-01

    The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step. The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.

  2. Broadband Polarization Conversion Metasurface Based on Metal Cut-Wire Structure for Radar Cross Section Reduction.

    PubMed

    Yang, Jia Ji; Cheng, Yong Zhi; Ge, Chen Chen; Gong, Rong Zhou

    2018-04-19

    A class of linear polarization conversion coding metasurfaces (MSs) based on a metal cut-wire structure is proposed, which can be applied to the reduction properties of radar cross section (RCS). We firstly present a hypothesis based on the principle of planar array theory, and then verify the RCS reduction characteristics using linear polarization conversion coding MSs by simulations and experiments. The simulated results show that in the frequency range of 6⁻14 GHz, the linear polarization conversion ratio reaches a maximum value of 90%, which is in good agreement with the theoretical predictions. For normal incident x - and y -polarized waves, RCS reduction of designed coding MSs 01/01 and 01/10 is essentially more than 10 dB in the above-mentioned frequency range. We prepare and measure the 01/10 coding MS sample, and find that the experimental results in terms of reflectance and RCS reduction are in good agreement with the simulated ones under normal incidence. In addition, under oblique incidence, RCS reduction is suppressed as the angle of incidence increases, but still exhibits RCS reduction effects in a certain frequency range. The designed MS is expected to have valuable potential in applications for stealth field technology.

  3. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol.

    PubMed

    Song, Kang; Suenaga, Toshikazu; Harper, Willie F; Hori, Tomoyuki; Riya, Shohei; Hosomi, Masaaki; Terada, Akihiko

    2015-12-01

    Nitrous oxide (N2O) is emitted from a modified Ludzak-Ettinger (MLE) process, as a primary activated sludge system, which requires mitigation. The effects of aeration rates and internal recycle flow (IRF) ratios on N2O emission were investigated in an MLE process fed with glycerol. Reducing the aeration rate from 1.5 to 0.5 L/min increased gaseous the N2O concentration from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 54.4 and 53.4 %, respectively. During the period of higher aeration, the N2O-N conversion ratio was 0.9 % and the potential N2O reducers were predominantly Rhodobacter, which accounted for 21.8 % of the total population. Increasing the IRF ratio from 3.6 to 7.2 decreased the N2O emission rate from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 56 and 48 %, respectively. This study suggests effective N2O mitigation strategies for MLE systems.

  4. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.

    PubMed

    Yuan, Shuai; Dai, Zheng-hua; Zhou, Zhi-jie; Chen, Xue-li; Yu, Guang-suo; Wang, Fu-chen

    2012-04-01

    Rapid pyrolysis of rice straw (RS) and Shenfu bituminous coal (SB) separately, and rapid co-pyrolysis of RS/SB blends (mass ratio 1:4, 1:4, and 4:1), were carried out in a high-frequency furnace which can ensure both high heating rate and satisfying contact of fuel particles. Synergies between RS and SB during rapid co-pyrolysis were investigated. Intrinsic and morphological structures of residual char from co-pyrolysis, and their effects on gasification characteristics were also studied. Synergies occurred during rapid co-pyrolysis of RS and SB (RS/SB=1:4) resulting in decreasing char yields and increasing volatile yields. Synergies also happened during gasification of the char derived from co-pyrolysis of RS and SB with mass ratio of 1:4. The increased mass ratio of RS to SB did not only weaken synergies during co-pyrolysis, but significantly reduced the gasification rates of the co-pyrolysis char compared to the calculated values. Results can help to optimize co-conversion process of biomass/coal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. An empirical model of the phytoplankton chlorophyll : carbon ratio-the conversion factor between productivity and growth rate

    USGS Publications Warehouse

    Cloern, James E.; Grenz, Christian; Vidergar-Lucas, Lisa

    1995-01-01

    We present an empirical model that describes the ratio of phytoplankton chlorophyll a to carbon, Chl: C, as a function of temperature, daily irradiance, and nutrient-limited growth rate. Our model is based on 219 published measurements of algal cultures exposed to light-limited or nutrient-limited growth conditions. We illustrate an approach for using this estimator of Chl: C to calculate phytoplankton population growth rate from measured primary productivity. This adaptive Chl: C model gives rise to interactive light-nutrient effects in which growth efficiency increases with nutrient availability under low-light conditions. One implication of this interaction is the enhancement of phytoplankton growth efficiency, in addition to enhancement of biomass yield, as a response to eutrophication.

  6. Using mixed solvent and changing spin-coating parameters to increase the efficiency and lifetime of organic solar cells.

    PubMed

    Tsai, Yu Sheng; Chu, Wei-Ping; Tang, Rong-Ming; Juang, Fuh-Shyang; Chang, Ming-Hua; Liu, Mark O; Hsieh, Tsung-Eong

    2008-10-01

    The derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC). The experimental parameters were studied carefully to obtain the optimum power conversion efficiency (PCE), including the solvent mixing ratio, spin-coating speed, annealing conditions for the active layer, etc. The OSC devices were packaged with glass and a newly developed UV-glue to improve the lifetime and PCE. Dichlorobenzene solvent has great effect upon the PCE. Changing the spin-coating speed and increasing the number of steps increased the PCE apparently to 1.4%.

  7. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets.

    PubMed

    Amerah, A M; Plumstead, P W; Barnard, L P; Kumar, A

    2014-04-01

    This study investigated the effect of dietary Ca to available P (AvP) ratio and phytase supplementation on bone ash, ileal phytate degradation, and nutrient digestibility in broilers fed corn-based diets. The experimental design was a 4 × 2 factorial arrangement of treatments evaluating 4 Ca:AvP ratios (1.43, 2.14, 2.86, and 3.57) and 2 levels of phytase (0 and 1,000 phytase units/kg of feed). The 4 Ca:AvP ratios were achieved by formulating all diets to a constant AvP level of 0.28% and varying Ca levels (0.4, 0.6, 0.8, and 1.0%). Each treatment was fed to 6 cages of 8 male Ross 308 broilers from 5 to 21 d. At 21 d, digesta from the terminal ileum was collected and analyzed for energy, phytate, P, Ca, and amino acids (AA) to determine digestibility. Digesta pH was measured in each segment (crop, gizzard, duodenum, and ileum) of the digestive tract. Data were analyzed by 2-way analysis of covariance. There was a significant interaction between dietary Ca:AvP ratio and phytase supplementation for weight gain (WG), feed intake (FI), and feed conversion ratio (FCR). In diets with no phytase, Ca:AvP ratio had a greater effect on WG, FI, and FCR compared with those fed diets without phytase. The orthogonal polynomial contrasts showed that the increase in dietary Ca:AvP ratio significantly decreased WG and FI in a quadratic manner, whereas FCR increased (P < 0.05) linearly with higher dietary Ca:AvP ratio. Increasing dietary Ca:AvP ratio led to a significant quadratic decrease in phytate degradation and significant linear decreases in P digestibility and bone ash. Phytase addition increased (P < 0.05) phytate degradation and improved (P < 0.05) energy, AA, and P digestibility at all levels of Ca:AvP with no interaction (P > 0.05) between the main factors. Digestibility of AA was positively correlated (P < 0.05) with the degree of phytate degradation. Increasing dietary Ca:AvP ratio significantly increased gizzard pH in a linear manner. In conclusion, phytase (1,000 phytase units/kg of feed) improved phytate, and P and AA digestibility at all Ca:AvP ratios evaluated in this study.

  8. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B.; Rappenglück, B.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO, followed by traffic emission. Aerosol did not play an important role in HONO formation. Although ground deposition was also a major removal pathway of HONO, net HONO production at the ground was the main source of HONO in our model studies. Sensitivity studies showed that in the stable NBL, net HONO production at the ground tends to increase with faster vertical mixing and stronger emission. Vertical transport was found to be the dominant source of HONO aloft.

  9. 76 FR 76573 - Medical Loss Ratio Requirements Under the Patient Protection and Affordable Care Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... the regulations treat ICD-10 conversion costs; change the rules on deducting community benefit... policies; (2) rules governing how ICD-10 conversion costs, fraud reduction expenses, and community benefit... administrative costs associated with expatriate policies as evidenced from the public comments and the first two...

  10. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  11. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films.

    PubMed

    Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi

    2016-09-21

    Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.

  12. Ge/Si Ratios Record the Impact of Forest Conversion to Cropland on Soil Chemical Weathering Processes and Solutes Export to Rivers

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.

    2016-12-01

    Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.

  13. Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen's criteria.

    PubMed

    Marcos, G; Santabárbara, J; Lopez-Anton, R; De-la-Cámara, C; Gracia-García, P; Lobo, E; Pírez, G; Menchón, J M; Palomo, T; Stephan, B C M; Brayne, C; Lobo, A

    2016-05-01

    In a background of revision of criteria for states of increased risk for progression to dementia, we compare the conversion rate to dementia and Alzheimer's disease (AD) of mild cognitive impairment (MCI) as diagnosed using DSM-5 (DSM-5-MCI) and Petersen's (P-MCI) criteria. A population representative cohort of 4057 dementia-free individuals 55+ years of age was followed up at 2.5 and 4.5 years in Zaragoza, Spain (ZARADEMP). Using the Geriatric Mental State- AGECAT for assessment, research psychiatrists diagnosed DSM-5-MCI and P-MCI following operationalized criteria. 'Conversion rate' (CR), 'annual conversion rate' (ACR), and incidence rate (IR) were calculated along with incidence rate ratio (IRR) to compare the performance of the intermediate cognitive definitions. At 4.5-year follow-up, in individuals aged 65+ years, ACRs for non-cases, P-MCI, and DSM-5-MCI were 0.8, 1.9 and 3.4, respectively, for global dementia. The IRRs were 2.9 and 5.3 for P-MCI and DSM5-MCI, respectively, being the non-cases the reference category. The corresponding values were slightly lower for AD. Conversion rate to dementia and AD was higher using DSM-5-MCI criteria than using Petersen's criteria. However, prediction of the construct still has some way to go, as most MCI individuals did not convert at 4.5-year follow-up. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    PubMed

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  15. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Production of Biodiesel from Thespesiapopulnea seed oil through rapid in situ transesterification - an optimization study and assay of fuel properties

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.

    2018-03-01

    Biodiesel production was carried out from Thespesia populnea seed oil through rapid insitu transesterification. Influence of reaction parameters such as catalyst type and concentration, methanol to biomass ratio, co-solvent volume, temperature and agitation speed on conversion of oil into methyl esters was investigated. The effect of different co-solvents on conversion was evaluated. Optimum methyl ester conversion of 97.80% was achieved at 1.5wt% of KOH catalyst, 5.5:1 (v/w) methanol to biomass ratio, 25vol%tetrahydrofuranco-solvent, 60°C and 500 rpm within 120min of reaction time. Fuel properties of produced methyl esters were well fitted within the limits of ASTMD 6751 standards. Considering the properties of produced biodiesel, Thespesia populnea seed derived biodiesel can be used as potential alternate to fossil diesel fuel.

  17. Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion.

    PubMed

    Gong, Yutong; Wang, Jing; Wei, Zhongzhe; Zhang, Pengfei; Li, Haoran; Wang, Yong

    2014-08-01

    Due to their versatile features and environmental friendliness, functionalized carbon materials show great potential in practical applications, especially in energy conversion. Developing carbon composites with properties that can be modulated by simply changing the ratio of the original materials is an intriguing synthetic strategy. Here, we took cyanamide and multiwalled carbon nanotubes as precursors and introduced a facile method to fabricate a series of graphitic carbon nitride/carbon nanotubes (g-C3 N4 /CNTs) composites. These composites demonstrated different practical applications with different weight ratios of the components, that is, they showed synergistic effects in optoelectronic conversion when g-C3 N4 was the main ingredient and in oxygen reduction reaction (ORR) when CNTs dominated the composites. Our experiments indicated that the high electrical conductivity of carbon nanotubes promoted the transmission of the charges in both cases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B.

    PubMed

    Wolfson, Adi; Atyya, Aviad; Dlugy, Christina; Tavor, Dorith

    2010-03-01

    Glycerol triacetate was successfully used as a green solvent and as the acyl donor in the transesterification of isoamyl alcohol to produce isoamyl acetate using free and immobilized Candida antarctica lipase B. Immobilized lipase was more catalytically active than free lipase and could be easily separated from the reaction mixture by filtration. In addition, it was found that increasing either the reaction temperature or the enzyme to substrate ratio increased the conversion of isoamyl alcohol. Using triacetin as the solvent also enabled the separation of product by simple extraction with petroleum ether and catalyst recycling.

  19. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    2018-03-01

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H-. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.

  20. Intensified synthesis of medium chain triglycerides using ultrasonic reactors at a capacity of 4L.

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2018-04-01

    Lipids are considered as one of the most crucial nutrients for humans and among the various classes, medium chain triglycerides (MCTs) are considered as the most important functional foods and nutraceuticals. The present work deals with the intensification of synthesis of MCTs at a large capacity of 4L based on the use of ultrasonic bath and ultrasonic longitudinal horn. The effect of operating parameters like molar ratio of the reactants, type of catalyst and catalyst loading as well as the temperature on the extent of conversion has been investigated. The effect of molar ratio of lauric acid and glycerol was investigated over the range of 1:2 to 1:8 whereas the effect of loading of sulfuric acid was studied over the range of 4 ml/L-10 ml/L and zinc chloride loading over the range of 1 g/L-4 g/L. The effect of temperature was also studied using the conventional approach where it has been observed that 90 °C is an optimum temperature giving the extent of conversion as 72%. Also, the use of homogeneous catalyst as sulphuric acid was found to be more effective as compared to the solid catalyst as zinc chloride. It was observed that the maximum extent of conversion as 77.5% was obtained at 8 ml/L of sulfuric acid and molar ratio of 1:6 using ultrasonic longitudinal horn with US bath giving lower conversion as compared to US longitudinal horn but higher than the conventional approach under same operating conditions. The present work clearly established the intensification benefits in terms of reduction in time and higher conversion using cavitational reactors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China.

    PubMed

    Lu, Hongfang; Bai, Yu; Ren, Hai; Campbell, Daniel E

    2010-12-01

    China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation. Important questions that must be answered to determine what strategy is best for society are, "What is the reason behind this conversion?"; "Which system is more productive and which is more sustainable?"; and "How can economic policy be used to adjust the pattern of farmland use to attain sustainable development?" To answer these questions, a combined evaluation of these agricultural production systems was done using emergy, energy and economic methods. An economic analysis clearly showed that the reason for this conversion was simply that the economic output/input ratio and the benefit density of the vegetable production system were greater than that of rice. However, both energy and emergy evaluations showed that long-term rice was the best choice for sustainable development, followed by rotation systems. The current price of rice is lower than the em-value of rice produced from the long-term rice system, but higher than that of rice produced from the rotation system. Scenario analysis showed that if the government increases the price of rice to the em-value of rice produced from the long-term rice system, US$0.4/kg, and takes the value of soil organic matter into account, the economic output/input ratios of both the rice and rotation systems will be higher than that of the vegetable system. The three methods, energy, emergy and economics, are different but complementary, each revealing a different aspect of the same system. Their combined use shows not only the reasons behind a system's current state or condition, but also the way to adjust these systems to move toward more sustainable states. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

    PubMed

    Kumar, A; Gross, R A

    2000-01-01

    Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

  3. Quantum frequency conversion with ultra-broadband tuning in a Raman memory

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.

    2017-05-01

    Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.

  4. Keep It in Proportion.

    ERIC Educational Resources Information Center

    Snider, Richard G.

    1985-01-01

    The ratio factors approach involves recognizing a given fraction, then multiplying so that units cancel. This approach, which is grounded in concrete operational thinking patterns, provides a standard for science ratio and proportion problems. Examples are included for unit conversions, mole problems, molarity, speed/density problems, and…

  5. Size mass distribution of water-soluble ionic species and gas conversion to sulfate and nitrate in particulate matter in southern Taiwan.

    PubMed

    Tsai, Jiun-Horng; Chang, Li-Peng; Chiang, Hung-Lung

    2013-07-01

    A Micro-Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI were employed to determine the size-segregated mass distributions of ambient particulate matter (PM) and water-soluble ionic species for particulate constituents. In addition, gas precursors, including HCl, HONO, HNO3, SO2, and NH3 gases, were analyzed by an annular denuder system. PM size mass distribution, mass concentration, and ionic species concentration were measured during the day and at night during episode and non-episode periods in winter and summer. Average total suspended particle (TSP) concentrations during episode days in winter were as high as 153 ± 33 μg/m(3), and PM mass concentrations in summer were as low as one-third of that in winter. Generally, PM concentration at night was higher than that in the daytime in southern Taiwan during the sampling periods. In winter during the episode periods, the size-segregated mass distribution of PM mass concentration was mostly in the 0.32-3.2-μm range, and the PM concentration increased significantly in the range of 0.32-3.2 μm at night. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34-48% of TSP mass. High concentrations of ammonia (12.9-49 μg/m(3)) and SO2 (2.6-27 μg/m(3)) were observed in the gas precursors. The conversion ratio was high in the PM size range of 0.18-3.2 μm both during the day and at night in winter, and the conversion ratio of episode days was 20% higher than that of non-episode days. The conversion factor was high for both nitrogen and sulfur species at nighttime, especially on episode days.

  6. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    NASA Astrophysics Data System (ADS)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  7. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    PubMed

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-04

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots.

  8. IR studies of the impact of Ge doping on the successive conversion of VOn defects in Czochralski-Si containing carbon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V. V.; Ohyama, H.

    2011-02-01

    We report infrared absorption studies of oxygen-related defects in electron-irradiated Ge-doped Czochralski-Si. Our investigation was mainly focused on the reaction channel leading to the formation of VOn (1≤n≤6) defects. The VOn defects form mainly upon annealing, as a result of the successive aggregation of oxygen atoms in the initial VO defect produced by the irradiation: (VO+Oi→VO2+Oi→VO3+Oi→VO4,…). It was found that the ratio of the conversion of VOn to VOn+1 defects is sensitive to the Ge content of the material. In particular, the ratio of the conversion of the VO to the VO2 defects was found to decrease with the increase in Ge concentration of the samples, although the opposite trend was observed for the VO3 to VO4 conversion. However, the VO2 to VO3 conversion changes only slightly with Ge content, being practically unaffected for Ge concentrations up to 2×1020 cm-3. In the case of VO2 formation, the phenomenon was attributed to the elastic strains induced in the lattice due to the Ge presence which affects the balance between the reactions VO+Oi→VO2, VO+SiI→Oi, mainly involved in the decay of the VO and the growth of the VO2 defects. In the case of VO4 formation, the phenomenon was discussed by taking into account the enhancement of the diffusivity of the Oi atoms in the Ge-doped Si, which could lead to an enhancement of the rate of the reaction VO3+Oi→VO4. For the VO3 formation this effect is practically negligible due to the fact that at the temperatures of VO2 to VO3 conversion oxygen diffusivity is quite small. The exhibited behavior in the conversion of the VOn to VOn+1 defects (n=1,2,3) was similar in Ge-doped samples with low carbon content ([Cs]<2×1016 cm-3) and in Ge-doped samples with high carbon content ([Cs]≥1×1017 cm-3). The impact of C as well as its role in the conversion efficiency of VO to VO2 was studied by comparing the spectra in low carbon and high carbon Ge free Si material. Furthermore, a pair of bands at (1037,1051 cm-1) was attributed to the VO5 defect. The origin of another pair of bands (967,1005 cm-1) was discussed and tentatively correlated with a VOnCs structure. The role of Ge and C in the formation of the latter two pairs of bands was discussed.

  9. Input, Output, and Negotiation of Meaning in Spanish Conversation Classes

    ERIC Educational Resources Information Center

    Rondon-Pari, Graziela

    2014-01-01

    This research study is based on the analysis of speech in three Spanish conversation classes. Research questions are: What is the ratio of English and Spanish spoken in class? Is classroom speech more predominant in students or the instructor? And, are teachers' beliefs in regards to the use of English and Spanish consistent with their classroom…

  10. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  11. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  12. Effect of The Phytase Enzyme Addition in The Artificial Feed on Digestibility of Feed, Feed Conversion Ratio and Growth of Gift Tilapia Saline Fish (Oreochromis niloticus) Nursery Stadia I

    NASA Astrophysics Data System (ADS)

    Rachmawati, Diana; Samidjan, Istiyanto; Elfitasari, Tita

    2018-02-01

    The purpose of this study was to determine the effect of adding the phytase enzyme in the artificial feed on digestibility of feed, feed conversion ratio and growth of gift tilapia saline fish (Oreochromis niloticus) nursery stadia I. The fish samples in this study used gift tilapia saline fish (O. niloticus) with an average weight of 0,62 ± 0,008 g/fish and the stocking density of 1 fish1 L. Experimental method used in this study was completely randomized design with 4 treatments and 3 repetitions. The treatments were by adding phytase enzyme in artificial feed with the different level of doses those were A (0 FTU kg1 feed), B (500 FTU kg1 feed), C (1000 FTU kg1 feed) and D (1500 FTU kg1 feed). The results show that the addition of phytase enzyme was significantly (P<0.01) affected on apparent digestibility coefficient of protein (ADCP), apparent digestibility coefficient of Phospor (ADCF), feed conversion ratio (FCR), protein efficiency ratio (PER), and relative growth rate (RGR), on the other hand it insignificantly (P>0.05) affected on Survival Rate (SR) of gift tilapia saline fish. The optimum doses of phytase enzyme on RGR, FCR, PER, ADCP and ADCF of gift tilapia saline fish ranged from 1060 to 1100 FTU kg-1 feed.

  13. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.

    2017-04-01

    Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.

  14. The converse magnetoelectric coupling in asymmetric granule/matrix composite film with Ni/PZT component

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong

    2018-04-01

    In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.

  15. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    PubMed

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  16. All-solution-processed PbS quantum dot solar modules.

    PubMed

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-21

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

  17. In vitro assessment of polymerization procedures in Class II restorations: sealing, FTIR, and microhardness evaluations.

    PubMed

    Tassery, H; de Donato, P; Barrès, O; Déjou, J

    2001-01-01

    This study was undertaken to evaluate several polymerization and filling procedures (incremental, bulk, light-tip, soft-cured, plasma devices) in Class II restorations through (1) a sealing evaluation of restorations filled with Tetric Ceram (TC) and Bisfil 2B (B2B, self-cured composite used as a control), (2) a FTIR analysis measuring the variations of the degree of conversion in terms of area unit ratio of the relevant resin composites and (3) a microhardness test to corroborate the FTIR analysis. The length of the tracer penetration was measured from the gingival margin up to the cavity wall with an episcope on sectioned teeth. A ceramic mould, simulating a Class II, was filled according to the different groups and the samples were analyzed with a Bruker IFS 55 spectrometer on ultrathin sections (3 mu). The results were analyzed in terms of area unit ratio and total exposed energy. Under the same conditions, a microhardness test was run with a Frank Weihem machine. The results of the sealing evaluation for light-tip, incremental and self-cured techniques did not differ. The plasma procedure failed in this evaluation as the bottom increment was not polymerized. The smallest area unit ratio (the best degree of conversion) was observed in 2 groups: one, the combination of the light-tip and soft process, and two, the self-cured resin composite (B2B). The distance at which the plasma procedure failed to cure the resin composite was between 3.5 and 4.5 mm. The microhardness test confirmed the FTIR analysis except for the group G2 (TC + light-tip). As also shown by FTIR analysis, no difference between the two relevant levels was observed with the hardness test. The dentin marginal sealing efficiency of Tetric Ceram restorations was increased with the light-tip technique, but was not better than the self-cured resin composite (B2B). For Tetric Ceram, the combination of the light-tip and soft process leads to a higher degree of conversion than the other groups. There is no linear relationship between the degree of conversion, the microhardness and the total exposed energy. The combination of the soft polymerization and the light-tip device might be an alternative restorative technique to the current incremental technique.

  18. The ratio of molecular to atomic gas in spiral galaxies as a function of morphological type

    NASA Technical Reports Server (NTRS)

    Knezek, Patricia M.; Young, Judith S.

    1990-01-01

    In order to gain an understanding of the global processes which influence cloud and star formation in disk galaxies, it is necessary to determine the relative amounts of atomic, molecular, and ionized gas both as a function of position in galaxies and from galaxy to galaxy. With observations of the CO distributions in over 200 galaxies now completed as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey (Young et al. 1989), researchers are finally in a position to determine the type dependence of the molecular content of spiral galaxies, along with the ratio of molecular to atomic gas as a function of type. Do late type spirals really have more gas than early types when the molecular gas content is included. Researchers conclude that there is more than an order of magnitude decrease in the ratio of molecular to atomic gas mass as a function of morphological type from Sa-Sd; an average Sa galaxy has more molecular than atomic gas, and an average Sc has less. Therefore, the total interstellar gas mass to blue luminosity ratio, M sub gas/L sub B, increases by less than a factor of two as a function of type from Sa-Sd. The dominant effect found is that the phase of the gas in the cool interstellar medium (ISM) varies along the Hubble sequence. Researchers suggest that the more massive and centrally concentrated galaxies are able to achieve a molecular-dominated ISM through the collection of more gas in the potential. That gas may then form molecular clouds when a critical density is exceeded. The picture which these observations support is one in which the conversion of atomic gas to molecular gas is a global process which depends on large scale dynamics (cf Wyse 1986). Among interacting and merging systems, researchers find considerable scatter in the M(H2)/M(HI) ratio, with the mean ratio similar to that in the early type galaxies. The high global ratio of molecular to atomic gas could result from the removal of HI gas, the enhanced conversion of HI into H2, or both.

  19. Factors that influence patient response to requests to change to a unified restrictive formulary.

    PubMed

    Smetana, Gerald W; Davis, Roger B; Phillips, Russell S

    2004-12-01

    To determine factors that influence patient willingness to accept a medication change to a unified, restrictive formulary. Prospective cohort study. University-affiliated hospital-based primary care internal medicine practice. Two hundred ninety-seven members of a managed care plan who had received a prescription for a nonformulary medication in the previous 4 months and whose primary care physician approved a conversion to a formulary medication. Clinical nurses invited patients to change to a formulary medication at the time of a telephone refill request based on a standard script. The overall conversion rate to the formulary medication was 59.8%. Seventy-four percent of patients who requested a refill by telephone converted to the formulary (odds ratio [OR], 2.24; 95% confidence interval [CI], 1.02 to 4.72). Patient age (OR, 1.03; CI, 1.01 to 1.05) and male gender (OR, 2.00; CI, 1.09 to 3.67) were each significant correlates of conversion. After adjustment in a multivariable model, only telephone refill request (adjusted OR, 2.31; CI, 1.07 to 4.97) and age (adjusted OR, 1.03; CI, 1.01 to 1.06) remained significant. Among the patients who made a telephone refill request, those who converted were more likely to completely trust their physician's judgment (P=.04) and to trust their physician to put their health over cost concerns (P=.05). Formulary conversion reduced costs beginning 3 months after the conversion date. A protocol for encouraging conversion to a unified formulary at the point of a telephone refill request increases formulary compliance rates and reduces medication costs. Patients who decline to convert medications are less likely to trust their physician.

  20. Silicon-Mediated Resistance in a Susceptible Rice Variety to the Rice Leaf Folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae)

    PubMed Central

    Han, Yongqiang; Lei, Wenbin; Wen, Lizhang; Hou, Maolin

    2015-01-01

    The rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most destructive rice pests in Asian countries. Rice varieties resistant to the rice leaf folder are generally characterized by high silicon content. In this study, silicon amendment, at 0.16 and 0.32 g Si/kg soil, enhanced resistance of a susceptible rice variety to the rice leaf folder. Silicon addition to rice plants at both the low and high rates significantly extended larval development and reduced larval survival rate and pupation rate in the rice leaf folder. When applied at the high rate, silicon amendment reduced third-instars’ weight gain and pupal weight. Altogether, intrinsic rate of increase, finite rate of increase and net reproduction rate of the rice leaf folder population were all reduced at both the low and high silicon addition rates. Although the third instars consumed more in silicon-amended treatments, C:N ratio in rice leaves was significantly increased and food conversion efficiencies were reduced due to increased silicon concentration in rice leaves. Our results indicate that reduced food quality and food conversion efficiencies resulted from silicon addition account for the enhanced resistance in the susceptible rice variety to the rice leaf folder. PMID:25837635

  1. Validation of Test Methods for Air Leak Rate Verification of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.; Mather, Janice L.

    2017-01-01

    As deep space exploration continues to be the goal of NASAs human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 kPa. Up to six combinations of upstream and downstream pressures for each differential pressure were compared. For a given differential pressure, the various combinations of upstream and downstream dry air pressures did not significantly affect the leak rate. As expected, the leak rate of the O-ring increased with increasing differential pressure. The results suggested that the current leak test pressure conditions, used to verify spacecraft sealing systems with elastomer seals, produce accurate values even though the boundary conditions do not model the space application.

  2. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Debangsu; DVallance, David; Henthorn, Greg

    This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhousemore » gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO 2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including conceptual design, process modeling and process validation were developed and validated for different cases. Equipment design and capital costs were investigated on capital coast estimation and economical model validation. Material and energy balances and techno-economic analysis on base case were conducted for evaluation of projects. Also, sensitives studies of direct and indirect approaches were both used to evaluate the CBTL plant economic performance. In this study, techno-economic analysis were conducted in Aspen Process Economic Analyzer (APEA) environment for indirect, direct, and hybrid CBTL plants with CCS based on high fidelity process models developed in Aspen Plus and Excel. The process thermal efficiency ranges from 45% to 67%. The break-even oil price ranges from $86.1 to $100.6 per barrel for small scale (10000 bbl/day) CBTL plants and from $65.3 to $80.5 per barrel for large scale (50000 bbl/day) CBTL plants. Increasing biomass/coal ratio from 8/92 to 20/80 would increase the break-even oil price of indirect CBTL plant by $3/bbl and decrease the break-even oil price of direct CBTL plant by about $1/bbl. The order of carbon capture penalty is direct > indirect > hybrid. The order of capital investment is hybrid (with or without shale gas utilization) > direct (without shale gas utilization) > indirect > direct (with shale gas utilization). The order of thermal efficiency is direct > hybrid > indirect. The order of break-even oil price is hybrid (without shale gas utilization) > direct (without shale gas utilization) > hybrid (with shale gas utilization) > indirect > direct (with shale gas utilization).« less

  3. Deriving a multivariate αCO conversion function using the [C II]/CO (1-0) ratio and its application to molecular gas scaling relations

    NASA Astrophysics Data System (ADS)

    Accurso, G.; Saintonge, A.; Catinella, B.; Cortese, L.; Davé, R.; Dunsheath, S. H.; Genzel, R.; Gracia-Carpio, J.; Heckman, T. M.; Jimmy; Kramer, C.; Li, Cheng; Lutz, K.; Schiminovich, D.; Schuster, K.; Sternberg, A.; Sturm, E.; Tacconi, L. J.; Tran, K. V.; Wang, J.

    2017-10-01

    We present Herschel PACS observations of the [C II] 158 μm emission line in a sample of 24 intermediate mass (9 < log M*/M⊙ < 10) and low metallicity (0.4 < Z/Z⊙ < 1.0) galaxies from the xCOLD GASS survey. In combination with IRAM CO (1-0) measurements, we establish scaling relations between integrated and molecular region L_{[C II]}/LCO (1-0) ratios as a function of integrated galaxy properties. A Bayesian analysis reveals that only two parameters, metallicity and offset from the main sequence, Δ(MS), are needed to quantify variations in the luminosity ratio; metallicity describes the total dust content available to shield CO from UV radiation, while Δ(MS) describes the strength of this radiation field. We connect the L_{[C II]}/LCO (1-0) ratio to the CO-to-H2 conversion factor and find a multivariate conversion function, which can be used up to z ˜ 2.5. This function depends primarily on metallicity, with a second-order dependence on Δ(MS). We apply this to the full xCOLD GASS and PHIBSS1 surveys and investigate molecular gas scaling relations. We find a flattening of the relation between gas mass fraction and stellar mass at log M* < 10.0. While the molecular gas depletion time varies with sSFR, it is mostly independent of mass, indicating that the low LCO/SFR ratios long observed in low-mass galaxies are entirely due to photodissociation of CO and not to an enhanced star formation efficiency.

  4. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae

    PubMed Central

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-01-01

    Summary The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W. saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W. saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W. saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. PMID:23171032

  5. Yeast ratio is a critical factor for sequential fermentation of papaya wine by Williopsis saturnus and Saccharomyces cerevisiae.

    PubMed

    Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-07-01

    The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Design and implementation of temperature and humidity monitoring system for poultry farm

    NASA Astrophysics Data System (ADS)

    Purnomo, Hindriyanto Dwi; Somya, Ramos; Fibriani, Charitas; Purwoko, Angga; Sadiyah, Ulfa

    2016-10-01

    Automatic monitoring system gains significant interest in poultry industry due to the need of consistent environment condition. Appropriate environment increase the feed conversion ratio as well as birds productivity. This will increase the competitiveness of the poultry industry. In this research, a temperature and humidity monitoring system is proposed to observer the temperature and relative humidity of a poultry house. The system is intended to be applied in the poultry industry with partnership schema. The proposed system is equipped with CCTV for visual monitoring. The measured temperature and humidity implement wireless sensor network technology. The experiment results reveals that proposed system have the potential to increase the effectiveness of monitoring of poultry house in poultry industry with partnership schema.

  7. [Effect of the lysine guanidination on proteomic analysis].

    PubMed

    Zheng, Hao; Mao, Jiawei; Pan, Yanbo; Liu, Zhongshan; Liu, Zheyi; Ye, Mingliang; Zou, Hanfa

    2014-04-01

    The guanidination of lysine side chain was paid great attention in recent years. It plays an important role in qualitative and quantitative proteomics. In this study, based on the results of separated peptides extracted from HeLa cells before and after the guanidination by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the effect of the guanidination of three different kinds of peptides was systematically analyzed. It was found that the selectivity of the guanidination of the lysine side chain was as high as 96.8%. The ratio of identified peptides with lysine at C-term to all peptides increased from 51.7% to 57.3% and more new peptides were identified, while the ratio of peptides with lysine in the middle or without lysine changed little. Further study on the ratio of b and y ions indicated that there were more y ions of peptides with lysine at C-term after the guanidination. The results proved that the selective conversion of lysine to homoarginine by the guanidination could increase the sensitivity and selectivity of mass spectrum. The increased basicity and ability to sequester proton of lysine produced more y ions fragmentation information, which contributed to more identified peptides. It concluded that the lysine guanidination can improve the coverage of proteomic analysis.

  8. Comparative 13C Metabolic Flux Analysis of Pyruvate Dehydrogenase Complex-Deficient, l-Valine-Producing Corynebacterium glutamicum▿†

    PubMed Central

    Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan

    2011-01-01

    l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914

  9. CD8+ and FoxP3+ T-cell infiltration in actinic cheilitis.

    PubMed

    Rojas, Isolde G; Spencer, Maria L; Zapata, Paulina A; Martínez, Alejandra; Alarcón, Rosario; Marchesani, Francisco J; Tezal, Mine

    2017-01-01

    Differences in immune profile between actinic cheilitis (AC), a precursor of lip squamous cell carcinoma, and normal lip vermillion (NL) have not been elucidated. To compare density, distribution, and ratios of CD8+ and FoxP3+ cells between AC and NL and assess their associations with clinicopathologic variables. Samples of AC and NL obtained between 2001 and 2013 at the College of Dentistry of the University of Concepcion, Chile, were retrospectively analyzed for immunohistochemical detection of CD8+ and FoxP3+ cells. Differences between groups were tested by Mann-Whitney U and Fisher's exact tests. Independent effects of cell densities and CD8/FoxP3 ratio with AC were assessed by multiple logistic regression analysis after adjustment for potential confounding. A total of 62 AC and 24 NL biopsies were included. Densities of CD8+ and FoxP3+ cells in AC were significantly higher than in NL. Conversely, the CD8+/FoxP3+ ratio was significantly lower in AC as compared to NL. After adjustment for sun exposure, age, gender, and smoking status, a stromal FoxP3+ cell density higher than 0.35 cells/field was significantly associated with increased odds of AC (odds ratio [OR] = 5.01, 95% confidence interval [CI]: 1.18-21.31), while a stromal CD8+/FoxP3+ ratio higher than 5.91 was associated with decreased odds of AC (OR = 0.29, 95% CI: 0.08-1.08). AC is characterized by increased FoxP3+ cell infiltration and a reduced CD8/FoxP3 ratio as compared to NL. Therefore, increased infiltration of FoxP3+ cells relative to CD8+ cells may contribute to the transition from normal to preneoplastic stages in lip carcinogenesis. © 2016 The International Society of Dermatology.

  10. Establishing a reference range for triiodothyronine levels in preterm infants.

    PubMed

    Oh, Ki Won; Koo, Mi Sung; Park, Hye Won; Chung, Mi Lim; Kim, Min-ho; Lim, Gina

    2014-10-01

    Thyroid dysfunction affects clinical complications in preterm infants and older children. However, thyroid hormone replacement in preterm infants has no proven benefits, possibly owing to the lack of an appropriate reference range for thyroid hormone levels. We aimed to establish a reference range for triiodothyronine (T3) levels at 1-month postnatal age (PNA) in preterm infants. This retrospective study included preterm infants born at a tertiary referral neonatal center at gestational age (GA)<35 weeks with no apparent thyroid dysfunction, for 6 consecutive years, with follow-up from PNA 2 weeks to 16 weeks. Using thyroid function tests (TFT), the relationships between T3 levels and thyrotropin (TSH) and free thyroxine (fT4) levels, birth weight, GA, postmenstrual age (PMA), and PNA were examined. The conversion trend for fT4 to T3 was analyzed using the T3/fT4 ratio. Overall, 464 TFTs from 266 infants were analyzed, after excluding 65 infants with thyroid dysfunction. T3 levels increased with fT4 levels, birth weight, GA, PMA, and PNA but not with TSH levels. The T3/fT4 ratio also increased with GA, PNA, and PMA. The average T3 level at 1 month PNA was 72.56 ± 27.83 ng/dL, with significant stratifications by GA. Relatively low T3 and fT4 levels in preterm infants were considered normal, with T3 levels and conversion trends increasing with GA, PMA, and PNA. Further studies are required to confirm the role of the present reference range in thyroid hormone replacement therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The effect of dietary sodium on right ventricular failure-induced ascites, gain and fat deposition in meat-type chickens.

    PubMed Central

    Julian, R J; Caston, L J; Leeson, S

    1992-01-01

    Experiments were carried out using various levels of sodium (Na+) from NaCl or NaHCO3 to determine: 1) the level of Na+ required to induce ascites alone or in combination with cold temperature and 2) the effect of Na+ on weight gain and fat deposition in broiler chickens. In experiment 1, there were no cases of ascites using levels of Na+, from NaCl at 0.14% to 0.44% in the feed from day 3 or using added Na+, from NaCl at 0.0% to 0.12% in the water from day 3 with a level of 0.14% in the feed. There was no significant difference in 21 or 42 day body weight, feed conversion, or right ventricle:total ventricle (RV:TV) ratio between treatment groups. Day 3 to 4 body weight gains were significantly increased in all treatment groups with added Na+ (p less than 0.01). In experiment 2, with levels of added Na+, from NaCl, at 0.0% to 0.12% in the water with a level of 0.20% in the feed there were two cases of ascites, one at day 7 and one at day 40 at the 0.12% level. There were no significant differences in body weight at days 21 or 42 or in the RV:TV ratios between groups. Feed conversions were improved (p less than 0.01) with the lowest and highest levels of Na+ and a significant increase in day 3 to 4 body weight gain, with increasing Na+ in all treatment groups, was observed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1423057

  12. Calcium requirements of the modern broiler chicken as influenced by dietary protein and age.

    PubMed

    Driver, J P; Pesti, G M; Bakalli, R I; Edwards, H M

    2005-10-01

    Two experiments were conducted to examine the calcium requirements of broiler chickens fed corn-soybean meal diets. Experiment 1 used a 6 x 2 x 2 factorial arrangement and was conducted with broilers in floor pens during the grower phase (19 to 42 d). Diets were mixed with 6 levels of dietary Ca (0.325, 0.4, 0.475, 0.55, 0.625, and 0.9%) and 17 or 23% CP and fed to males and females separately. Experiment 2 was a 6 x 2 factorial design conducted using Petersime battery brooders during the starter phase (0 to 16 d). The same 6 levels of dietary Ca used in experiment 1 were fed separately to each sex, but only at the 23% level of CP. The diets used in both experiments were formulated to contain 0.45% nonphytin phosphorus. In experiment 1, grower chickens did not demonstrate significant body weight gain (BWG) or feed conversion ratio (FCR) response (g of feed per g of gain) to the different levels of Ca at either level of protein. The percentage tibia ash did not respond to increasing Ca levels beyond 0.625% Ca at either protein level. In experiment 2, BWG increased linearly up to 0.55 and 0.625% dietary Ca for males and females, respectively. Feed conversion ratio decreased linearly with increasing dietary Ca up to 0.625% Ca, and tibia ash was highest at 0.9% Ca for both sexes. These results suggest that the current NRC Ca requirements for the broiler starter (1.0%) are sufficient for maximum bone ash, but that Ca requirements for grower birds (0.9%) may be excessive for optimum BWG, FCR, and tibia ash.

  13. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    PubMed

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  14. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    PubMed

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084

  15. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2-9 weeks of age.

    PubMed

    Mahrose, Kh M; Attia, A I; Ismail, I E; Abou-Kassem, D E; El-Hack, M E Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%).

  16. Growth performance and certain body measurements of ostrich chicks as affected by dietary protein levels during 2–9 weeks of age

    PubMed Central

    Mahrose, Kh.M.; Attia, A.I.; Ismail, I.E.; Abou-Kassem, D.E.; El-Hack, M.E. Abd

    2015-01-01

    The present work was conducted to examine the effects of dietary crude protein (CP) levels (18, 21 and 24%) on growth performance (Initial and final body weight, daily body weight gain, feed consumption, feed conversion and protein efficiency ratio) during 2-9 weeks of age and certain body measurements (body height, tibiotarsus length and tibiotarsus girth) at 9 weeks of age. A total of 30 African Black unsexed ostrich chicks were used in the present study in simple randomized design. The results of the present work indicated that initial and final live body weight, body weight gain, feed consumption, feed conversion of ostrich chicks were insignificantly affected by dietary protein level used. Protein efficiency ratio was high in the group of chicks fed diet contained 18% CP. Results obtained indicated that tibiotarsus girth was decreased (P≤0.01) with the increasing dietary protein level, where the highest value of tibiotarsus girth (18.38 cm) was observed in chicks fed 18% dietary protein level. Body height and tibiotarsus length were not significantly different. In conclusion, the results of the present study indicate that ostrich chicks (during 2-9 weeks of age) could grow on diets contain lower levels of CP (18%). PMID:26623373

  17. Transcatheter Arterial Embolization for Primary Postpartum Hemorrhage: Predictive Factors of Need for Embolic Material Conversion of Gelatin Sponge Particles to N-Butyl Cyanoacrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanahashi, Yukichi; Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp; Kondo, Hiroshi

    PurposeTo identify predictive factors for embolic material conversion to N-butyl cyanoacrylate (NBCA) for the treatment of primary postpartum hemorrhage (PPH) after failed transcatheter arterial embolization (TAE) using gelatin sponge (GS).Materials and MethodsInstitutional review board approval was obtained. We retrospectively studied 62 consecutive women with primary PPH who underwent TAE between January 2006 and March 2015. Five of them were excluded for the following: cardiopulmonary arrest at arrival (n = 1), uterine inversion (n = 1), and hysterectomy after TAE (n = 3). Remaining 57 women (age range, 21–43 years; mean, 32.6 years) comprised study population. TAE was initially performed using GS in all cases andmore » then converted to NBCA after two embolizations using GS with persistent hemodynamic instability or vaginal bleeding. The patients’ background, uterine height, vital signs, laboratory tests, disseminated intravascular coagulation score, and details of procedure were reviewed. Univariate and multivariate analyses were performed to determine factors related to embolic material conversion.ResultsTechnical success rate was 100%. Fourteen patients (25%) needed embolic material conversion to NBCA. Univariate analysis showed that uterine height, systolic blood pressure (sBP), and hemoglobin level were significantly related to embolic material conversion to NBCA (P = 0.029, 0.030, and 0.042). Logistic regression analysis showed that uterine height (odds ratio, 1.37; P = 0.025) and sBP (odds ratio, 0.96; P = 0.003) were associated with embolic material conversion to NBCA.ConclusionUterine height and sBP can be predictive factors for embolic material conversion to NBCA for the treatment of PPH.Level of EvidenceLevel 4, Case Control Study.« less

  18. Observation of nuclear spin species conversion inside the 1593 cm -1 structure of H 2O trapped in argon matrices: Nitrogen impurities and the H 2O:N 2 complex

    NASA Astrophysics Data System (ADS)

    Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.

    2008-02-01

    We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less

  20. Polymerization Kinetics: Monitoring Monomer Conversion Using an Internal Standard and the Key Role of Sample "t[subscript 0]"

    ERIC Educational Resources Information Center

    Colombani, Olivier; Langelier, Ophelie; Martwong, Ekkachai; Castignolles, Patrice

    2011-01-01

    The use of an internal standard is a conventional and convenient way to monitor the conversion of one or several monomers during a controlled radical polymerization. However, the validity of this technique relies on an accurate determination of the initial monomer-to-internal standard ratio, A[subscript 0], because all subsequent calculations of…

  1. Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong

    2017-04-01

    In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.

  2. Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1 and SMN2 in spinal muscular atrophy.

    PubMed

    Wang, Chun-Chi; Jong, Yuh-Jyh; Chang, Jan-Gowth; Chen, Yen-Ling; Wu, Shou-Mei

    2010-07-01

    We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.

  3. Eye Donation Awareness and Conversion Rate in Hospital Cornea Retrieval Programme in a Tertiary Hospital of Central India

    PubMed Central

    Shrivastava, Ulka; Kumar, Kavita; Baghel, Rajendra; Khan, Farhana; Kulkarni, Shridhar

    2017-01-01

    Introduction Corneal blindness accounts for 6–8 million blinds in the world. In India, it is estimated that there are approximately 6.8 million people who have vision less than 6/60 in at least one eye due to corneal diseases. Aim This study was done to assess the awareness about eye donation amongst attendants of critically ill and deceased patients, their willingness to donate eyes, the efficacy of grief counselling by Eye Donation Counsellors (EDC), its impact on the conversion rate and the reasons for poor donation rate. Materials and Methods This prospective hospital based study was done in 554 participants (guardians of critically ill and deceased subjects) to understand the awareness of eye donation. Factors related to willingness for eye donation that influenced conversion to actual donation were evaluated. Data was analysed with tests for statistical significance: Chi square test; p<0.05 at 95% confidence interval was set as significant. Results Awareness index particularly in males <40 years, was found to be statistically more. In participants who were partially/fully aware of eye-donation, time taken for motivation remained less than 12 hours, which was statistically significant (Chi square=106. p<0.001). Subject who were aware, willing for donation in comparison to those who were unaware in a ratio of 2:1. Grief counsellors (57.5%) had the most influence among the causes that were facilitators of donation. Conclusion Utilizing the services of eye donation counsellors is a promising way to motivate the guardians of deceased. Increasing the awareness in society, rendering simple assistances to next of kin and speeding the medico legal formalities can go a long way in increasing the conversion rate and hence actual donation. PMID:28969171

  4. Eye Donation Awareness and Conversion Rate in Hospital Cornea Retrieval Programme in a Tertiary Hospital of Central India.

    PubMed

    Sharma, Bhavana; Shrivastava, Ulka; Kumar, Kavita; Baghel, Rajendra; Khan, Farhana; Kulkarni, Shridhar

    2017-08-01

    Corneal blindness accounts for 6-8 million blinds in the world. In India, it is estimated that there are approximately 6.8 million people who have vision less than 6/60 in at least one eye due to corneal diseases. This study was done to assess the awareness about eye donation amongst attendants of critically ill and deceased patients, their willingness to donate eyes, the efficacy of grief counselling by Eye Donation Counsellors (EDC), its impact on the conversion rate and the reasons for poor donation rate. This prospective hospital based study was done in 554 participants (guardians of critically ill and deceased subjects) to understand the awareness of eye donation. Factors related to willingness for eye donation that influenced conversion to actual donation were evaluated. Data was analysed with tests for statistical significance: Chi square test; p<0.05 at 95% confidence interval was set as significant. Awareness index particularly in males <40 years, was found to be statistically more. In participants who were partially/fully aware of eye-donation, time taken for motivation remained less than 12 hours, which was statistically significant (Chi square=106. p<0.001). Subject who were aware, willing for donation in comparison to those who were unaware in a ratio of 2:1. Grief counsellors (57.5%) had the most influence among the causes that were facilitators of donation. Utilizing the services of eye donation counsellors is a promising way to motivate the guardians of deceased. Increasing the awareness in society, rendering simple assistances to next of kin and speeding the medico legal formalities can go a long way in increasing the conversion rate and hence actual donation.

  5. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE PAGES

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...

    2016-01-01

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  6. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  7. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    PubMed

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Xanthine oxido-reductase activity in ischemic human and rat intestine.

    PubMed

    Bianciardi, Paola; Scorza, Roberto; Ghilardi, Giorgio; Samaja, Michele

    2004-09-01

    We measured time course and extent of xanthine dehydrogenase (XD) to xanthine oxidase (XO) conversion in ischemic human and rat intestine. To model normothermic no-flow ischemia, we incubated fresh biopsies for 0, 2, 4, 8 and 16h. At t = 0h, XO was less in humans than in rats (P < 0.0004), while XD was essentially the same (P = NS). After 16h incubation at 37 degrees C, there was no appreciable XD-to-XO conversion and no change in neither XO nor XD activity in human intestine. In contrast, the rat intestine had XO/(XO + XD) ratio doubled in the first 2h and then maintained that value until t = 16 h. In conclusion, no XO-to-XD conversion was appreciable after 16 h no-flow normothermic ischemia in human intestine; in contrast, XO activity in rats increased sharply after the onset of ischemia. An immunohistochemical labelling study shows that, whereas XO + XD expression in liver tissue is localised in both hepatocytes and endothelial cells, in the intestine that expression is mostly localised in epithelial cells. We conclude that XO may be considered as a major source of reactive oxygen species in rats but not in humans.

  9. Study on systems based on coal and natural gas for producing dimethyl ether

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, L.; Hu, S.Y.; Chen, D.J.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systemsmore » with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.« less

  10. Fat, Sugar, Whole Grains and Heart Disease: 50 Years of Confusion.

    PubMed

    Temple, Norman J

    2018-01-04

    During the 1970s some investigators proposed that refined carbohydrates, especially sugar and a low intake of dietary fiber, were major factors in coronary heart disease (CHD). This suggestion was eclipsed by the belief that an excess intake of saturated fatty acids (SFA) was the key dietary factor, a view that prevailed from roughly 1974 to 2014. Findings that have accumulated since 1990 inform us that the role of SFA in the causation of CHD has been much exaggerated. A switch from SFA to refined carbohydrates does not lower the ratio of total cholesterol to HDL-cholesterol in the blood and therefore does not prevent CHD. A reduced intake of SFA combined with an increased intake of polyunsaturated fatty acids lowers the ratio of total cholesterol to HDL-cholesterol; this may reduce the risk of CHD. The evidence linking carbohydrate-rich foods with CHD has been steadily strengthening. Refined carbohydrates, especially sugar-sweetened beverages, increase the risk of CHD. Conversely, whole grains and cereal fiber are protective. An extra one or 2 servings per day of these foods increases or decreases risk by approximately 10% to 20%.

  11. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  12. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    NASA Astrophysics Data System (ADS)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  13. Polyamine metabolism and osmotic stress. I. Relation to protoplast viability

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Masdeu, M. A.; Dumortier, F. M.; Galston, A. W.

    1986-01-01

    Cereal leaves subjected to the osmotica routinely used for protoplast isolation show a rapid increase in arginine decarboxylase activity, a massive accumulation of putrescine, and slow conversion of putrescine to the higher polyamines, spermidine and spermine (HE Flores, AW Galston 1984 Plant Physiol 75: 102). Mesophyll protoplasts from these leaves, which have a high putrescine:polyamine ratio, do not undergo sustained division. By contrast, in Nicotiana, Capsicum, Datura, Trigonella, and Vigna, dicot genera that readily regenerate plants from mesophyll protoplasts, the response of leaves to osmotic stress is opposite to that in cereals. Putrescine titer as well as arginine and ornithine decarboxylase activities decline in these osmotically stressed dicot leaves, while spermidine and spermine titers increase. Thus, the putrescine:polyamine ratio in Vigna protoplasts, which divide readily, is 4-fold lower than in oat protoplasts, which divide poorly. We suggest that this differing response of polyamine metabolism to osmotic stress may account in part for the failure of cereal mesophyll protoplasts to develop readily in vitro.

  14. Reusing effluent of flue gas desulfurization wastewater treatment process as an economical calcium source for phosphorus removal.

    PubMed

    Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun

    2017-09-01

    Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.

  15. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    PubMed

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  16. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    PubMed

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Definition and Measurement of Selection Bias: From Constant Ratio to Constant Difference

    ERIC Educational Resources Information Center

    Cahan, Sorel; Gamliel, Eyal

    2006-01-01

    Despite its intuitive appeal and popularity, Thorndike's constant ratio (CR) model for unbiased selection is inherently inconsistent in "n"-free selection. Satisfaction of the condition for unbiased selection, when formulated in terms of success/acceptance probabilities, usually precludes satisfaction by the converse probabilities of…

  18. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  19. Liquid-crystal-based switchable polarizers for sensor protection.

    PubMed

    Wu, C S; Wu, S T

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  20. Liquid-crystal-based switchable polarizers for sensor protection

    NASA Astrophysics Data System (ADS)

    Wu, Chiung-Sheng; Wu, Shin-Tson

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  1. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  2. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.

    PubMed

    Jin, Junwei; Li, Yanan; Zhang, Jianyun; Wu, Shengchun; Cao, Yucheng; Liang, Peng; Zhang, Jin; Wong, Ming Hung; Wang, Minyan; Shan, Shengdao; Christie, Peter

    2016-12-15

    Dried raw sludge was pyrolyzed at temperatures ranging from 400 to 600°C at the increase of 50°C intervals to investigate the influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochar derived from municipal sewage sludge. The sludge biochar yield decreased significantly with increasing pyrolysis temperature but the pH, ash content and specific surface area increased. Conversion of sludge to biochar markedly decreased the H/C and N/C ratios. FT-IR analysis confirmed a dramatic depletion of H and N and a higher degree of aromatic condensation in process of biochar formation at higher temperatures. The total concentrations of Cu, Zn, Pb, Cr, Mn, and Ni increased with conversion of sludge to biochar and increasing pyrolysis temperature. However, using BCR sequential extraction and analysis, it was found that most of the heavy metals existed in the oxizable and residual forms after pyrolysis, especially at 600°C, resulting in a significant reduction in their bioavailability, leading to a very low environmental risk of the biochar. The present study indicates pyrolysis is a promising sludge treatment method for heavy metals immobilization in biochar, and highlights the potential to minimize the harmful effects of biochar by controlling pyrolysis temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Evolution of Gases and Particles from a Savanna Fire in South Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.; Sinha, Parikhit; Yokelson, Robert J.; Christian, Ted J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica; Pilewskie, Peter

    2003-01-01

    Airborne measurements of particles and gases fiom a 1000-ha savanna fire in South Africa are presented. These measurements represent the most extensive data set reported on the aging of biomass smoke. The measurements include total concentrations of particles (CN), particle sizes, particulate organic carbon and black carbon, light-scattering coefficients, downwelling UV fluxes, and mixing ratios for 42 trace gases and 7 particulate species. The ratios of excess nitrate, ozone, and gaseous acetic acid to excess CO increased significantly as the smoke aged over approximately 40-45 min, indicating that these species were formed by photochemistry in the plume. For 17 other species, the excess mixing ratio normalized by the excess mixing ratio of CO decreased significantly with ' smoke age. The relative rates of decrease for a number of chemical species imply that the average OH concentration in the plume was approximately 1.7 x l0(exp 7) molecules /cubic centimeter. Excess CN, normalized by excess CO, decreased rapidly during the first approximately 5 min of aging, probably due to coagulation, and then increased, probably due to gas-to-particle conversion. The CO-normalized concentrations of particles < 1.5 microns in diameter decreased, and particles >1.5 micron diameter increased, with smoke age. The spectral depletion of solar radiation by the smoke is depicted. The downwelling UV flux near the vertical center of the plume was about two-thirds of that near the top of the plume.

  4. Exploring emergency department 4-hour target performance and cancelled elective operations: a regression analysis of routinely collected and openly reported NHS trust data.

    PubMed

    Keogh, Brad; Culliford, David; Guerrero-Ludueña, Richard; Monks, Thomas

    2018-05-24

    To quantify the effect of intrahospital patient flow on emergency department (ED) performance targets and indicate if the expectations set by the National Health Service (NHS) England 5-year forward review are realistic in returning emergency services to previous performance levels. Linear regression analysis of routinely reported trust activity and performance data using a series of cross-sectional studies. NHS trusts in England submitting routine nationally reported measures to NHS England. 142 acute non-specialist trusts operating in England between 2012 and 2016. The primary outcome measures were proportion of 4-hour waiting time breaches and cancelled elective operations. Univariate and multivariate linear regression models were used to show relationships between the outcome measures and various measures of trust activity including empty day beds, empty night beds, day bed to night bed ratio, ED conversion ratio and delayed transfers of care. Univariate regression results using the outcome of 4-hour breaches showed clear relationships with empty night beds and ED conversion ratio between 2012 and 2016. The day bed to night bed ratio showed an increasing ability to explain variation in performance between 2015 and 2016. Delayed transfers of care showed little evidence of an association. Multivariate model results indicated that the ability of patient flow variables to explain 4-hour target performance had reduced between 2012 and 2016 (19% to 12%), and had increased in explaining cancelled elective operations (7% to 17%). The flow of patients through trusts is shown to influence ED performance; however, performance has become less explainable by intratrust patient flow between 2012 and 2016. Some commonly stated explanatory factors such as delayed transfers of care showed limited evidence of being related. The results indicate some of the measures proposed by NHS England to reduce pressure on EDs may not have the desired impact on returning services to previous performance levels. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  6. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.

    PubMed

    Yuan, Haibo; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Shi, Zhongping; Liu, Long

    2018-01-01

    2,5-Furandicarboxylic acid (FDCA) is a promising bio-based building block and can be produced by biotransformation of 5-hydroxymethylfurfural (HMF). To improve the FDCA production, two genes-one encoding HMF oxidase (HMFO; from Methylovorus sp. strain MP688) and another encoding for HMF/Furfural oxidoreductase (HmfH; from Cupriavidus basilensis HMF14)-were introduced into Raoultella ornithinolytica BF60. The FDCA production in the engineered whole-cell biocatalyst increased from 51.0 to 93.6mM, and the molar conversion ratio of HMF to FDCA increased from 51.0 to 93.6%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Risk factors for conversion from unipolar psychotic depression to bipolar disorder.

    PubMed

    Østergaard, Søren Dinesen; Straszek, Sune; Petrides, Georgios; Skadhede, Søren; Jensen, Signe Olrik Wallenstein; Munk-Jørgensen, Povl; Nielsen, Jimmi

    2014-03-01

    Patients with unipolar psychotic depression (PD) are at high risk of developing bipolar disorder (BD). This conversion has important implications for the choice of treatment. This study, therefore, aimed to identify risk factors associated with diagnostic conversion from PD to BD. We conducted a population-based, historical prospective cohort study by merging data from Danish registers. Patients assigned an ICD-10 diagnosis of PD between 1 January 1995 and 31 December 2007 were identified in the Danish Central Psychiatric Research Register and were followed until the development of BD, death, loss to follow-up, or 31 December 2007. Potential risk factors for conversion to BD, also defined through various Danish registers, were tested in multiple logistic regression analyses with risk expressed as adjusted odds ratios (AOR). We identified 8,588 patients with PD, of whom 609 (7.1%) developed BD during follow-up. The following characteristics were significantly associated with diagnostic conversion from PD to BD: early onset of PD [AOR = 0.99 (per year of increasing age), p = 0.044], recurrent depression [AOR = 1.02 (per episode), p = 0.036], living alone (AOR = 1.29, p = 0.007), receiving a disability pension (AOR = 1.55, p < 0.001), and the highest educational level being a technical education (AOR = 1.55, p < 0.001), short-cycle higher education (AOR = 2.65, p < 0.001), or medium-cycle higher education (AOR = 1.75, p < 0.001). Diagnostic conversion to BD was prevalent among patients with PD. The following characteristics were significantly associated with this conversion: early onset of PD, recurrent depression, living alone, receiving a disability pension, and the highest educational level being a technical education, short-cycle higher education, or medium-cycle higher education. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    PubMed

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  9. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Para hydrogen equilibration in the atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions.

  12. Preparation of organic and water hydrogen for stable isotope analysis. Effects due to reaction vessels and zinc reagent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmelmann, A.; DeNiro, M.J.

    1993-03-15

    Combustion of organic matter in sealed Pyrex, Vycor, and quartz ampules at temperatures between 520 and 900[degrees]C yields less than stoichiometric amounts of water. The loss of hydrogen to hydration reactions between water vapor and glass/quartz interferes with the determination of C/H and N/H elemental ratios in organic matter. The effect increases from quartz to Vycor to Pyrex, but the incomplete yield does not significantly affect the precision and accuracy of the determination of stable hydrogen isotope ratios. Reactions between water and Pyrex do not affect the conversion of water to hydrogen with zinc in Pyrex ampules at 500[degrees]C, whichmore » is quantitative, but even preoutgassed zinc contains a deuterium-depleted hydrogen blank. D/H ratios in hydrogen from the Zn method require a nonlinear correction to achieve compatibility with [delta]D values from the uranium method. 19 refs., 4 tabs.« less

  13. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B. L.; Rappenglück, B.; Stutz, J.

    2011-04-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1-2 and 7-8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO, followed by traffic emission. Aerosol did not play an important role in HONO formation. Although ground deposition was also a major removal pathway of HONO, net HONO production at the ground was the main source of HONO in our model studies. Sensitivity studies showed that in the stable NBL, net HONO production at the ground tends to increase with faster vertical mixing and stronger NOx emission. Vertical transport was found to be the dominant source of HONO aloft.

  14. A global review of species-specific shark-fin-to-body-mass ratios and relevant legislation.

    PubMed

    Biery, L; Pauly, D

    2012-04-01

    In this review, shark-fin-to-body-mass ratios, which have been legislated by several countries as a means of regulating and monitoring shark fisheries, have been compiled and reviewed. Observed and legislated wet-fin-mass-to-round-mass (M(fw) :M(r) ) ratios have been collected for 50 species and eight countries. Wet to dry-fin mass conversion factors have also been reviewed. Existing shark fishery legislation was compiled by political entity and regional fishery management organizations (RFMO). The mean observed M(fw) :M(r) ratio for all species was 3·0%, but actual fin to body-mass ratios varied considerably by species and location. Species-specific mean ratios ranged from 1·1 to 10·9%, and estimated mean ratios ranged from 1·5 to 6·1% by country, depending on fin-cutting practices and the mix of exploited species. The mean conversion factor for wet to dry-fin mass was 0·43. Shark-related legislation was found to exist in 37 countries and the 22 maritime members of the European Union, and shark-related regulations have been designated by nine RFMOs. Results suggest that currently regulated ratios may not be appropriate for all species and fin-cutting practices, and regulations based on generalized ratios for all sharks may be inadequate. Alternative policies may be necessary for the effective management of global shark fisheries. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. Fourier Transformed Infra-Red Imaging of Femoral Neck Bone: Reduced Heterogeneity of Mineral-to-Matrix and Carbonate-to-Phosphate and more Variable Crystallinity in Treatment-Naïve Fracture Cases compared to Fracture-Free Controls

    PubMed Central

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L.

    2012-01-01

    After age 60 hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier Transform Infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and non-fractured bones. Whole femoral neck cross sections, divided into quadrants along the neck’s axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed Tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared to controls. While our treatment-naïve patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone’s toughness as a material. PMID:22865771

  16. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls.

    PubMed

    Gourion-Arsiquaud, Samuel; Lukashova, Lyudmilla; Power, Jon; Loveridge, Nigel; Reeve, Jonathan; Boskey, Adele L

    2013-01-01

    After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. Copyright © 2013 American Society for Bone and Mineral Research.

  17. A Multiyear Assessment of Public Response to a Statewide Drug Take-Back and Disposal Campaign, 2010 to 2012.

    PubMed

    Yanovitzky, Itzhak

    2017-08-01

    This study is the first to analyze public response to a drug take-back program, the American Medicine Chest Challenge, in a single state over a period of 3 years (2010-2012). The study utilized a three-wave repeated cross-sectional design and an annual phone survey conducted with a representative sample of adults ( N = 906 in 2010, N = 907 in 2011, and N = 906 in 2012), which assessed exposure to the campaign, drug disposal behaviors, possible mediators of campaign effects (risk appraisal, personal agency, normative influence, and interpersonal talk), and potential confounders. Logistic regression and causal mediation analysis were employed to estimate confounder-adjusted direct and mediated effects of the campaign. Results showed that the campaign reached a sizable portion (50% to 60%) of state adults and that campaign exposure was associated with increased likelihood of having conversations with others about this topic. About 55% of all adults in the state reported taking at least one of the actions recommended by the campaign, and campaign exposure was associated with increased likelihood of disposing of prescription drugs at a drug collection day event (adjusted odds ratio = 4) and of talking to a child about the risks associated with prescription drug abuse (adjusted odds ratio = 2). The causal mediation analysis demonstrated that the campaign influenced audiences by reinforcing their efficacy to safely dispose of prescription drugs, but also potentially by stimulating conversations among community members about this topic. Drug take-back campaigns can be an effective mechanism to decrease the availability of prescription drugs in communities.

  18. Compatibility approach for the improvement of oxide thermoelectric converters for industrial heat recovery applications

    NASA Astrophysics Data System (ADS)

    Saucke, Gesine; Populoh, Sascha; Thiel, Philipp; Xie, Wenjie; Funahashi, Ryoji; Weidenkaff, Anke

    2015-07-01

    New ceramic Ca3Co3.9O9+δ /CaMn0.97W0.03O3-δ thermoelectric generators with different cross section areas A p and A n of the p- and the n-type leg are fabricated, characterized, and tested at high temperatures in long-term tests. The variation of the measured power output and the efficiency with changing A p / A n ratio is discussed and compared with calculations based on the measured material properties. The highest conversion efficiencies are reached for ratios close to the one predicted by the compatibility approach, whereas an improper choice of A p / A n leads to a strong reduction of the efficiency. A volume power density of 1.4 W/cm3 and an efficiency of 1.08% are found for the most promising generator (temperature difference Δ T = 734 K and A p / A n = 1.12). The results reveal the major importance of the A p / A n ratio for the conversion efficiency and subsequently cost and weight reduction issues, both crucial for a large scale application of thermoelectric converters. Additionally, the oxide generators proved to be very reliable, as after more than 110 h of high temperature energy conversion, no degradation is observable.

  19. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier.

    PubMed

    Hu, Jianjun; Li, Chong; Guo, Qianhui; Dang, Jiatao; Zhang, Quanguo; Lee, Duu-Jong; Yang, Yunlong

    2018-05-03

    The iron-based oxygen carriers (OC's), Fe 2 O 3 /support (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ), for chemical looping gasification of wheat straw were prepared using impregnation method. The surface morphology, crystal structure, carbon deposition potential, lattice oxygen activity and selectivity of the yielded OCs were examined. The Fe 2 O 3 /Al 2 O 3 OCs at 60% loading has the highest H 2 yield, H 2 /CO ratio, gas yield, and carbon conversion amongst the tested OC's. Parametric studies revealed that an optimal loading Fe 2 O 3 of 60%, steam-to-biomass ratio of 0.8 and oxygen carrier-to-biomass ratio of 1.0 led to the maximum H 2 /CO ratio, gas yield, H 2  + CO ratio, and carbon conversion from the gasified wheat straw. High temperature, up to 950 °C, enhanced the gasification performance. A kinetic network interpreted the noted experimental results. The lattice oxygen provided by the prepared Fe 2 O 3 /Al 2 O 3 oxygen carriers promotes chemical looping gasification efficiencies from wheat straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Glycemic control and hypoglycemia in Veterans Health Administration patients converted from glyburide to glipizide.

    PubMed

    Skoff, Rachel A; Waterbury, Nancee V; Shaw, Robert F; Egge, Jason A; Cantrell, Matthew

    2011-11-01

    In 2009, the Veterans Health Administration (VHA) released a national bulletin regarding the risk of hypoglycemia associated with the use of glyburide in elderly patients with renal dysfunction. Providers were encouraged to avoid glyburide and use glipizide in patients with a calculated creatinine clearance (CrCl) of less than 50 mL per minute. Since this initiative, many veterans were converted by their providers from glyburide to glipizide regardless of renal impairment. To (a) identify whether hemoglobin A1c remained equivalent in patients converted from glyburide to glipizide, (b) evaluate the prevalence of hypoglycemia during treatment with glyburide or glipizide, (c) compare change in glycemic control for renally impaired versus nonimpaired patients, and (d) analyze dosage conversion ratios selected by providers and measures of patient follow-up after conversion including time until A1c measurement and number of glipizide dose titrations. This was a single-center, retrospective analysis of veterans converted from glyburide to glipizide from January 1, 2008, through May 31, 2010, who had documented A1c values concurrent with glyburide and glipizide use. A 2-sided equivalence analysis was used for the primary outcome. Equivalence was defined as a change in mean A1c of ± 0.2. Hypoglycemia was defined as blood glucose of less than 70 mg per dL, symptoms of hypoglycemia, or hypoglycemia that led to a fall, loss of consciousness, emergency room visit, hospitalization, or death. The pre- to post-conversion change in rates of hypoglycemia was tested for significance using a McNemar's test. In the 141 (99.3% male, 53.9% CrCl less than 50 mL per minute, mean age = 74.0 years) patients meeting inclusion criteria between 2008-2010, the average change in A1c (+ 0.34) was nonequivalent after conversion from glyburide to glipizide (7.08% vs. 7.42%, respectively). Hypoglycemia occurred more frequently during treatment with glyburide than glipizide (31.2% vs. 12.8%, respectively, P less than 0.001). Mean dose conversion ratios were consistent with VHA recommendations (1 mg per day glyburide = 1.26- 1.55 mg per day glipizide). Conversion from glyburide to glipizide was associated with an increase in A1c, but the incidence of hypoglycemia was reduced. Results of this study are consistent with the recommendation of the American Diabetes Association and European Association for the Study of Diabetes to use second-generation sulfonylureas other than glyburide. Patients converted to glipizide should be monitored closely to adjust therapy as appropriate to maintain glycemic control.

  1. Streak camera imaging of single photons at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  2. Tri-reforming and combined reforming of methane for producing syngas with desired hydrogen/carbon monoxide ratios

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml/(h.gcat.). The apparent Activation energy for CH4 conversion over Ni/MgO was estimated to be 219 kJ/mol, which is higher than over Ni/Al2O 3 (69.1 kJ/mol) and Ni/MgO/CeZrO (67.4 kJ/mol). This may be attributed to less CH4 activation over Ni/MgO or to an experimental artifact caused by catalyst deactivation as reaction temperature decreases from 850°C to 750°C. With the decrease of temperature, Ni may be re-oxidized and form NiO-MgO solid solution in the presence of H2O, CO2, or O2. (Abstract shortened by UMI.)

  3. Online social networking for HIV education and prevention: a mixed-methods analysis.

    PubMed

    Young, Sean D; Jaganath, Devan

    2013-02-01

    The purpose of this study is to use mixed (qualitative/quantitative) methods to determine (1) the feasibility and acceptability of using online social networking to facilitate HIV-related discussions and (2) the relationship between HIV-related online discussions and requests for a home-based HIV testing kit among men who have sex with men. Participants, primarily African American and Latino, were invited to join a "secret" group on the social networking Web site, Facebook. Peer leaders, trained in HIV prevention, posted HIV-related content. Participants were not obligated to respond to discussions or remain within the group. Participant public group conversations were qualitatively and thematically analyzed. Quantitative methods tested associations between qualitative data, participants' demographic information, and likelihood of requesting a home-based HIV testing kit. Latino and African American participants (n = 57) voluntarily used Facebook to discuss the following HIV-related topics (n = 485 conversations): prevention and testing, knowledge, stigma, and advocacy. Older participants more frequently discussed prevention and testing, stigma, and advocacy, although younger participants more frequently discussed HIV knowledge-related conversations. As the study progressed, the proportion of messages related to prevention and testing and HIV stigma increased. Multivariate analysis showed that participants posting about HIV prevention and testing (compared with those who did not) were significantly more likely to request an HIV testing kit (odds ratio, 11.14; P = 0.001). Facebook can serve as an innovative forum to increase both HIV prevention discussions and HIV testing requests among at-risk groups.

  4. Ethical implications for clinical practice and future research in "at risk" individuals.

    PubMed

    Singh, Fiza; Mirzakhanian, Heline; Fusar-Poli, Paolo; de la Fuente-Sandoval, Camilo; Cadenhead, Kristin S

    2012-01-01

    The last 15 years have witnessed a shift in schizophrenia research with increasing interest in earlier stages of illness with the hope of early intervention and ultimately prevention of psychotic illness. Large-scale longitudinal studies have identified clinical and biological risk factors associated with increased risk of psychotic conversion, which together with symptomatic and demographic risk factors may improve the power of prediction algorithms for psychotic transition. Despite these advances, 45-70% of at risk subjects in most samples do not convert to frank psychosis, but continue to function well below their age matched counterparts. The issue is of utmost importance in light of the upcoming DSM-V and the possible inclusion of the attenuated psychotic symptoms syndrome (APSS) diagnosis, with clinical and ethical implications. Clinical considerations include feasibility of reliably diagnosing the at risk state in non-academic medical centers, variable psychotic conversion rates, a non-uniform definition of conversion and extensive debate about treatment for individuals with an ill-defined outcome. On the ethical side, diagnosing APSS could lead to unnecessary prescribing of antipsychotics with long-term deleterious consequences, slow research by providing a false sense of comfort in the diagnosis, and have psychosocial implications for those who receive a diagnosis. Thus it may be prudent to engage at risk populations early and to use broad-spectrum treatments with low risk benefit ratios to relieve functional impairments, while simultaneously studying all subsets of the at risk population.

  5. Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Statman, J.

    1993-01-01

    This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.

  6. Channel Modeling

    NASA Astrophysics Data System (ADS)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  7. Validation of the MDS research criteria for prodromal Parkinson's disease: Longitudinal assessment in a REM sleep behavior disorder (RBD) cohort.

    PubMed

    Fereshtehnejad, Seyed-Mohammad; Montplaisir, Jacques Y; Pelletier, Amelie; Gagnon, Jean-François; Berg, Daniela; Postuma, Ronald B

    2017-06-01

    Recently, the International Parkinson and Movement Disorder Society introduced the prodromal criteria for PD. Objectives Our study aimed to examine diagnostic accuracy of the criteria as well as the independence of prodromal markers to predict conversion to PD or dementia with Lewy bodies. This prospective cohort study was performed on 121 individuals with rapid eye movement sleep behavior disorder who were followed annually for 1 to 12 years. Using data from a comprehensive panel of prodromal markers, likelihood ratio and post-test probability of the criteria were calculated at baseline and during each follow-up visit. Forty-eight (39.7%) individuals with rapid eye movement sleep behavior disorder converted to PD/dementia with Lewy bodies. The prodromal criteria had 81.3% sensitivity and 67.9% specificity for conversion to PD/dementia with Lewy bodies at 4-year follow-up. One year before conversion, sensitivity was 100%. The criteria predicted dementia with Lewy bodies with even higher accuracy than PD without dementia at onset. Those who met the threshold of prodromal criteria at baseline had significantly more rapid conversion into a neurodegenerative state (4.8 vs. 9.1 years; P < 0.001). Pair-wise combinations of different prodromal markers showed that markers were independent of one another. The prodromal criteria are a promising tool for predicting incidence of PD/dementia with Lewy bodies and conversion time in a rapid eye movement sleep behavior disorder cohort, with high sensitivity and high specificity with long follow-up. Prodromal markers influence the overall likelihood ratio independently, allowing them to be reliably multiplied. Defining additional markers with high likelihood ratio, further studies with longitudinal assessment and testing thresholds in different target populations will improve the criteria. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  8. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  9. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    NASA Astrophysics Data System (ADS)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  10. Mode Propagation in Nonuniform Circular Ducts with Potential Flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Ingard, K. U.

    1982-01-01

    A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.

  11. Uncoupling of the Pathway of Methanogenesis in Northern Wetlands: Connection to Vegetation, and Implications for Variability and Predictability.

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Duddleston, K. N.; Chanton, J. P.

    2006-12-01

    Typical methanogenic decomposition pathways include near terminal carbon intermediates that turn over rapidly with small pool sizes. However, incubation and field experiments demonstrated that these organic intermediates accumulate in northern wetlands due to the lack of consumption by methanogenic bacteria. Acetate is the major organic end product of decomposition rather than CH4, and methanogenesis can be insignificant. The ratio of CO2:acetate:CH4 varied with vegetation type, and habitats dominated by non-vascular plants (Sphagnum) produced more acetate-C than CO2 or CH4. This ratio correlated well with stable C isotope alpha values used to delineate the path of CH4 formation. We suggest that methanogenesis in general is inhibited in oligotrophic wetlands, but that the conversion of acetate to CH4 is more sensitive, which increases the importance of the conversion of H2/CO2 to CH4. The relative importance of CH4 as an end product increased greatly in sites containing even small populations of Carex compared to sites inhabited only by Sphagnum, suggesting that subtle vegetation changes expected to occur during warming could lead to changes in the path of methanogenesis, increasing production. In addition, depth profiles revealed an active surficial (0-7 cm) C cycle that is sensitive to hydrology that may also greatly affect variability of CH4 formation. Acetate production represented a terminal process and was a sink for a large portion of metabolized C whose ultimate fate was aerobic oxidation to CO2. C destined for CH4 is thus bypassed to CO2 and does not contribute to atmospheric CH4. However, the connection and sensitivity of the pathway of methanogenesis to even small vegetation changes suggests that pathways can be mapped, they vary greatly over small distances, and they can change drastically with relatively small temperature increases.

  12. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051

    PubMed Central

    Zuidhof, M. J.; Schneider, B. L.; Carney, V. L.; Korver, D. R.; Robinson, F. E.

    2014-01-01

    The effect of commercial selection on the growth, efficiency, and yield of broilers was studied using 2 University of Alberta Meat Control strains unselected since 1957 and 1978, and a commercial Ross 308 strain (2005). Mixed-sex chicks (n = 180 per strain) were placed into 4 replicate pens per strain, and grown on a current nutritional program to 56 d of age. Weekly front and side profile photographs of 8 birds per strain were collected. Growth rate, feed intake, and measures of feed efficiency including feed conversion ratio, residual feed intake, and residual maintenance energy requirements were characterized. A nonlinear mixed Gompertz growth model was used to predict BW and BW variation, useful for subsequent stochastic growth simulation. Dissections were conducted on 8 birds per strain semiweekly from 21 to 56 d of age to characterize allometric growth of pectoralis muscles, leg meat, abdominal fat pad, liver, gut, and heart. A novel nonlinear analysis of covariance was used to test the hypothesis that allometric growth patterns have changed as a result of commercial selection pressure. From 1957 to 2005, broiler growth increased by over 400%, with a concurrent 50% reduction in feed conversion ratio, corresponding to a compound annual rate of increase in 42 d live BW of 3.30%. Forty-two-day FCR decreased by 2.55% each year over the same 48-yr period. Pectoralis major growth potential increased, whereas abdominal fat decreased due to genetic selection pressure over the same time period. From 1957 to 2005, pectoralis minor yield at 42 d of age was 30% higher in males and 37% higher in females; pectoralis major yield increased by 79% in males and 85% in females. Over almost 50 yr of commercial quantitative genetic selection pressure, intended beneficial changes have been achieved. Unintended changes such as enhanced sexual dimorphism are likely inconsequential, though musculoskeletal, immune function, and parent stock management challenges may require additional attention in future selection programs. PMID:25260522

  13. Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber

    NASA Astrophysics Data System (ADS)

    Tamura, Shuhei; Ikeda, Kohei; Okamura, Kotaro; Yoshii, Kazumichi; Hong, Feng-Lei; Horikiri, Tomoyuki; Kosaka, Hideo

    2018-06-01

    Long-distance quantum communication requires entanglement between distant quantum memories. For this purpose, photon transmission is necessary to connect the distant memories. Here, for the first time, we develop a two-step frequency conversion process (from a visible wavelength to a telecommunication wavelength and back) involving the use of independent two-frequency conversion media where the target quantum memories are nitrogen-vacancy centers in diamonds (with an emission/absorption wavelength of 637.2 nm), and experimentally characterize the performance of this process acting on light from an attenuated CW laser. A total conversion efficiency of approximately 7% is achieved. The noise generated in the frequency conversion processes is measured, and the signal-to-noise ratio is estimated for a single photon signal emitted by a nitrogen-vacancy (NV) center. The developed frequency conversion system has future applications via transmission through a long optical fiber channel at a telecommunication wavelength for a quantum repeater network.

  14. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Sen, Manibrata; Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra ofmore » ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.« less

  15. Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic-Inorganic Hybrid Perovskite Photovoltaic Absorber.

    PubMed

    Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky

    2018-05-09

    Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.

  16. Ptau-Aβ42 ratio as a continuous trait for biomarker discovery for early stage Alzheimer’s disease in multiplex immunoassay panels of Cerebrospinal fluid

    PubMed Central

    Harari, Oscar; Cruchaga, Carlos; Kauwe, John S.K.; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.

    2014-01-01

    Background Identification of the physiological changes that occur during the early stages of Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome. Methods We applied a novel approach to screen a panel of ~190 CSF analytes quantified by multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case control status in these analyses. Results We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12 other correlated analytes increase as the disease progresses. These results were validated using the traditional case control status model. Stratification of our dataset demonstrated that increases in these analytes occur very early in the disease course and were apparent even in non-demented individuals with AD pathology (low ptau181, low Aβ42) compared to pathology-negative elderly control subjects (low ptau181, high Aβ42). FABP-Aβ42 ratio demonstrates a similar hazard ratio for disease conversion to ptau181-Aβ42 even though the overlap in classification is incomplete suggesting that FABP contributes independent information as a predictor Conclusions Our results clearly indicate that the approach presented here can be employed to correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very early stages of the disease. PMID:24548642

  17. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    PubMed

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  18. A New Solution for Confined-Unconfined Flow Toward a Fully Penetrating Well in a Confined Aquifer.

    PubMed

    Xiao, Liang; Ye, Ming; Xu, Yongxin

    2018-02-08

    Transient confined-unconfined flow conversion caused by pumping in a confined aquifer (i.e., piezometric head drops below the top confined layer) is complicated, partly due to different hydraulic properties between confined and unconfined regions. For understanding mechanism of the transient confined-unconfined conversion, this paper develops a new analytical solution for the transient confined-unconfined flow toward a fully penetrating well in a confined aquifer. The analytical solution is used to investigate the impacts on drawdown simulation by differences of hydraulic properties, including transmissivity, storativity, and diffusivity defined as a ratio of transmissivity and storativity, between the confined and unconfined regions. It is found that neglecting the transmissivity difference may give an overestimation of drawdown. Instead, neglecting the diffusivity difference may lead to an underestimation of drawdown. The shape of drawdown-time curve is sensitive to the change of storativity ratio, S/S y , between the confined and unconfined regions. With a series of drawdown data from pumping tests, the analytical solution can also be used to inversely estimate following parameters related to the transient confined-unconfined conversion: radial distance of conversion interface, diffusivity, and specific yield of the unconfined region. It is concluded that using constant transmissivity and diffusivity in theory can result in biased estimates of radial distance of the conversion interface and specific yield of the unconfined region in practice. The analytical solution is useful to gain insight about various factors related to the transient confined-unconfined conversion and can be used for the design of mine drainage and groundwater management in the mining area. © 2018, National Ground Water Association.

  19. Theoretcial studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Fong, Z. S.

    1984-01-01

    A method of pumping a COhZ laser by a hot cavity was demonstrated. The cavity, heated by solar radiation, should increase the efficiency of solar pumped lasers used for energy conversion. Kinetic modeling is used to examine the behavior of such a COhZ laser. The kinetic equations are solved numerically vs. time and, in addition, steady state solutions are obtained analytically. The effect of gas heating filling the lower laser level is included. The output power and laser efficiency are obtained as functions of black body temperature and gas ratios (COhZ-He-Ar) and pressures. The values are compared with experimental results.

  20. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory [Okemos, MI; Shin, Hyoun S [Lansing, MI; Jain, Mahendra K [Lexington, KY

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  1. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Gregory J.; Shin, Hyoun S.; Jain, Mahendra K.

    2002-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial, cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  2. Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration

    DOEpatents

    Zeikus, Joseph G.; Park, Doo

    2001-01-01

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  3. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    PubMed Central

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  4. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  5. Co-cracking of real MSW into bio-oil over natural kaolin

    NASA Astrophysics Data System (ADS)

    Gandidi, I. M.; Susila, M. D.; Pambudi, N. A.

    2017-03-01

    Municipal solid waste (MSW) is a potential material that can be converted into bio-oil through thermal degradation process or pyrolysis. The efficiency and productivity of pyrolysis can be increased with the use of natural catalyst like kaolin. The addition of catalyst also reduces the overall cost of conversion process. In this study conversion of MSW into Bio Fuel using Pyrolysis in the presence of of natural kaolin as catalyst has been investigated for 60 min at 400°C temperature. During the process 0.5 w/w catalyst to MSW ratio was maintained. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the chemical composition of bio fuel. It is found that bio-oil production increases substantially with the use of catalyst. It is observed that the production of bio-oil is 23.6 % with the use of catalyst in process, which was only 15.2 % without the use of catalyst. The hydrocarbon range distribution of oil produced through pyrolysis reveals that gasoline and diesel fuel (C5-C20) are its main constituents. The functional group detected in bio-oil by GC-MS analysis is similar to that of diesel-48 in which paraffin and olefin are major mass species.

  6. Value added product recovery from sludge generated during gum arabic refining process by vermicomposting.

    PubMed

    Das, Veena; Satyanarayan, Sanjeev; Satyanarayan, Shanta

    2016-09-01

    Gum arabic is multifunctional and used in food products, pharmaceutical, confectionery, cosmetic, printing and textile industry. Gum arabic has an excellent market and its production is being increased to meet the market demand. In the process, huge quantity of solid waste is generated during its refining process. An attempt has been made to vermicompost this organic waste using Eudrilus eugeniae. This research work is first of its kind. Literature on this substrate has not been reported anywhere else for vermicomposting. Results were excellent with volatile solid reduction of 51.34 %; C/N ratio reduced to 16.31 % indicating efficient loss of carbon as carbon dioxide during vermicomposting period. Manurial value, i.e. nitrogen, phosphorus and potassium content in the range, required for the plants also increased. Porosity of 67.74 % and water holding capacity of 65.75 % were observed. The maturity of the vermicompost was evaluated through scanning electron microscopy wherein the complete conversion of large raw material particles into finer particles forming a uniform matrix with more surface area was observed indicating its efficient conversion. Microbial quality of vermicompost was also studied. The final vermicompost is free of fungal cells and pathogenic bacteria.

  7. Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment.

    PubMed

    Zhang, Haiping; Zheng, Mingming; Shi, Jie; Tang, Hu; Deng, Qianchun; Huang, Fenghong; Luo, Dan

    2018-05-15

    In this study, a series of functional oils rich in feruloylated structured lipids (FSLs) was prepared by enzymatic transesterification of ethyl ferulate (EF) with triglycerides under ultrasound pretreatment. A conversion of more than 92.7% and controllable FSLs (3.1%-26.3%) can be obtained under the following conditions: 16% enzyme, substrate ratio 1:5 (oil/EF, mol/mol), 85 °C, ultrasound 1 h, pulse mode 3 s/3s (working/waiting), and 17.0 W/mL. Compared to conventional mechanical stirring, the activation energy decreased from 50.0 kJ/mol to 40.7 kJ/mol. The apparent kinetic constant increased by more than 13 times, and the time required for the maximum conversion reduced sharply from 20-60 h to 4-6h, which was the fastest rate for enzymatic synthesis of FSLs. The antioxidant activities of the functional oil significantly increased 1.0- to 8.1-fold more than that of the raw oil. The functional oil could be widely applied in various fields of functional foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.

    PubMed

    Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak

    2013-08-01

    Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    PubMed

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  11. Performance improvement of gel- and solid-state dye-sensitized solar cells by utilization the blending effect of poly (vinylidene fluoride-co-hexafluropropylene) and poly (acrylonitrile-co-vinyl acetate) co-polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Obadja, Nesia; Chang, Ting-Wei; Chen, Li-Tung; Lee, Yuh-Lang

    2014-12-01

    Poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) and poly (acrylonitrile-co-vinyl acetate) (PAN-VA) are used as gelator to prepare gel- and solid-state polymer electrolytes for dye sensitized solar cells (DSSCs) applications. The electrolytes prepared using PVDF-HFP have higher conductivities than those prepared using PAN-VA. In blended polymers, the conductivities of the electrolytes increase with increasing composition of PVDF-HFP; at 75% PVDF-HFP, conductivity of the blended polymer surpassed that of pure polymers. It is also found that the viscosity of the electrolyte prepared by PAN-VA (1.2 kPaS) is much lower than that by PVDF-HFP (11 kPaS). Therefore, increasing PAN-VA composition can decrease the viscosity of the electrolyte, improving the penetration of electrolytes in the TiO2 matrix. By controlling the ratio of PVDF-HFP/PAN-VA, the conductivity and viscosity of the electrolyte can be regulated and an optimal ratio based on the conversion efficiency of the gel- and solid state DSSCs is obtained at the ratio of 3/1. The highest efficiency achieved by the gel- and solid-state cells using the blending polymers are 6.3% and 4.88%, respectively, which are higher than those prepared using pure polymers (5.53% and 4.56%, respectively). The introduction of TiO2 fillers to the solid electrolyte can further increase the cell efficiency to 5.34%.

  12. Analysis of spectral light guidance in specialty fibers

    NASA Astrophysics Data System (ADS)

    Zimmer, Arne W.; Raithel, Philipp; Belz, Mathias; Klein, Karl-Friedrich

    2016-04-01

    A novel experimental set-up for measuring the spectral dependency of light-guidance of specialty non-active multimodefibers will be introduced. Light coupling into the test fiber is realized and controlled with a micro-structured single mode (SM) fiber and an image-system based on a microscope objective The far- and near-field profiles of the SM-fiber will be shown. The inverse far field method is modified and improved by using three wavelengths simultaneously under the same input conditions; the coupling conditions into the test-fiber and the far- and near-field at fiber output are observed with cameras. The numerical aperture (NA) and mode-conversion or focal-ratio-degradation (FRD) are measured in respect to wavelength at three wavelengths in the VIS region. For the analysis, the patterns are captured at varying exposure times to increase the dynamic range and finally analyzed using image processing methods. Characteristic parameters, such as skew mode propagation and ray-conversion, of circular and non-circular MM-fibers will be discussed, taking the surface roughness into account.

  13. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of Fe-TiO2 films synthesized by sol-gel method for application in energy conversion devices

    NASA Astrophysics Data System (ADS)

    da Silva Santos, Reginaldo; de Oliveira, Haroldo G.; Longo, Claudia

    2009-08-01

    Fe-TiO2 particles were synthesized by sol-gel process from hydrolysis of titanium tetra-isopropoxide with nitric acid and ferric nitrate aqueous solutions (relative Fe:Ti molar ratio ranging from 1 to 6 at %) followed by hydrothermal treatment. Thin films were deposited onto conducting glass electrodes from a suspension with polyethylene glycol and heating at 450 °C for 30 min, which resulted in 1.5 μm thick transparent porous films. Crystalline samples, 93 % anatase and 7 % brookite, were obtained. Increasing the iron amount, the crystallite size estimated from XRD patterns ranged from 18 to 11 nm and the color varied from slightly yellow to brown. The optical properties have also changed; the absorption edge shifted towards longer wavelengths, with band gap energy decreasing from 3.0 to 2.7 eV. The films exhibited photocatalytic activity for phenol degradation that indicates promising applications in solar energy conversion.

  15. Integration of advanced preparation with coal liquefaction. Second quarterly technical progress report, January 1-March 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.

    Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less

  16. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With itsmore » high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.« less

  17. Direct bioethanol production by amylolytic yeast Candida albicans.

    PubMed

    Aruna, A; Nagavalli, M; Girijashankar, V; Ponamgi, S P D; Swathisree, V; Rao, L Venkateswar

    2015-03-01

    An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield. © 2014 The Society for Applied Microbiology.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molarmore » syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic polymethylbenzenes. However, as syngas conversion increases with increasing temperature, selectivity to liquid product diminished. This is attributed, in large part, to increased saturation of the olefinic intermediates over PdZn metal sites. Under all the conditions and catalysts evaluated in this study, generating liquid product in high yield was challenging (<10 wt. % C5+ yield).« less

  19. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

    PubMed

    Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao

    2017-12-01

    Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of Herbal Essential Oil Mixture as a Dietary Supplement on Egg Production in Quail

    PubMed Central

    Çabuk, Metin; Eratak, Serdar; Alçicek, Ahmet; Bozkurt, Mehmet

    2014-01-01

    One hundred and eighty 7-week-old laying quail were fed various diets over a 12-week period. The diets included a control diet (without essential oil mixture (EOM) or antibiotics (ANTs)), a basal diet including EOM (24 mg/kg feed), and a basal diet including an ANT (avilamycin, 10 mg/kg feed). Each treatment comprised 4 replications with 4 cages (15 quail per cage), amounting to 60 quail per treatment group. Diets (in mash form) and water were provided for ad libitum consumption. EOM consisted of 6 different essential oils derived from the following herbs: oregano (Origanum sp.), laurel leaf (Laurus nobilis L.), sage leaf (Salvia triloba L.), myrtle leaf (Myrtus communis), fennel seeds (Foeniculum vulgare), and citrus peel (Citrus sp.). In comparison with the control diet, adding supplements such as EOM and ANTs to the basal diet increased egg production in quail (P < 0.001). However, egg production was similar between EOM and ANT treatment groups. Moreover, there were no differences between the treatment groups with regard to egg weight. Feed intake was not affected by EOM or ANT supplementation, whereas feed conversion ratio was significantly improved by EOM and ANT supplementation. Thus, we concluded that EOM has beneficial effects as a dietary supplement on egg production and feed conversion ratio. PMID:24587729

  1. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  2. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis.

    PubMed

    Zhang, Bo; He, Pinjing; Lü, Fan; Shao, Liming

    2008-01-01

    The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes. The experiments were carried out in batches. When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13, the overall hydrolysis rate increased by 8%, 12%, and 2% according to the carbon, nitrogen, and total solid (TS) conversion rate, respectively. While the dry weight ratio was designed as 1 to 3, there was a respective rise of 5%, 15%, and 4% in the conversion rate of carbon, nitrogen, and TS. The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content. The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes, loosing the structure of lignocellulose materials. The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate. Especially, the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and hemicellulose, and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate, suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.

  3. Low temperature synthesis of hierarchical TiO 2 nanostructures for high performance perovskite solar cells by pulsed laser deposition

    DOE PAGES

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...

    2016-06-10

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less

  4. Clinical and economic impact of a pharmacist-managed i.v.-to-p.o. conversion service for levofloxacin in Taiwan.

    PubMed

    Yen, Yu-Hsuan; Chen, Hsiang-Yin; Wuan-Jin, Leu; Lin, You-Meei; Shen, Wan C; Cheng, Kuei-Ju

    2012-02-01

    A pharmacist-managed antibiotic intravenous to oral (i.v.-top. o.) conversion program has been incorporated to minimize unnecessary i.v. antibiotic usage. This study evaluated the clinical and economical impacts of a pharmacist-directed i.v.-to-p.o. conversion program for levofloxacin in Taiwan. Data was retrospectively collected by chart review during the pre-intervention period (PIP). During the intervention proactive conversion period (PCP), pharmacists reviewed and intervened on all levofloxacin orders. The detailed reimbursements for medications and inpatient expenses from the Bureau of National Health Insurance (NHI), Taiwan were calculated. The clinical impacts during the PIP and PCP were compared with the duration of the i.v. levofloxacin therapy, total used i.v./p.o. ratio levofloxacin, and total length of hospital stay. The financial impact was compared with medication costs and total inpatient expenditures. The mean length of hospital stay was significantly decreased from 27.2 days to 16.1 days (p = 0.001) after the conversion program was implemented. The i.v. over p.o. ratio for DDD was 3.0 ± 0.6 vs. 2.1 ± 0.6 for PIP vs. PCP group (p = 0.032). The cost of the levofloxacin was significantly decreased ($ 568.9 ± 262.9 vs. $ 449.0 ± 266.4, PIP vs. PCP, p = 0.044). The total inpatient expenditures were also significantly reduced ($ 6,096 ± 5,164.0 vs. $ 3,649.6 ± 3, 740.4, PIP vs. PCP, p = 0.017). The pharmacist-managed i.v.-to-p.o. conversion service not only decreased the length of hospital stays, but also produced significant cost savings, both on medication costs and the total inpatient expenditures. This represents strong evidence for implementing the i.v.-to-p.o. conversion service in Taiwan.

  5. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Ekama, George A; Hao, Tianwei; Mackey, Hamish Robert; Chen, Guanghao

    2018-04-16

    The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature in the appropriate range (25-30 °C) and/or manipulating influent carbon sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Zheng, Ding; Chen, Yushan

    The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.

  8. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  9. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  10. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  11. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    PubMed

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  12. Filipinos in the Navy: Service, Interpersonal Relations, and Cultural Adaptation

    DTIC Science & Technology

    1977-01-01

    conversation. Between people of equal social standing it would be natural to expect that the number of occasions when each party starts the conversation...would be equal . A deviation from this one-to-one ratio is likely to reflect on the inequality of social relations. Thus, we asked the Filipino...NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) American equal opportunity Filipino cultural adaptation

  13. Risk calculation variability over time in ocular hypertensive subjects.

    PubMed

    Song, Christian; De Moraes, Carlos Gustavo; Forchheimer, Ilana; Prata, Tiago S; Ritch, Robert; Liebmann, Jeffrey M

    2014-01-01

    To investigate the longitudinal variability of glaucoma risk calculation in ocular hypertensive (OHT) subjects. We reviewed the charts of untreated OHT patients followed in a glaucoma referral practice for a minimum of 60 months. Clinical variables collected at baseline and during follow-up included age, central corneal thickness (CCT), intraocular pressure (IOP), vertical cup-to-disc ratio (VCDR), and visual field pattern standard deviation (VFPSD). These were used to calculate the 5-year risk of conversion to primary open-angle glaucoma (POAG) at each follow-up visit using the Ocular Hypertension Treatment Study and European Glaucoma Prevention Study calculator (http://ohts.wustl.edu/risk/calculator.html). We also calculated the risk of POAG conversion based on the fluctuation of measured variables over time assuming the worst case scenarios (final age, highest PSD, lowest CCT, highest IOP, and highest VCDR) and best case scenarios (baseline age, lowest PSD, highest CCT, lowest IOP, and lowest VCDR) for each patient. Risk probabilities (%) were plotted against follow-up time to generate slopes of risk change over time. We included 27 untreated OHT patients (54 eyes) followed for a mean of 98.3±18.5 months. Seven individuals (25.9%) converted to POAG during follow-up. The mean 5-year risk of conversion for all patients in the study group ranged from 2.9% to 52.3% during follow-up. The mean slope of risk change over time was 0.37±0.81% increase/y. The mean slope for patients who reached a POAG endpoint was significantly greater than for those who did not (1.3±0.78 vs. 0.042±0.52%/y, P<0.01). In each patient, the mean risk of POAG conversion increased almost 10-fold when comparing the best case scenario with the worst case scenario (5.0% vs. 45.7%, P<0.01). The estimated 5-year risk of conversion to POAG among untreated OHT patients varies significantly during follow-up, with a trend toward increasing over time. Within the same individual, the estimated risk can vary almost 10-fold based on the variability of IOP, CCT, VCDR, and VFPSD. Therefore, a single risk calculation measurement may not be sufficient for accurate risk assessment, informed decision-making by patients, and physician treatment recommendations.

  14. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.

    PubMed

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2015-08-01

    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  16. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The growth performance of F1 transgenic mutiara catfish

    NASA Astrophysics Data System (ADS)

    Iskandar; Buwono, I. D.; Agung, M. U. K.

    2018-04-01

    The growth of catfish (African or Sangkuriang strain) these days is tend to decreased. One of the solutions due to this problem is to improve the genetics of growth using transgenesis technology, toward more profitable. The specific objective of the research is to detect the transmission of exogenous GH (African catfish GH inserts) inside the F1 transgenic Mutiara catfish using PCR (Polymerase Chain Reaction) method and to evaluate the growth performance of transgenic Mutiara catfish made using the parameters of feed conversion (FCR = Feed Conversion Ratio). Transgenic catfish (strain mutiara) F0 and F1 carried African catfish GH (600 bp) can be produced. Superiority characters of transgenic catfish represented heritability (h2 ) and heterosis (H), indicating that the offspring of hybrid F1 transgenic mutiara catfish had phenotypes rapid growth (h2 = 17.55 % and H = 42.83 %) compared to non-transgenic catfish (h 2 = 10.07 % and H = 18.56 %). Evaluation of the efficiency of feed use parameters feed conversion ratio, shows that F1 transgenic mutiara catfish (FCR = 0.85) more efficient in converting feed into meat.

  18. Lipase immobilized on the hydrophobic polytetrafluoroethene membrane with nonwoven fabric and its application in intensifying synthesis of butyl oleate.

    PubMed

    Wang, Shu-Guang; Zhang, Wei-Dong; Li, Zheng; Ren, Zhong-Qi; Liu, Hong-Xia

    2010-11-01

    The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.

  19. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements

    NASA Astrophysics Data System (ADS)

    Kimbrough, Sue; Chris Owen, R.; Snyder, Michelle; Richmond-Bryant, Jennifer

    2017-09-01

    The nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratio is an important surrogate for NO to NO2 chemistry in dispersion models when estimating NOX impacts in a near-road environment. Existing dispersion models use different techniques and assumptions to represent NO to NO2 conversion and do not fully characterize all of the important atmospheric chemical and mechanical processes. Thus, ;real-world; ambient measurements must be analyzed to assess the behavior of NO2/NOX ratios near roadways. An examination of NO2/NOX ratio data from a field study conducted in Las Vegas, Nevada (NV), from mid-December, 2008 through mid-December, 2009 provides insights into the appropriateness of assumptions about the NO2/NOX ratio included in dispersion models. Data analysis indicates multiple factors affect the downwind NO2/NOX ratio. These include spatial gradient, background ozone (O3), source emissions of NO and NO2, and background NO2/NOX ratio. Analysis of the NO2/NOX ratio spatial gradient indicates that under high O3 conditions, the change in the ratio is fairly constant once a certain O3 threshold (≥30 ppb) is reached. However, under low O3 conditions (<30 ppb), there are differences between weekdays and weekends, most likely due to a decline in O3 concentrations during the weekday morning hours, reducing the O3 available to titrate the emitted NO, allowing lower NO2/NOX ratios. These results suggest that under high O3 conditions, NOX chemistry is driving the NO2/NOX ratios whereas under low O3 conditions, atmospheric mixing is the driving factor.

  20. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: parameters influence, and optimization.

    PubMed

    Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy

    2016-09-01

    This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.

  1. Mechanisms of Hypertension: The Expanding Role of Aldosterone

    PubMed Central

    FREEL, E. MARIE; CONNELL, JOHN M.C.

    2005-01-01

    Hypertension is a common disorder that affects a large heterogeneous patient population. Subgroups can be identified on the basis of their responses to hormonal and biologic stimuli. These subgroups include low-renin hypertensives and nonmodulators. Aldosterone, the principal human mineralocorticoid, is increasingly recognized as playing a significant role in cardiovascular morbidity, and its role in hypertension has recently been reevaluated with studies that suggest that increased aldosterone biosynthesis (as defined by an elevated aldosterone to renin ratio) is a key phenotype in up to 15% of individuals with hypertension. It was reported previously that a polymorphism of the gene (C to T conversion at position −344) encoding aldosterone synthase is associated with hypertension, particularly in individuals with a high ratio. However, the most consistent association with this variant is a relative impairment of adrenal 11β-hydroxylation. This review explores the evidence for this and provides a hypothesis linking impaired 11β-hydroxylation and hypertension with a raised aldosterone to renin ratio. It is also speculated that there is substantial overlap between this group of patients and previously identified low-renin hypertensives and nonmodulators. Thus, these groups may form a neurohormonal spectrum reflecting different stages of hypertension or indeed form sequential steps in the natural history of hypertension in genetically susceptible individuals. PMID:15284285

  2. Hypothalamic-pituitary-thyroid axis function in women with a menstrually related mood disorder: association with histories of sexual abuse

    PubMed Central

    Bunevicius, Adomas; Leserman, Jane; Girdler, Susan

    2012-01-01

    Introduction We previously reported a unique hypothalamic-pituitary-thyroid (HPT) axis profile in women with a menstrually related mood disorder (MRMD) who also had a history of sexual abuse (SA). In the present study, we sought to extend that work by examining the association of a SA history with HPT-axis disturbance in both MRMD and non-MRMD women. Methods Fifty-seven women met prospective criteria for MRMD (23 with a SA history) and 52 women were non-MRMD (18 with a SA history). Thyroid stimulating hormone (TSH), T4, (total and free) and T3 (total and free) were evaluated in serum together with thyroid hormone ratios reflecting T4 to T3 conversion. Results MRMD women, compared with non-MRMD women, had elevated T3/T4 ratios (ps≤0.01; reflecting increased conversion of T4 to T3) and lower free and total T4 concentrations (ps=0.01). Higher T3/T4 ratios and lower T4 concentrations predicted more severe premenstrual symptomatology in all women. A SA history, irrespective of MRMD status, was associated with elevated TSH concentrations (p=0.03). However, in MRMD women, a SA history was associated with elevated T3 concentrations (p=0.049), whereas in non-MRMD women, a SA history was associated with decreased T3 concentrations (p=0.02). Conclusions A MRMD and a SA history are associated with independent as well as interactive effects on the HPT-axis. The evidence that a MRMD moderates the influence of SA on T3 concentrations contributes to a growing body of work suggesting that a SA history may identify a distinct subgroup of women with MRMD. PMID:23001392

  3. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.

    PubMed

    Mayyas, Mohannad; Pahlevani, Farshid; Maroufi, Samane; Liu, Zhao; Sahajwalla, Veena

    2017-03-01

    Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO 2 ). Interactions between TiO 2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO 2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO 2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO 2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dependence of performance of Si nanowire solar cells on geometry of the nanowires.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2014-01-01

    The dependence of performance of silicon nanowires (SiNWs) solar cells on the growth condition of the SiNWs has been described. Metal-assisted electroless etching (MAE) technique has been used to grow SiNWs array. Different concentration of aqueous solution containing AgNO3 and HF for Ag deposition is used. The diameter and density of SiNWs are found to be dependent on concentration of solution used for Ag deposition. The diameter and density of SiNWs have been used to calculate the filling ratio of the SINWs arrays. The filling ratio is increased with increase in AgNO3 concentration, whereas it is decreased with increase in HF concentration. The minimum reflectance value achieved is ~1% for SiNWs of length of ~1.2 μ m in the wavelength range of 300-1000 nm. The performance and diode parameters strongly depend on the geometry of SiNWs. The maximum short circuit current density achieved is 35.6 mA/cm(2). The conversion efficiency of solar cell is 9.73% for SiNWs with length, diameter, and wire density of ~1.2 μ m, ~75 nm, and 90 μ m(-2), respectively.

  5. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  6. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    NASA Astrophysics Data System (ADS)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  7. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardwares completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio. The practical limitations of the system such as the finite register length are examined. It is concluded that the proposed all-digital system is not only technically feasible but also has potential cost reduction over the existing receiving systems.

  8. Optical properties of flexible fluorescent films prepared by screen printing technology

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  9. Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine

    NASA Astrophysics Data System (ADS)

    Zhao, Sha; Zhang, Zhena; Zhu, Kongying; Chen, Jixiang

    2017-05-01

    A series of Ni2P/AlMCM-41-x bifunctional catalysts with different Si/Al ratios (x) were synthesized by in situ phosphorization of Ni/AlMCM-41-x with triphenylphosphine (nominal Ni/P ratio of 0.75) at 300 °C on a fixed-bed reactor. For comparison, NiP/AlMCM-41-5-TPR was also prepared by the TPR method from the supported nickel phosphate with the Ni/P ratio of 1.0, during which metallic Ni rather than Ni2P formed. TEM images show that Ni and Ni2P particles uniformly distributed in Ni2P/AlMCM-41-x and NiP/AlMCM-41-5-TPR. The Ni2P/AlMCM-41-x acidity increased with decreasing the Si/Al ratio. In the hydroconversion of methyl laurate, the conversions were close to 100% on all catalysts at 360 °C, 3.0 MPa, methyl laurate WHSV of 2 h-1 and H2/methyl laurate ratio of 25. As to Ni2P/AlMCM-41-x, with decreasing the Si/Al ratio, the total selectivity to C11 and C12 hydrocarbons decreased, while the total selectivity to isoundecane and isododecane (Si-C11+i-C12) firstly increased and then decreased. Ni2P/AlMCM-41-5 gave the largest Si-C11+i-C12 of 43.2%. While NiP/AlMCM-41-5-TPR gave higher Si-C11+i-C12 than Ni2P/AlMCM-41-5, it was more active for the undesired Csbnd C bond cleavage and methanation. We propose that the in-situ phosphorization adopted here is a promising approach to preparing Ni2P-based bifunctional catalysts.

  10. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).

    PubMed

    Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari

    2016-11-01

    In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.

  11. Influence of bioactive particles on the chemical-mechanical properties of experimental enamel resin infiltrants.

    PubMed

    Sfalcin, Ravana Angelini; Correr, Américo Bortolazzo; Morbidelli, Lucas Rafael; Araújo, Tatiany Gabrielle Freire; Feitosa, Victor Pinheiro; Correr-Sobrinho, Lourenço; Watson, Timothy Frederick; Sauro, Salvatore

    2017-07-01

    This study aimed at evaluating the chemophysical properties of experimental resin infiltrants (ERIs) doped with different bioactive particles. A control resin infiltrant (CR) was formulated using triethylene glycol dimethacrylate (TEGDMA) and ethoxylated bisphenol A dimethacrylate (BisEMA). Moreover, five experimental ERIs were also created by incorporating the following bioactive fillers (10 wt%) into the CR: hydroxyapatite (Hap), amorphous calcium phosphate (ACP), zinc-polycarboxylated bioactive glass (BAG-Zn), bioactive glass 45S5 (BAG 45S5), and calcium silicate modified with beta tricalcium phosphate (β-TCP). ICON® resin infiltrant was also used as control. All the ERIs used in this study were assessed for degree of conversion (DC), Knoop microhardness (KHN), softening ratio (SR), tensile cohesive strength (TCS), modulus of elasticity (E-modulus), water sorption (WS), and solubility (SL). Data were subjected to ANOVA and Tukey's test (α = 5%). ICON® presented the lowest DC, KHN, TCS, E-modulus, and SR. Incorporation of bioactive fillers into CR caused significant increase in the KHN. Conversely, no significant effect was observed on DC, TCS, and E-modulus. The resin infiltrant containing Hap showed a significant increase in softening ratio, while, ICON® presented the highest WS and SL. The WS of ACP-doped resin infiltrant was significantly higher than that of the Hap-doped infiltrant. The SL of the ACP-doped infiltrant was higher than CR BAG-Zn or BAG 45S5. The incorporation of bioactive particles into experimental resin infiltrants can improve the chemomechanical properties and reduce water sorption and solubility. Resin infiltrants doped with bioactive particles may improve the long-term performance of the treatment of white-spot lesions.

  12. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2.

    PubMed

    Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang

    2017-03-01

    A catalyst composed of manganese oxides supported on titania (MnO x /TiO 2 ) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg 0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O 2 and a proper ratio of [NH 3 ]/[NO] are essential for the denitration reaction. Both NO conversion and Hg 0 removal efficiency could reach more than 80% when NO and Hg 0 were removed simultaneously using Mn0.8Ti at 240°C. Hg 0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg 0 removal efficiency. O 2 and HCl had a promotional effect on Hg 0 removal. SO 2 and NH 3 were observed to weaken Hg 0 removal because of competitive adsorption. NO first facilitated Hg 0 removal and then had an inhibiting effect as NO concentration increased without O 2 , and it exhibited weak inhibition of Hg 0 removal efficiency in the presence of O 2 . The oxidation of Hg 0 on MnO x /TiO 2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.

  13. Silsesquioxane-derived ceramic fibres

    NASA Technical Reports Server (NTRS)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  14. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    PubMed

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  15. Temperature dependence of the ratio of intensities of up-conversion fluorescence bands of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics activated with erbium ions

    NASA Astrophysics Data System (ADS)

    Varaksa, Yu. A.; Sinitsyn, G. V.; Khodasevich, M. A.; Aseev, V. A.; Kolobkova, E. V.; Yasyukevich, A. S.

    2015-01-01

    Up-conversion fluorescence spectra of YVO4 and YGdVO4 crystals and lead fluoride nano glass ceramics coactivated with erbium and ytterbium ions have been studied in the wavelength range of 520-560 nm under 967-nm pumping. The ratio of intensities of fluorescence bands in the ranges of 520-530 and 540-550 nm has been measured in the temperature range of from room temperature to 150°C. It is shown that the considered materials can be used for preparing a sensing element of optical fluorescent temperature sensors; the sensitivity of measuring the temperature of nano glass-ceramics can be close to that of crystal samples.

  16. Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation

    NASA Technical Reports Server (NTRS)

    Locicero, J. L.; Schilling, D. L.

    1977-01-01

    An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.

  17. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    NASA Astrophysics Data System (ADS)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  18. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  19. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    PubMed

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Demand Equations for Qualitatively Different Foods under Fixed-Ratio Schedules: A Comparison of Three Data Conversions

    ERIC Educational Resources Information Center

    Foster, T. Mary; Sumpter, Catherine E.; Temple, William; Flevill, Amanda; Poling, Alan

    2009-01-01

    Concurrent schedules were used to establish 6 hens' preferences for three foods. The resulting biases suggested wheat was preferred over honey-puffed and puffed wheat, and puffed wheat was the least preferred food. The hens then responded under fixed-ratio schedules for each food in 40-min (excluding reinforcer time) sessions, with the response…

  1. An efficient system for the asymmetric acylation of (R,S)-3-n-butylphthalide catalyzed by novozyme 435.

    PubMed

    Li, Cuiqin; He, Laping; Qiu, Baoquan; Gao, Bing

    2010-01-01

    Novozyme 435 could be a highly efficient catalyst in the asymmetric acylation of (R,S)-3-n-butylphthalide in tetrahydrofuran-hexane solvents. The effect of various reaction parameters such as agitation velocity, water content, mixed media, temperature, concentration of Novozyme 435, molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, reaction time, enantiomeric excess of substrate (ee(S)), enantiomeric excess of product (ee(P)), and enantioselective ratio (E) were studied. Tetrahydrofuran markedly improved (R,S)-3-n-butylphthalide conversion, enantiomeric excess of remaining 3-n-butylphthalide, and enantiomeric ratio. The optimum media were 50% (v/v) tetrahydrofuran and 50% (v/v) hexane. Other ideal reaction conditions were an agitation velocity of 150 rpm, 0.4% (v/v) water content, temperature of 30 °C, 8 mg/mL dosage of Novozyme 435, 8:1 (0.4 mmol: 0.05 mmol) molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, and a reaction time of 48 hr. Under the optimum conditions, 96.4% ee(S) and 49.3% conversion of (R,S)-3-n-butylphthalide were achieved. In addition, enantiomeric excess of the product was above 98.0%.

  2. Biogas reforming over multi walled carbon nanotubes with Co-Mo/MgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2017-12-01

    The utilization of biogas for the production of valuable chemicals is among the very important processes in the energy research field. The most suitable process for biogas reforming is dry reforming of methane. An obvious drawback is the variable composition of biogas rather than the stoichiometrically equimolar quantities of methane and carbon dioxide. Moreover, activating the methane and carbon dioxide molecules in the reforming reaction provides many challenges in exploring new concepts and opportunities for development of unique catalysts. In the present work, the catalytic activity behavior of Co-Mo-MgO/multi-walled carbon nanotubes (MWCNTs) nanocomposite in dry reforming was investigated with different CO2/CH4 feed ratio to evaluate the performance of this catalyst for biogas reforming reaction. It was found that conversions of methane and carbon dioxide were greatly influenced by the feed gas ratio. The CH4 and CO2 conversions are 83 % and 87 % at the reaction temperature of 825 °C, GHSV of 175 L/h.gcat and CO2/CH4 feed ratio of unity. The minimum carbon deposition rate is observed at the CO2/CH4 feed ratio of 0.6 which is 0.080 gc/gcat-h.

  3. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio.

    PubMed

    Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P

    2016-01-02

    Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative stress and kidney damage for lead, while increased RAS activation links methylmercury to hypertension, but these mechanisms along with hypertension disappear when metals are present in some mixtures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Calcium soap from palm fatty acid distillate for ruminant feed: The influence of water temperature

    NASA Astrophysics Data System (ADS)

    Handojo, Lienda A.; Indarto, Antonius; Shofinita, Dian; Meitha, Anggina; Nabila, Rakhmawati; Triharyogi, Harry; Kevin, Leonardus

    2018-03-01

    As the largest palm oil producing country in the world, Indonesia also produces abundant amount of Palm Fatty Acid Distillate (PFAD), a by-product of Crude Palm Oil (CPO) refining process. PFAD can be utilized as the raw material for calcium soap, ruminant feed that is widely used to increase milk yield, as well as to increase the ruminant’s fertility. However, the practice of feeding ruminants with calcium soap has not been practiced in Indonesia, which makes it imperative to develop calcium soap production process from PFAD within the country. This research aimed to study the effect of operating conditions of the saponification reaction using PFAD and CaO as reactants on the quality of the calcium soap obtained. The saponification reaction was carried out by modified fusion method. A range of stoichiometric mole ratios of CaO to PFAD (1.0 to 1.6) and the temperature of water (60-90°C) were studied in this research. An increase in the stoichiometric mole ratio of CaO/PFAD was observed to cause a decrease in the acid value, which indicates an increase in the reaction conversion. In contrast, the temperature of water was found to have little impact on the acid value of the product.

  5. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  6. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  7. Conversion of para and ortho hydrogen in the Jovian planets

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Hunten, D. M.

    1982-01-01

    A mechanism is proposed which partially equilibrates the para and ortho rotational levels of molecular hydrogen in the atmospheres of Jupiter, Saturn, and Uranus. Catalytic reactions between the free-radical surface sites of aerosol particles and hydrogen modecules yield significant equilibration near 1 bar pressure, if the efficiency of conversion per collision is between 10 to the -8th and 10 to the -10th and the effective eddy mixing coefficient is 10,000 sq cm/sec. At lower pressures the ortho-para ratio retains the value at the top of the cloud layer, except for a very small effect from conversion in the thermosphere. The influence of conversion on the specific heat and adiabatic lapse rate is also investigated. The effect is found to be generally small, though is can rise to 10% inside the aerosol layer.

  8. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    PubMed

    Yan Lu; Wing-Hung Ki

    2014-06-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.

  9. Change in the hormone receptor status following administration of neoadjuvant chemotherapy and its impact on the long-term outcome in patients with primary breast cancer

    PubMed Central

    Hirata, T; Shimizu, C; Yonemori, K; Hirakawa, A; Kouno, T; Tamura, K; Ando, M; Katsumata, N; Fujiwara, Y

    2009-01-01

    Background: To evaluate the impact of change in the hormone receptor (HR) status (HR status conversion) on the long-term outcomes of breast cancer patients treated with neoadjuvant chemotherapy (NAC). Methods: We investigated 368 patients for the HR status of their lesions before and after NAC. On the basis of the HR status and the use/non-use of endocrine therapy (ET), the patients were categorised into four groups: Group A, 184 ET-administered patients with HR-positive both before and after NAC; Group B, 47 ET-administered patients with HR status conversion; Group C, 12 ET-naive patients with HR status conversion; Group D, 125 patients with HR-negative both before and after NAC. Results: Disease-free survival in Group B was similar to that in Group A (hazard ratio, 1.16; P=0.652), but that in Group C was significantly lesser than that in Group A (hazard ratio, 6.88; P<0.001). A similar pattern of results was obtained for overall survival. Conclusion: Our results indicate that the HR status of tumours is a predictive factor for disease-free and overall survival and that ET appears to be suitable for patients with HR status conversion. Therefore, both the CNB and surgical specimens should be monitored for HR status. PMID:19809429

  10. Role of volatilization in changing TBA and MTBE concentrations at MTBE-contaminated sites.

    PubMed

    Eweis, Juana B; Labolle, Eric M; Benson, David A; Fogg, Graham E

    2007-10-01

    Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.

  11. Non-alcoholic fatty liver disease and impaired proinsulin conversion as newly identified predictors of the long-term non-response to a lifestyle intervention for diabetes prevention: results from the TULIP study.

    PubMed

    Schmid, Vera; Wagner, Robert; Sailer, Corinna; Fritsche, Louise; Kantartzis, Konstantinos; Peter, Andreas; Heni, Martin; Häring, Hans-Ulrich; Stefan, Norbert; Fritsche, Andreas

    2017-12-01

    Lifestyle intervention is effective to prevent type 2 diabetes. However, a considerable long-term non-response occurs to a standard lifestyle intervention. We investigated which risk phenotypes at baseline and their changes during the lifestyle intervention predict long-term glycaemic non-response to the intervention. Of 300 participants at high risk for type 2 diabetes who participated in a 24 month lifestyle intervention with diet modification and increased physical activity, 190 participants could be re-examined after 8.7 ± 1.6 years. All individuals underwent a five-point 75 g OGTT and measurements of body fat compartments and liver fat content with MRI and spectroscopy at baseline, 9 and 24 months during the lifestyle intervention, and at long-term follow-up. Fasting proinsulin to insulin conversion (PI/I ratio) and insulin sensitivity and secretion were calculated from the OGTT. Non-response to lifestyle intervention was defined as no decrease in glycaemia, i.e. no decrease in AUC for glucose at 0-120 min during OGTT (AUCglucose 0-120 min ). Before the lifestyle intervention, 56% of participants had normal glucose regulation and 44% individuals had impaired fasting glucose and/or impaired glucose tolerance. At long-term follow-up, 11% had developed diabetes. Multivariable regression analysis with adjustment for age, sex, BMI and change in BMI during the lifestyle intervention revealed that baseline insulin secretion and insulin sensitivity, as well as change in insulin sensitivity during the lifestyle intervention, predicted long-term glycaemic control after 9 years. In addition, increased hepatic lipid content as well as impaired fasting proinsulin conversion at baseline were newly detected phenotypes that independently predicted long-term glycaemic control. Increased hepatic lipid content and impaired proinsulin conversion are new predictors, independent of change in body weight, for non-response to lifestyle intervention in addition to the confirmed factors, impaired insulin secretion and insulin sensitivity.

  12. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    PubMed

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  13. Performance of lead-free versus lead-based hunting ammunition in ballistic soap.

    PubMed

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks.

  14. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers.

    PubMed

    Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M

    2016-08-01

    This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  15. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks. PMID:25029572

  16. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability.

    PubMed

    Shuai, Shuping; Yue, Shanlan; Huang, Qingting; Wang, Wei; Yang, Junyi; Lan, Ke; Ye, Liming

    2016-08-01

    The purpose of this study was to develop and evaluate a novel amorphous solid dispersion system for tectorigenin (TG). TG is one of isoflavone aglycones extracted from Iris tectorum and flowers of Pueraria thunbergiana, but its poor water solubility and low membrane permeability have severely restricted the clinical application. To increase the aqueous solubility and oral bioavailability of TG, we prepared the solid dispersions of tectorigenin (TG-SD) using a simple solvent evaporation process with TG, polyvinylpyrrolidone (PVP) and PEG4000 at weight ratio of 7:54:9 after tested in several ratios. The prepared solid dispersions of tectorigenin are duly characterized for drug morphological conversion, in vitro dissolution and in vivo bioavailability. The X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies have indicated the morphological conversion of tectorigenin to amorphous form. In vitro release profiles revealed that the % release of TG-SD was achieved 4.35-fold higher than that of the pure drug after 150 min. The oral bioavailability of the solid dispersion in rats was also increased based on AUC0-t and C max of TG-SD, which were 4.8- and 13.1-fold higher than that of TG crystal, respectively. It is worth noting that physical mixture containing TG, PEG4000 and PVP produced a similar level of oral exposure as TG-SD, suggesting that PEG4000 and PVP were able to enhance bioavailability of TG in rats. However, with the reduction of particle size, TG-SD provided the fastest oral absorption compared to physical mixture and pure drug. These results demonstrated that the efficacy of solid dispersions for the enhancement of TG oral bioavailability was by increasing its aqueous solubility and the solid dispersion formulation could be a viable option for enhancing the oral bioavailability of TG.

  17. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    PubMed

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol -1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley & Sons Ltd.

  18. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  19. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  20. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  1. Generic substitution of lamotrigine among medicaid patients with diverse indications: a cohort-crossover study.

    PubMed

    Hartung, Daniel M; Middleton, Luke; Svoboda, Leanne; McGregor, Jessina C

    2012-08-01

    Controversy exists about the safety of substituting generic antiepileptic drugs (AEDs). Lamotrigine, the prototypical newer AED, is often used for psychiatric and neurological conditions other than epilepsy. The safety of generic substitution of lamotrigine in diverse populations of AED users is unclear. The objective of this study was to evaluate potential associations between generic substitution of lamotrigine and adverse consequences in a population of diverse users of this drug. This study was a retrospective cohort-crossover design using state Medicaid claims data from July 2006 through June 2009. Subjects were included in the cohort if they converted from brand to generic lamotrigine and had 2 years of lamotrigine use prior to conversion. The frequency of emergency department (ED) visits, hospitalizations and condition-specific ED visits or hospitalizations were recorded in the 60 days immediately following the conversion to generic lamotrigine, then compared with the incidence of the same events during a randomly selected time period indexed to one of the patient's past refills of branded lamotrigine. Multivariate conditional logistic regression was used to quantify the association between generic conversion and health services utilization while controlling for changes in lamotrigine dose and concurrent drug use. Of the 616 unique subjects included in this analysis, epilepsy was the most common diagnosis (41%), followed by bipolar disorder (32%), pain (30%) and migraine (18%). Conversion to generic lamotrigine was not associated with a statistically significant increase in the odds of an ED visit (adjusted odds ratio [AOR] = 1.35; 95% confidence interval [CI] 0.92, 1.97), hospitalization (AOR = 1.21; 95% CI 0.60, 2.50) or condition-specific encounter (AOR 1.75; 95 CI 0.87, 3.51). A statistically significant increase in ED visits, hospitalizations or condition-specific encounters was not observed following the switch from brand to generic lamotrigine, although a type II error cannot be ruled out.

  2. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications.

    PubMed

    Hodgson, A T; Destaillats, H; Sullivan, D P; Fisk, W J

    2007-08-01

    Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.

  3. Conversation Therapy with People with Aphasia and Conversation Partners using Video Feedback: A Group and Case Series Investigation of Changes in Interaction

    PubMed Central

    Best, Wendy; Maxim, Jane; Heilemann, Claudia; Beckley, Firle; Johnson, Fiona; Edwards, Susan I.; Howard, David; Beeke, Suzanne

    2016-01-01

    Conversation therapies employing video for feedback and to facilitate outcome measurement are increasingly used with people with post-stroke aphasia and their conversation partners; however the evidence base for change in everyday interaction remains limited. We investigated the effect of Better Conversations with Aphasia (BCA), an intervention that is freely available online at https://extend.ucl.ac.uk/. Eight people with chronic agrammatic aphasia, and their regular conversation partners participated in the tailored 8 week program involving significant video feedback. We explored changes in: (i) conversation facilitators (such as multi-modal turns by people with aphasia); and (ii) conversation barriers (such as use of test questions by conversation partners). The outcome of intervention was evaluated directly by measuring change in video-recorded everyday conversations. The study employed a pre-post design with multiple 5 minute samples of conversation before and after intervention, scored by trained raters blind to the point of data collection. Group level analysis showed no significant increase in conversation facilitators. There was, however, a significant reduction in the number of conversation barriers. The case series data revealed variability in conversation behaviors across occasions for the same dyad and between different dyads. Specifically, post-intervention there was a significant increase in facilitator behaviors for two dyads, a decrease for one and no significant change for five dyads. There was a significant decrease in barrier behaviors for five dyads and no significant change for three dyads. The reduction in barrier behaviors was considerable; on average change from over eight to fewer than three barrier behaviors in 5 minutes of conversation. The pre-post design has the limitation of no comparison group. However, change occurs in targeted conversational behaviors and in people with chronic aphasia and their partners. The findings suggest change can occur after eight therapy sessions and have implications for clinical practice. A reduction in barrier behaviors may be easier to obtain, although the controlled case series results demonstrate a significant increase in conversation facilitators is also possible. The rehabilitation tool is available online and video technology was central to delivering intervention and evaluating change. PMID:27872588

  4. Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method

    PubMed Central

    2013-01-01

    Abstract Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties. PACS 42.70.-a, 78.55.Hx, 78.60.-b PMID:23522083

  5. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  6. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of CO and CO2 showed a higher CO and CO2 adsorption (for temperatures ranging from room temperature to 600°C) on BSCF compared to the SFC membrane. CO2 reforming reactions on BSCF and SFC dense membranes in a membrane reactor showed higher methane conversion and H2/CO ratio on BSCF than SFC in the presence of the Pt/CeZrO2 catalyst. This high conversion and H2/CO ratio could be ascribed to higher CO, CO2, and H2 adsorption on BSCF than SFC, resulting in higher steam and CO2 reforming on the BSCF. The Pt-Ni/CeZrO2 catalyst exhibits promising performance for hydrogen production. Platinum enhances the reducibility of Ni/Al2O 3 and Ni/CeZrO2 catalysts resulting in improved catalysts for H2 production at moderate temperatures. TPR and Raman studies show an alloy formation in the Pt-Ni/Al2O3 catalyst. Further work is required to study the interaction between Pt and Ni in the bimetallic Pt-Ni/CeZrO2 and Pt-Ni/Al2O3 catalysts. Although the Pt-Ni/Al2O3 catalyst shows high methane conversion in the presence of the BSCF membrane at 800°C, the activity of this catalyst is low at 600°C. Pt-Ni/CeZrO2 bimetallic catalyst demonstrates superior performance compared to Pt-Ni/Al2O3 catalyst at 600°C. The thinner BSCF membrane (2.2 mm) demonstrates a higher methane conversion and H2:CO ratio than the thicker BSCF membrane (2.6 mm) because membrane oxygen flux is inversely proportional to thickness. Varying the pH of the precursor solution during membrane preparation has no significant effect on the oxygen flux or the reaction. The CH 4:CO2 feed ratio significantly affects the hydrogen production over the BSCF membrane. Altering the CH4:CO2 ratio has a direct impact on the oxygen flux, which in turn can influence the reaction pathway. These studies suggest that the Pt-Ni/CeZrO2 catalyst might be suitable for low-temperature hydrocarbon conversion reactions over thin BSCF ceramic membranes. Most importantly, the BSCF membrane can reduce the apparent activation energy of the CO2 reforming reaction by changing the reaction pathway to include more steam reforming.

  7. Effects of conversation interference on annoyance due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Key, K. F.; Powell, C. A.

    1980-01-01

    The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.

  8. Disrupted social development enhances the motivation for cocaine in rats.

    PubMed

    Baarendse, Petra J J; Limpens, Jules H W; Vanderschuren, Louk J M J

    2014-04-01

    Early social experiences are of major importance for behavioural development. In particular, social play behaviour during post-weaning development is thought to facilitate the attainment of social, emotional and cognitive capacities. Conversely, social insults during development can cause long-lasting behavioural impairments and increase the vulnerability for psychiatric disorders, such as drug addiction. The aim of this study was to investigate whether a lack of social experiences during the juvenile and early adolescent stage, when social play behaviour is highly abundant, alters cocaine self-administration in rats. Rats were socially isolated from postnatal days 21 to 42 followed by re-socialization until adulthood. Cocaine self-administration was then assessed under a fixed ratio and progressive ratio schedule of reinforcement. Next, cue, cocaine and stress-induced reinstatement of cocaine seeking was determined following extinction of self-administration. Early social isolation resulted in an enhanced acquisition of self-administration of a low dose (0.083 mg/infusion) of cocaine, but the sensitivity to cocaine reinforcement, assessed using a dose-response analysis, was not altered in isolated rats. Moreover, isolated rats displayed an increased motivation for cocaine under a progressive ratio schedule of reinforcement. Extinction and reinstatement of cocaine seeking was not affected by early social isolation. Early social isolation causes a long-lasting increase in the motivation to self-administer cocaine. Thus, aberrations in post-weaning social development, such as the absence of social play, enhance the vulnerability for drug addiction later in life.

  9. High-yield synthesis of vaterite microparticles in gypsum suspension system via ultrasonic probe vibration/magnetic stirring

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin

    2018-06-01

    Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.

  10. Conversion of kraft lignin over hierarchical MFI zeolite.

    PubMed

    Kim, Seong-Soo; Lee, Hyung Won; Ryoo, Ryong; Kim, Wookdong; Park, Sung Hoon; Jeon, Jong-Ki; Park, Young-Kwon

    2014-03-01

    Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.

  11. Industrial conversion costs from oil and gas to alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, H.; Reichert, A.T.

    1977-01-01

    From a national standpoint, many questions can be raised on conversion -- whether mandatory or through taxation. 1) Why is it necessary to intervene in the market since price increases will act to allocate available fuels. The desire to reduce dependence on imported oil and gas may be an overriding constraint -- an unproven proposition; some believe that price increases would not have a significant positive impact on output -- a position without a great deal of economic or geological foundation; and the President, for obvious reasons, did not want to force households into conversion nor did he want tomore » propose deregulation which, in the short run, may increase prices directly to consumers but it would be politically more palatable to pass on energy price increase through industry; though astute politically, the economic merit of such a decision is very questionable. 2) Is the cutback of oil and gas consumption being targeted into the least critical area of national need, namely industry. 3) From the national perspective, is conversion desirable as compared to continued dependence on foreign oil for existing plants, with non-petroleum fuel sources for new plants and new residential dwellings. If conversion costs are prohibitive, then it may be ruled out. If conversion costs are low but the real cost of using coal or electricity far exceeds the economic risk of OPEC price increases or embargoes, then again conversion may be ruled out. In short, even if conversion costs are low, it is far from obvious that conversion is desirable. In this paper, the question of conversion cost and its regional implications is examined in detail.« less

  12. The adjusting factor method for weight-scaling truckloads of mixed hardwood sawlogs

    Treesearch

    Edward L. Adams

    1976-01-01

    A new method of weight-scaling truckloads of mixed hardwood sawlogs systematically adjusts for changes in the weight/volume ratio of logs coming into a sawmill. It uses a conversion factor based on the running average of weight/volume ratios of randomly selected sample loads. A test of the method indicated that over a period of time the weight-scaled volume should...

  13. Fructose utilization during exercise in men: rapid conversion of ingested fructose to circulating glucose.

    PubMed

    Jandrain, B J; Pallikarakis, N; Normand, S; Pirnay, F; Lacroix, M; Mosora, F; Pachiaudi, C; Gautier, J F; Scheen, A J; Riou, J P

    1993-05-01

    The aim of the present study was to compare the metabolic fate of repeated doses of fructose or glucose ingested every 30 min during long-duration moderate-intensity exercise in men. Healthy volunteers exercised for 3 h on a treadmill at 45% of their maximal oxygen consumption rate. "Naturally labeled" [13C]glucose or [13C]fructose was given orally at 25-g doses every 30 min (total feeding: 150 g; n = 6 in each group). Substrate utilization was evaluated by indirect calorimetry, and exogenous sugar oxidation was measured by isotope ratio mass spectrometry on expired CO2. Results were corrected for baseline drift in 13C/12C ratio in expired air due to exercise alone. Fructose conversion to plasma glucose was measured combining gas chromatography and isotope ratio mass spectrometry. Most of the ingested glucose was oxidized: 81 +/- 4 vs. 57 +/- 2 g/3 h for fructose (2P < 0.005). Exogenous glucose covered 20.8 +/- 1.4% of the total energy need (+/- 6.7 MJ) compared with 14.0 +/- 0.6% for fructose (2P < 0.005). The contribution of total carbohydrates was significantly higher and that of lipids significantly lower with glucose than with fructose. The blood glucose response was similar in both protocols. From 90 to 180 min, 55-60% of circulating glucose was derived from ingested fructose. In conclusion, when ingested repeatedly during moderate-intensity prolonged exercise, fructose is metabolically less available than glucose, despite a high rate of conversion to circulating glucose.

  14. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Chen, Guanghao

    2017-10-15

    The performance of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) process tends to be unstable and requires further study and development. This in turn requires extensive study of the anaerobic metabolism in terms of its stoichiometry and kinetics. This study evaluates the corresponding responses of DS-EBPR to pH, as it significantly influences both stoichiometry and biochemical kinetics. The impacts of five representative pH values ranging between 6.5 and 8.5 on the anaerobic metabolism were investigated, followed by identification of the optimal pH for performance optimization. A mature DS-EBPR sludge was used in the study, enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB). Through a series of batch tests, the optimal pH range was determined as 7.0-7.5. In this pH range, the anaerobic stoichiometry of phosphorus released/volatile fatty acid (VFA) uptake ratio, sulfate reduction, and internal polymer production (including poly-β-hydroxyalkanoates and polysulfide and/or elemental sulfur) all increased along with the anaerobic kinetics of the VFA uptake ratio. Consequently, phosphorus removal was maximized at this pH range (≥95% vs. 84-93% at other pH values), as was sulfur conversion (16 mg S/L vs. 10-13 mg S/L). This pH range therefore favors the activity and synergy of the key functional bacteria (i.e. SRB and SOB). Anaerobic maintenance tests showed these bacteria required 38-61% less energy for maintenance than that reported for GAOs regardless of pH changes, improving their ability to cope with anaerobic starvation. Adversely, both bacteria showed much lower VFA uptake rates than that of GAOs at all tested pH values (0.03-0.06 vs. 0.2-0.24 mol-C/C-mol biomass/h), possibly revealing the primary cause of frequent instability in the DS-EBPR process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gaseous byproducts from high-temperature thermal conversion elemental analysis of nitrogen- and sulfur-bearing compounds with considerations for δ2H and δ18O analyses.

    PubMed

    Hunsinger, Glendon B; Tipple, Christopher A; Stern, Libby A

    2013-07-30

    High-temperature, conversion-reduction (HTC) systems convert hydrogen and oxygen in materials into H2 and CO for δ(2)H and δ(18)O measurements by isotope ratio mass spectrometry. HTC of nitrogen- and sulfur-bearing materials produces unintended byproduct gases that could affect isotope analyses by: (1) allowing isotope exchange reactions downstream of the HTC reactor, (2) creating isobaric or co-elution interferences, and (3) causing deterioration of the chromatography. This study characterizes these HTC byproducts. A HTC system (ThermoFinnigan TC/EA) was directly connected to a gas chromatograph/quadrupole mass spectrometer in scan mode (m/z 8 to 88) to identify the volatile products generated by HTC at conversion temperatures of 1350 °C and 1450 °C for a range of nitrogen- and sulfur-bearing solids [keratin powder, horse hair, caffeine, ammonium nitrate, potassium nitrate, ammonium sulfate, urea, and three nitrated organic explosives (PETN, RDX, and TNT)]. The prominent HTC byproduct gases include carbon dioxide, hydrogen cyanide, methane, acetylene, and water for all nitrogen-bearing compounds, as well as carbon disulfide, carbonyl sulfide, and hydrogen sulfide for sulfur-bearing compounds. The 1450 °C reactor temperature reduced the abundance of most byproduct gases, but increased the significant byproduct, hydrogen cyanide. Inclusion of a post-reactor chemical trap containing Ascarite II and Sicapent, in series, eliminated the majority of byproducts. This study identified numerous gaseous HTC byproducts. The potential adverse effects of these gases on isotope ratio analyses are unknown but may be mitigated by higher HTC reactor temperatures and purifying the products with a purge-and-trap system or with chemical traps. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb

    NASA Astrophysics Data System (ADS)

    Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.

  17. Functional Feed Assessment on Litopenaeus vannamei Using 100% Fish Meal Replacement by Soybean Meal, High Levels of Complex Carbohydrates and Bacillus Probiotic Strains

    PubMed Central

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)—carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures. PMID:21747750

  18. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains.

    PubMed

    Olmos, Jorge; Ochoa, Leonel; Paniagua-Michel, Jesus; Contreras, Rosalia

    2011-01-01

    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)-carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures.

  19. Dose conversion ratio in hemodialysis patients switched from darbepoetin alfa to PEG-epoetin beta: AFFIRM study.

    PubMed

    Choi, Peter; Farouk, Mourad; Manamley, Nick; Addison, Janet

    2013-11-01

    There is limited information published on switching erythropoiesis-stimulating agent (ESA) treatment for anemia associated with chronic kidney disease (CKD) from darbepoetin alfa (DA) to methoxy polyethylene glycol-epoetin beta (PEG-Epo) outside the protocol of interventional clinical studies. AFFIRM (Aranesp Efficiency Relative to Mircera) was a retrospective, multi-site, observational study designed to estimate the population mean maintenance dose conversion ratio [DCR; dose ratio achieving comparable hemoglobin level (Hb) between two evaluation periods] in European hemodialysis patients whose treatment was switched from DA to PEG-Epo. Eligible patients had received hemodialysis for ≥ 12 months and DA for ≥ 7 months. Data were collected from 7 months before until 7 months after switching treatment. DCR was calculated for patients with Hb and ESA data available in both evaluation periods (EP; Months 1 and 2 were defined as the pre-switch EP, and Months 6 and 7 as the post-switch EP). Red blood cell transfusions pre- and post-switch were quantified. Of 302 patients enrolled, 206 had data available for DCR analysis. The geometric mean DCR was 1.17 (95% CI 1.05, 1.29). Regression analysis indicated a non-linear relationship between pre- and post-switch ESA doses; DCR decreased with increasing pre-switch DA dose. The geometric mean weekly ESA doses were 24.1 μg DA in the pre-switch EP and 28.6 μg PEG-Epo in the post-switch EP. Mean Hb was 11.5 g/dL in the pre-switch EP and 11.4 g/dL in the post-switch EP. There were 16 transfusions and 34 units transfused in the pre-switch period, versus 48 transfusions and 95 units transfused post-switch. Excluding patients receiving a transfusion within 90 days of or during either EP, the DCR was 1.21 (95% CI 1.09, 1.35). In these hemodialysis patients switched from DA to PEG-Epo the DCR was 1.17 and 1.21 after accounting for the effect of transfusions. The number of transfusions and units transfused increased approximately threefold from the pre-switch to the post-switch period.

  20. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Sun, Xuesong; Shi, Aijun; Huang, Yuhu; Yan, Jing; Nie, Teng; Yan, Xiao; Li, Xuan

    2018-03-01

    Severe PM2.5 pollution was observed frequently in Beijing. We conducted highly time-resolved measurements of inorganic ions associated with PM2.5 at an urban site in Beijing from 10 February to 19 March, 2015. The average PM2.5 mass concentrations during the six haze episodes ranged from 113.0 μg/m3 to 182.6 μg/m3, which were more than 8 times higher than those observed in clean periods. The secondary inorganic species (NH4+, SO42- and NO3-) in PM2.5 sharply increased during the haze episodes, indicating more extensive formation of SO42- and NO3-. The sulfur oxidation ratios (SOR) and the nitrogen oxidation ratios (NOR) in haze episodes were higher than those in clean periods, which indicated that secondary transformation in haze episodes was more significant than those in clean periods. No correlations between SOR and the oxidants (O3 and HONO) and the temperature were found, whereas a high correlation between SOR and relative humidity (RH) was found in haze episodes, which implied that sulfate was mainly produced by the aqueous-phase oxidation of SO2 rather than the gas-phase conversion of SO2 to sulfate. The conversion of SO2 to SO42- was observed to be sensitive to changes in RH. Furthermore, the SOR sharply increased at RH > 60% with the highest value of 0.88 at RH around 80% during complicated pollution. NO2 played an important role in the rapid sulfate formation with high RH and NH3 neutralization conditions in haze episodes in Beijing. The impact of RH was less apparent for nitrate than for sulfate. Nitrate was found to be produced mainly by photochemical and heterogeneous reactions, while heterogeneous reactions had a greater influence on NOR at nighttime. The NO3-/SO42- ratio indicated that mobile sources contributed more to the formation of PM2.5 than stationary sources. The result suggested the need for control of vehicle emissions to reduce the high levels of NOx and nitrate and the severe PM2.5 pollution in Beijing.

  1. High conversion of coal to transportation fuels for the future with low HC gas production. Progress report Number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, W.H.; Oblad, A.G.

    1995-04-01

    An objective of the Department of Energy in funding research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline-burning transportation vehicles of today. To meet this second objective, research was proposed for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studiesmore » conducted in a batch microreactor have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly one may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous-flow reactor system is to be designed, constructed and operated. The system is to be computer-operated for process control and data logging, and is to be fully instrumented. The primary liquid products will be characterized by GC, FTIR, and GC/MS, to determine the types and quantities of the principal components produced under conditions of high liquids production with high ratios of liquids/HC gases. From these analyses, together with GC analyses of the HC gases, hydrogen consumption for the conversion to primary liquids will be calculated. Conversion of the aromatics of this liquid product to isoparaffins will be investigated. Results to date on both tasks are presented.« less

  2. Probing the photon polarization in B → K*γ with conversion

    DOE PAGES

    Bishara, Fady; Robinson, Dean J.

    2015-09-02

    We re-examine the possibility to measure the photon polarization in B → K*γ decays, via decays in which the photon subsequently undergoes nuclear conversion to a lepton pair. We obtain compact expressions for the full decay-plus-conversion amplitude. With these results we show that interference between the B → (K* → Kπ)γ decay and the γN → ℓ + ℓ – N conversion permits both the ratio and relative weak phase between the left- and right-handed photon amplitudes to be probed by an angular observable, constructed from the final state dilepton, kaon and pion kinematic configuration. Exploiting this technique will bemore » experimentally challenging. However, we present special kinematic cuts that enhance the statistical power of this technique by an O(1) factor. Furthermore, we verify this effect and extract pertinent angular kinematic distributions with dedicated numerical simulations.« less

  3. A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.

    PubMed

    Jiang, Yanxia; Yang, Yulin; Qiang, Liangsheng; Fan, Ruiqing; Li, Liang; Ye, Tengling; Na, Yong; Shi, Yan; Luan, Tianzhu

    2015-03-14

    A novel heteropolyacid (HPA) K6SiW11O39Ni(H2O)·xH2O (SiW11Ni) modified TiO2 has been successfully synthesized and introduced into the photoanode of dye-sensitized solar cells (DSSCs). The performance of the cell with the HPA-modified photoanode (SiW11Ni/TiO2), mixed with P25 powder in the ratio of 2 : 8, is better than the cell with a pristine P25 photoanode. An increase of 31% in the photocurrent and 22% improvement in the conversion efficiency are obtained. The effect of the heteropolyacid was well studied by UV-vis spectroscopy, spectro-electrochemical spectroscopy, dark current, intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy, open-circuit voltage decay and electrochemical impedance spectroscopy. The results show that the interfacial layer modified by SiW11Ni can enhance the injection and transport of electrons, and then retard the recombination of electrons, which results in a longer electron lifetime. What's more, the introduction of SiW11Ni can simultaneously broaden the absorption in the visible region, eventually leading to an efficient increase in energy conversion efficiency.

  4. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    PubMed

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The complexity of hair/blood mercury concentration ratios and its implications.

    PubMed

    Liberda, Eric N; Tsuji, Leonard J S; Martin, Ian D; Ayotte, Pierre; Dewailly, Eric; Nieboer, Evert

    2014-10-01

    The World Health Organization (WHO) recommends a mercury (Hg) hair-to-blood ratio of 250 for the conversion of Hg hair levels to those in whole blood. This encouraged the selection of hair as the preferred analyte because it minimizes collection, storage, and transportation issues. In spite of these advantages, there is concern about inherent uncertainties in the use of this ratio. To evaluate the appropriateness of the WHO ratio, we investigated total hair and total blood Hg concentrations in 1333 individuals from 9 First Nations (Aboriginal) communities in northern Québec, Canada. We grouped participants by sex, age, and community and performed a 3-factor (M)ANOVA for total Hg in hair (0-2 cm), total Hg in blood, and their ratio. In addition, we calculated the percent error associated with the use of the WHO ratio in predicting blood Hg concentrations from hair Hg. For group comparisons, Estimated Marginal Means (EMMS) were calculated following ANOVA. At the community level, the error in blood Hg estimated from hair Hg ranged -25% to +24%. Systematic underestimation (-8.4%) occurred for females and overestimation for males (+5.8%). At the individual level, the corresponding error range was -98.7% to 1040%, with observed hair-to-blood ratios spanning 3 to 2845. The application of the ratio endorsed by the WHO would be unreliable for determining individual follow-up. We propose that Hg exposure be assessed by blood measurements when there are human health concerns, and that the singular use of hair and the hair-to-blood concentration conversion be discouraged in establishing individual risk. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  6. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    PubMed

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  7. Gas-to-particle conversion of sulphur and nitrogen compounds as studied at marine stations in Northern Europe

    NASA Astrophysics Data System (ADS)

    Foltescu, V. L.; Lindgren, E. Selin; Isakson, J.; Öblad, M.; Pacyna, J. M.; Benson, S.

    The present work provides insights into the N- and S-pollution behaviour at rural and remote sites in Northern Europe. Formation of SO 42- and NO 3- from their precursor gases receives special attention in order to understand the significance of chemical conversion in shaping the distributions of concentration and deposition monitored at our sites: Säby—on the Swedish west coast, Lista—on the Norwegian south coast and South Uist—on the Hebride Islands in Northern Scotland. Owing mainly to the complexity of the problem, the approach is semiquantitative. Concentration patterns of S- and N-compounds for air mass transport between the sites were investigated for 10 periods (13 d), within continental (6 d) and oceanic (7 d) air masses. The observations spanned over both winter and summer days and conclusions could be drawn in some cases with respect to seasonality. The measurements were performed during the BMCAPE (Background Maritime Contribution to Atmospheric Pollution in Europe) project in 1993 and 1994. S- and N-ratios were used as indicators of air mass age, chemical conversion efficiency and "en-route" deposition. The S-ratio is defined as the ratio of particulate S (as SO 42-) to total S (as SO 2 and SO 42-). The N-ratio is taken as the ratio of gaseous HNO 3-N over particulate NO 3--N. S-ratios at Saby and Lista agreed very well in those cases when no or insignificant precipitation occurred. Higher S-ratios and lower N-ratios were typical for conditions of high relative humidity. It is conceivable that condensed phase chemistry was of major importance in the SO 2 oxidation and that HNO 3 was absorbed onto the wet aerosol particles. Stagnation of the air masses over source regions of high emission densities and rates resulted in accumulation of pollution, the S-ratios in such conditions being high due to the longer transport time. The S-ratios for marine air flow at Säby and Lista no longer agreed (higher at Lista) as in the case of continental air masses. The reason is likely to be the proximity of the Lista station to the sea. Lista was highly affected by sea spray produced by the strong westerly winds. The N-ratio remained very low in the case of maritime air masses due to unexpectedly high NO 3- concentrations. It is conceivable that the high load of NO 3- is due to sea spray of surface water. More efficient SO 2 deposition over land than over sea has been observed in the westerly airflow by the relative loss of SO 2 while the flow swept over land.

  8. Anger induced by interferon-alpha is moderated by ratio of arachidonic acid to omega-3 fatty acids.

    PubMed

    Lotrich, Francis E; Sears, Barry; McNamara, Robert K

    2013-11-01

    Anger worsens in some patients during interferon-alpha (IFN-α) therapy. Elevated anger has also been associated with lower long-chain omega-3 (LCn-3) fatty acid levels. We examined whether fatty acids could influence vulnerability to anger during IFN-α exposure. Plasma arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels were determined prior to IFN-α therapy by mass spectroscopy. Repeated-measure analyses examined the relationship between AA/EPA+DHA and the subsequent development of labile anger and irritability in 82 subjects who prospectively completed the Anger, Irritability, and Assault Questionnaire (AIAQ) during the first eight weeks of IFN-α therapy. Prior to IFN-α therapy, AA/EPA+DHA did not correlate with either labile anger or irritability. Pre-treatment AA/EPA+DHA did correlate with the subsequent maximal increase in labile anger during IFN-α therapy (r=0.33; p=0.005). Over time, labile anger increased more in subjects with above median AA/EPA+DHA ratios (p<0.05). Of the 17 subjects ultimately requiring psychiatric intervention for anger, 14/17 had above-median AA/EPA+DHA ratios (p=0.009). There was also an interaction with the tumor necrosis factor-alpha (TNF-α) promoter polymorphism (A-308G), such that only those with both elevated AA/EPA+DHA and the A allele had increased labile anger (p=0.001). In an additional 18 subjects, we conversely observed that selective serotonin reuptake inhibitor treatment was associated with increased irritability during IFN-α therapy. LCn-3 fatty acid status may influence anger development during exposure to elevated inflammatory cytokines, and may interact with genetic risk for increased brain TNF-α. LCn-3 supplements may be one strategy for minimizing this adverse side effect of IFN-α. © 2013.

  9. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  10. Co-digestion of polylactide and kitchen garbage in hyperthermophilic and thermophilic continuous anaerobic process.

    PubMed

    Wang, Feng; Hidaka, Taira; Tsuno, Hiroshi; Tsubota, Jun

    2012-05-01

    Two series of two-phase anaerobic systems, consisting of a hyperthermophilic (80°C) reactor and a thermophilic (55°C) reactor, fed with a mixture of kitchen garbage (KG) and polylactide (PLA), was compared with a single-phase thermophilic reactor for the overall performance. The result indicated that ammonia addition under hyperthermophilic condition promoted the transformation of PLA particles to lactic acid. The systems with hyperthermophilic treatment had advantages on PLA transformation and methane conversion ratio to the control system. Under the organic loading rate (OLR) of 10.3 g COD/(L day), the PLA transformation ratios of the two-phase systems were 82.0% and 85.2%, respectively, higher than that of the control system (63.5%). The methane conversion ratios of the two-phase systems were 82.9% and 80.8%, respectively, higher than 70.1% of the control system. The microbial community analysis indicated that hyperthermophilic treatment is easily installed to traditional thermophilic anaerobic digestion plants without inoculation of special bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching

    NASA Astrophysics Data System (ADS)

    Zhu, Danfeng; Zhang, Jinqiannan; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2018-07-01

    We propose a design of reciprocal optical diode based on asymmetric spatial mode conversion in multimode silicon waveguide on the silicon-on-insulator platform. The design possesses large bandwidth, high contrast ratio and high fabrication tolerance. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by partial depth etching in the functional region. Simulated by three-dimension finite-difference time-domain method, the forward transmission efficiency is about -2.05 dB while the backward transmission efficiency is only -22.68 dB, reaching a highest contrast ratio of 0.983 at the wavelength of 1550 nm. The operational bandwidth is up to 200 nm (from 1450 nm to 1650 nm) with contrast ratio higher than 0.911. The numerical analysis also demonstrates that the proposed optical diode possesses high tolerance for geometry parameter errors which may be introduced in fabrication. The design based on partial depth etching is compatible with CMOS process and is expected to contribute to the silicon-based all-optical circuits.

  12. Premorbid functional development and conversion to psychosis in clinical high-risk youths

    PubMed Central

    Tarbox, Sarah I.; Addington, Jean; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming T.; Walker, Elaine F.; Heinssen, Robert; Mcglashan, Thomas H.; Woods, Scott W.

    2014-01-01

    Deterioration in premorbid functioning is a common feature of schizophrenia, but sensitivity to psychosis conversion among clinical high-risk samples has not been examined. This study evaluates premorbid functioning as a predictor of psychosis conversion among a clinical high-risk sample, controlling for effects of prior developmental periods. Participants were 270 clinical high-risk individuals in the North American Prodrome Longitudinal Study—I, 78 of whom converted to psychosis over the next 2.5 years. Social, academic, and total maladjustment in childhood, early adolescence, and late adolescence were rated using the Cannon–Spoor Premorbid Adjustment Scale. Early adolescent social dysfunction significantly predicted conversion to psychosis (hazard ratio = 1.30, p = .014), independently of childhood social maladjustment and independently of severity of most baseline positive and negative prodromal symptoms. Baseline prodromal symptoms of disorganized communication, social anhedonia, suspiciousness, and diminished ideational richness mediated this association. Early adolescent social maladjustment and baseline suspiciousness together demonstrated moderate positive predictive power (59%) and high specificity (92.1%) in predicting conversion. Deterioration of academic and total functioning, although observed, did not predict conversion to psychosis. Results indicate early adolescent social dysfunction to be an important early predictor of conversion. As such, it may be a good candidate for inclusion in prediction algorithms and could represent an advantageous target for early intervention. PMID:24229556

  13. Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shuyuan; Wang, Aizhu; Wang, Yi; Ramaswamy, Rajagopalan; Shen, Lei; Moon, Jisoo; Zhu, Dapeng; Yu, Jiawei; Oh, Seongshik; Feng, Yuanping; Yang, Hyunsoo

    2018-01-01

    We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) B i2S e3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin-orbit-torque ratio in the B i2S e3/Ag /CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ˜2 nm and reaches a value of 0.5 for 5 nm Ag, which is ˜3 times higher than that of B i2S e3/CoFeB at room temperature. The observation reveals the interfacial effect of B i2S e3/Ag exceeds that of the topological surface states (TSSs) in the B i2S e3 layer and plays a dominant role in the charge-to-spin conversion in the B i2S e3/Ag /CoFeB system. Based on first-principles calculations, we attribute our observation to the large Rashba splitting bands which wrap the TSS band and have the same net spin polarization direction as the TSS of B i2S e3 . Subsequently, we demonstrate Rashba-induced magnetization switching in B i2S e3/Ag /Py with a low current density of 5.8 ×105A /c m2 .

  14. [Changes of soil physical properties during the conversion of cropland to agroforestry system].

    PubMed

    Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin

    2017-01-01

    To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.

  15. 77 FR 59628 - Rental Assistance Demonstration: Processing of Conversion Requests Submitted Under the Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Demonstration: Processing of Conversion Requests Submitted Under the Partial Rental Assistance Demonstration... provides the opportunity to test the conversion of public housing and other HUD-assisted properties to long... have increased housing choices after the conversion; and the overall impact of conversion on the...

  16. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR<4) close-pairs among log(Mstellar/Msun) > 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  17. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    NASA Astrophysics Data System (ADS)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang

    Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio wasmore » raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.« less

  19. A new technique for promoting cyclic utilization of cyclodextrins in biotransformation.

    PubMed

    Shen, Yanbing; Yu, Ziqi; Yang, Xu; Wang, Fang; Luo, Jianmei; Wang, Min

    2017-01-01

    Cyclodextrins (CDs) can improve the productivity of steroid biotransformation by enhancing substrate solubility. CDs can be recycled by grafting them with appropriate carriers. Loofah fiber is an excellent grafting material for CDs, and can be applied to the biotransformation and recycling of β-cyclodextrin (β-CD). In this work, a technique for recycling β-CD in cortisone acetate (CA) biotransformation by Arthrobacter simplex CPCC 140451 was studied. Loofah fiber-grafted β-CD (LF-β-CD) was prepared using epichlorohydrin, which is a cross-linking agent. The grafting yield of β-CD was 74.8 mg g -1 dried fibers. LF-β-CD could increase the solubility of CA and enhance biotransformation. The initial conversion rate of CA was 1.5-fold higher than that of the blank group. LF-β-CD was also used in biocatalytic reactions for eight cycles, and it maintained the conversion ratio of CA at approximately 90%. Given the above positive results, LF-β-CD can be utilized in biotechnological recycling applications. This method can also be applied to CD derivatives and hydrophobic compounds.

  20. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse.

    PubMed

    Botton, Vanderleia; Piovan, Leandro; Meier, Henry França; Mitchell, David Alexander; Cordova, Jesús; Krieger, Nadia

    2018-04-01

    A fermented solid containing lipases was produced by solid-state fermentation of Rhizopus microsporus on sugarcane bagasse enriched with urea, soybean oil, and a mineral solution. The dry fermented solid produced using R. microsporus (RMFS) was used to catalyze the synthesis of alkyl-esters by esterification in a solvent-free system containing ethanol and oleic acid (as a model system) or a mixture of fatty acids obtained from the physical hydrolysis of soybean soapstock acid oil (FA-SSAO) in subcritical water. The conversions were 93.5 and 84.1%, for oleic acid and FA-SSAO, respectively, at 48 h and 40 °C, at a molar ratio (MR) of ethanol to fatty acid of 5:1. A further increase in the MR to 10:1 improved the production of ethylic-esters, giving conversions at 48 h of 98 and 86% for oleic acid and FA-SSAO, respectively. The results obtained in this work foster further studies on scaling-up of an environmentally friendly process to produce biofuels.

  1. EFFECT OF DIETARY PROTEIN AND CARBOHYDRATE LEVELS ON WEIGHT GAIN AND GONAD PRODUCTION IN THE SEA URCHIN LYTECHINUS VARIEGATUS

    PubMed Central

    Heflin, Laura E.; Gibbs, Victoria K.; Powell, Mickie L; Makowsky, Robert; Lawrence, John M.; Lawrence, Addison L.; Watts, Stephen A.

    2014-01-01

    Adult Lytechinus variegatus were fed eight formulated diets with different protein (ranging from 12 to 36%) and carbohydrate (ranging from 21 to 39 %) levels. Each sea urchin (n = 8 per treatment) was fed a daily sub-satiation ration of 1.5% of average body weight for 9 weeks. Akaike information criterion analysis was used to compare six different hypothesized dietary composition models across eight growth measurements. Dietary protein level and protein: energy ratio were the best models for prediction of total weight gain. Diets with the highest (> 68.6 mg P kcal−-1) protein: energy ratios produced the most wet weight gain after 9 weeks. Dietary carbohydrate level was a poor predictor for most growth parameters examined in this study. However, the model containing a protein × carbohydrate interaction effect was the best model for protein efficiency ratio (PER). PER decreased with increasing dietary protein level, more so at higher carbohydrate levels. Food conversion ratio (FCR) was best modeled by total dietary energy levels: Higher energy diets produced lower FCRs. Dietary protein level was the best model of gonad wet weight gain. These data suggest that variations in dietary nutrients and energy differentially affect organismal growth and growth of body components. PMID:24994942

  2. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    NASA Astrophysics Data System (ADS)

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  3. Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus

    PubMed Central

    Lundy, Mark E.; Parrella, Michael P.

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026

  4. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus.

    PubMed

    Lundy, Mark E; Parrella, Michael P

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.

  5. Immigrants and Natives in U.S. Science and Engineering Occupations, 1994–2006

    PubMed Central

    SANA, MARIANO

    2010-01-01

    Between 1994 and 2006, the ratio of foreign-born scientists and engineers (FSE) to native scientists and engineers (NSE) doubled. I decompose this change into a migration effect (which accounts for migration in general), a proportional college effect (which accounts for the relative proportions of college graduates among migrant and native workers), and a proportional science and engineering (S&E) effect (which accounts for the relative proportions of S&Es among migrant and native college-educated workers). Results show that the migration effect explains about three-quarters of the increase in FSE/NSE during the entire period under study. The proportional S&E effect, which captures changes in the ratio as a result of immigration of S&Es in excess of what would be expected from general migration alone, was largest in 1995–1998, which were years of sustained economic growth. Conversely, a slower economy coincided with a declining proportional S&E effect after 2000. Increases in the annual cap on H-1B visas, an important avenue of entry for foreign-born S&Es, had little effect on the ratio. In short, during 1994–2006, the association between economic swings and the specific, more than proportional migration of S&Es was much stronger than the association between the latter and changes in the H-1B cap. PMID:20879689

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Schires, K.; Grillot, F.

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  7. Elucidation of Factors Effecting Enzymatic Saccharification using Transgenic Hardwoods

    NASA Astrophysics Data System (ADS)

    Min, Douyong

    Three groups of transgenic wood samples were used as starting materials to elucidate the recalcitrance of enzymatic saccharification with/without pretreatments. The first group of transgenic wood samples is low lignin P. trichocarpa. The second group is low xylan P. trichocarpa. The third one is 12 hybrid poplars which have different levels of S/V ratio and lignin content. Four pretreatments were carried out in this research including dilute sulfuric acid, green liquor, auto hydrolysis and ozone delignification. The behavior among pretreatments as a function of removal of lignin appears to be different. Lignin is the major factor of recalcitrance of the lignocellulosic material to ethanol conversion process. Xylan also plays key role in this process. In addition, the crude milled wood lignin was isolated from these three groups of transgenic samples. Lignin carbohydrate complexes was characterized by 1H-13C HMQC and 13C NMR. Thus the effect of LCCs on enzymatic saccharification was elucidated. High S/V ratio propels the lignin removal during pretreatments however; high S/V ratio retards the enzymatic saccharification on the lignocellulosic material without pretreatments. The level of LCCs linkages accounts for additional recalcitrance of the lignocellulosic material to ethanol conversion process. The amount of LCCs linkages is affected by xylan content, lignin content and S/V ratio.

  8. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C-500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.

  9. Influence of viscosity and amine content on C==C conversion and color stability of experimental composites.

    PubMed

    Camargo, Fernanda Missio; Della Bona, Álvaro; Moraes, R R; Coutinho de Souza, C R; Schneider, Luis Felipe

    2015-05-01

    To investigate the influence of camphorquinone (CQ):amine ratio on the degree of CC conversion (DC) and color stability of experimental dental composites formulated with different co-monomer viscosities, indirectly determined by variations in the co-monomer ratios. Experimental composites were formulated in two different BisGMA:TEGDMA molar ratios (50:50 and 70:30). Viscosities were assessed with a viscometer. For each composite formulation, four different CQ:amine ratios were added: 1:1, 1:2, 1:3 or 1:4 mol%. Materials were loaded with 40 wt% of silanized glass particles. DC was determined by Fourier-transformed infrared spectroscopy with attenuated reflectance mode (ATR-FTIR). A spectrophotometer was used to measure the CIE L*a*b* color coordinates 24h after polymerization and after 2 months stored in water. Color changes (ΔE) were calculated. Data were statistically analyzed using analyses of variance (ANOVA), Tukey's and Student-t tests (α=0.05). The 50:50 BisGMA:TEGDMA co-monomer showed lower viscosity than 70:30. DC was affected by CQ:amine ratio, and not by the co-monomer viscosity, but the interaction between these two factors was significant. a* and b* coordinates were dependent on CQ:amine or BisGMA:TEGDMA ratios, while L* was not. b* values were directly related to the amount of amine in the formulation, regardless of co-monomer viscosity. ΔE was dependent on the amount of amine, but not on the viscosity of the material. DC was influenced by the CQ:amine ratio. The influence of viscosity on DC was dependent on the CQ:amine ratio and exhibited distinguished behavior. a* and b* coordinates were affected by CQ:amine and BisGMA:TEGDMA ratios. The color change (ΔE) was affected by CQ:amine ratio, but not by viscosity. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  11. Excessive Daytime Sleepiness Predicts Neurodegeneration in Idiopathic REM Sleep Behavior Disorder.

    PubMed

    Zhou, Junying; Zhang, Jihui; Lam, Siu Ping; Chan, Joey Wy; Mok, Vincent; Chan, Anne; Li, Shirley Xin; Liu, Yaping; Tang, Xiangdong; Yung, Wing Ho; Wing, Yun Kwok

    2017-05-01

    To determine the association of excessive daytime sleepiness (EDS) with the conversion of neurodegenerative diseases in patients with idiopathic REM sleep behavior disorder (iRBD). A total of 179 patients with iRBD (79.1% males, mean age = 66.3 ± 9.8 years) were consecutively recruited. Forty-five patients with Epworth Sleepiness Scale score ≥14 were defined as having EDS. Demographic, clinical, and polysomnographic data were compared between iRBD patients with and without EDS. The risk of developing neurodegenerative diseases was examined using Cox proportional hazards model. After a mean follow-up of 5.8 years (SD = 4.3 years), 50 (27.9%) patients developed neurodegenerative diseases. There was a significantly higher proportion of conversion in patients with EDS compared to those without EDS (42.2 % vs. 23.1%, p = .01). EDS significantly predicted an increased risk of developing neurodegenerative diseases (adjusted hazard ratios [HR] = 2.56, 95% confidence interval [CI] 1.37 to 4.77) after adjusting for age, sex, body mass index, current depression, obstructive sleep apnea, and periodic limb movements during sleep. Further analyses demonstrated that EDS predicted the conversion of Parkinson's disease (PD) (adjusted HR = 3.55, 95% CI 1.59 to 7.89) but not dementia (adjusted HR = 1.48, 95% CI 0.44 to 4.97). EDS is associated with an increased risk of developing neurodegenerative diseases, especially PD, in patients with iRBD. Our findings suggest that EDS is a potential clinical biomarker of α-synucleinopathies in iRBD. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    NASA Astrophysics Data System (ADS)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  13. Influence of reaction condition on viscosity of polyurethane modified epoxy based on glycerol monooleate

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-01-01

    Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.

  14. Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

    PubMed Central

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-01-01

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin. PMID:25867482

  15. Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: An infrared perspective

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sgourou, E. N.; Chroneos, A.

    2012-12-01

    Infrared spectroscopy was used to study the production and evolution of oxygen-vacancy (VOn for n = 1, 2, 3 and VmO for m = 1, 2, 3) clusters, in electron-irradiated Czochralski silicon (Cz-Si) samples, doped with isovalent dopants. It was determined that the production of the VO pair is enhanced in Ge-doped Si but is suppressed in Sn and Pb-doped Si. The phenomenon is discussed in terms of the competition between isovalent dopants and oxygen atoms in capturing vacancies in the course of irradiation. In the case of Ge, only transient GeV pairs form, leading finally to an increase of the VO production. Conversely, for Sn and Pb the corresponding pairs with vacancies are stable, having an opposite impact on the formation of VO pairs. Regarding V2O and V3O clusters, our measurements indicate that Ge doping enhances their formation, although Sn and Pb dopants suppress it. Similar arguments as those for the VO pair could be put forward, based on the effect of isovalent impurities on the availability of vacancies. Additionally, it was found that the conversion ratio of VO to VO2 decreases as the covalent radius of the isovalent dopant increases. These results are discussed in terms of the local strains introduced by the isovalent dopants in the Si lattice. These local strains affect the balance of the intrinsic defects created as a result of irradiation, as well as the balance between the two main reactions (VO + Oi → VO2 and VO + SiI → Oi) participating in the VO annealing, leading finally to a decrease of the VO2 production. The larger the covalent radius of the isovalent dopant (rGe < rSn < rPb), the larger the introduced strains in the lattice and then the less the VO2 formation in accordance with our experimental results. Interestingly, an opposite trend was observed for the conversion ratio of VO2 to VO3. The phenomenon is attributed to the enhanced diffusivity of oxygen impurity as a result of the presence of isovalent dopants, leading to an enhanced formation of the VO3 cluster. The results indicate that isovalent doping of Si is an effective way to control the formation of the deleterious oxygen-vacancy clustering that can affect Si-based devices.

  16. Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative.

    PubMed

    Gomar, Jesus J; Bobes-Bascaran, Maria T; Conejero-Goldberg, Concepcion; Davies, Peter; Goldberg, Terry E

    2011-09-01

    Biomarkers have become increasingly important in understanding neurodegenerative processes associated with Alzheimer disease. Markers include regional brain volumes, cerebrospinal fluid measures of pathological Aβ1-42 and total tau, cognitive measures, and individual risk factors. To determine the discriminative utility of different classes of biomarkers and cognitive markers by examining their ability to predict a change in diagnostic status from mild cognitive impairment to Alzheimer disease. Longitudinal study. We analyzed the Alzheimer's Disease Neuroimaging Initiative database to study patients with mild cognitive impairment who converted to Alzheimer disease (n = 116) and those who did not convert (n = 204) within a 2-year period. We determined the predictive utility of 25 variables from all classes of markers, biomarkers, and risk factors in a series of logistic regression models and effect size analyses. The Alzheimer's Disease Neuroimaging Initiative public database. Primary outcome measures were odds ratios, pseudo- R(2)s, and effect sizes. In comprehensive stepwise logistic regression models that thus included variables from all classes of markers, the following baseline variables predicted conversion within a 2-year period: 2 measures of delayed verbal memory and middle temporal lobe cortical thickness. In an effect size analysis that examined rates of decline, change scores for biomarkers were modest for 2 years, but a change in an everyday functional activities measure (Functional Assessment Questionnaire) was considerably larger. Decline in scores on the Functional Assessment Questionnaire and Trail Making Test, part B, accounted for approximately 50% of the predictive variance in conversion from mild cognitive impairment to Alzheimer disease. Cognitive markers at baseline were more robust predictors of conversion than most biomarkers. Longitudinal analyses suggested that conversion appeared to be driven less by changes in the neurobiologic trajectory of the disease than by a sharp decline in functional ability and, to a lesser extent, by declines in executive function.

  17. Synthesis and up-conversion luminescence of Er{sup 3+} and Y b{sup 3+} codoped nanocrystalline tetra- (KLaP{sub 4}O{sub 12}) and pentaphosphates (LaP{sub 5}O{sub 14})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marciniak, L., E-mail: l.marciniak@int.pan.wroc.pl; Stefanski, M.; Tomala, R.

    2015-09-07

    The up-converting nanocrystals of KLa{sub 0.95}Er{sub 0.05}Y b{sub x}P{sub 4}O{sub 12} and La{sub 0.95−x}Er{sub 0.05}Y b{sub x}P{sub 5}O{sub 14} were prepared using co-precipitation method. The spectroscopic properties of these materials were investigated in a function of Y b{sup 3+} concentration. The up-conversion emission, power dependence of emission intensities, and the luminescence decay times were investigated. It was found that the green to red and {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} to {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} emission intensity ratio were strongly affected by the Y b{sup 3+} concentration. Moreover, the order of up-conversion emission and threshold powermore » rises up with Y b{sup 3+} concentration for {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transition. The luminescence decay time of the {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} emission increases with Y b{sup 3+} concentration while the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} emission is independent of dopant concentration. The influence of the Y b{sup 3+} concentration on the up-conversion emission intensities was discussed in terms of concentration dependent hetero looped photon avalanche process. A comparison of the up-conversion properties of KLa{sub 0.95}Er{sub 0.05}Y b{sub x}P{sub 4}O{sub 12} and La{sub 0.95−x}Er{sub 0.05}Y b{sub x}P{sub 5}O{sub 14} nanocrystals was presented.« less

  18. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    NASA Astrophysics Data System (ADS)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and converting which created the concentration of the feed gas higher inside the reactor. The research has provided the best conditions for the enhanced conversion while minimizing CO2formation. Though this research was not able to provide the optimal recycle rate it have created the path for the future research to proceed in the right direction. This reduction and utilization of CO2will help to reduce the cost of carbon dioxide removal and saves the environment from carbon dioxide emission.

  19. Role of salt concentration in blend polymer for energy storage conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less

  20. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y; Valéro, Jose R

    2014-10-01

    In-situ transesterification of microbial lipid to biodiesel has been paid substantial attention due to the fact that the lipid extraction and transesterification can be conducted in one-stage process. To improve the feasibility of in-situ transesterification, ultrasonication was employed to reduce methanol requirement and reaction time. The results showed that the use of ultrasonication could achieve high conversion of lipid to FAMEs (92.1% w lipid conversion/w total lipids) with methanol to lipid molar ratio 60:1 and NaOH addition 1% w/w lipid in 20 min, while methanol to lipid molar ratio 360:1, NaOH addition 1% w/w lipid, and reaction time 12h was required to obtain similar yield in in-situ transesterification without ultrasonication. The compositions of FAMEs obtained in case of ultrasonication aided in-situ transesterification were similar as that of two-stage extraction followed by transesterification processes. Copyright © 2014. Published by Elsevier Ltd.

Top