Analysis of the mechanisms by which amphetamine releases dopamine from striatal dopaminergic neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.M.
1987-01-01
The goals of the studies were (1) to determine the intraneuronal transmitter pools that contribute to the efflux of dopamine (DA) elicited by amphetamine (AMPH) and (2) to determine the biochemical mechanism by which AMPH increases DA efflux from dopaminergic neurons. AMPH increased the efflux of endogenous DA and decreased the electrically-evoked overflow of (/sup 3/H) acetylcholine (ACh) from superfused rabbit striatal slices. These effects were most pronounced when both vesicular DA stores and DA synthesis were intact. Therefore, extravesicular, newly synthesized DA and vesicular stores of DA contribute to AMPH-induced DA efflux. Simultaneous inhibition of monoamine oxidase (MAO) andmore » neuronal DA uptake did not increase the efflux of endogenous DA or inhibit the electrically-evoked overflow of (/sup 3/H)ACh to the same extent as AMPH. Hence, inhibition of MAO and neuronal DA uptake are probably not the major mechanisms by which AMPH increases DA efflux. The AMPH-induced efflux of endogenous or (/sup 3/H)DA was blocked by inhibitors of neuronal DA uptake.« less
Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y
2015-11-01
Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.; Cubeddu, L.
1986-03-05
A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less
Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates.
Johnson, B J; Bruno, J P
1995-02-01
A repeated sessions, in vivo microdialysis design was used to determine the D1- and D2-like receptor modulation of striatal ACh efflux in intact adult rats and those depleted of DA on postnatal Day 3. Systemic administration of the D1-like agonist SKF 38393 (1.0 or 10.0 mg/kg, or the D2-like antagonist clebopride (1.0 or 10.0 mg/kg) increased ACh efflux in both controls and DA-depleted animals. Systemic administration of the D1-like antagonist SCH 23390 (0.05 or 0.2 mg/kg) or D2-like agonist quinpirole (0.5 or 1.0 mg/kg) decreased ACh efflux in both groups of animals. DA-depleted animals exhibited a larger response than did controls to the lower doses of these drugs. Intrastriatal administration of clebopride (10 microM) increased ACh efflux in DA-depleted animals. Finally, basal and clebopride-stimulated ACh efflux were unaffected by the repeated microdialysis sessions. These data demonstrate that the reciprocal modulation of striatal ACh efflux, seen in controls and in rats depleted of DA as adults, is also present in adults depleted of DA as neonates. Because the roles of D1- and D2-receptors in the expression of motor behavior differ between rats depleted of DA as adults vs as neonates, these data suggest that alterations in the dopaminergic modulation of striatal ACh release do not underlie the sparing from motoric deficits seen in animals depleted of DA as neonates.
St Onge, Jennifer R; Ahn, Soyon; Phillips, Anthony G; Floresco, Stan B
2012-11-21
Mesocorticolimbic dopamine (DA) has been implicated in cost/benefit decision making about risks and rewards. The prefrontal cortex (PFC) and nucleus accumbens (NAc) are two DA terminal regions that contribute to decision making in distinct manners. However, how fluctuations of tonic DA levels may relate to different aspects of decision making remains to be determined. The present study measured DA efflux in the PFC and NAc with microdialysis in well trained rats performing a probabilistic discounting task. Selection of a small/certain option always delivered one pellet, whereas another, large/risky option yielded four pellets, with probabilities that decreased (100-12.5%) or increased (12.5-100%) across four blocks of trials. Yoked-reward groups were also included to control for reward delivery. PFC DA efflux during decision making decreased or increased over a session, corresponding to changes in large/risky reward probabilities. Similar profiles were observed from yoked-rewarded rats, suggesting that fluctuations in PFC DA reflect changes in the relative rate of reward received. NAc DA efflux also showed decreasing/increasing trends over the session during both tasks. However, DA efflux was higher during decision making on free- versus forced-choice trials and during periods of greater reward uncertainty. Moreover, changes in NAc DA closely tracked shifts in choice biases. These data reveal dynamic and dissociable fluctuations in PFC and NAc DA transmission associated with different aspects of risk-based decision making. PFC DA may signal changes in reward availability that facilitates modification of choice biases, whereas NAc DA encodes integrated signals about reward rates, uncertainty, and choice, reflecting implementation of decision policies.
Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y
2014-03-01
Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.
Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D
2008-07-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.
MITTLEMAN, GUY; GOLDOWITZ, DANIEL; HECK, DETLEF H.; BLAHA, CHARLES D.
2013-01-01
Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 μA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked pre-frontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders. PMID:18435424
Ahn, Soyon; Phillips, Anthony G
2007-04-01
Dopamine (DA) activity in the nucleus accumbens (NAc) is related to the general motivational effects of rewarding stimuli. Dickinson and colleagues have shown that initial acquisition of instrumental responding reflects action-outcome relationships based on instrumental incentive learning, which establishes the value of an outcome. Given that the sensitivity of responding to outcome devaluation is not affected by NAc lesions, it is unlikely that incentive learning during the action-outcome phase is mediated by DA activity in the NAc. DA efflux in the NAc after limited and extended training was compared on the assumption that comparable changes would be observed during both action-outcome- and habit-based phases of instrumental responding for food. This study also tested the hypothesis that increase in NAc DA activity is correlated with instrumental responding during extinction maintained by a conditioned stimulus paired with food. Rats were trained to lever press for food (random-interval 30 s schedule). On the 5th and 16th day of training, microdialysis samples were collected from the NAc or mediodorsal striatum (a control site for generalized activity) during instrumental responding in extinction and then for food reward, and analyzed for DA content using high performance liquid chromatography. Increase in DA efflux in the NAc accompanied responding for food pellets on both days 5 and 16, with the magnitude of increase significantly enhanced on day 16. DA efflux was also significantly elevated during responding in extinction only on day 16. These results support a role for NAc DA activity in Pavlovian, but not instrumental, incentive learning.
Gβγ subunit activation promotes dopamine efflux through the dopamine transporter
Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE
2018-01-01
The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302
Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul
2016-05-27
The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Striatal norepinephrine efflux in l-DOPA-induced dyskinesia.
Ostock, Corinne Y; Bhide, Nirmal; Goldenberg, Adam A; George, Jessica A; Bishop, Christopher
2018-03-01
l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.
2011-01-01
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614
Lin, Chen-Cheng; Tung, Che-Se; Lin, Pin-Hsuan; Huang, Chuen-Lin; Liu, Yia-Ping
2016-09-01
Central catecholamines regulate fear memory across the medial prefrontal cortex (mPFC), amygdala (AMYG), and hippocampus (HPC). However, inadequate evidence exists to address the relationships among these fear circuit areas in terms of the fear symptoms of posttraumatic stress disorder (PTSD). By examining the behavioral profile in a Pavlovian fear conditioning paradigm together with tissue/efflux levels of dopamine (DA) and norepinephrine (NE) and their reuptake abilities across the fear circuit areas in rats that experienced single prolonged stress (SPS, a rodent model of PTSD), we demonstrated that SPS-impaired extinction retrieval was concomitant with the changes of central DA/NE in a dissociable manner. For tissue levels, diminished DA and increased NE were both observed in the mPFC and AMYG. DA efflux and synaptosomal DA transporter were consistently reduced in the AMYG/vHPC, whereas SPS reduced NE efflux in the infralimbic cortex and synaptosomal NE transporter in the mPFC. Furthermore, a lower expression of synaptosomal VMAT2 was observed in the mPFC, AMYG, and vHPC after SPS. Finally, negative correlations were observed between retrieval freezing and DA in the mPFC/AMYG; nevertheless, the phenomena became invalid after SPS. Our results suggest that central catecholamines are crucially involved in the retrieval of fear extinction in which DA and NE play distinctive roles across the fear circuit areas. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Di Matteo, V; Di Giovanni, G; Di Mascio, M; Esposito, E
2000-01-01
The hydromethanolic extract of Hypericum perforatum has been shown to be an effective antidepressant, although its mechanism of action is still unclear. In this study, in vivo microdialysis was used to investigate the effects of Hypericum perforatum-CO2 extract on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) release in various areas of brain. Administration of Hypericum perforatum extract (1 mg/kg, p.o.) caused a slight, but significant increase of DA outflow both in the nucleus accumbens and the striatum. The maximal increase of DA efflux (+19.22+/-1.93%, relative to the control group) in the nucleus accumbens occurred 100 min after administration of Hypericum perforatum. In the striatum, the extract maximally enhanced DA outflow (+24.83+/-7.49 %, relative to the control group) 80 min after administration. Extraneuronal DOPAC levels were not significantly affected by Hypericum perforatum treatment. Moreover, Hypericum perforatum (1 mg/kg, p.o.) did not produce any significant effect on either 5-HT or 5-HIAA efflux in the ventral hippocampus. This study shows for the first time that Hypericum perforatum extract is capable of increasing in vivo DA release.
Monoaminergic Psychomotor Stimulants: Discriminative Stimulus Effects and Dopamine Efflux
Desai, Rajeev I.; Paronis, Carol A.; Martin, Jared; Desai, Ramya
2010-01-01
The present studies were conducted to investigate the relationship between discriminative stimulus effects of indirectly acting monoaminergic psychostimulants and their ability to increase extracellular levels of dopamine (DA) in the nucleus accumbens (NAcb) shell. First, the behavioral effects of methamphetamine (MA), cocaine (COC), 1-[2-[bis(4-fluorophenyl-)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), d-amphetamine, and methylphenidate were established in rats trained to discriminate intraperitoneal injections of 0.3 mg/kg MA from saline. In other studies, in vivo microdialysis was used to determine the effects of MA, COC, and GBR 12909 on extracellular DA levels in the NAcb shell. Results show that all drugs produced dose-related and full substitution for the discriminative stimulus effects of 0.3 mg/kg MA. In microdialysis studies, cumulatively administered MA (0.3–3 mg/kg), COC (3–56 mg/kg), and GBR 12909 (3–30 mg/kg) produced dose-dependent increases in DA efflux in the NAcb shell to maxima of approximately 1200 to 1300% of control values. The increase in DA levels produced by MA and COC was rapid and short-lived, whereas the effect of GBR 12909 was slower and longer lasting. Dose-related increases in MA lever selection produced by MA, COC, and GBR 12909 corresponded with graded increases in DA levels in the NAcb shell. Doses of MA, COC, and GBR 12909 that produced full substitution increased DA levels to approximately 200 to 400% of control values. Finally, cumulatively administered MA produced comparable changes in DA levels in both naive and 0.3 mg/kg MA-trained rats. These latter results suggest that sensitization of DA release does not play a prominent role in the discriminative stimulus effects of psychomotor stimulants. PMID:20190012
Roz, Netta; Rehavi, Moshe
2004-10-22
Hyperforin, a phloroglucinol derivative found in Hypericum perforatum (St. John's wort) extracts has antidepressant properties in depressed patients. Hyperforin has a unique pharmacological profile and it inhibits uptake of biogenic monoamines as well as amino acid transmitters. We have recently showed that the monoamines uptake inhibition exerted by hyperforin is related to its ability to dissipate the pH gradient across the synaptic vesicle membrane thereby interfering with vesicular monoamines storage. In the present study we demonstrate that hyperforin induces dose-dependent efflux of preloaded [3H]5HT and [3H]DA from rat brain slices. Moreover, we show that hyperforin attenuates depolarization- dependent release of monoamines, while increasing monoamine release by amphetamine or fenfluramine. It is also demonstrated that preincubation of brain slices with reserpine is associated with dose- dependent blunting of efflux due to hyperforin. Our data indicate that hyperforin-induced efflux of [3H]5HT and [3H]DA reflect elevated cytoplasmic concentrations of the two monoamines secondary to the depletion of the synaptic vesicle content and the compartmental redistribution of nerve ending monoamines. Copyright 2004 Elsevier Inc.
Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I
1999-05-01
The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
2006-11-15
In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less
On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?
Devoto, Paola; Flore, Giovanna
2006-01-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration. Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex. The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions. PMID:18615131
On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons?
Devoto, Paola; Flore, Giovanna
2006-04-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
A top-down perspective on dopamine, motivation and memory.
Phillips, Anthony G; Vacca, Giada; Ahn, Soyon
2008-08-01
Dopamine (DA) activity, in the form of increased neural firing or enhanced release of transmitter from nerve terminals and varicosities, is linked to a number of important psychological processes including: movement; hedonic reactions to positive reward; provision of an error detection signal during the acquisition of new learning; response to novel stimuli; provision of reinforcement signals essential for acquisition of new action patterns; and incentive motivation. This review focuses primarily on our research linking dynamic changes in DA efflux on the timescale of minutes, with incentive motivation, as revealed by brain dialysis experiments in behaving animals. Recent experiments on sensory-specific satiety and successive positive and negative contrast are discussed along with the distinction between preparatory behaviors that precede contact with biologically significant stimuli and subsequent consummatory behaviors. The relationship between DA efflux in the medial prefrontal cortex (mPFC) and foraging for food based on working memory is also discussed in support of the conjecture that DA may serve as a link between motivation and memory functions. Evidence in support of 'top-down' regulation of dopaminergic activity in the mesocorticolimbic DA pathways is reviewed briefly to introduce a mechanism by which activation of ascending DA projections in this manner might optimize dopaminergic modulation of executive function within regions such as the mPFC. Collectively, these processes could ensure coordination between cognitive processes that assess current opportunities and the motivational systems that select and engage patterns of approach behavior that bring organisms into contact with the essentials for survival.
Miyazaki, Haruko; Miyazaki, Yoshitsugu; Geber, Antonia; Parkinson, Tanya; Hitchcock, Christopher; Falconer, Derek J.; Ward, Douglas J.; Marsden, Katherine; Bennett, John E.
1998-01-01
Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene. PMID:9661006
Nishimura, C; Kuriyama, K
1985-08-01
Neurochemical alterations, which may be associated with the development of diabetic retinal dysfunction, were investigated using streptozotocin (STZ)-induced hyperglycemia in rats. Young male Wistar rats, weighing 100-150 g, were made diabetic with daily intraperitoneal injections of STZ (30 mg/kg) for 5 days. This treatment caused a continuous hyperglycemia (400-600 mg/dl) and suppressed gain in body weight. Nine weeks after the STZ treatment, a significant increment in retinal valine and a decline in phenylalanine were noted, while the concentrations of other neuroactive amino acids, such as gamma-aminobutyric acid and aspartic acid, in the retina remained unchanged. On the other hand, the concentration of retinal dopamine (DA) was found to decrease significantly from the third week of hyperglycemia, when [3H]spiperone binding showed a tendency to increase in the retinal particulate fraction. However, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase (AADC) and the uptake of [3H]tyrosine showed no alteration in the retina of diabetic rats. The accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) in vivo in the retina of diabetic rats, measured following the administration of the AADC inhibitor m-hydroxybenzyl-hydrazine (100 mg/kg i.p.), was also unchanged. Although [3H]DA uptake by retinal tissue was similar in control and diabetic animals, the spontaneous efflux of [3H]DA from the retina was found to be significantly accelerated in STZ-treated animals. In addition, the release of preloaded [3H]DA, elicited by repeated photic stimulation, was significantly attenuated in retina from diabetic rats. These results suggest that an accelerated efflux of DA, possibly leading to the depletion of DA from the retinal DA system, may account for early retinal dysfunctions known to occur in diabetic subjects.
Amphetamine Augments Action Potential-Dependent Dopaminergic Signaling in the Striatum in Vivo
Ramsson, Eric S.; Covey, Daniel P.; Daberkow, David P.; Litherland, Melissa T.; Juliano, Steven A.; Garris, Paul A.
2011-01-01
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine Km and Vmax for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH. PMID:21443523
Importance of cholesterol in dopamine transporter function
Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.
2012-01-01
The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537
Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A
2013-12-01
De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.
Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto
2015-10-01
Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed.
Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.
Gao, X P
1998-04-01
The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P < 0.05). This response is significantly attenuated by CP-96345 and RP-67580, two selective, but structurally distinct, nonpeptide neurokinin 1 (substance P)-receptor antagonists, but not by CP-96344, the 2R,3R enantiomer of CP-96345 (P < 0.05). CP-96345 has no significant effects on adenosine-induced increase in clearance of FITC-dextran from the in situ nasal mucosa. CP-96345 and RP-67580, but not CP-96344, significantly attenuate substance P-induced increases in clearance of FITC-dextran from the in situ nasal mucosa (P < 0.05). Collectively, these data suggest that grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.
Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio
2017-10-01
Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.
Regulation of striatal nitric oxide synthesis by local dopamine and glutamate interactions
Park, Diana J.; West, Anthony R.
2009-01-01
Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF-81297 was blocked following intrastriatal infusion of: 1) the D1/5 receptor antagonist SCH-23390, 2) the nNOS inhibitor 7-nitroindazole, 3) the nonspecific ionotropic glutamate receptor antagonist kynurenic acid, and 4) the selective NMDA receptor antagonist 3-phosphonopropyl-piperazine-2-carboxylic acid. Glycine coperfusion did not affect SKF-81297-induced NO efflux. Furthermore, intrastriatal infusion of SKF-81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF-81297 were both blocked by intrastriatal infusion of SCH-23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA-glutamate interactions play a critical role in stimulating striatal nNOS activity. PMID:19799710
Weihmuller, F B; O'Dell, S J; Marshall, J F
1992-06-01
Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)
Thompson, G J; Langlais, C; Cain, K; Conley, E C; Cohen, G M
2001-01-01
Efflux of intracellular K(+) and cell shrinkage are features of apoptosis in many experimental systems, and a regulatory role has been proposed for cytoplasmic [K(+)] in initiating apoptosis. We have investigated this in both death-receptor-mediated and chemical-induced apoptosis. Using Jurkat T cells pre-loaded with the K(+) ion surrogate (86)Rb(+), we have demonstrated an efflux of intracellular K(+) during apoptosis that was concomitant with, but did not precede, other apoptotic changes, including phosphatidylserine externalization, mitochondrial depolarization and cell shrinkage. To further clarify the role of K(+) ions in apoptosis, cytoprotection by elevated extracellular [K(+)] was studied. Induction of apoptosis by diverse death-receptor and chemical stimuli in two cell lines was inhibited prior to phosphatidylserine externalization, mitochondrial depolarization, cytochrome c release and caspase activation. Using a cell-free system, we have demonstrated a novel mechanism by which increasing [K(+)] inhibited caspase activation. In control dATP-activated lysates, Apaf-1 oligomerized to a biologically active caspase processing approximately 700 kDa complex and an inactive approximately 1.4 MDa complex. Increasing [K(+)] inhibited caspase activation by preventing formation of the approximately 700 kDa complex, but not of the inactive complex. Thus intracellular and extracellular [K(+)] markedly affect caspase activation and the initiation of apoptosis induced by both death-receptor ligation and chemical stress. PMID:11415444
Xie, Jennifer Y; Qu, Chaoling; Patwardhan, Amol; Ossipov, Michael H; Navratilova, Edita; Becerra, Lino; Borsook, David; Porreca, Frank
2014-08-01
Preclinical assessment of pain has increasingly explored operant methods that may allow behavioral assessment of ongoing pain. In animals with incisional injury, peripheral nerve block produces conditioned place preference (CPP) and activates the mesolimbic dopaminergic reward pathway. We hypothesized that activation of this circuit could serve as a neurochemical output measure of relief of ongoing pain. Medications commonly used clinically, including gabapentin and nonsteroidal anti-inflammatory drugs (NSAIDs), were evaluated in models of post-surgical (1 day after incision) or neuropathic (14 days after spinal nerve ligation [SNL]) pain to determine whether the clinical efficacy profile of these drugs in these pain conditions was reflected by extracellular dopamine (DA) release in the nucleus accumbens (NAc) shell. Microdialysis was performed in awake rats. Basal DA levels were not significantly different between experimental groups, and no significant treatment effects were seen in sham-operated animals. Consistent with clinical observation, spinal clonidine produced CPP and produced a dose-related increase in net NAc DA release in SNL rats. Gabapentin, commonly used to treat neuropathic pain, produced increased NAc DA in rats with SNL but not in animals with incisional, injury. In contrast, ketorolac or naproxen produced increased NAc DA in animals with incisional but not neuropathic pain. Increased extracellular NAc DA release was consistent with CPP and was observed selectively with treatments commonly used clinically for post-surgical or neuropathic pain. Evaluation of NAc DA efflux in animal pain models may represent an objective neurochemical assay that may serve as a biomarker of efficacy for novel pain-relieving mechanisms. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A
2014-10-14
Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission, including ADHD, bipolar disorder, and now ASD. These findings provide valuable insight into a new cellular phenotype (altered hDAT trafficking) supporting dysregulated DA function in these disorders. They also provide a novel potential target (PKCβ) for therapeutic interventions in individuals with ASD.
Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K
2007-01-01
Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-01-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704
NASA Astrophysics Data System (ADS)
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-08-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey
2016-10-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting
Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey
2016-01-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240
Khalki, Hanane; Navailles, Sylvia; Piron, Camille L; De Deurwaerdère, Philippe
2013-06-07
It has been suggested that minor alkaloids in plants play a role in the biological and neuronal actions of nicotine. We hypothesized that these molecules modulate the effect of nicotine on the activity of central dopamine (DA) neurons, one of the main cellular targets in addiction to drugs. In this study the effect of a single intraperitoneal injection of either nicotine or an alkaloid extract of the tobacco plant (0.5 mg/kg) on the efflux of DA were investigated. DA was measured in vivo by intracerebral microdialysis in the nucleus accumbens and the striatum of freely-moving rats. Results show that nicotine enhanced accumbal and striatal DA extracellular levels (+47 and 20% above baseline, respectively). The extract also evoked a significant increase in DA extracellular levels in both regions (+33 and +38% above baseline). However, this effect was significantly higher compared to nicotine in the striatum only. In conclusion, the tobacco extract enhanced the neurochemical effect of nicotine alone in the striatum, a response that could underlie the higher propensity of developing addictive-like behavior using nicotine with tobacco alkaloids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes. PMID:27023132
Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.
Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki
2016-01-01
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux to dispose of endogenous cholesterol efficiently for therapeutic purposes.
Périamé, Marina; Pagès, Jean-Marie; Davin-Regli, Anne
2015-01-01
The objective of this study was to understand the adaptive mechanisms in Enterobacter gergoviae which are involved in recurrent contaminations in cosmetic products that are incorporated with preservatives. Bacterial strains from two backgrounds were examined for a profound understanding of the mechanisms of adaptation against preservatives. It included a series of Ent. gergoviae strain-ATCC 33028 derivatives, isolated using increasing methylisothiazolinone-chloromethylisothiazolinone (MIT-CMIT) and triclosan concentrations. The other series was of Ent. gergoviae isolates from cosmetic products exhibiting MIT-CMIT and triclosan resistance. We evaluated the outer membrane protein modifications and efflux mechanisms activities responsible for the resistant trait via immunoblotting assays. Additionally, for understanding the efflux activity real-time efflux, experiments were performed. A cross-insusceptibility between preservatives and some disinfectants was observed in MIT-CMIT-resistant derivative isolates, but antibiotics susceptibility was not altered. Resistance to EDTA was significant in all preservatives insusceptible derivative strains, indicating modifications in the LPS layer. Furthermore, an array of real-time efflux assays indicated different activity levels while no variations were detected in porins and AcrAB-TolC pumps production. Overexpression of a specific flagellin-type protein was observed in one of the MIT-CMIT- and triclosan-resistant strains. Another candidate, a 25-kDa peroxiredoxin enzyme involved in oxidative detoxification, was identified to be overexpressed in MIT-CMIT derivative. A similar profile was also observed among strains isolated from cosmetic products. Our study highlights the existence of adaptive mechanisms such as overexpression of detoxifying enzymes, flagellin, modification of membrane structure/function in Ent. gergoviae. They might be involved in recurrent episodes of contaminations occurring in the cosmetic production lines. No cross-resistance could be observed with antibiotics when MICs to preservatives were increased; however, a decrease in the disinfectants bactericidal effects was confirmed in preservative-tolerant strains. This will impact industry disinfection strategies treatment against bacteria. © 2014 The Society for Applied Microbiology.
Bardsley, M E; Brand, M D
1982-01-01
1. Addition of oxaloacetate or acetoacetate to isolated rat liver mitochondria results in an efflux of Ca2+. Concomitant with this efflux is an immediate oxidation of endogenous nicotinamide nucleotides, a fall in the mitochondrial membrane potential and an increase in the rate of respiration. The primary effect in this sequence may be either (a) physiologically important stimulation of a Ca2+-efflux carrier, followed by Ca2+ re-uptake, a fall in membrane potential and increased respiration, or (b) physiologically unimportant damage to mitochondrial integrity, followed by a fall in membrane potential, increased respiration and Ca2+ efflux. 2. Ruthenium Red and EGTA will restore the increased respiratory rate to one approximating to the control rate of respiration. However, addition of lanthanide, at a concentration which inhibits the uptake but not the normal efflux of Ca2+, inhibits the rate of Ca2+ efflux induced by oxaloacetate or acetoacetate. Therefore the observed efflux is occurring by a reversal of the uptake pathway (uniporter) and thus follows the fall in membrane potential. 3. From these results we conclude that the decrease in membrane potential and increase in the rate of respiration seen during oxaloacetate- or acetoacetate-induced Ca2+ efflux cannot be accounted for by rapid Ca2+ cycling, but are due to damage to mitochondrial integrity. PMID:7082307
Liao, Shi-Wei; Lee, Jen-Jie; Ptak, Christopher P; Wu, Ying-Chen; Hsuan, Shih-Ling; Kuo, Chih-Jung; Chen, Ter-Hsin
2018-03-01
In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). L-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low L-arabinose concentrations, increasing L-arabinose led to a corresponding increase in fluorophore efflux, while at higher L-arabinose concentrations, increasing L-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude L-arabinose. Further, due to the rapid export of L-arabinose, an efficient method for recombination-mediated gene knockout, the L-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of L-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that L-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of L-arabinose should facilitate the optimization of L-arabinose induction in strains with high efflux activity.
Devoto, Paola; Frau, Roberto; Bini, Valentina; Pillolla, Giuliano; Saba, Pierluigi; Flore, Giovanna; Corona, Marta; Marrosu, Francesco; Bortolato, Marco
2012-01-01
Summary Cogent evidence highlights a key role of neurosteroids and androgens in schizophrenia. We recently reported that inhibition of steroid 5α-reductase (5αR), the rate-limiting enzyme in neurosteroid synthesis and androgen metabolism, elicits antipsychotic-like effects in humans and animal models, without inducing extrapyramidal side effects. To elucidate the anatomical substrates mediating these effects, we investigated the contribution of peripheral and neural structures to the behavioral effects of the 5αR inhibitor finasteride (FIN) on the prepulse inhibition (PPI) of the acoustic startle reflex (ASR), a rat paradigm that dependably simulates the sensorimotor gating impairments observed in schizophrenia and other neuropsychiatric disorders. The potential effect of drug-induced ASR modifications on PPI was excluded by measuring this index both as percent (%PPI) and absolute values (ΔPPI). In both orchidectomized and sham-operated rats, FIN prevented the %PPI deficits induced by the dopamine (DA) receptor agonists apomorphine (APO, 0.25 mg/kg, SC) and d-amphetamine (AMPH, 2.5 mg/kg, SC), although the latter effect was not corroborated by ΔPPI analysis. Conversely, APO-induced PPI deficits were countered by FIN infusions in the brain ventricles (10 μg/1 μl) and in the nucleus accumbens (NAc) shell and core (0.5 μg/0.5 μl/side). No significant PPI-ameliorating effect was observed following FIN injections in other brain regions, including dorsal caudate, basolateral amygdala, ventral hippocampus and medial prefrontal cortex, although a statistical trend was observed for the latter region. The efflux of DA in NAc was increased by systemic, but not intracerebral FIN administration. Taken together, these findings suggest that the role of 5αR in gating regulation is based on post-synaptic mechanisms in the NAc, and is not directly related to alterations in DA efflux in this region. PMID:22029952
Marchi, Emmanuela; Furi, Leonardo; Arioli, Stefania; Morrissey, Ian; Di Lorenzo, Valeria; Mora, Diego; Giovannetti, Luciana; Oggioni, Marco Rinaldo; Viti, Carlo
2015-01-01
Staphylococcus aureus strains harboring QacA, QacB, QacC, QacG transporters and norA promoter up-regulating mutations were characterized by phenotype microarray (PM), standard methods for susceptibility testing, and ethidium bromide efflux assays, in order to increase knowledge on phenotypes associated to efflux pumps and their substrates. PM data and standard susceptibility testing lead to the identification of new potential efflux targets, such as guanidine hydrochloride or 8-hydroxyquinoline for QacA and QacC pumps, respectively. The identification of compounds to which the presence of efflux pumps induced increased susceptibility opens new perspectives for potential adjunct anti-resistance treatment (i.e. strains bearing QacB transporters showed increased susceptibility to thioridazine, amitriptyline and orphenadrine). Although the tested isolates were characterized by high degree of heterogeneity, a hallmark of clinical isolates, direct ethidium bromide efflux assays were effective in highlighting differences in efflux efficiency among strains. These data add to characterization of substrate specificity in the different classes of staphylococcal multidrug efflux systems conferring specific substrate profiles and efflux features to each of them. Copyright © 2014 Elsevier GmbH. All rights reserved.
Midde, Narasimha M.; Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Huang, Xiaoqin; Zhan, Chang-Guo; Zhu, Jun
2015-01-01
HIV-1 transactivator of transcription (Tat) protein disrupts the dopamine (DA) neurotransmission by inhibiting DA transporter (DAT) function, leading to increased neurocognitive impairment in HIV-1 infected individuals. Through integrated computational modeling and pharmacological studies, we have demonstrated that mutation of tyrosine470 (Y470H) of human DAT (hDAT) attenuates Tat-induced inhibition of DA uptake by changing the transporter conformational transitions. The present study examined the functional influences of other substitutions at tyrosine470 (Y470F and Y470A) and tyrosine88 (Y88F) and lysine92 (K92M), two other relevant residues for Tat binding to hDAT, in Tat-induced inhibitory effects on DA transport. Y88F, K92M and Y470A attenuated Tat-induced inhibition of DA transport, implicating the functional relevance of these residues for Tat binding to hDAT. Compared to wild type hDAT, Y470A and K92M but not Y88F reduced the maximal velocity of [3H]DA uptake without changes in the Km. Y88F and K92M enhanced IC50 values for DA inhibition of [3H]DA uptake and [3H]WIN35,428 binding but decreased IC50 for cocaine and GBR12909 inhibition of [3H]DA uptake, suggesting that these residues are critical for substrate and these inhibitors. Y470F, Y470A, Y88F and K92M attenuated zinc-induced increase of [3H]WIN35,428 binding. Moreover, only Y470A and K92M enhanced DA efflux relative to wild type hDAT, suggesting mutations of these residues differentially modulate transporter conformational transitions. These results demonstrate Tyr88 and Lys92 along with Tyr470 as functional recognition residues in hDAT for Tat-induced inhibition of DA transport and provide mechanistic insights into identifying target residues on the DAT for Tat binding. PMID:25604666
Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi
2017-07-01
Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.
Sodium efflux from voltage clamped squid giant axons.
Landowne, D
1977-01-01
1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10. This deviation from independence in the sodium fluxes is the type expected from some kind of mixing and binding of sodium within the membrane phase. PMID:856999
Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria
Nikaido, Hiroshi; Pagès, Jean-Marie
2013-01-01
Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670
Efficiency of N use by wheat as a function of influx and efflux of NO sub 3
NASA Technical Reports Server (NTRS)
Huffaker, R. C.; Aslam, M.; Ward, M. R.
1989-01-01
Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Controlled Ecological Life-Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. It was found that NO3(-) efflux became serious as its substrate level increased. Efflux/Influx (E/I) of 3NO3(-) was greater in darkness (35 pct) than in light (14 pct) and the ratio greatly increased with increased substrate NO3(-), (up to 45 pct at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) as a trapping agent (competitive inhibitor of NO3(-) uptake) for effluxed NO3(-) was assessed and its toxicity determined.
Efflux systems in bacteria and their metabolic engineering applications.
Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F
2015-11-01
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
NASA Astrophysics Data System (ADS)
Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.
2017-12-01
Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, D.J.; Laansoo, M.; Sen, A.K.
Slices of rat submandibular gland were preloaded with /sup 86/Rb, an isotope that can substitute for K/sup +/ in the K/sup +/ release process. The efflux of /sup 86/Rb was monitored in a superfusion apparatus that efficiently removed the /sup 86/Rb as it exited from the tissue slices. Carbachol and the calcium ionophore A23187 activated a calcium-dependent increase in /sup 86/Rb efflux. Dibutyryl cGMP had no detectable effect on /sup 86/Rb efflux in contrast to its activation of ouabain-sensitive uptake of /sup 86/Rb observed in an earlier study. The stimulated release of /sup 86/Rb was not dependent on the presencemore » of either sodium or chloride ion. When /sup 86/Rb efflux was stimulated by carbachol, the efflux rate returned toward the basal rate after a few minutes of exposure to carbachol in the medium. If ouabain was then introduced into the superfusate, a large increase in efflux was stimulated. In the absence of carbachol, only a small increase in /sup 86/Rb efflux was stimulated by ouabain. The effect of ouabain indicates that there was a substantial recycling of /sup 86/Rb between the release and uptake processes in the extracellular space of the tissue slice. The significance of this observation is discussed.« less
V1-receptor mediated GSH efflux by vasopressin from rat hepatocytes.
Sato, C; Liu, J H; Uchihara, M; Izumi, N; Yauchi, T; Sakaj, Y; Asahina, Y; Fukuma, T; Takano, T; Marumo, F
1992-01-01
Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.
Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E
2017-09-01
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.
Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel
2015-01-01
Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842
Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake
May, James M.; Qu, Zhi-chao
2015-01-01
Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells over 2 h. This efflux was opposed by ascorbate re-uptake from the medium, since preventing re-uptake by destroying extracellular ascorbate with ascorbate oxidase increased ascorbate loss even further. Ascorbate re-uptake occurred on the SVCT2, since its blockade by replacing medium sodium with choline, by the SVCT2 inhibitor sulfinpyrazone, or by extracellular ascorbate accelerated ascorbate loss from the cells. This was supported by finding that net efflux of radiolabeled ascorbate was increased by unlabeled extracellular ascorbate with a half-maximal effect in the range of the high affinity Km of the SVCT2. Intracellular ascorbate did not inhibit its efflux. To assess the mechanism of ascorbate efflux, known inhibitors of volume-regulated anion channels (VRACs) were tested. These potently inhibited ascorbate transport into cells on the SVCT2, but not its efflux. An exception was the anion transport inhibitor DIDS, which, despite inhibition of ascorbate uptake, also inhibited net efflux at 25–50 µM. These results suggest that ascorbate efflux from vascular pericytes occurs on a DIDS-inhibitable transporter or channel different from VRACs. Further, ascorbate efflux is opposed by re-uptake of ascorbate on the SVCT2, providing a potential regulatory mechanism. PMID:26340060
An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a
2011-01-01
Background Efflux pumps belonging to the resistance-nodulation-division (RND) superfamily in bacteria are involved in antibiotic resistance and solvent tolerance but have an unknown physiological role. EmhABC, a RND-type efflux pump in Pseudomonas fluorescens strain cLP6a, extrudes hydrophobic antibiotics, dyes and polycyclic aromatic hydrocarbons including phenanthrene. The effects of physico-chemical factors such as temperature or antibiotics on the activity and expression of EmhABC were determined in order to deduce its physiological role(s) in strain cLP6a in comparison to the emhB disruptant strain, cLP6a-1. Results Efflux assays conducted with 14C-phenanthrene showed that EmhABC activity is affected by incubation temperature. Increased phenanthrene efflux was measured in cLP6a cells grown at 10°C and decreased efflux was observed at 35°C compared with cells grown at the optimum temperature of 28°C. Membrane fatty acids in cLP6a cells were substantially altered by changes in growth temperature and in the presence of tetracycline. Changed membrane fatty acids and increased membrane permeability were associated with ~30-fold increased expression of emhABC in cLP6a cells grown at 35°C, and with increased extracellular free fatty acids. Growth of P. fluorescens cLP6a at supra-optimal temperature was enhanced by the presence of EmhABC compared to strain cLP6a-1. Conclusions Combined, these observations suggest that the EmhABC efflux pump may be involved in the management of membrane stress effects such as those due to unfavourable incubation temperatures. Efflux of fatty acids replaced as a result of membrane damage or phospholipid turnover may be the primary physiological role of the EmhABC efflux pump in P. fluorescens cLP6a. PMID:22085438
Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève
2017-06-01
Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D
2014-11-04
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903
Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta
2014-01-01
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli. PMID:25025665
Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta
2014-01-01
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.
2011-01-01
Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential role played by efflux systems in the development of resistance to fluoroquinolones in clinical isolates of S. aureus. PMID:22032541
Pumbwe, Lilian; Chang, Abraham; Smith, Rachel L; Wexler, Hannah M
2007-01-01
The RND-family efflux pump gene bmeB5 was previously shown to be overexpressed in metronidazole-resistant laboratory mutants of Bacteroides fragilis. In the present study, we characterized the bmeABC5 genes and an upstream putative TetR-family regulator gene (bmeR5). bmeR5 (645 bp) was located 51 bp upstream of bmeA5 and encoded a 24.9-kDa protein. Deletant strains lacking bmeB5 or bmeR5 were constructed from a wild-type B. fragilis strain ADB77. Strain antimicrobial susceptibility was determined and gene expression was quantified. bmeR5 was overexpressed in Escherichia coli using a 6x-His tag system; BmeR5-His6 was isolated from inclusion bodies and its binding to bmeABC5 promoter regions was determined. BmeR5-His6 bound specifically to the bmeR5-bmeC5 intergenic region (IT1). Deletion of bmeR5 (ADB77DeltabmeR5) resulted in a significant (p < 0.05) increase in expression of bmeA5, bmeB5, and bmeC5, and > two-fold increase in minimum inhibitory concentrations (MICs) of ampicillin, cefoxitin, cefoperazone, ciprofloxacin, imipenem, metronidazole, ethidium bromide, and sodium dodecyl sulfate (SDS). MICs were reduced by the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The MICs of ampicillin, cefoperazone, metronidazole, and SDS were reduced by approximately two-fold in ADB77DeltabmeB5. A multidrug (metronidazole)-resistant, nim-negative B. fragilis clinical isolate overexpressed bmeABC5 genes, had a G-->T point mutation in IT1, and significantly reduced binding to BmeR5-His6. These data demonstrate that BmeR5 is a local repressor of bmeABC5 expression and that mutations in IT1 can lead to a derepression and resistance to multiple antimicrobial agents, including metronidazole.
Targeting efflux pumps to overcome antifungal drug resistance
Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D
2016-01-01
Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566
Zielińska, M; Hilgier, W; Law, R O; Gorynski, P; Albrecht, J
2002-01-01
Cerebrocortical minislices derived from control rats ("control slices") and from rats with thioacetamide (TAA)-induced hepatic failure showing moderate hyperammonemia and symptoms of hepatic encephalopathy (HE) ("HE slices"), were incubated with physiological saline in the absence or presence of 5 mM ammonium acetate ("ammonia"), at potassium ion (K+) concentrations ranging from 5 to 15 mM. The efflux of endogenous aspartate (Asp), glutamate (Glu) and taurine (Tau) to the incubation medium was assayed by HPLC. At 5 mM K+, perfusion of control slices with ammonia did not affect Glu and slightly depressed Asp efflux. Raising K+ concentrations in the incubation medium to 7.5 led to inhibition of Glu and Asp efflux by ammonia and the inhibitory effect was further potentiated at 10 mM K+. The inhibition was also significant at 15 mM K+. This suggests that, depression of excitatory neurotransmission associated with acute hyperammonemia is more pronounced under conditions of intense neuronal activity than in the resting state. HE moderately increased the efflux of Glu and Asp, and the stimulatory effect of HE on Glu and Asp efflux showed virtually no variation upon changing K+ concentration up to 15 mM. Ammonia strongly, and HE moderately, increased Tau efflux at 5 mM K+. However, both the ammonia- and HE-dependent Tau efflux decreased with increasing K+ concentration in the medium and was no longer significant at 10 mM concentration, indicating that intense neuronal activity obliterates the neuroprotective functions of this amino acid triggered by hyperammonemia.
Bovine seminal PDC-109 protein: an overview of biochemical and functional properties.
Srivastava, N; Jerome, A; Srivastava, S K; Ghosh, S K; Kumar, Amit
2013-04-01
Although long-term storage of bovine semen is desirable for wider use, successful cryopreservation depends on several factors, including various proteins present in seminal plasma. One such group of proteins, viz. bovine seminal plasma (BSP) proteins represents the major protein fraction in bovine seminal plasma. They constitute three major heparin-binding (HB-) acidic proteins secreted by seminal vesicles, viz. BSP-A1/-A2 (PDC-109), BSP-A3 and BSP-30-kDa. By purification studies it was deduced that PDC-109 is a polypeptide of 109 amino acids and contains two tandem repeating fibronectin type-II (Fn-II) domains, preceded by a 23 residue N-terminal domain. Though BSP-A1 and BSP-A2 are biochemically similar they differ only in glycosylation and their mixture is called PDC-109 or gonadostatins. PDC-109 exists as a polydisperse, multimeric self-associated molecule and possesses multifunctional properties, viz. binding to the surface of plasma membrane of spermatozoa causing conformational change in the sperm surface proteins and enhances motility. Besides binding, PDC-109 protein provokes cholesterol efflux from sperm membrane and promotes sperm reservoir by interacting with oviductal membrane. Interaction of sperm with PDC-109 protein induces sperm capacitation and acrosome reaction. However, prolonged exposure of spermatozoa with free floating PDC-109 protein as during processing for preservation, increases cholesterol efflux from spermatozoa. The efflux of sperm membrane cholesterol and disturbance in cholesterol:phospholipids ratio causes destabilization of plasma membrane thereby inducing cryoinjury to the sperm. In this review, the biochemical, functional properties of PDC-109 protein and its role during semen cryopreservation is summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Efflux Of Nitrate From Hydroponically Grown Wheat
NASA Technical Reports Server (NTRS)
Huffaker, R. C.; Aslam, M.; Ward, M. R.
1992-01-01
Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.
Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras
2015-06-01
Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h(-1), respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h(-1)). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h(-1), respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key pointsMuscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches.Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity.Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice.
Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras
2015-01-01
Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h−1). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key points Muscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches. Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity. Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice. PMID:25983588
Efficiency of N use by wheat as a function of influx and efflux of NO3
NASA Technical Reports Server (NTRS)
Huffaker, R. C.; Aslam, M.; Ward, M. R.
1990-01-01
Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Closed Ecology Life Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. Researchers found that NO3 efflux became serious as its substrate level increased. Efflux/Influx (E/I) of NO3(-) was greater in darkness (35 percent) than in light (14 percent), and the ratio greatly increased with substrate NO3 (-), (up to 45 percent at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) was assessed and its toxicity determined.
Effect of proinflammatory cytokine IL-6 on efflux transport of rebamipide in Caco-2 cells.
Miyake, Masateru; Nakai, Daisuke
2017-09-01
1. Effect of IL-6, a pro-inflammatory cytokine, on efflux transport of rebamipide, an antiulcer drug, was investigated in Caco-2 cells. 2. Rebamipide had a greater basal-to-apical than apical-to-basal transport rate. Efflux transport of rebamipide was inhibited by cyclosporine A, a P-gp inhibitor, and probenecid, which is a general MRP inhibitor, but not by Ko143, a BCRP inhibitor. 3. By the addition of IL-6, mannitol transport was slightly increased in a concentration-dependent manner in both directions of absorption and efflux. The addition of IL-6 did not change efflux transport of rebamipide even though efflux transport of digoxin, a typical substrate of P-gp, was significantly decreased by the addition of IL-6, indicating decrease of the function of P-gp. 4. Therefore, it was suggested that increase of MRP(s)-mediated transport compensates for the decrease of P-gp mediated transport of rebamipide. These findings suggested that rebamipide absorption is unlikely to be changed in IBD patients.
Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.
2012-01-01
Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982
Chevalier, Jacqueline; Mulfinger, Céline; Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie
2008-09-12
The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, ...). Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes.
Garnotel, Eric; Nicolas, Pierre; Davin-Régli, Anne; Pagès, Jean-Marie
2008-01-01
Background The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed ‘multidrug resistance’ (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of Gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (ß-lactams, quinolones, …). Methodology/Principal Findings Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAßN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAßN-susceptible efflux system was also identified in resistant E. aerogenes strains. Conclusions/Significance For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum ß-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes. PMID:18787654
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey
2014-10-01
Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.
Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M
2013-06-01
Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that the effect of GSNO on Cl(-) efflux is, at least in part, due to its properties as an NO-donor, and the effect is likely to be mediated by CFTR, not by Ca(2+)-activated Cl(-) channels. Copyright © 2013. Published by Elsevier Inc.
Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L
2015-01-01
Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
2005-01-01
The effects of antimicrobial peptides on artificial membranes have been well-documented; however, reports on the ultrastructural effects on the membranes of micro-organisms are relatively scarce. We compared the effects of histatin 5 and LL-37, two antimicrobial peptides present in human saliva, on the functional and morphological properties of the Candida albicans cell membrane. Fluorescence microscopy and immunogold transmission electron microscopy revealed that LL-37 remained associated with the cell wall and cell membrane, whereas histatin 5 transmigrated over the membrane and accumulated intracellularly. Freeze-fracture electron microscopy revealed that LL-37 severely affected the membrane morphology, resulting in the disintegration of the membrane bilayer into discrete vesicles, and an instantaneous efflux of small molecules such as ATP as well as larger molecules such as proteins with molecular masses up to 40 kDa. The effects of histatin 5 on the membrane morphology were less pronounced, but still resulted in the efflux of nucleotides. As the morphological defects induced by histatin 5 are much smaller than those induced by LL-37, but the efflux of nucleotides is similar at comparable candidacidal concentrations, we suggest that the loss of nucleotides plays an important role in the killing process. PMID:15707390
Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against Escherichia coli
Machado, Diana; Fernandes, Laura; Costa, Sofia S.; Cannalire, Rolando; Manfroni, Giuseppe; Tabarrini, Oriana; Couto, Isabel; Sabatini, Stefano
2017-01-01
Efflux pump inhibitors are of great interest since their use as adjuvants of bacterial chemotherapy can increase the intracellular concentrations of the antibiotics and assist in the battle against the rising of antibiotic-resistant bacteria. In this work, we have described the mode of action of the 2-phenylquinoline efflux inhibitor (4-(2-(piperazin-1-yl)ethoxy)-2-(4-propoxyphenyl) quinolone – PQQ4R), against Escherichia coli, by studding its efflux inhibitory ability, its synergistic activity in combination with antibiotics, and compared its effects with the inhibitors phenyl-arginine-β-naphthylamide (PAβN) and chlorpromazine (CPZ). The results showed that PQQ4R acts synergistically, in a concentration dependent manner, with antibiotics known to be subject to efflux in E. coli reducing their MIC in correlation with the inhibition of their efflux. Real-time fluorometry assays demonstrated that PQQ4R at sub-inhibitory concentrations promote the intracellular accumulation of ethidium bromide inhibiting its efflux similarly to PAβN or CPZ, well-known and described efflux pump inhibitors for Gram-negative bacteria and whose clinical usage is limited by their levels of toxicity at clinical and bacteriological effective concentrations. The time-kill studies showed that PQQ4R, at bactericidal concentrations, has a rapid antimicrobial activity associated with a fast decrease of the intracellular ATP levels. The results also indicated that the mode of action of PQQ4R involves the destabilization of the E. coli inner membrane potential and ATP production impairment, ultimately leading to efflux pump inhibition by interference with the energy required by the efflux systems. At bactericidal concentrations, membrane permeabilization increases and finally ATP is totally depleted leading to cell death. Since drug resistance mediated by the activity of efflux pumps depends largely on the proton motive force (PMF), dissipaters of PMF such as PQQ4R, can be regarded as future adjuvants of conventional therapy against E. coli and other Gram-negative bacteria, especially their multidrug resistant forms. Their major limitation is the high toxicity for human cells at the concentrations needed to be effective against bacteria. Their future molecular optimization to improve the efflux inhibitory properties and reduce relative toxicity will optimize their potential for clinical usage against multi-drug resistant bacterial infections due to efflux. PMID:28516003
Butts, Kelly A; Weinberg, Joanne; Young, Allan H; Phillips, Anthony G
2011-11-08
Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.
Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.
2007-01-01
Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953
Sanchez, Cecilia P.; Rohrbach, Petra; McLean, Jeremy E.; Fidock, David A.; Stein, Wilfred D.; Lanzer, Michael
2010-01-01
Summary The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum has remained controversial. Currently discussed models include a carrier or a channel for chloroquine, the former actively expelling the drug, the latter facilitating its passive diffusion, out of the parasite’s food vacuole, where chloroquine accumulates and inhibits haem detoxification. Here we have challenged both models using an established trans-stimulation efflux protocol. While carriers may demonstrate trans-stimulation, channels do not. Our data reveal that extracellular chloroquine stimulates chloroquine efflux in the presence and absence of metabolic energy in both chloroquine-sensitive and -resistant parasites, resulting in a hyperbolic increase in the apparent initial efflux rates as the concentration of external chloroquine increases. In the absence of metabolic energy, the apparent initial efflux rates were comparable in both parasites. Significant differences were only observed in the presence of metabolic energy, where consistently higher apparent initial efflux rates were found in chloroquine-resistant parasites. As trans-stimulation is characteristic of a carrier, and not a channel, we interpret our data in favour of a carrier for chloroquine being present in both chloroquine-sensitive and -resistant parasites, however, with different transport modalities. PMID:17493125
Kourtesi, Christina; Ball, Anthony R; Huang, Ying-Ying; Jachak, Sanjay M; Vera, D Mariano A; Khondkar, Proma; Gibbons, Simon; Hamblin, Michael R; Tegos, George P
2013-01-01
Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches. PMID:23569468
Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate
May, James M.; Qu, Zhi-chao
2013-01-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707
Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.
May, James M; Qu, Zhi-chao
2009-05-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.
NASA Astrophysics Data System (ADS)
Yamulki, S.; Anderson, R.; Peace, A.; Morison, J. I. L.
2013-02-01
The effect of tree (lodgepole pine) planting with and without intensive drainage on soil greenhouse gas (GHG) fluxes was assessed after 45 yr at a raised peatbog in West Flanders Moss, central Scotland. Fluxes of CO2 CH4 and N2O from the soil were monitored over a 2-yr period every 2 to 4 weeks using the static opaque chamber method in a randomised experimental block trial with the following treatments: drained and planted (DP), undrained and planted (uDP), undrained and unplanted (uDuP) and for reference also from an adjoining near-pristine area of bog at East Flanders Moss (n-pris). There was a strong seasonal pattern in both CO2 and CH4 effluxes which were significantly higher in late spring and summer months because of warmer temperatures. Effluxes of N2O were low and no significant differences were observed between the treatments. Annual CH4 emissions increased with the proximity of the water table to the soil surface across treatments in the order: DP < uDP < uDuP < n-pris with mean annual effluxes over the 2-yr monitoring period of 0.15, 0.64, 7.70 and 22.63 g CH4 m-2 yr-1, respectively. For CO2, effluxes increased in the order uDP < DP< n-pris < uDuP, with mean annual effluxes of 1.23, 1.66, 1.82 and 2.55 kg CO2 m-2 yr-1, respectively. CO2 effluxes dominated the total net GHG emission, calculated using the global warming potential (GWP) of the three GHGs for each treatment (76-98%), and only in the n-pris site was CH4 a substantial contribution (23%). Based on soil effluxes only, the near pristine (n-pris) peatbog had 43% higher total net GHG emission compared with the DP treatment because of high CH4 effluxes and the DP treatment had 33% higher total net emission compared with the uDP because drainage increased CO2 effluxes. Restoration is likely to increase CH4 emissions, but reduce CO2 effluxes. Our study suggests that if estimates of CO2 uptake by vegetation from similar peatbog sites were included, the total net GHG emission of restored peatbog would still be higher than that of the peatbog with trees.
Holler, Jes Gitz; Slotved, Hans-Christian; Mølgaard, Per; Olsen, Carl Erik; Christensen, Søren Brøgger
2012-07-15
A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L
2010-10-01
Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Machado, Diana; Antunes, Jéssica; Simões, Ana; Perdigão, João; Couto, Isabel; McCusker, Matthew; Martins, Marta; Portugal, Isabel; Pacheco, Teresa; Batista, Judite; Toscano, Cristina; Viveiros, Miguel
2018-06-01
The mechanisms underlying colistin heteroresistance in Acinetobacter baumannii are not fully understood. Here, we investigated the role of efflux in colistin-heteroresistant populations of a multidrug-resistant (MDR) A. baumannii clinical isolate. Three colistin-resistant A. baumannii strain variants isolated from the same clinical sample were studied for the presence of heteroresistance to colistin by drug susceptibility testing, genotyping and drug resistance target mutation analysis. The existence of active efflux was studied by synergism assays with efflux inhibitors, real-time efflux activity measurements and analysis of the mRNA transcriptional levels of selected efflux pump genes in response to colistin. All of the strain variants belong to the ST218, clonal complex 92, international clonal lineage II. Different colistin susceptibility levels were observed among the three strain variants, indicating that colistin-heteroresistant subpopulations were being selected upon exposure to colistin. No mutations were found in the genes lpxACD and pmrAB, which are associated with colistin resistance. The results showed the existence of synergistic interactions between efflux inhibitors and colistin and ethidium bromide. Real-time efflux assays demonstrated that the three strain variants had increased efflux activity that could be inhibited in the presence of the inhibitors. The efflux pump genes adeB, adeJ, adeG, craA, amvA, abeS and abeM were found to be overexpressed in the strain variants in response to colistin exposure. This study shows that efflux activity contributes to colistin heteroresistance in an MDR A. baumannii clinical isolate. The use of efflux inhibitors as adjuvants of the therapy can resensitize A. baumannii to colistin and prevent the emergence of drug resistance.
Efflux-mediated antimicrobial resistance.
Poole, Keith
2005-07-01
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.
2017-01-01
Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768
Pourmand, Mohammad Reza; Yousefi, Masoud; Salami, Seyed Alireza; Amini, Mohsen
2014-01-01
Staphylococcus aureus causes a wide variety of infections worldwide. Methicillin-resistant S. aureus is one of most common causes of nosocomial and community acquired infections. The fluoroquinolones are an important class of antibiotics that used to treat infections caused by S. aureus. Today, a significant increase in the rate of ciprofloxacin resistance in methicillin-resistant S. aureus strains is concerning. The norA efflux pump is considered as contributors to antibiotic resistance. Here, we aimed to evaluate the expression of norA efflux pump in the presence of hexahydroquinoline derivative in methicillin and ciprofloxacin resistant S. aureus. We were determined minimum inhibitory concentration of ciprofloxacin and hexahydroquinoline derivative and their combination by broth microdilution method against ciprofloxacin resistant S. aureus. The expression of the norA efflux pump gene was evaluated by quantitative Real-time PCR. This study showed that minimum inhibitory concentrations of ciprofloxacin in the presence of hexahydroquinoline derivative in comparison to ciprofloxacin were decreased. Quantitative Real-time PCR identified the increased expression of norA efflux pump gene in methicillin and ciprofloxacin resistant S. aureus strain. The increased expression of norA efflux pump gene may have resulted in the effort of S. aureus to survive. The results showed that the hexahydroquinoline derivative enhanced the antibacterial effect of ciprofloxacin against methicillin and ciprofloxacin resistant S. aureus. Therefore, the derivatives may be used as inhibitors of antibiotic resistance for combination therapy.
Shen, J L; Fang, Y P
2015-06-18
We explored the mechanism of the development from sensitivity to resistance to carbapenem in Pseudomonas aeruginosa. Two P. aeruginosa strains were collected during treatment with carbapenem. Strain homology was investigated using pulsed-field gel electrophoresis. Porin oprD2 expression was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The minimum inhibitory concentrations (MICs) of imipenem and meropenem with or without MC207110 were determined using the agar dilution method. The expression level of efflux pump mRNA was tested using real-time polymerase chain reaction. Metallo-lactamases (MBLs) were screened using the EDTA-disk synergy test. Genes encoding MBLs were amplified and then analyzed by DNA sequencing. The two treated strains belonged to the same pulsed-field gel electrophoresis type. The SDS-PAGE profile of the P. aeruginosa strains revealed that the 46-kDa membrane protein OprD2 of IMP(R)MEM(R) type strains was lost, whereas OprD2 of 1 IMP(S)MEM(S) strain was normal. With or without MC207110 treatment, the MIC of carbapenem-resistant P. aeruginosa decreased by 4-fold, while the MIC of carbapenem-sensitive P. aeruginosa did not. Compared with the carbapenem-sensitive strain, MexX mRNA expression in the carbapenem-resistant strain increased by 102.5-fold, while the mRNA expression of other efflux pumps did not markedly increase. Neither carbapenem-resistant nor carbapenem-sensitive P. aeruginosa produced MBL. The mechanism of development from sensitivity to resistance of P. aeruginosa to carbapenem during carbapenem treatment is due to porin oprD2 loss and an increased expression level of MexXY-OprM.
A Pseudomonas putida efflux pump acts on short-chain alcohols.
Basler, Georg; Thompson, Mitchell; Tullman-Ercek, Danielle; Keasling, Jay
2018-01-01
The microbial production of biofuels is complicated by a tradeoff between yield and toxicity of many fuels. Efflux pumps enable bacteria to tolerate toxic substances by their removal from the cells while bypassing the periplasm. Their use for the microbial production of biofuels can help to improve cell survival, product recovery, and productivity. However, no native efflux pump is known to act on the class of short-chain alcohols, important next-generation biofuels, and it was considered unlikely that such an efflux pump exists. We report that controlled expression of the RND-type efflux pump TtgABC from Pseudomonas putida DOT-T1E strongly improved cell survival in highly toxic levels of the next-generation biofuels n -butanol, isobutanol, isoprenol, and isopentanol. GC-FID measurements indicated active efflux of n -butanol when the pump is expressed. Conversely, pump expression did not lead to faster growth in media supplemented with low concentrations of n -butanol and isopentanol. TtgABC is the first native efflux pump shown to act on multiple short-chain alcohols. Its controlled expression can be used to improve cell survival and increase production of biofuels as an orthogonal approach to metabolic engineering. Together with the increased interest in P. putida for metabolic engineering due to its flexible metabolism, high native tolerance to toxic substances, and various applications of engineering its metabolism, our findings endorse the strain as an excellent biocatalyst for the high-yield production of next-generation biofuels.
The ins and outs of RND efflux pumps in Escherichia coli.
Anes, João; McCusker, Matthew P; Fanning, Séamus; Martins, Marta
2015-01-01
Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.
Foster, Daniel J; Heacock, Anne M; Keep, Richard F; Fisher, Stephen K
2008-05-01
The ability of receptor activation to regulate osmosensitive K+ fluxes (monitored as 86Rb+) in SH-SY5Y neuroblastoma has been examined. Incubation of SH-SY5Y cells in buffers rendered increasingly hypotonic by a reduction in NaCl concentration resulted in an enhanced basal efflux of Rb+ (threshold of release, 200 mOsM) but had no effect on Rb(+) influx. Addition of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), potently enhanced Rb+ efflux (EC50 = 0.45 microM) and increased the threshold of release to 280 mOsM. Oxo-M elicited a similarly potent, but osmolarity-independent, enhancement of Rb+ influx (EC50 = 1.35 microM). However, when incubated under hypotonic conditions in which osmolarity was varied by the addition of sucrose to a fixed concentration of NaCl, basal- and Oxo-M-stimulated Rb+ influx and efflux were demonstrated to be dependent upon osmolarity. Basal- and Oxo-M-stimulated Rb+ influx (but not Rb+ efflux) were inhibited by inclusion of ouabain or furosemide. Both Rb+ influx and efflux were inhibited by removal of intracellular Ca2+ and inhibition of protein kinase C activity. In addition to Oxo-M, agonists acting at other cell surface receptors previously implicated in organic osmolyte release enhanced both Rb+ efflux and influx under hypotonic conditions. Oxo-M had no effect on cellular K+ concentration in SH-SY5Y cells under physiologically relevant reductions in osmolarity (0-15%) unless K+ influx was blocked. Thus, although receptor activation enhances the osmosensitive efflux of K+, it also stimulates K+ influx, and the latter permits retention of K+ by the cells.
Dang, Trang Nguyen Doan; Srinivasan, Usha; Britt, Zachary; Marrs, Carl F.; Zhang, Lixin; Ki, Moran; Foxman, Betsy
2014-01-01
OBJECTIVES: Group B Streptococcus (GBS), a common bowel commensal, is a major cause of neonatal sepsis and an emerging cause of infection in immune-compromised adult populations. Fluoroquinolones are used to treat GBS infections in those allergic to beta-lactams, but GBS are increasingly resistant to fluoroquinolones. Fluoroquinolone resistance has been previously attributed to quinolone resistance determining regions (QRDRs) mutations. We demonstrate that some of fluoroquinolone resistance is due to efflux-mediated resistance. METHODS: We tested 20 GBS strains resistant only to norfloxacin with no mutations in the QRDRs, for the efflux phenotype using norfloxacin and ethidium bromide as substrates in the presence of the efflux inhibitor reserpine. Also tested were 68 GBS strains resistant only to norfloxacin not screened for QRDRs, and 58 GBS strains resistant to ciprofloxacin, levofloxacin or moxifloxacin. Isolates were randomly selected from 221 pregnant women (35-37 weeks of gestation) asymptomatically carrying GBS, and 838 patients with GBS infection identified in South Korea between 2006 and 2008. The VITEK II automatic system (Biomerieux, Durham, NC, USA) was used to determine fluoroquinolone resistance. RESULTS: The reserpine associated efflux phenotype was found in more than half of GBS strains resistant only to norfloxacin with no QRDR mutations, and half where QRDR mutations were unknown. No evidence of the efflux phenotype was detected in GBS strains that were resistant to moxifloxacin or levofloxacin or both. The reserpine sensitive efflux phenotype resulted in moderate increases in norfloxacin minimum inhibitory concentration (average=3.6 fold, range=>1-16 fold). CONCLUSIONS: A substantial portion of GBS strains resistant to norfloxacin have an efflux phenotype. PMID:25322878
Brooks, Lauren E; Ul-Hasan, Sabah; Chan, Benjamin K; Sistrom, Mark J
2018-01-01
Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection-representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments-specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance-the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections.
Ul-Hasan, Sabah; Chan, Benjamin K.; Sistrom, Mark J.
2018-01-01
ABSTRACT Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection—representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments—specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance—the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections. PMID:29719870
Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi
2017-11-15
The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.
Pletzer, Daniel; Stahl, Antje; Oja, Anna Elisabeth; Weingart, Helge
2015-08-01
The purpose of this study was to identify the role of the cell envelope stress-sensing systems BaeSR and CpxARP in regulation of multidrug efflux and exopolysaccharide synthesis in Erwinia amylovora. We have previously reported that BaeR activates transcription of the RND-type efflux pumps AcrD and MdtABC. In this study, we found that a cpxR-deficient mutant was highly susceptible to β-lactams, aminoglycosides and lincomycin, whereas a baeR mutant showed no change in antimicrobial sensitivity. However, overexpression of BaeR in a mutant lacking the major RND pump AcrB increased resistance of E. amylovora to several compounds that are not substrates of AcrD or MdtABC. Furthermore, we observed that overexpression of BaeR significantly increased amylovoran production. Moreover, the expression of RND-type efflux pumps was changed in regulatory mutants of exopolysaccharide production. Our data suggest that BaeSR and CpxARP regulate additional mechanisms, beside efflux, which are responsible for antimicrobial resistance of E. amylovora.
CO2 Efflux from Cleared Mangrove Peat
Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.
2011-01-01
Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628
CO2 efflux from cleared mangrove peat.
Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C
2011-01-01
CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2) efflux. CO(2) efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2) year(-1) in the first year to 3000 tonnes km(2) year(-1) after 20 years since clearing. Disturbing peat leads to short term increases in CO(2) efflux (27 umol m(-2) s(-1)), but this had returned to baseline levels within 2 days. Deforesting mangroves that grow on peat soils results in CO(2) emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.
The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim.
Newgreen, D. T.; Bray, K. M.; McHarg, A. D.; Weston, A. H.; Duty, S.; Brown, B. S.; Kay, P. B.; Edwards, G.; Longmore, J.; Southerton, J. S.
1990-01-01
1. The actions of diazoxide and minoxidil sulphate have been compared with those of cromakalim in rat aorta and portal vein. 2. Diazoxide and minoxidil sulphate hyperpolarized the rat portal vein in a similar manner to cromakalim. 3. Cromakalim, diazoxide and minoxidil sulphate increased 42K and 86Rb efflux from rat portal vein, although minoxidil sulphate had only a small effect on 86Rb efflux. 4. Cromakalim, diazoxide and minoxidil sulphate increased 42K efflux from rat aorta but only cromakalim and diazoxide increased 86Rb efflux from this tissue. 5. Glibenclamide inhibited the relaxant actions of cromakalim, diazoxide and minoxidil sulphate on rat aorta and the increase in 42K efflux produced by these agents in this tissue. 6. Diazoxide relaxed an 80 mM KCl-induced contraction of rat aorta, whilst cromakalim and minoxidil sulphate were without effect. 7. Cromakalim, diazoxide and minoxidil sulphate had no effect on cyclic AMP or cyclic GMP concentrations in rat aorta. 8. It is concluded that diazoxide and minoxidil sulphate like cromakalim exhibit K+ channel opening properties in vascular smooth muscle. Diazoxide exerts an additional inhibitory action not related to the production of cyclic AMP or cyclic GMP. The action of minoxidil sulphate may be primarily located at a K+ channel which is relatively impermeable to 86Rb. PMID:2167738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everts, M.E.; Clausen, T.
1988-11-01
The effects of hypothyroidism and 3,5,3{prime}-triiodothyronine (T{sub 3}) treatment on passive Na{sup +}-K{sup +} fluxes and Na{sup +}-K{sup +} pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T{sub 3} (20 {mu}g/100 g body wt), K{sup +} efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na{sup +} influx but no significant increase in ({sup 3}H)ouabain binding site concentration. After 3 days of T{sub 3} treatment, themore » stimulating effect on K{sup +} efflux and Na{sup +} influx in soleus reached a plateau {approximately}80 and 40% above control levels, respectively, whereas the maximum increase in ({sup 3}H)ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased {sup 86}Rb efflux by 30%. The efflux of K{sup +} and the influx of Na{sup +} per contraction (both {approximately}7 nmol/g wet wt) as well as the net loss of K{sup +} induced by electrical stimulation were unaffected by T{sub 3} treatment. The rise in resting K{sup +} efflux after 12-24 h of T{sub 3} treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca{sup 2+} concentration may contribute to the early rise in K{sup +} efflux. It is concluded that the early rise in the resting passive leaks of Na{sup +} and K{sup +} induced by T{sub 3} is a major driving force for Na{sup +}-K{sup +} pump synthesis.« less
Biochar has no effect on soil respiration across Chinese agricultural soils.
Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing
2016-06-01
Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.
Long Duration Responses in Squid Giant Axons Injected with 134Cesium Sulfate Solutions
Sjodin, R. A.
1966-01-01
Giant axons from the squid were injected with 1.5 M cesium sulfate solutions containing the radioactive isotopes 42K and 134Cs. These axons, when stimulated, gave characteristic long duration action potentials lasting between 5 and 45 msec. The effluxes of 42K and 134Cs were measured both under resting conditions and during periods of repetitive stimulation. During the lengthened responses there were considerable increases in potassium efflux but only small increases in cesium efflux. The selectivity of the delayed rectification process was about 9 times greater for potassium ions than for cesium ions. The data suggest that internal cesium ions inhibit the outward potassium movement occurring during an action potential. The extra potassium effluxes taking place during excitation appear to be reduced in the presence of cesium ions to values between 7 and 22% of those expected in the absence of cesium inhibition. PMID:11526828
Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.
Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran
2014-05-01
Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.
Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H
2008-02-01
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-02-28
To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. H pylori reference strain 26695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-(3)H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression.
Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang
2016-05-01
P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.
Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid
2013-12-05
Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.
Biot, Fabrice Vincent; Lopez, Mélanie Monique; Poyot, Thomas; Neulat-Ripoll, Fabienne; Lignon, Sabrina; Caclard, Arnaud; Thibault, François Michel; Peinnequin, Andre; Pagès, Jean-Marie; Valade, Eric
2013-01-01
Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.
Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L
2007-01-01
We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)
Taugner, G.
1971-01-01
1. Influx and efflux of catecholamine and adenosine triphosphatase activity in storage vesicles from the adrenal medulla were studied with dl-[14C]adrenaline in different media. 2. The lowest values for flux and adenosine triphosphatase activity were observed in sucrose media in which an ATP-dependent influx of catecholamine compensated for an efflux of the same magnitude. Efflux in the presence or absence of ATP was similar. 3. In media containing sodium succinate or glutarate adenosine triphosphatase activity was higher and the ATP-dependent influx of catecholamine was about twice that observed in iso-osmotic sucrose medium. In the presence of ATP influx and efflux of catecholamine were balanced; in its absence there was a net release of catecholamine, since efflux was more than twice the influx. Efflux in the presence or absence of ATP was similar. 4. In media containing sodium or potassium chloride and in the presence of ATP influx and adenosine triphosphatase activity were further enhanced, but in the absence of ATP there was no further increase in influx, since catecholamine was released with or without ATP at the same rate. Efflux was therefore twice as high in the presence of ATP as in its absence. 5. Sodium nitrate suppressed the ATP-dependent influx nearly completely, but caused a greatly enhanced efflux, which was twice as high in the presence of ATP as in its absence. 6. The extinction of vesicular suspensions remained unchanged in the presence of ATP under conditions where the catecholamine efflux was balanced by the influx. Under conditions where the efflux was not compensated by influx, the extinction of the suspensions decreased in the presence of ATP more than in its absence. PMID:4256794
Gall, Julie; Frisdal, Eric; Bittar, Randa; Le Goff, Wilfried; Bruckert, Eric; Lesnik, Philippe; Guerin, Maryse; Giral, Philippe
2016-11-23
The contribution of high-density lipoprotein to cardiovascular benefit is closely linked to its role in the cellular cholesterol efflux process; however, various clinical and biochemical variables are known to modulate the overall cholesterol efflux process. The aim of this study was to evaluate the extent to which clinical and biological anomalies associated with the establishment of the metabolic syndrome modulate cholesterol efflux capacity and contribute to development of atherosclerosis. This study involved patients (n=1202) displaying atherogenic dyslipidemia in primary prevention who were referred to our prevention center. Among these patients, 25% presented at least 3 criteria of the metabolic syndrome, as defined by the National Cholesterol Education Program Adult Treatment Panel III. We measured the capacity of 40-fold diluted serum to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages. Cholesterol efflux capacity was reduced progressively by 4% to 11% (P<0.0001) as a function of the increasing number of coexisting criteria for the metabolic syndrome from 1 to 5. This observation was primarily related to reductions in scavenger receptor class B member 1 and ATP binding cassette subfamily G member 1-dependent efflux. Multivariate analyses indicate that serum efflux capacity was significantly associated with established metabolic syndrome (odds ratio 0.45; 95% CI 0.28-0.72; P=0.009) independent of age, low-density lipoprotein cholesterol, status with regard to lipid-lowering therapy, smoking status, and alcohol consumption. Our study revealed that individual criteria of metabolic syndrome are closely related synergistically to cholesterol efflux capacity. In addition, established metabolic syndrome and cholesterol efflux capacity were independently associated with clinical features of atherosclerosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
ATP binding cassette G1-dependent cholesterol efflux during inflammation.
de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R
2011-02-01
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.
Taurine flux in chicken erythrocytes.
Porter, D W; Martin, W G
1992-05-01
1. The intracellular taurine concentration in chick erythrocytes increased with age. 2. Erythrocyte taurine influx and efflux rates increased with age. 3. Erythrocyte taurine influx decreased when the extracellular sodium concentration was below normal physiological concentrations. 4. Under hypo-osmotic conditions, taurine efflux from erythrocytes increased. 5. The data suggest that chick erythrocyte taurine metabolism changes during early post-hatch development and that one taurine function may be as an osmoregulator.
Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol
2017-09-01
High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of Small Fluorescent Molecules to Monitor Channel Activity
NASA Astrophysics Data System (ADS)
Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley
2001-03-01
The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quast, U.; Cook, N.S.
1988-01-01
The effect of the crude venom of the Israeli scorpion Leiurus quinquestriatus hebraeus on the /sup 86/Rb/sup +/ efflux stimulated by the K/sup +/ channel opener BRL 34915 in the rat portal vein was examined. Applied alone, the venom greatly increased the spontaneous mechanical activity of and the concomitant /sup 86/Rb/sup +/ efflux from the vessel. When the excitability of the vein was suppressed by the dihydropyridine calcium antagonist, PN 200-110, the /sup 86/Rb/sup +/ efflux stimulated by BRL 34915 could be shown to be inhibited by the venom. From the concentration dependence of this inhibition an IC/sub 50/ valuemore » of 0.17 +/- 0.01 mg/ml was estimated. This venom is thus the most potent blocker of BRL 34915-evoked /sup 86/Rb/sup +/ efflux reported so far. 17 references, 2 figures.« less
The effect of amino acids and dipeptides on sodium-ion transport in rat enterocytes.
Cheeseman, C I; Devlin, D
1985-02-14
Sodium efflux from isolated intestinal epithelial cells was measured during incubation with several different free amino acids and dipeptides. L-Leucine, which is cotransported with sodium across the brush border membrane, significantly stimulated the total sodium efflux and almost all of this increase involved the ouabain-sensitive flux, i.e., the active component. In contrast, glycyl-L-leucine had little or no effect on active sodium efflux either in the presence or absence of 0.1 mM bestatin, a peptide hydrolase inhibitor. A second dipeptide L-carnosine (beta-alanyl-L-histidine) which is poorly hydrolysed by enterocytes also had no effect upon sodium efflux. However, glycylglycine, which has been shown to be cotransported with sodium, did stimulate the ionic efflux. In addition, measurement of sodium uptake by sheets of small intestine showed that glycyl-L-leucine, carnosine and glycyl-L-proline failed to increase the uptake of the ion, while glycylglycine did significantly stimulate sodium uptake. These data indicate that some dipeptides are not cotransported with sodium, while others are. This suggests that there may well be multiple peptide transporters with very different characteristics in the brush border membrane of enterocytes.
Plasmalemma Redox Activity and H+ Extrusion in Roots of Fe-Deficient Cucumber Plants 1
Alcántara, Esteban; de la Guardia, Manuel D.; Romera, Francisco J.
1991-01-01
Cucumber plants (Cucumis sativus L.) with incipient Fe deficiency showed increased root capacity to reduce chelated Fe3+ compared to Fe-sufficient plants. When Fe-ethylenediaminete-traacetate was added to the root medium of the Fe-deficient plants, the reductase activity was associated with acidification of the medium and an increase in the net apparent K+ efflux. In the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide the net apparent H+ efflux was completely suppressed, though some reductase activity was preserved, and the net apparent K+ efflux was significantly increased. The inhibition of the reductase activity by N,N′-dicyclohexylcarbodiimide was similar whether the pH of the medium was buffered or not. Anoxia and the protonophore carbonyl cyanide m-chlorophenyl hydrazone also caused a similar inhibition of the reductase activity. It is proposed that this redox system transports electrons only and that its activity is inhibited by plasmamembrane depolarization and anoxia. The H+ and K+ efflux associated with the reductase activity may be a result of the plasmamembrane depolarization it causes. PMID:16668294
NASA Astrophysics Data System (ADS)
Proctor, C.; He, Y.
2017-12-01
Deposition of carbon belowground via the root exudation pathway is the net of root-borne efflux and influx processes. For select exudates, root have a remarkable ability to actively recapture lost compounds, suggesting that influx mechanisms regulate exudation. However, roots are not the sole sink for root effluxed carbon. Roots compete with solute sorption and microbial uptake, whom are regulated by a unique set of soil environmental conditions. Peatland soil features stark vertical gradients in their physical, chemical, biological, and hydrological properties, which has downstream implications for the relative competitive ability of each actor in root-soil-microbial interactions. This study developed a single root exudate model using the Barber-Cushman approach to examine the radial accumulation of exudates in simulated peatland soil with vertical gradients. The model simulated efflux, influx, solute diffusion, solute mineralization and solid phase sorption mechanisms as depth dependent on bulk density, porosity, tortuosity, buffer power, temperature, and microbial biomass. Deeper peat soil reduced the porosity that permits solute transport, increased tortuosity which lowered the effective diffusion rate, increased solute-solid sorption, and reduced microbial mineralization of effluxed compounds. Slower mineralization rates were partially juxtaposed by increases in sorption, albeit the net removal of effluxed compounds was lower, leading to a larger amount of exudates to remain in the rhizosphere around deeper roots. Increase in the solid phase, and its subsequent constriction of solute migration, lead to a higher accumulation of effluxed compounds on the rhizoplane, up to 1.23x higher than shallow soil. Subsequently, influx mechanisms captured a larger fraction of effluxed compounds (69.06% at -10cm versus 84.8% at -80 cm), reducing net exudation rates from 0.641 to 0.315 nmol cm-1 hr-1 between -10 and -80cm depths. These results suggest that localized environmental conditions around roots can be a considerable influence on root influx and competition for root exudates. The insights provided by this model help provide a better understanding of exudate regulation in peatlands and the quantity and quality of carbon deposited to the methanogen community.
An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism
NASA Technical Reports Server (NTRS)
Yamakawa, K.; Duncan, R.; Hruska, K. A.
1994-01-01
We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.
HDL cholesterol transport during inflammation.
van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R
2007-04-01
The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.
Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers
DiPolo, R.
1972-01-01
Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810
Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M
2009-01-01
Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.
Chen, Fu-xin; Wang, Lian-kai
2015-02-01
The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.
1988-01-01
The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS- sensitive Cl- efflux was sharply dependent upon pHi, increasing approximately 20-fold as pHi was decreased from 7.35 to 6.7. Under conditions of normal intracellular Mg2+ concentration, the apparent pKa for the activation of Cl- efflux was 7.0. We found that raising [Mg2+]i, but not [Mg2+]o, had a pronounced inhibitory effect on both SITS-sensitive unidirectional Cl- fluxes as well as on SITS-sensitive net acid extrusion. Increasing [Mg2+]i shifted the apparent pKa of Cl- efflux to a more acid value without affecting the maximal flux that could be attained. This relation between pHi and [Mg2+]i on SITS- sensitive Cl- efflux is consistent with a competition between H ions and Mg ions. We conclude that the SITS-inhibitable Cl- fluxes are mediated by the pHi-regulatory transport mechanism and that changes of intracellular Mg2+ levels can modify the activity of the pHi regulator/anion transporter. PMID:3392519
Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study.
Wu, Baojian
2012-01-01
Understanding of the interdependence of cytochrome P450 enzymes and P-glycoprotein in disposition of drugs (also termed "transport-metabolism interplay") has been significantly advanced in recent years. However, whether such "interplay" exists between phase II metabolic enzymes and efflux transporters remains largely unknown. The objective of this article is to explore the role of efflux transporters (acting on the phase II metabolites) in disposition of the parent drug in Caco-2 cells, liver, and intestine via simulations utilizing a catenary model (for Caco-2 system) and physiologically based pharmacokinetic (PBPK) models (for the liver and intestine). In all three models, "transport-metabolism interplay" (i.e., inhibition of metabolite efflux decreases the metabolism) can be observed only when futile recycling (or deconjugation) occurred. Futile recycling appeared to bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof. Without futile recycling, metabolite formation was independent on its downstream process excretion, thus impact of metabolite excretion on its formation was impossible. Moreover, in liver PBPK model with futile recycling, impact of biliary metabolite excretion on the exposure of parent drug [(systemic (reservoir) area under the concentration-time curve (AUC(R1))] was limited; a complete inhibition of efflux resulted in AUC(R1) increases of less than 1-fold only. In intestine PBPK model with futile recycling, even though a complete inhibition of efflux could result in large elevations (e.g., 3.5-6.0-fold) in AUC(R1), an incomplete inhibition of efflux (e.g., with a residual activity of ≥ 20% metabolic clearance) saw negligible increases (<0.9-fold) in AUC(R1). In conclusion, this study presented mechanistic observations of pharmacokinetic interplay between phase II enzymes and efflux transporters. Those studying such "interplay" are encouraged to adequately consider potential consequences of inhibition of efflux transporters in humans. Copyright © 2011 Wiley-Liss, Inc.
Andersson, C; Roomans, G M
2000-05-01
The cellular basis of cystic fibrosis (CF) is a defect in a cyclic adenosine monophosphate (cAMP)-activated chloride channel (CF transmembrane conductance regulator) in epithelial cells that leads to decreased chloride ion transport and impaired water transport across the cell membrane. This study investigated whether it was possible to activate the defective chloride channel in cystic fibrosis respiratory epithelial cells with 4-phenylbutyrate (4PBA), genistein and 8-cyclopentyl-1,3-dipropylxanthine (CPX). The CF bronchial epithelial cell line CFBE41o-, which expresses the deltaF508 mutation, was treated with these agents and loss of Cl-, indicating Cl- efflux, measured by X-ray microanalysis. 8-bromo-cAMP alone did not induce Cl- efflux in CFBE41o- cells, but after incubation with 4PBA a significant efflux of Cl- occurred. Stimulation of cells with a combination of genistein and cAMP also induced Cl- efflux, whereas a combination of pretreatment with 4PBA and a combined stimulation with genistein and cAMP induced an even larger Cl- efflux. Cl- efflux could also be stimulated by CPX, but this effect was not enhanced by 4PBA pretreatment. The deltaF508 mutation leads to impaired processing of the cystic fibrosis transmembrane conductance regulator. The increased efflux of chloride after 4-phenylbutyrate treatment can be explained by the fact that 4-phenylbutyrate allows the deltaF508 cystic fibrosis transmembrane conductance regulator to escape degradation and to be transported to the cell surface. Genistein and 8-cyclopentyl-1,3-dipropylxanthine act by stimulating chloride ion efflux by increasing the probability of the cystic fibrosis transmembrane conductance regulator being open. The combination of 4-phenylbutyrate and genistein may be useful in a potential pharmacological therapy for cystic fibrosis patients with the deltaF508 mutation.
Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1
Dean, Charles R.; Visalli, Melissa A.; Projan, Steven J.; Sum, Phaik-Eng; Bradford, Patricia A.
2003-01-01
Pseudomonas aeruginosa strains are less susceptible to tigecycline (previously GAR-936; MIC, 8 μg/ml) than many other bacteria (P. J. Petersen, N. V. Jacobus, W. J. Weiss, P. E. Sum, and R. T. Testa, Antimicrob. Agents Chemother. 43:738-744, 1999). To elucidate the mechanism of resistance to tigecycline, P. aeruginosa PAO1 strains defective in the MexAB-OprM and/or MexXY (OprM) efflux pumps were tested for susceptibility to tigecycline. Increased susceptibility to tigecycline (MIC, 0.5 to 1 μg/ml) was specifically associated with loss of MexXY. Transcription of mexX and mexY was also responsive to exposure of cells to tigecycline. To test for the emergence of compensatory efflux pumps in the absence of MexXY-OprM, mutants lacking MexXY-OprM were plated on medium containing tigecycline at 4 or 6 μg/ml. Resistant mutants were readily recovered, and these also had decreased susceptibility to several other antibiotics, suggesting efflux pump recruitment. One representative carbenicillin-resistant strain overexpressed OprM, the outer membrane channel component of the MexAB-OprM efflux pump. The mexAB-oprM repressor gene, mexR, from this strain contained a 15-bp in-frame deletion. Two representative chloramphenicol-resistant strains showed expression of an outer membrane protein slightly larger than OprM. The mexCD-OprJ repressor gene, nfxB, from these mutants contained a 327-bp in-frame deletion and an IS element insertion, respectively. Together, these data indicated drug efflux mediated by MexCD-OprJ. The MICs of the narrower-spectrum semisynthetic tetracyclines doxycycline and minocycline increased more substantially than did those of tigecycline and other glycylcyclines against the MexAB-OprM- and MexCD-OprJ-overexpressing mutant strains. This suggests that glycylcyclines, although they are subject to efflux from P. aeruginosa, are generally inferior substrates for P. aeruginosa efflux pumps than are narrower-spectrum tetracyclines. PMID:12604529
Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate.
Sorrenson, Brie; Suetani, Rachel J; Williams, Michael J A; Bickley, Vivienne M; George, Peter M; Jones, Gregory T; McCormick, Sally P A
2013-01-01
Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels.
Alvarado, María; Martín-Galiano, Antonio J.; Ferrándiz, María J.; Zaballos, Ángel; de la Campa, Adela G.
2017-01-01
We characterized the mechanism of fluoroquinolone-resistance in two isolates of Streptococcus pseudopneumoniae having fluoroquinolone-efflux as unique mechanism of resistance. Whole genome sequencing and genetic transformation experiments were performed together with phenotypic determinations of the efflux mechanism. The PatAB pump was identified as responsible for efflux of ciprofloxacin (MIC of 4 μg/ml), ethidium bromide (MICs of 8–16 μg/ml) and acriflavine (MICs of 4–8 μg/ml) in both isolates. These MICs were at least 8-fold lower in the presence of the efflux inhibitor reserpine. Complete genome sequencing indicated that the sequence located between the promoter of the patAB operon and the initiation codon of patA, which putatively forms an RNA stem-loop structure, may be responsible for the efflux phenotype. RT-qPCR determinations performed on RNAs of cultures treated or not treated with subinhibitory ciprofloxacin concentrations were performed. While no significant changes were observed in wild-type Streptococcus pneumoniae R6 strain, increases in transcription were detected in the ciprofloxacin-efflux transformants obtained with DNA from efflux-positive isolates, in the ranges of 1.4 to 3.4-fold (patA) and 2.1 to 2.9-fold (patB). Ciprofloxacin-induction was related with a lower predicted free energy for the stem-loop structure in the RNA of S. pseudopneumoniae isolates (−13.81 and −8.58) than for R6 (−15.32 kcal/mol), which may ease transcription. The presence of these regulatory variations in commensal S. pseudopneumoniae isolates, and the possibility of its transfer to Streptococcus pneumoniae by genetic transformation, could increase fluoroquinolone resistance in this important pathogen. PMID:29123510
Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo.
Terao, Yoshio; Ayaori, Makoto; Ogura, Masatsune; Yakushiji, Emi; Uto-Kondo, Harumi; Hisada, Tetsuya; Ozasa, Hideki; Takiguchi, Shunichi; Nakaya, Kazuhiro; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Horii, Shunpei; Mochizuki, Seibu; Yoshimura, Michihiro; Ikewaki, Katsunori
2011-01-01
Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.
N-ethylmaleimide activates a Cl−-independent component of K+ flux in mouse erythrocytes
Shmukler, Boris E.; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B.; Hubner, Christian A.; Rivera, Alicia; Alper, Seth L.
2013-01-01
The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K+ efflux that lacks Cl−-dependence. The NEM-sensitivity of Cl−-independent K+ efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl−-independent K+ efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl−-independent K+ efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl−-independent K+ efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) is independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl−-independent K+ efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH 6.0, but not significantly altered at pH 8.0, and abolished at 0°C. Although the molecular identity of this little-studied K+ efflux pathway of mouse erythrocytes remains unknown, it’s potential role in the pathophysiology of sickle red cell dehydration will be important for extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. PMID:23481459
N-ethylmaleimide activates a Cl(-)-independent component of K(+) flux in mouse erythrocytes.
Shmukler, Boris E; Hsu, Ann; Alves, Jessica; Trudel, Marie; Rust, Marco B; Hubner, Christian A; Rivera, Alicia; Alper, Seth L
2013-06-01
The K-Cl cotransporters (KCCs) of mouse erythrocytes exhibit higher basal activity than those of human erythrocytes, but are similarly activated by cell swelling, by hypertonic urea, and by staurosporine. However, the dramatic stimulation of human erythroid KCCs by N-ethylmaleimide (NEM) is obscured in mouse erythrocytes by a prominent NEM-stimulated K(+) efflux that lacks Cl(-)-dependence. The NEM-sensitivity of Cl(-)-independent K(+) efflux of mouse erythrocytes is lower than that of KCC. The genetically engineered absence of the K-Cl cotransporters KCC3 and KCC1 from mouse erythrocytes does not modify Cl(-)-independent K(+) efflux. Mouse erythrocytes genetically devoid of the Gardos channel KCNN4 show increased NEM-sensitivity of both Cl(-)-independent K(+) efflux and K-Cl cotransport. The increased NEM-sensitivity and stimulation magnitude of Cl(-)-independent K(+) efflux in mouse erythrocytes expressing transgenic hypersickling human hemoglobin SAD (HbSAD) are independent of the presence of KCC3 and KCC1, but absence of KCNN4 reduces the stimulatory effect of HbSAD. NEM-stimulated Cl(-)-independent K(+) efflux of mouse red cells is insensitive to ouabain and bumetanide, but partially inhibited by chloroquine, barium, and amiloride. The NEM-stimulated activity is modestly reduced at pH6.0 but not significantly altered at pH8.0, and is abolished at 0°C. Although the molecular identity of this little-studied K(+) efflux pathway of mouse erythrocytes remains unknown, its potential role in the pathophysiology of sickle red cell dehydration will be important for the extrapolation of studies in mouse models of sickle cell disease to our understanding of humans with sickle cell anemia. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lodge, N.J.; Cohen, R.B.; Havens, C.N.
1991-02-01
WAY-120,491 ((-)-(3S-trans)-2-(3,4-dihydro-3-hydroxy-2,2-dimethyl-6-(trifluoromet hox y)- 2H-1-benzopyran-4-yl)-2,3-dihydro-1H-isoindol-1-one) is a novel antihypertensive agent. We have investigated the effects of this compound on contractile force and 86Rb efflux, using the rabbit aorta, in order to assess its K channel activator properties. K channel blockers and ionic conditions thought to modulate specific K channel types have been used to provide insight into the K channel(s) affected by this compound. WAY-120,491 evoked relaxation of precontracted rabbit aortic rings and increased the rate of 86Rb efflux from strips of rabbit aorta; both effects occurring in a concentration-dependent manner. The WAY-120,491 (1 microM)-induced 86Rb efflux was inhibited bymore » tetraethylammonium (IC50 = 0.38 mM), indicating that the increased efflux was mediated by K channels. Glyburide completely blocked the WAY-120,491 (1 microM)-evoked 86Rb efflux with 50% block occurring at a concentration of 0.48 microM. Glyburide also antagonized the WAY-120,491-induced relaxation of aortic rings. Omission of Ca from the solution bathing the aorta did not inhibit the WAY-120,491 induced 86Rb efflux but rather caused an augmentation of the response. It is concluded that WAY-120,491 may be classified as a K channel opener. Furthermore, the K channel upon which WAY-120,491 acts exhibits some characteristics normally associated with the ATP regulated K channel although the involvement of other K channel types has not been ruled out.« less
Antimicrobial and Efflux Inhibitor Activity of Usnic Acid Against Mycobacterium abscessus.
Ramis, Ivy B; Vianna, Júlia S; Reis, Ana Júlia; von Groll, Andrea; Ramos, Daniela F; Viveiros, Miguel; da Silva, Pedro E Almeida
2018-06-18
New drugs are needed to treat infections with antimicrobial-resistant Mycobacterium abscessus ; therefore, we evaluated usnic acid as an antimicrobial agent and efflux inhibitor (EI) against M. abscessus . Usnic acid showed antimicrobial activity, and synergistically, the EI verapamil increased this activity. In addition, when we evaluated the interaction of antimicrobials with usnic acid, the increase of their activity was observed. Finally, usnic acid showed an efflux inhibitory effect between the classical EIs verapamil and carbonyl cyanide m-chlorophenylhydrazine. In conclusion, usnic acid showed both antimicrobial and EI activity, indicating that this natural compound may be a promising scaffold for new drugs against this difficult-to-treat microorganism. Georg Thieme Verlag KG Stuttgart · New York.
Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis
2009-01-01
The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419
Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R
2013-08-01
Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.
Dávalos, Alberto; Fernández-Hernando, Carlos
2013-01-01
There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093
Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Hatfaludy, Sophia; Sohar, Istvan; Shansky, Janet
1990-01-01
The purpose of the study is to determine whether mechanical stimulation of cultured muscle cells influences prostaglandin efflux rates and whether they are related to stretch-induced alterations in protein turnover rates. The materials and methods of the experiment, including cell cultures, mechanical stimulation, protein synthesis, and degradation assays are outlined, and emphasis is placed on the effect of short-term mechanical stimulation in basal medium prostaglandin efflux from cultured skeletal muscle and stretch-induced alterations in prostaglandins efflux in complete medium. The major finding of the study is that mechanical stimulation of tissue-cultured skeletal-muscle cells under conditions inducing skeletal-muscle hypertropy increases the efflux of PGE(2) and PGE(2-alpha) but not 6-keto-PGF(1-alpha), the prostacyclin product.
Pettersson, Martin; Hou, Xinjun; Kuhn, Max; Wager, Travis T; Kauffman, Gregory W; Verhoest, Patrick R
2016-06-09
Strategic replacement of one or more hydrogen atoms with fluorine atom(s) is a common tactic to improve potency at a given target and/or to modulate parameters such as metabolic stability and pKa. Molecular weight (MW) is a key parameter in design, and incorporation of fluorine is associated with a disproportionate increase in MW considering the van der Waals radius of fluorine versus hydrogen. Herein we examine a large compound data set to understand the effect of introducing fluorine on the risk of encountering P-glycoprotein mediated efflux (as measured by MDR efflux ratio), passive permeability, lipophilicity, and metabolic stability. Statistical modeling of the MDR ER data demonstrated that an increase in MW as a result of introducing fluorine atoms does not lead to higher risk of P-gp mediated efflux. Fluorine-corrected molecular weight (MWFC), where the molecular weight of fluorine has been subtracted, was found to be a more relevant descriptor.
The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.
Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat
2018-01-01
The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.
Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo
2017-01-01
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health. PMID:28824464
Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo
2017-01-01
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB 1 receptor blockade and dopamine (DA) D 1/5 and D 2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [ 123 I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [ 3 H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.
Shabala, Lana; Walker, Emma J; Eklund, Annelie; Randall-Demllo, Sarron; Shabala, Sergey; Guven, Nuri; Cook, Anthony L; Eri, Rajaraman D
2013-10-01
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux 'signatures' during these stress conditions are poorly characterized. We investigated the kinetics of K(+) , Ca(2+) and H(+) ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non-invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K(+) efflux was observed following acute ER stress with peak K(+) efflux being -30·6 and -138·7 nmolm(-2) s(-1) for 10 and 50 µg ml(-1) , respectively (p < 0·01). TM-dependent Ca(2+) uptake was more prolonged with peak values of 0·85 and 2·68 nmol m(-2) s(-1) for 10 and 50 µg ml(-1) TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K(+) efflux and Ca(2+) uptake. While K(+) changes were significantly higher at each time point tested, Ca(2+) uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K(+) efflux and Ca(2+) uptake. Functional assays to investigate the effect of inhibiting K(+) efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K(+) , Ca(2+) and H(+) ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.
Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li
2017-01-01
The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.
Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.
2012-01-01
HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736
The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria
Plésiat, Patrick
2015-01-01
SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514
IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rincon, M.; Boss, W.F.
1986-04-01
Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/supmore » + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.« less
Page, M E; Oropeza, V C; Van Bockstaele, E J
2008-01-24
Delta(9)-tetrahydrocannabinol, the main psychoactive ingredient in marijuana, activates specific cannabinoid (CB) receptors to exert complex actions on modulatory neurotransmitters involved in attention and cognition. Previous research has demonstrated that systemic administration of the synthetic cannabinoid agonist, WIN 55,212-2, increases norepinephrine efflux in the frontal cortex. The distribution of CB1 receptors on noradrenergic fibers in the frontal cortex suggests this may be one potential site for the regulation of norepinephrine release. In the present study, we first examined the ability of a CB1 antagonist, applied locally in the frontal cortex of adult male Sprague-Dawley rats, to block the actions of systemic WIN 55,212-2. Pretreatment with SR 141716A (300 microM) significantly attenuated the excitatory effects of WIN 55,212-2 (15 mg/kg, i.p.). Next, the impact of direct perfusion of WIN 55,212-2 into the frontal cortex on extracellular norepinephrine efflux was measured. Direct application of WIN 55,212-2 (100 microM) into the frontal cortex elicited a significant increase in extracellular norepinephrine efflux suggesting that activation of cortical cannabinoid receptors contributes to alterations in norepinephrine levels in this brain region. Finally, local administration of SR 141716A followed by local administration of WIN 55,212-2 revealed a paradoxical inhibition of norepinephrine efflux.
Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.
2001-01-01
We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is the masking of a degassing event generated at depth and detected by a soil gas sensor network in September 1997 while an efflux survey was in progress. Thus, occasional efflux surveys are not an altogether effective surveillance tool for the HLTK, and making them effective by greatly increasing their frequency may not be practical. Published by Elsevier Science B.V.
2016-01-01
Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551
HEMAUER, Sarah J.; PATRIKEEVA, Svetlana L.; NANOVSKAYA, Tatiana N.; HANKINS, Gary D.V.; AHMED, Mahmoud S.
2010-01-01
Objective Substrates of placental efflux transporters could compete for a single transporter, which could result in an increase in the transfer of each substrate to the fetal circulation. Our aim was to determine the role of placental transporters in the biodisposition of oral hypoglycemic drugs that could be used as monotherapy or in combination therapy for gestational diabetes. Study design Inside-out brush border membrane vesicles from term placentas were used to determine the efflux of glyburide, rosiglitazone, and metformin by P-gp, Breast Cancer Resistance Protein (BCRP), and Multidrug Resistance Protein (MRP1). Results Glyburide was transported by MRP1 (43 ± 4%); BCRP (25 ± 5%); and P-gp (9 ± 5%). Rosiglitazone was transported predominantly by P-gp (71 ± 26%). Metformin was transported by P-gp (58 ± 20%) and BCRP (25 ± 14%). Conclusion Multiple placental transporters contribute to efflux of glyburide, rosiglitazone, and metformin. Administration of drug combinations could lead to their competition for efflux transporters. PMID:20350646
Monoamine transporter and receptor interaction profiles of a new series of designer cathinones.
Simmler, L D; Rickli, A; Hoener, M C; Liechti, M E
2014-04-01
Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Xiao-Ping; Wang, Wei-Hong; Tian, Yu; Gao, Wen; Li, Jiang
2009-01-01
AIM: To investigate the mechanisms of aspirin increasing the susceptibility of Helicobacter pylori (H pylori) to metronidazole. METHODS: H pylori reference strain 26 695 and two metronidazole-resistant isolates of H pylori were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The rdxA gene of H pylori was amplified by PCR and sequenced. The permeability of H pylori to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-3H]-tetracycline. The outer membrane proteins (OMPs) of H pylori 26 695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD and hopE) and the putative RND efflux system (hefABC) of H pylori were analyzed using real-time quantitative PCR. RESULTS: The mutations in rdxA gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of H pylori increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of H pylori. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin. The expression of the mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of H pylori did not change when treated with aspirin. CONCLUSION: Although aspirin increases the susceptibility of H pylori to metronidazole, it has no effect on the mutations of rdxA gene of H pylori. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression. PMID:19248190
Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys[S
Brodeur, Mathieu R.; Rhainds, David; Charpentier, Daniel; Mihalache-Avram, Teodora; Mecteau, Mélanie; Brand, Geneviève; Chaput, Evelyne; Perez, Anne; Niesor, Eric J.; Rhéaume, Eric; Maugeais, Cyrille; Tardif, Jean-Claude
2017-01-01
Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment. PMID:28515138
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...
The effects of continuous and amplitude-modulated radiofrequency electromagnetic waves on calcium efflux from 45Ca preloaded frog hearts were examined. rog hearts, electrically stimulated at their natural beating frequency, were exposed for 30 min to 240 MHz radiowaves in a Crawf...
Kuete, Victor; Ngameni, Bathélémy; Tangmouo, Jean G.; Bolla, Jean-Michel; Alibert-Franco, Sandrine; Ngadjui, Bonaventure T.; Pagès, Jean-Marie
2010-01-01
The activities of two naturally occurring compounds, isobavachalcone and diospyrone, against documented strains and multidrug-resistant (MDR) Gram-negative bacterial isolates were evaluated. The results indicated that the two compounds exhibited intrinsic antibacterial activity against several Gram-negative bacteria, and their activities were significantly improved in the presence of an efflux pump inhibitor (MIC values decreased to below 10 μg/ml). In addition, the activities of isobavachalcone and diospyrone against various strains exhibiting deletions of the major efflux pump components (AcrAB, TolC) were significantly increased. The overall results indicate that isobavachalcone and diospyrone could be candidates for the development of new drugs against MDR strains and that their use in combination with efflux pump inhibitors reinforces their activity. PMID:20160051
Misra, Rajeev; Morrison, Keith D; Cho, Hyun Jae; Khuu, Thanh
2015-08-01
The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine β-naphthylamide (PAβN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAβN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAβN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAβN. Strong action of PAβN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAβN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAβN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAβN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAβN on membrane integrity are compounded in cells unable to extrude PAβN. The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wright, S H; Wunz, T M
1998-08-01
We examined the influence of organic cation (OC) structure on the rate of turnover of the OC/H+ exchanger in rabbit renal brush-border membrane vesicles (BBMV). The rate of efflux of [14C]tetraethylammonium ([14C]TEA) from BBMV, measured in the presence of an inwardly directed chemical gradient for test agent, provided an indirect measure of activity of the OC/H+(OC) exchanger. The trans-stimulation of [14C]TEA efflux from BBMV was a saturable function of increasing extravesicular concentration of both unlabeled TEA and tetramethylammonium (TMA), with an apparent Michaelis constant (Kt) for the interaction of these compounds with the OC/H+(OC) exchanger of 25 microM and 1 mM, respectively. The effect on [14C]TEA efflux of saturating extravesicular concentrations of a series of n-tetraalkylammonium compounds was examined. Whereas the short-chain compounds TMA and TEA markedly stimulated [14C]TEA efflux (by 830% and 690%, respectively), the long-chain compounds tetrapropylammonium and tetrabutylammonium were less effective, increasing efflux by only 40% and 120%, respectively. When the exchanger was saturated with tetrapentylammonium, mediated efflux of [14C]TEA was reduced. Increasing alkyl chain length was also correlated with an increase in the inhibitory effect (as measured by the apparent inhibition constant, Ki, or the IC50 value) that these compounds had against transport of [14C]TEA by the OC/H+(OC) exchanger; i.e., there was a correlation between decreasing IC50 and decreasing turnover of the OC/H+(OC) exchanger. This same correlation was observed for a broader set of test agents of diverse molecular structure, including a series of n-tetraalkylammonium and -phosphonium compounds and the OCs, choline, N1-methyl nicotinamide, 1-methyl-4-phenylpyridinium, and amiloride. Because high affinity of substrates for the OC/H+(OC) exchanger is correlated with increasing substrate hydrophobicity, we conclude that the interaction of hydrophobic OCs with the renal OC/H+(OC) exchanger results in the formation of a substrate-exchanger complex that has a comparatively low rate of turnover.
The effect to the water stress to soil CO2 efflux in the Siberian boreal forest
NASA Astrophysics Data System (ADS)
Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.
2017-12-01
The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more precipitated year (with excluding the precipitation factor). These findings confirmed that the increase of precipitation in the boreal forests will enhance soil CO2 efflux.
NASA Astrophysics Data System (ADS)
Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.
2017-12-01
Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year. Including the rainfall pattern as a parameter to the partitioning of litter carbon could help better project soil carbon cycling in the Mid-Atlantic region.
Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke
2017-09-05
Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.
2013-01-01
Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600
K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.
Tigges, G A; Philibert, R A; Dutton, G R
1990-10-30
Hypothalamic astrocytes in culture released taurine, a suspected inhibitory amino acid neurotransmitter/neuromodulator/osmoregulator, in response to isoosmotically increasing extracellular K+ in a dose-dependent fashion. In the absence of added Ca2+, basal release levels rose to approach those obtained after exposure to 60 mM K+ in the presence of 2.5 mM Ca2+, and were only partially lowered by the addition of 10 mM Mg2+. Stimulation with K+ (60 mM) did not further increase taurine efflux above the high basal levels seen in the absence of Ca2+. Under standard conditions complete replacement of Na+ with choline Cl had little effect on basal taurine release, but reduced K(+)-evoked (60 mM) efflux by 60%. The temperature dependence of the basal levels of taurine released from hypothalamic astrocytes was similar to that seen for cultured cerebellar astrocytes and neurons over the range 5-50 degrees C. Taurine release increased from 5 to 15 degrees C, remained constant between 15 and 33 degrees C, decreased between 33 and 37 degrees C and increased thereafter. The infection point of increased basal taurine release seen around 37 degrees C (most prominent in astrocytes), may be of physiological significance. Results presented also show that the ion (Na+, Ca2+ and K+) sensitivities of taurine efflux for cultured hypothalamic astrocytes are similar to those previously reported for cultured astrocytes from the cerebellum.
Effects of experimental warming on soil temperature, moisture and respiration in northern Mongolia
NASA Astrophysics Data System (ADS)
Sharkhuu, A.; Plante, A. F.; Casper, B. B.; Helliker, B. R.; Liancourt, P.; Boldgiv, B.; Petraitis, P.
2010-12-01
Mean annual air temperature in the Lake Hövsgöl region of northern Mongolia has increased by 1.8 °C over the last 40 years, greater than global average temperature increases. A decrease of soil moisture due to changes in precipitation regime is also predicted over the northern region of Mongolia. Warmer temperatures generally result in higher soil CO2 efflux, but responses of soil efflux to climate change may differ among ecosystems due to response variations in soil temperature and moisture regime. The objectives of our study were to examine the environmental responses (soil temperature and moisture) to experimental warming, and to test responses of soil CO2 efflux to experimental warming, in three different ecozones. The experimental site is located in Dalbay Valley, on the eastern shore of Lake Hövsgöl in northern Mongolia (51.0234° N 100.7600° E; 1670 m elevation). Replicate plots with ITEX-style open-top passive warming chambers (OTC) and non-warmed control areas were installed in three ecosystems: (1) semi-arid grassland on the south-facing slope not underlain by permafrost, (2) riparian zone, and (3) larch forest on the north-facing slope underlain by permafrost. Aboveground air temperature and belowground soil temperature and moisture (10 and 20 cm) were monitored using sensors and dataloggers. Soil CO2 efflux was measured periodically using a portable infra-red gas analyzer with an attached soil respiration chamber. The warming chambers were installed and data collected during the 2009 and 2010 growing seasons. Passive warming chambers increased nighttime air temperatures; more so in grassland compared to the forest. Increases in daytime air temperatures were observed in the grassland, but were not significant in the riparian and forest areas. Soil temperatures in warmed plots were consistently higher in all three ecozones at 10 cm depth but not at 20 cm depth. Warming chambers had a slight drying effect in the grassland, but no consistent effect in forest and riparian areas. Measured soil CO2 efflux rates were highest in riparian area, and lowest in the grassland. Initial results of soil efflux measurements suggest that the effect of warming treatment significantly depends on the ecosystem type: soil efflux rates differed between warming treatments in forest plots, but not in riparian and grassland plots.
Kolosov, Dennis; Donini, Andrew; Kelly, Scott P
2017-01-05
The contribution of Claudin-31 (Cldn-31) to corticosteroid-induced tightening of the trout gill epithelium was examined using a primary cultured model preparation. Cldn-31 is a ∼23 kDa protein that localizes to the periphery of gill epithelial cells and diffusely in select gill cells that are Na + -K + -ATPase-immunoreactive. Transcriptional knockdown (KD) of cldn-31 reduced Cldn-31 abundance and increased epithelium permeability. Under simulated in vivo conditions (apical freshwater), cldn-31 KD increased net ion flux rates (≡ efflux). Cortisol treatment increased Cldn-31 abundance and decreased epithelium permeability. This tightening effect was diminished, but not eliminated, by cldn-31 KD, most likely due to other cortisol-sensitive TJ proteins that were transcriptionally unperturbed or enhanced in cortisol-treated cldn-31 KD preparations. However, cldn-31 KD abolished a cortisol-induced increase in Cldn-8d abundance, which may contribute to compromised cldn-31 KD epithelium permeability. Data suggest an important barrier function for Cldn-31 and an integral role for Cldn-31 in corticosteroid-induced gill epithelium tightening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS.
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N; Dokras, Anuja
2014-05-01
Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. A case control study was performed at an academic PCOS center. Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population.
NASA Astrophysics Data System (ADS)
Vasconcelos, Steel S.; Zarin, Daniel J.; Capanu, Marinela; Littell, Ramon; Davidson, Eric A.; Ishida, Francoise Y.; Santos, Elisana B.; Araújo, Maristela M.; AragãO, DéBora V.; Rangel-Vasconcelos, LíVia G. T.; de Assis Oliveira, Francisco; McDowell, William H.; de Carvalho, Claudio José R.
2004-06-01
Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux:litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas emissions, particularly for CO2, and suggest that climate and land-use changes that alter moisture and substrate availability are therefore likely to have an impact on atmosphere chemistry.
Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS
Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N.
2014-01-01
Context: Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. Objective: The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. Design and Setting: A case control study was performed at an academic PCOS center. Patients: Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. Main Outcome Measures: The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Results: Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol particles (P < .01). Conclusions: Our novel findings of decreased cholesterol efflux and an atherogenic lipid particle number and size pattern in women with PCOS, independent of obesity, further substantiate the increased risk of CVD in this population. PMID:24512495
USDA-ARS?s Scientific Manuscript database
Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...
Turner, Andrew G; Ong, Cheryl-Lynn Y; Djoko, Karrera Y; West, Nicholas P; Davies, Mark R; McEwan, Alastair G; Walker, Mark J
2017-06-01
Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA ( P erR-regulated m etal t ransporter A ), a P 1B-4 -type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448Δ pmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448Δ pmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen. Copyright © 2017 American Society for Microbiology.
Tsirigotakis, Nikolaos; Christodoulou, Vasiliki; Ntais, Pantelis; Mazeris, Apostolos; Koutala, Eleni; Messaritakis, Ippokratis; Antoniou, Maria
2016-01-01
Leishmaniasis, a neglected vector-borne disease caused by the protozoan parasite Leishmania, is encountered in 98 countries causing serious concerns to public health. The most alarming is the development of parasite drug resistance, a phenomenon increasingly encountered in the field rendering chemotherapy ineffective. Although resistance to drugs is a complex phenomenon, the rate of efflux of the fluorescent dye Rhodamine-123 from the parasite body, using flow cytometry, is an indication of the isolate's ability to efflux the drug, thus avoiding death. The rate of efflux measured 275 Leishmania strains, isolated from patients and dogs from Greece and Cyprus, was measured and mapped to study the geographical distribution of the multidrug resistance (MDR) gene expression as an indication of the drug resistance of the parasite. The map showed that out of the seven prefectures, where dogs presented high efflux rates, five also had patients with high efflux rates. In one, out of the 59 prefectures studied, the highest number of isolates with efflux slope α > 1, in both human and dog isolates, was found; a fact which may suggest that spread of drug resistance is taking place. The virulence of the Leishmania strains, assessed after infecting human macrophages of the THP-1 cell line, fluctuated from 1% to 59.3% with only 2.5% of the isolates showing infectivity > 50%. The most virulent strains were isolated from Attica and Crete. PMID:27001764
Kumar, Ashwani; Khan, Inshad Ali; Koul, Surrinder; Koul, Jawahir Lal; Taneja, Subhash Chandra; Ali, Intzar; Ali, Furqan; Sharma, Sandeep; Mirza, Zahid Mehmood; Kumar, Manoj; Sangwan, Pyare Lal; Gupta, Pankaj; Thota, Niranjan; Qazi, Ghulam Nabi
2008-06-01
Evaluation of novel synthetic analogues of piperine as inhibitors of multidrug efflux pump NorA of Staphylococcus aureus. A library of piperine-derived compounds was evaluated for their potential to inhibit ethidium bromide efflux in NorA-overexpressing S. aureus SA 1199B. The active compounds were then individually combined with ciprofloxacin to study the potentiation of ciprofloxacin's activity. Based on the efflux inhibition assay, a library of 200 compounds was screened. Three piperine analogues, namely SK-20, SK-56 and SK-29, were found to be the most potent inhibitors of the NorA efflux pump. These inhibitors acted in a synergistic manner with ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. These analogues were 2- to 4-fold more potent than piperine at a significantly lower minimal effective concentration. Furthermore, these inhibitors also significantly suppressed the in vitro emergence of ciprofloxacin-resistant S. aureus. A newly identified class of compounds derived from a natural amide, piperine, is more potent than the parent molecule in potentiating the activity of ciprofloxacin through the inhibition of the NorA efflux pump. These molecules may prove useful in augmenting the antibacterial activities of fluoroquinolones in a clinical setting.
Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study
NASA Astrophysics Data System (ADS)
Acosta, M.; Pavelka, M.
2012-04-01
Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity and seasonal dynamics than branches from the lower whorls. The results presented in this study serve primarily to demonstrate the importance of branch location within canopy from the point of view of the CO2 efflux. CO2 efflux from branch woody-tissue exhibited vertical differentiation among whorls that must be taken into account when collecting, analysis and interpreting data. The determination of CO2 efflux from individual components at ecosystem level is still needed to gain a better understanding of the carbon budget issues. Such data are important for evaluating effect of global climate or other possible influences on carbon cycling and sequestration in forest ecosystems. Acknowledgment: This work was support by the projects CZ.1.05/1.1.00/02.0073 from the Ministry of Education, Youth and Sports and LM2010007 from the Ministry of the Environmental of Czech Republic
Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C
2010-01-01
While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Feng, Qian; Li, Ye
2012-12-15
Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized tomore » emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.« less
Laramy, Janice K; Kim, Minjee; Parrish, Karen E; Sarkaria, Jann N; Elmquist, William F
2018-05-01
A compartmental blood-brain barrier (BBB) model describing drug transport across the BBB was implemented to evaluate the influence of efflux transporters on the rate and extent of the multikinase inhibitor ponatinib penetration across the BBB. In vivo pharmacokinetic studies in wild-type and transporter knockout mice showed that two major BBB efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), cooperate to modulate the brain exposure of ponatinib. The total and unbound (free) brain-to-plasma ratios were approximately 15-fold higher in the triple knockout mice lacking both P-gp and Bcrp [ Mdr1a/b(-/-)Bcrp1(-/-) ] compared with the wild-type mice. The triple knockout mice had a greater than an additive increase in the brain exposure of ponatinib when compared with single knockout mice [ Bcrp1(-/-) or Mdr1a/b(-/-) ], suggesting functional compensation of transporter-mediated drug efflux. Based on the BBB model characterizing the observed brain and plasma concentration-time profiles, the brain exit rate constant and clearance out of the brain were approximately 15-fold higher in the wild-type compared with Mdr1a/b(-/-)Bcrp1(-/-) mice, resulting in a significant increase in the mean transit time (the average time spent by ponatinib in the brain in a single passage) in the absence of efflux transporters (P-gp and Bcrp). This study characterized transporter-mediated drug efflux from the brain, a process that reduces the duration and extent of ponatinib exposure in the brain and has critical implications for the use of targeted drug delivery for brain tumors. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
McDaniel, M D; Kaye, J P; Kaye, M W; Bruns, M A
2014-04-01
Forest disturbances, including whole-tree harvest, will increase with a growing human population and its rising affluence. Following harvest, forests become sources of C to the atmosphere, partly because wetter and warmer soils (relative to pre-harvest) increase soil CO2 efflux. This relationship between soil microclimate and CO2 suggests that climate changes predicted for the northeastern US may exacerbate post-harvest CO2 losses. We tested this hypothesis using a climate-manipulation experiment within a recently harvested northeastern US forest with warmed (H; +2.5 °C), wetted (W; +23% precipitation), warmed + wetted (H+W), and ambient (A) treatments. The cumulative soil CO2 effluxes from H and W were 35% (P = 0.01) and 22% (P = 0.07) greater than A. However, cumulative efflux in H+W was similar to A and W, and 24% lower than in H (P = 0.02). These findings suggest that with higher precipitation soil CO2 efflux attenuates rapidly to warming, perhaps due to changes in substrate availability or microbial communities. Microbial function measured as CO2 response to 15 C substrates in warmed soils was distinct from non-warmed soils (P < 0.001). Furthermore, wetting lowered catabolic evenness (P = 0.04) and fungi-to-bacteria ratios (P = 0.03) relative to non-wetted treatments. A reciprocal transplant incubation showed that H+W microorganisms had lower laboratory respiration on their home soils (i.e., home substrates) than on soils from other treatments (P < 0.01). We inferred that H+W microorganisms may use a constrained suite of C substrates that become depleted in their "home" soils, and that in some disturbed ecosystems, a precipitation-induced attenuation (or suppression) of soil CO2 efflux to warming may result from fine-tuned microbe-substrate linkages.
Dokras, Anuja; Playford, Martin; Kris-Etherton, Penny M.; Kunselman, Allen R.; Stetter, Christy M.; Williams, Nancy I.; Gnatuk, Carol L.; Estes, Stephanie J.; Sarwer, David B; Allison, Kelly C; Coutifaris, Christos; Mehta, Nehal; Legro, Richard S
2017-01-01
Objective To study the effects of oral contraceptive pills (OCP), the first line treatment for PCOS, on HDL-C function (reverse cholesterol efflux capacity) and lipoprotein particles measured by NMR spectroscopy. Design Secondary analysis of a randomized controlled trial (OWL-PCOS) of OCP or Lifestyle (intensive lifestyle modification) or Combined (OCP+Lifestyle) treatment for 16 weeks. Patients 87 overweight/obese women with PCOS at two academic centers Measurements Change in HDL-C efflux capacity and lipoprotein particles. Results HDL-C efflux capacity increased significantly at 16 weeks in the OCP group (0.11; 95% CI 0.03, 0.18, p=0.008) but not in the Lifestyle (p=0.39) or Combined group (p=0.18). After adjusting for HDL-C and TG levels, there was significant mean change in efflux in the Combined group (0.09; 95% CI 0.01, 0.15; p=0.01). Change in HDL-C efflux correlated inversely with change in serum testosterone (rs = −0.21; p=0.05). In contrast, OCP use induced an atherogenic LDL-C profile with increase in small (p=0.006) and large LDL-particles (p=0.002). Change in small LDL-particles correlated with change in serum testosterone (rs = −0.31, p=0.009) and insulin sensitivity index (rs = −0.31, p=0.02). Both Lifestyle and Combined groups did not show significant changes in the atherogenic LDL-particles. Conclusions OCP use is associated with improved HDL-C function and a concomitant atherogenic LDL-C profile. Combination of a Lifestyle program with OCP use improved HDL-C function and mitigated adverse effects of OCP on lipoproteins. Our study provides evidence for use of OCP in overweight/obese women with PCOS when combined with Lifestyle changes. PMID:28199736
Amphipathic Polyproline Peptides Stimulate Cholesterol Efflux by the ABCA1 Transporter
Sviridov, D.O.; Drake, S.K.; Freeman, L.A.; Remaley, A.T.
2016-01-01
ApoA-I mimetics are short synthetic peptides that contain an amphipathic αα-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenol group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop - Prog - Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-αhelical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p<0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides. PMID:26879139
Beaugé, L. A.; Ortiz, Olga
1972-01-01
1. The efflux of labelled sodium as well as net sodium and lithium changes were studied in aged high sodium sartorius muscles of the South American frog Leptodactilus ocelatus. 2. In the presence of 2·5 mM potassium in the media, the replacement of external sodium with lithium or magnesium resulted in an increase in sodium efflux. The magnitude of such increase was always larger in lithium. 3. With the absence of potassium in the media, the response of sodium efflux to replacement of external sodium varied with the cation used as a substitute. In lithium Ringer there was always a noticeable increase, whereas in magnesium there was always a marked reduction. The same results were observed when calcium was substituted for magnesium. 4. The replacement of 60 mM external sodium with sucrose did not prevent the stimulating effect of 5 mM potassium on sodium efflux, nor the inhibitory action of 10-4 M ouabain. This indicates that neither sucrose by itself, nor the lowering of the ionic strength, modified to an appreciable extent the function of the sodium pump. 5. Net sodium extrusion took place against an electrochemical gradient in potassium-free — 50 mM sodium — mM lithium Ringer. About 75% of this efflux was ouabain sensitive. 6. Muscles made both sodium and lithium rich and incubated in potassium-free — 60 mM sodium — 50 mM lithium Ringer also showed net sodium extrusion against an electrochemical gradient, which was 85% ouabain sensitive. This extrusion took place even under conditions where the changes in free energy favouring lithium entry were always lower than the changes in free energy opposing sodium going out. This indicates that a sodium-lithium exchange by a counter-transport process is unlikely. 7. External potassium reduced the ouabain sensitive lithium influx in muscles incubated in lithium Ringer. The values found were 5·90 ± 0·39 μ-mole/g.hr and 2·66 ± 0·43 μmole/g.hr in potassium-free and 15 mM potassium respectively. At the same time potassium had no effect on the ouabain-insensitive lithium uptake. 8. Muscles incubated in potassium-free-magnesium Ringer had a residual sodium efflux which could not be accounted for by passive movement. About 40% of it was abolished by 10-4 M ouabain. This ouabain-sensitive part could be a consequence of some stimulation of the sodium pump by potassium leaking out of the cells. If this is correct it should be inhibited by external sodium and should not contribute to the total sodium efflux in potassium-free sodium media. 9. Magnesium was used as the reference cation to study the sodium-stimulated sodium efflux under potassium-free conditions. The total sodium efflux amounted to 0·668 hr-1 (rate constant) and was 71% ouabain sensitive. 10. The present experiments demonstrated that lithium ions have a direct stimulating effect on sodium efflux in high sodium skeletal muscle, and strongly support the notion that this effect is produced by an activation of the sodium pump through a potassium-like action. PMID:4637626
Sodium movements in perfused squid giant axons. Passive fluxes.
Rojas, E; Canessa-Fischer, M
1968-08-01
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm(2)sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm(2)sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 +/- 3 pmoles/cm(2)sec and 41 +/- 10 pmoles/cm(2)sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm(2)impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.
Sodium Movements in Perfused Squid Giant Axons
Rojas, Eduardo; Canessa-Fischer, Mitzy
1968-01-01
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium. PMID:5672003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.B.; Smith, L.; Higgins, B.L.
1985-11-25
Inositol 1,4,5-trisphosphate (IP3) rapidly increased UVCaS efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked UVCaS release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked UVCaS release. IP3 strongly stimulated UVCaS efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced UVCaS efflux suggests that IP3 activated a CaS channel, rather than a carrier, bymore » a ligand-binding, rather than a metabolic, reaction.« less
MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony
2016-01-01
Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384
Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium
Wang-Kan, Xuan; Chirullo, Barbara; Betts, Jonathan; La Ragione, Roberto M.; Ivens, Alasdair; Ricci, Vito; Opperman, Timothy J.
2017-01-01
ABSTRACT AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps. PMID:28720734
1996-01-01
Chloride ion efflux is an early event occurring after exposure of neutrophilic polymorphonuclear leukocytes (PMN) in suspension to several agonists, including cytokines such as tumor necrosis factor- alpha (TNF) and granulocyte/macrophage-colony stimulating factor (Shimizu, Y., R.H. Daniels, M.A. Elmore, M.J. Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. Pharmacol. 9:1743-1751). We have studied TNF-induced Cl- movements in PMN residing on fibronectin (FN) (FN-PMN) and their relationships to adherence, spreading, and activation of the respiratory burst. Occupancy of the TNF-R55 and engagement of beta 2 integrins cosignaled for an early, marked, and prolonged Cl- efflux that was accompanied by a fall in intracellular chloride levels (Cl-i). A possible causal relationship between Cl- efflux, adherence, and respiratory burst was first suggested by kinetic studies, showing that TNF-induced Cl- efflux preceded both the adhesive and metabolic response, and was then confirmed by inhibition of all three responses by pretreating PMN with inhibitors of Cl- efflux, such as ethacrynic acid. Moreover, Cl- efflux induced by means other than TNF treatment, i.e., by using Cl(-)-free media, was followed by increased adherence, spreading, and metabolic activation, thus mimicking TNF effects. These studies provide the first evidence that a drastic decrease of Cl-i in FN-PMN may represent an essential step in the cascade of events leading to activation of proadhesive molecules, reorganization of the cytoskeleton network, and assembly of the O2(-)-forming NADPH oxidase. PMID:8896606
Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D
2016-02-01
The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Martell, R. L.; Slapak, C. A.; Levy, S. B.
1997-01-01
The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3. Images Figure 3 PMID:9010020
Gless, K H; Sütterlin, U; Schaz, K; Schütz, V; Hunstein, W
1986-01-01
Intracellular sodium content ([Nai]), ouabain-sensitive ('Na-K ATPase') and ouabain-insensitive ('passive permeability') sodium efflux, Na-K cotransport and Na-Li ('Na-Na') countertransport were estimated in erythrocytes in 39 control subjects, 20 patients with essential hypertension, 14 patients with hypokalemia of renal or unknown etiology, 13 hyperthyroid patients and 19 pregnant women. In normokalemic essential hypertension there was only a moderate, but significant elevation of the activity of the Na-Li countertransport system. In the group of patients with hypokalemia, there was a significant increase of [Nai], ouabain-insensitive sodium efflux and Na-Li countertransport. In hyperthyroidism, a marked decrease of Na-Li countertransport was associated with a marked elevation of [Nai], in pregnancy an elevation of the Na-Li countertransport with a [Nai] 43% lower than the control values. The ouabain-sensitive sodium efflux was elevated in hyperthyroidism and hypokalemia, in which [Nai] was increased. In the control subjects there was a positive linear correlation between ouabain-sensitive sodium efflux and [Nai]. The sodium component of the Na-K cotransport was decreased to about one third of the unchanged furosemide-sensitive potassium component during pregnancy. The changes of cellular sodium metabolism in essential hypertension are of minor degree as compared to those in the other conditions studied. Cellular sodium metabolism in blood cells is influenced by thyroid hormones and metabolic disorders. Na-Li countertransport, i.e. Na-Na countertransport, seems to be involved in the regulation of [Nai]: an increase of its activity diminishes [Nai] (pregnancy); a decrease elevates [Nai] (hyperthyroidism). Ouabain-sensitive sodium efflux, i.e. 'Na-K ATPase', is mainly regulated by its substrate, [Nai].
Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo
2017-07-01
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.
Šimurda, Jiří; Orchard, Clive H.
2014-01-01
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient. PMID:24971358
Géranton, Sandrine M; Heal, David J; Stanford, S Clare
2004-03-01
There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.
Acetylcholine Activity in Selective Striatal Regions Supports Behavioral Flexibility
Ragozzino, Michael E.; Mohler, Eric G.; Prior, Margaret; Palencia, Carlos A.; Rozman, Suzanne
2009-01-01
Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m2 muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility. PMID:18845266
Acetylcholine activity in selective striatal regions supports behavioral flexibility.
Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne
2009-01-01
Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.
Gaitán, Diego Alejandro; Flores, Sebastian; Pizarro, Fernando; Olivares, Manuel; Suazo, Miriam; Arredondo, Miguel
2012-03-01
It has been suggested that calcium inhibits the absorption of dietary iron by directly affecting enterocytes. However, it is not clear if this effect is due to a decreased uptake of iron or its efflux from enterocytes. We studied the effect of calcium on the uptake, efflux, and net absorption of non-heme iron using the intestinal-like epithelial cell line Caco-2 as an in vitro model. Caco-2 cells were incubated for 60 min in a buffer supplemented with non-heme iron (as sulfate) and calcium to achieve calcium to iron molar ratios ranging from 50:1 to 1,000:1. The uptake, efflux, and net absorption of non-heme iron were calculated by following a radioisotope tracer of (55)Fe that had been added to the buffer. Administration of calcium and iron at molar ratios between 500 and 1,000:1 increased the uptake of non-heme iron and decreased efflux. Calcium did not have an effect on the net absorption of non-heme iron. At typical supplementary doses for calcium and non-heme iron, calcium may not have an effect on the absorption of non-heme iron. The effect of higher calcium to iron molar ratios on the efflux of non-heme iron may be large enough to explain results from human studies.
Multidrug Efflux Pumps in Staphylococcus aureus: an Update.
Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel
2013-01-01
The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.
SWEET sugar transporters for phloem transport and pathogen nutrition.
Chen, Li-Qing
2014-03-01
Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.
Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release.
Bradbury, Sarah; Bird, Judith; Colussi-Mas, Joyce; Mueller, Melanie; Ricaurte, George; Schenk, Susan
2014-09-01
The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration. © 2013 Society for the Study of Addiction.
NASA Technical Reports Server (NTRS)
Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.
1998-01-01
Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.
Branco, Patrícia; Albergaria, Helena; Arneborg, Nils; Prista, Catarina
2018-05-01
Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.
Grol, Matthew W; Zelner, Irene; Dixon, S Jeffrey
2012-03-01
The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.
Jin, Jie; Guffanti, Arthur A.; Bechhofer, David H.; Krulwich, Terry A.
2002-01-01
The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me2+) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me2+ efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative “antiporter motif,” motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates and others are important only for particular substrates. PMID:12169596
Lowrence, Rene Christena; Raman, Thiagarajan; Makala, Himesh V; Ulaganathan, Venkatasubramanian; Subramaniapillai, Selva Ganesan; Kuppuswamy, Ashok Ayyappa; Mani, Anisha; Chittoor Neelakantan, Sundaresan; Nagarajan, Saisubramanian
2016-11-01
Multi drug resistant (MDR) pathogens pose a serious threat to public health since they can easily render most potent drugs ineffective. Efflux pump inhibitors (EPI) can be used to counter the MDR phenotypes arising due to increased efflux. In the present study, a series of dithiazole thione derivatives were synthesized and checked for its antibacterial and efflux pump inhibitory (EPI) activity. Among 10 dithiazole thione derivatives, real-time efflux studies revealed that seven compounds were potent EPIs relative to CCCP. Zebrafish toxicity studies identified four non-toxic putative EPIs. Both DTT3 and DTT9 perturbed membrane potential and DTT6 was haemolytic. Among DTT6 and DTT10, the latter was less toxic as evidenced by histopathology studies. Since DTT10 was non-haemolytic, did not affect the membrane potential, and was least toxic, it was chosen further for in vivo study, wherein DTT10 potentiated effect of ciprofloxacin against clinical strain of MRSA and reduced bacterial burden in muscle and skin tissue of infected zebrafish by ~ 1.7 and 2.5 log fold respectively. Gene expression profiling of major efflux transport proteins by qPCR revealed that clinical isolate of MRSA, in the absence of antibiotic, upregulated NorA, NorB and MepA pump, whereas it downregulates NorC and MgrA relative to wild-type strain of Staphylococcus aureus. In vitro studies with NorA mutant strains and substrate profiling revealed that at higher concentrations DTT10 is likely to function as a competitive inhibitor of NorA efflux protein in S. aureus, whereas at lower concentrations it might inhibit ciprofloxacin efflux through NorB and MepA as implied by docking studies. A novel non-toxic, non-haemolytic dithiazole thione derivative (DTT10) was identified as a potent competitive inhibitor of NorA efflux pump in S. aureus using in silico, in vitro and in vivo studies. This study also underscores the importance of using zebrafish infection model to screen and evaluate putative EPI for mitigating MDR strains of S. aureus.
S. Vicca; M. Bahn; M. Estiarte; E. E. van Loon; R. Vargas; G. Alberti; P. Ambus; M. A. Arain; C. Beier; L. P. Bentley; W. Borken; N. Buchmann; S. L. Collins; G. de Dato; J. S. Dukes; C. Escolar; P. Fay; G. Guidolotti; P. J. Hanson; A. Kahmen; G. Kröel-Dulay; T. Ladreiter-Knauss; K. S. Larsen; E. Lellei-Kovacs; E. Lebrija-Trejos; F. T. Maestre; S. Marhan; M. Marshall; P. Meir; Y. Miao; J. Muhr; P. A. Niklaus; R. Ogaya; J. Peñuelas; C. Poll; L. E. Rustad; K. Savage; A. Schindlbacher; I. K. Schmidt; A. R. Smith; E. D. Sotta; V. Suseela; A. Tietema; N. van Gestel; O. van Straaten; S. Wan; U. Weber; I. A. Janssens
2014-01-01
As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends an extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the...
Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux
A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren
2014-01-01
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...
Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May
There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ► Systemic corticosteroids are weak P-gp inducers. ► Mineralocorticoids not affected by P-gp mediated efflux.« less
NASA Astrophysics Data System (ADS)
Wunderlich, S.; Borken, W.
2012-05-01
Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33% (2009) and 22% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A 1-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration. We conclude that the moderate decrease in rhizosphere respiration following flooding arises from a gradual change in vegetation in this fen ecosystem.
NASA Astrophysics Data System (ADS)
Wunderlich, S.; Borken, W.
2012-08-01
Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4 ± 8%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33 ± 8% (2009) and 22 ± 9% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A one-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration.
Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B
2012-01-01
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324
NASA Astrophysics Data System (ADS)
Pérez, Nemesio M.; Padilla, Germán D.; Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Dionis, Samara; Nolasco, Dácil; Rodríguez, Fátima; Calvo, David; Hernández, Íñigo
2012-08-01
On October 12, 2011, a submarine eruption began 2 km off the coast of La Restinga, south of El Hierro Island. CO2 and H2S soil efflux were continuously measured during the period of volcanic unrest by using the accumulation chamber method at two different geochemical stations, HIE01 and HIE07. Recorded CO2 and H2S effluxes showed precursory signals that preceded the submarine eruption. Beginning in late August, the CO2 efflux time series started increasing at a relatively constant rate over one month, reaching a maximum of 19 gm-2d-1 one week before the onset of the submarine volcanic eruption. The H2S efflux time series at HIE07 showed a pulse in H2S emission just one day before the initiation of the submarine eruption, reaching peak values of 42 mg m-2 d-1, 10 times the average H2S efflux recorded during the observation period. Since CO2 and H2S effluxes are strongly influenced by external factors, we applied a multiple regression analysis to remove their contribution. A statistical analysis showed that the long-term trend of the filtered data is well correlated with the seismic energy. We find that these geochemical stations are important monitoring sites for evaluating the volcanic activity of El Hierro and that they demonstrate the potential of applying continuous monitoring of soil CO2 and H2S efflux to improve and optimize the detection of early warning signals of future volcanic unrest episodes at El Hierro. Continuous diffuse degassing studies would likely prove useful for monitoring other volcanoes during unrest episodes.
Liu, Chaoqun; Zhang, Yuan; Ding, Ding; Li, Xinrui; Yang, Yunou; Li, Qing; Zheng, Yuanzhu; Wang, Dongliang; Ling, Wenhua
2016-06-01
Although diminished cholesterol efflux capacity is positively related with prevalent coronary artery disease, its prognostic value for incident cardiovascular events remains a topic of debate. This work aims to investigate the association between cholesterol efflux capacity and all-cause and cardiovascular mortality in patients with coronary artery disease. We measured cholesterol efflux capacity at baseline in 1737 patients with coronary artery disease from the Guangdong Coronary Artery Disease Cohort. During 6645 person-years of follow-up, 166 deaths were registered, 122 of which were caused by cardiovascular diseases. After multivariate adjustment for factors related to cardiovascular diseases, the hazard ratios of cholesterol efflux capacity in the fourth quartile compared with those in the bottom quartile were 0.24 (95% confidence intervals 0.13-0.44) for all-cause mortality (P < 0.001), and 0.17 (95% confidence intervals 0.08-0.39) for cardiovascular mortality (P < 0.001). Adding cholesterol efflux capacity to a model containing traditional cardiovascular risk factors significantly increases its discriminatory power and predictive ability for all-cause (area under receiver operating characteristic curve 0.79 versus 0.76, P = 0.001; net reclassification improvement 14.5%, P = 0.001; integrated discrimination improvement 0.016, P < 0.001) and cardiovascular (area under receiver operating characteristic curve 0.81 versus 0.78, P = 0.001; net reclassification improvement 18.4%, P < 0.001; integrated discrimination improvement 0.015, P < 0.001) death, respectively. Cholesterol efflux capacity may serve as an independent measure for predicting all-cause and cardiovascular mortality in patients with coronary artery disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Microbial Efflux Pump Inhibition: Tactics and Strategies
Tegos, George P.; Haynes, Mark; Strouse, J. Jacob; Khan, Mohiuddin Md. T.; Bologa, Cristian G.; Oprea, Tudor I.; Sklar, Larry A.
2013-01-01
Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the preclinical development of lead EPIs. PMID:21470111
Fontaine, Fanny; Hequet, Arnaud; Voisin-Chiret, Anne-Sophie; Bouillon, Alexandre; Lesnard, Aurélien; Cresteil, Thierry; Jolivalt, Claude; Rault, Sylvain
2014-03-27
Overexpression of efflux pumps is an important mechanism of bacterial resistance that results in the extrusion of antimicrobial agents outside the bacterial cell. Inhibition of such pumps appears to be a promising strategy that could restore the potency of existing antibiotics. The NorA efflux pump of Staphylococcus aureus confers resistance to a wide range of unrelated substrates, such as hydrophilic fluoroquinolones, leading to a multidrug-resistance phenotype. In this work, approximately 150 heterocyclic boronic species were evaluated for their activity against susceptible and resistant strains of S. aureus. Twenty-four hit compounds, although inactive when tested alone, were found to potentiate ciprofloxacin activity by a 4-fold increase at concentrations ranging from 0.5 to 8 μg/mL against S. aureus 1199B, which overexpresses NorA. Boron-free analogues showed no biological activity, thus revealing that the boron atom is crucial for biological activity. This work describes the first reported efflux pump inhibitory activity of boronic acid derivatives.
CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease
Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing
2016-01-01
Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211
Sehested, M.; Jensen, P. B.; Skovsgaard, T.; Bindslev, N.; Demant, E. J.; Friche, E.; Vindeløv, L.
1989-01-01
The multidrug resistance (MDR) phenotype is presumed to be mostly dependent on changes in the resistant cell plasma membrane, notably the emergence of a 170 kDa glycoprotein called P-glycoprotein, which facilitate increased drug efflux. We have previously demonstrated that ATP-enhanced binding of vincristine (VCR) to plasma membrane vesicles is much greater in MDR than in wild type cells. The present study has shown that VCR binding to MDR Ehrlich ascites tumour cell plasma membrane vesicles is inhibited 50% most efficiently by quinidine (0.5 microM) followed by verapamil (4.1 microM) and trifluoperazine (23.2 microM). This is the reverse order of the effect on whole cells where a ranking of efficiency in terms of enhancement of VCR accumulation, inhibition of VCR efflux, DNA perturbation and modulation of resistance in a clonogenic assay, was trifluoperazine greater than or equal to verapamil much greater than quinidine. The detergent Tween 80 inhibited VCR binding to plasma membrane vesicles at 0.001% v/v which agreed with the level which modulated resistance and increased VCR accumulation in whole cells. No effect was observed on daunorubicin binding to MDR plasma membrane vesicles after incubation with either Tween 80 (up to 0.1% v/v) or verapamil (up to 25 microM). We conclude that the effect of a modulating drug in reversing resistance to VCR correlates with its ability to raise intracellular VCR levels but not with its capability to inhibit VCR binding to the plasma membrane. Thus, enhancement of VCR accumulation in MDR cells is hardly solely due to competition for a drug binding site on P-glycoprotein. Furthermore, the lack of a demonstrable effect on daunorubicin binding to the plasma membrane by modulators points to transport mechanisms which do not utilise specific drug binding to the plasma membrane. PMID:2605092
Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.
Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi
2014-05-01
Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.
Ohkubo, Rie; Tomita, Mikio; Hotta, Yoshiyuki; Nagira, Mayuko; Hayashi, Masahiro
2003-01-01
We have shown previously that the flux of fluorescein isothiocyanate dextran 4000 (FD-4) is transported across the Caco-2 cell monolayers in a polarized fashion favoring the basal to apical direction under normal conditions (i.e., isotonic solution in basal side). Furthermore, FD-4 transport may occur via a process that included a certain degree of substrate specificity for polysaccharide and transcytosis. In the present study, we compared the flux of FD-4 in the basal to apical direction (efflux) and the apical to basal direction (influx) in stress conditions (i.e., hyperosmolarity in basal side) to those in normal conditions (i.e., iso-osmolarity in basal side). The efflux of FD-4 was increased by hyperosmolarity in basal side, but the influx was decreased when compared with normal conditions. Neither dextran 10, 000 nor colchicine inhibited the efflux of FD-4 in hyperosmolarity conditions. The inhibition of efflux of FD-4 was observed not by S-nitroso-N-acetylpenicillamine but by sodium nitroprusside and sodium ferrocyanide. These results collectively suggest that hyperosmolarity in basal side accelerates the efflux of FD-4 across the transcellular route but not across the paracellular route in Caco-2 cell monolayers. And it is indicated that cyanide rather than nitric oxide is involved in dysfunction of the FD-4 efflux system irrespective of conditions such as normal osmolarity or hyperosmolarity.
Lee, Chan Joo; Choi, Seungbum; Cheon, Dong Huey; Kim, Kyeong Yeon; Cheon, Eun Jeong; Ann, Soo-Jin; Noh, Hye-Min; Park, Sungha; Kang, Seok-Min; Choi, Donghoon; Lee, Ji Eun; Lee, Sang-Hak
2017-02-28
The influence of lipid-lowering therapy on high-density lipoprotein (HDL) is incompletely understood. We compared the effect of two lipid-lowering strategies on HDL functions and identified some HDL-related proteins. Thirty two patients were initially screened and HDLs of 21 patients were finally analyzed. Patients were randomized to receive atorvastatin 20 mg (n = 11) or atorvastatin 5 mg/ezetimibe 10 mg combination (n = 10) for 8 weeks. The cholesterol efflux capacity and other anti-inflammatory functions were assessed based on HDLs of the participants before and after treatment. Pre-specified HDL proteins of the same HDL samples were measured. The post-treatment increase in cholesterol efflux capacities was similar between the groups (35.6% and 34.6% for mono-therapy and combination, respectively, p = 0.60). Changes in nitric oxide (NO) production, vascular cell adhesion molecule-1 (VCAM-1) expression, and reactive oxygen species (ROS) production were similar between the groups. The baseline cholesterol efflux capacity correlated positively with apolipoprotein (apo)A1 and C3, whereas apoA1 and apoC1 showed inverse associations with VCAM-1 expression. The changes in the cholesterol efflux capacity were positively correlated with multiple HDL proteins, especially apoA2. Two regimens increased the cholesterol efflux capacity of HDL comparably. Multiple HDL proteins, not limited to apoA1, showed a correlation with HDL functions. These results indicate that conventional lipid therapy may have additional effects on HDL functions with changes in HDL proteins. ClinicalTrials.gov, number NCT02942602 .
Vitamin K3 Induces the Expression of the Stenotrophomonas maltophilia SmeVWX Multidrug Efflux Pump.
Blanco, P; Corona, F; Sánchez, M B; Martínez, J L
2017-05-01
Stenotrophomonas maltophilia is an opportunistic pathogen with increasing prevalence, which is able to cause infections in immunocompromised patients or in those with a previous pathology. The treatment of the infections caused by this bacterium is often complicated due to the several intrinsic antibiotic resistance mechanisms that it presents. Multidrug efflux pumps are among the best-studied mechanisms of S. maltophilia antibiotic resistance. Some of these efflux pumps have a basal expression level but, in general, their expression is often low and only reaches high levels when the local regulator is mutated or bacteria are in the presence of an effector. In the current work, we have developed a yellow fluorescent protein (YFP)-based sensor with the aim to identify effectors able to trigger the expression of SmeVWX, an efflux pump that confers resistance to quinolones, chloramphenicol, and tetracycline when it is expressed at high levels. With this purpose in mind, we tested a variety of different compounds and analyzed the fluorescence signal given by the expression of YFP under the control of the smeVWX promoter. Among the tested compounds, vitamin K 3 , which is a compound belonging to the 2-methyl-1,4-naphthoquinone family, is produced by plants in defense against infection, and has increasing importance in human therapy, was able to induce the expression of the SmeVWX efflux pump. In addition, a decrease in the susceptibility of S. maltophilia to ofloxacin and chloramphenicol was observed in the presence of vitamin K 3 , in both wild-type and smeW -deficient strains. Copyright © 2017 American Society for Microbiology.
Spartano, N. L.; Lamon-Fava, S.; Matthan, N. R.; Ronxhi, J.; Greenberg, A. S.; Obin, M. S.; Lichtenstein, A. H.
2014-01-01
Purpose Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM). Methods 10 subjects (4 F/6 M, 50–85 years, BMI 25–35 kg/m2) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D-or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined. Results Baseline ABCA1and ABCG1 expression was lower (> 50 %) in human monocytes and PBMC than leukocytes (p < 0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37 % and 30 %, respectively (p < 0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10 %; p < 0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression. Conclusions Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to diabetes-associated atherosclerosis. PMID:24838154
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2010-04-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.
Lin, Chen-Cheng; Tung, Che-Se; Liu, Yia-Ping
2016-04-01
Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterised by fear extinction dysfunction in which fear circuit monoamines are possibly associated. PTSD often coexists with depressive/anxiety symptoms, and selective serotonin reuptake inhibitors (SSRIs) are recommended to treat PTSD. However, therapeutic mechanisms of SSRIs underlying the PTSD fear symptoms remain unclear. Using a rodent PTSD model, we examined the effects of early SSRI intervention in mood and fear dysfunctions with associated changes of monoamines within the fear circuit areas. A 14-day escitalopram (ESC) regimen (5 mg/kg/day) was undertaken in two separate experiments in rats which previously received a protocol of single prolonged stress (SPS). In experiment 1, sucrose preference and elevated T-maze were used to index anhedonia depression and avoidance/escape anxiety profiles. In experiment 2, the percentage of freezing time was measured in a 3-day fear conditioning paradigm. At the end of our study, tissue levels of serotonin (5-HT) in the medial prefrontal cortex, amygdala, hippocampus, and striatum were measured in experiment 1, and the efflux levels of infralimbic (IL) monoamines were measured in experiment 2. In experiment 1, ESC corrected both behavioural (depression/anxiety) and neurochemical (reduced 5-HT tissue levels in amygdala/hippocampus) abnormalities. In experiment 2, ESC was unable to correct the SPS-impaired retrieval of fear extinction. In IL, ESC increased the efflux level of 5-HT but failed to reverse SPS-reduced dopamine (DA) and noradrenaline (NA). PTSD-induced mood dysfunction is psychopathologically different from PTSD-induced fear disruption in terms of disequilibrium of monoamines within the fear circuit areas.
Strong, Aaron L; Johnson, Tera P; Chiariello, Nona R; Field, Christopher B
2017-05-01
Numerous studies have demonstrated that soil respiration rates increase under experimental warming, although the long-term, multiyear dynamics of this feedback are not well constrained. Less is known about the effects of single, punctuated events in combination with other longer-duration anthropogenic influences on the dynamics of soil carbon (C) loss. In 2012 and 2013, we assessed the effects of decadal-scale anthropogenic global change - warming, increased nitrogen (N) deposition, elevated carbon dioxide (CO 2 ), and increased precipitation - on soil respiration rates in an annual-dominated Mediterranean grassland. We also investigated how controlled fire and an artificial wet-up event, in combination with exposure to the longer-duration anthropogenic global change factors, influenced the dynamics of C cycling in this system. Decade-duration surface soil warming (1-2 °C) had no effect on soil respiration rates, while +N addition and elevated CO 2 concentrations increased growing-season soil CO 2 efflux rates by increasing annual aboveground net primary production (NPP) and belowground fine root production, respectively. Low-intensity experimental fire significantly elevated soil CO 2 efflux rates in the next growing season. Based on mixed-effects modeling and structural equation modeling, low-intensity fire increased growing-season soil respiration rates through a combination of three mechanisms: large increases in soil temperature (3-5 °C), significant increases in fine root production, and elevated aboveground NPP. Our study shows that in ecosystems where soil respiration has acclimated to moderate warming, further increases in soil temperature can stimulate greater soil CO 2 efflux. We also demonstrate that punctuated short-duration events such as fire can influence soil C dynamics with implications for both the parameterization of earth system models (ESMs) and the implementation of climate change mitigation policies that involve land-sector C accounting. © 2016 John Wiley & Sons Ltd.
Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters
NASA Astrophysics Data System (ADS)
Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.
2013-12-01
Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity, water surface disturbance indicated by Froude number, and turbulent mixing indicated by Reynolds number. Similar relationships with season, flow velocity and turbulence have been reported previously, but there is little known about the mechanisms involved. When comparing spot carbon dioxide efflux measurements to river stage time series data, carbon dioxide efflux is more sensitive to an increase in stage at more turbulent measurement points. Further investigation of the mechanisms will be obtained by measurement of DIC concentration and isotopic composition to assess the controls of carbon source versus degassing, and the analysis of the interactions between hydraulic and seasonal controls and carbon dioxide fluxes extended.
Creighton M. Litton; Christian P. Giardina; Jeremy K. Albano; Michael S. Long; Gregory P. Asner
2011-01-01
Soil-surface CO2 efflux (FS; âsoil respirationâ) accounts for 50% of the CO2 released annually by the terrestrial biosphere to the atmosphere, and the magnitude and variability of this flux are likely to be sensitive to climate change. We measured FS in nine permanent plots along a 5.2C mean annual...
Chelcy R. Ford; Jason McGee; Francesca Scandellari; Erik A. Hobbie; Robert J. Mitchell
2012-01-01
Soil CO2 efflux (Esoil), the main pathway of C movement from the biosphere to the atmosphere, is critical to the terrestrial C cycle but how precipitation and soil moisture influence Esoil remains poorly understood. Here, we irrigated a longleaf pine wiregrass savanna for six years; this increased soil moisture by 41.2%. We tested how an altered precipitation regime...
Efflux pumps as antimicrobial resistance mechanisms.
Poole, Keith
2007-01-01
Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.
Intestinal P-glycoprotein inhibitors, benzoxanthone analogues.
Chae, Song Wha; Lee, Jaeok; Park, Jung Hyun; Kwon, Youngjoo; Na, Younghwa; Lee, Hwa Jeong
2018-02-01
The inhibitors of P-glycoprotein (P-gp) which limits an access of exogenous compounds in the luminal membrane of the intestine have been studied to enhance the intestinal P-gp-mediated absorption of anticancer drugs. Inhibition of the efflux pump by synthesized benzoxanthone derivatives was investigated in vitro and in vivo. MCF-7/ADR cell line was used for cytotoxicity assay and [ 3 H]-daunomycin (DNM) accumulation/efflux study. Eight benzoxanthone analogues were tested for their effects on DNM cytotoxicity. Among them, three analogues were selected for the accumulation/efflux and P-gp ATPase studies. Paclitaxel (PTX), a P-gp substrate anticancer drug, was orally administered to rats with/without compound 1 (8,10-bis(thiiran-2-ylmethoxy)-7H-benzo[c]xanthen-7-one). The pharmacokinetic parameters of PTX in the presence/absence of compound 1 were evaluated from the plasma concentration-time profiles. Compound 1 increased the DNA accumulation to 6.5-fold and decreased the DNM efflux to approximately 1/2 in the overexpressing P-gp cell line. Relative bioavailability (RB) of PTX in rats was significantly increased up to 3.2-fold by compound 1 (0.5 or 2 mg/kg). Benzoxanthone analogue, compound 1 is strongly suggested to be a promising inhibitor of P-gp to improve an oral absorption of compounds for cancer therapy. © 2017 Royal Pharmaceutical Society.
Rineh, Ardeshir; Dolla, Naveen K; Ball, Anthony R; Magana, Maria; Bremner, John B; Hamblin, Michael R; Tegos, George P; Kelso, Michael J
2017-10-13
Antimicrobial photodynamic inactivation (aPDI) uses photosensitizers (PSs) and harmless visible light to generate reactive oxygen species (ROS) and kill microbes. Multidrug efflux systems can moderate the phototoxic effects of PSs by expelling the compounds from cells. We hypothesized that increasing intracellular concentrations of PSs by inhibiting efflux with a covalently attached efflux pump inhibitor (EPI) would enhance bacterial cell phototoxicity and reduce exposure of neighboring host cells to damaging ROS. In this study, we tested the hypothesis by linking NorA EPIs to methylene blue (MB) and examining the photoantimicrobial activity of the EPI-MB hybrids against the human pathogen methicillin-resistant Staphylococcus aureus (MRSA). Photochemical/photophysical and in vitro microbiological evaluation of 16 hybrids carrying four different NorA EPIs attached to MB via four linker types identified INF55-(Ac)en-MB 12 as a lead. Compound 12 showed increased uptake into S. aureus cells and enhanced aPDI activity and wound healing effects (relative to MB) in a murine model of an abrasion wound infected by MRSA. The study supports a new approach for treating localized multidrug-resistant MRSA infections and paves the way for wider exploration of the EPI-PS hybrid strategy in aPDI.
CO2 Efflux from Shrimp Ponds in Indonesia
Sidik, Frida; Lovelock, Catherine E.
2013-01-01
The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored ‘blue’ carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO2) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO2 efflux from the floors and walls of shrimp ponds. Rates of CO2 efflux within shrimp ponds were 4.37 kg CO2 m−2 y−1 from the walls and 1.60 kg CO2 m−2 y−1 from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO2 emissions to the atmosphere between 5.76 and 13.95 Tg y−1. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO2 emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO2 released to atmosphere. PMID:23755306
CO₂ efflux from shrimp ponds in Indonesia.
Sidik, Frida; Lovelock, Catherine E
2013-01-01
The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.
Birch, D G; Elrifi, I R; Turpin, D H
1986-11-01
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO(2) efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO(2) efflux in the light. The nitrate and ammmonium induced rates of CO(2) efflux were 31.0 and 33.8 micromoles CO(2) per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO(2) was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279).
Chloride and bicarbonate transport in rat resistance arteries.
Aalkjaer, C; Hughes, A
1991-01-01
1. The role of chloride and bicarbonate in the control of intracellular pH (pHi) was assessed in segments of rat mesenteric resistance arteries (internal diameter about 200 microns) by measurements of chloride efflux with 36Cl-, of pHi with the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF) and of membrane potential with intracellular electrodes. 2. The main questions addressed were whether the previously demonstrated sodium-coupled uptake of bicarbonate in these arteries was also coupled to chloride efflux, and whether sodium-independent Cl(-)-HCO3- exchange was present and played a role in regulation of pHi. 3. The 36Cl- efflux was unaffected by acidification induced by an NH4Cl pre-pulse in the presence as well as in the absence of bicarbonate. This was also true in sodium-free media and in vessels depolarized by high potassium. 4. The membrane potential was unaffected by the acidification associated with wash-out of NH4Cl, and the net acid extrusion during recovery of pHi from the acidification was not affected significantly by depolarization. 5. In the absence of bicarbonate, omission of extracellular chloride caused no change in pHi, but reduced 36Cl- efflux. By contrast, in the presence of bicarbonate, omission of chloride caused an increase in pHi but no change in 36Cl- efflux. Furthermore, the anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) inhibited the increase in pHi seen in the presence of bicarbonate and reduced the 36Cl- efflux in the presence of bicarbonate. 6. The presence of bicarbonate had no significant effect on the rate of recovery of pHi or the rate of increase of intracellular acid equivalents after an NH4Cl induced alkalinization; also the buffering power was not significantly different in the absence and presence of bicarbonate. Moreover these parameters were not significantly affected by DIDS, although DIDS as previously demonstrated reduced the rate of recovery of pHi from acidification. 7. The membrane potential was not significantly affected by the alkalinization associated with addition of NH4Cl and the rate of recovery of pHi from the alkalinization was not affected by depolarization. 8. The effects of NH4Cl and PCO2 on 36Cl- efflux were complex and could not easily be explained by the changes in pHi.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2061847
Efflux-Mediated Drug Resistance in Bacteria: an Update
Li, Xian-Zhi; Nikaido, Hiroshi
2010-01-01
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712
Fleming, B P; Giles, W
1981-01-01
1. 42K efflux has been measured from small strips of turtle sinus venosus which were electrically paced. Three different procedures for altering transmembrane calcium influx have been utilized to test whether changes in 42K efflux may be modulated by changes in intracellular calcium levels. 2. No significant changes in the 42K fractional escape rate (FER) were observed when external calcium was reduced to O mM or increased to 4 x normal (10 mM). In these experiments extracellular divalent cation concentration was held constant by adding or removing magnesium ions. 3. Application of 10 mM-Ba2+ also failed to alter 42K FER consistently. In red blood cells and snail neurones addition of barium ions has been shown to reduce significantly the calcium-mediated potassium current. 4. A tenfold increase in pacing rate (0.5-5 Hz) resulted in an augmented 42K FER, but repetition of this rate change in O mM-Ca2+ indicated that this increase in 42K FER was not strongly dependent on the amount of calcium entry. 5. Attempts to load the pace-maker cells with calcium by using the ionophore A23187 (10 micrograms ml . -1 of 2.0 x 10(-5) M) consistently resulted in very large increases in 42K FER. However, this effect (i) was blocked by atropine and (ii) was markedly reduced by pretreating the tissues with hemicholinium, indicating that A23187-induced release of acetylcholine from the endogenous nerve terminals was responsible for the observed increase in 42K FER. 6. In summary, three different experimental tests indicate that the majority of the 42K efflux is not tightly linked to transmembrane calcium movement in sinus venosus pace-maker tissue. PMID:6796675
Griffiths, E J; Wei, S K; Haigney, M C; Ocampo, C J; Stern, M D; Silverman, H S
1997-04-01
The aims of this study were to determine: (i) whether clonazepam and CGP37157, which inhibit the Na+/Ca2+ exchanger of isolated mitochondria, could inhibit mitochondrial Ca2+ efflux in intact cells; and (ii) whether any sustained increase in mitochondrial [Ca2+] ([Ca2+]m) could alter mitochondrial NADH levels. [Ca2+]m was measured in Indo-1/AM loaded rat ventricular myocytes where the cytosolic fluorescence signal was quenched by superfusion with Mn2+. NADH levels were determined from cell autofluorescence. Upon exposure of myocytes to 50 nM norepinephrine (NE) and a stimulation rate of 3 Hz, [Ca2+]m increased from 59 +/- 3 nM to a peak of 517 +/- 115 nM (n = 8) which recovered rapidly upon return to low stimulation rate (0.2 Hz) and washout of NE. In the presence of clonazepam, the peak increase in [Ca2+]m was 937 +/- 192 nM (n = 5) which remained elevated at 652 +/- 131 nM upon removal of the stimulus. CGP37157 in some cells did give the same inhibition of mitochondrial Ca2+ efflux as clonazepam, but the effect was inconsistent since not all cells were capable of following the stimulation rate in presence of this compound. NADH levels increased upon exposure to rapid stimulation in the presence of NE alone and recovered upon return to low stimulation rates, whereas in clonazepam treated cells the recovery of NADH was prevented. We conclude that clonazepam is an effective inhibitor of mitochondrial [Ca2+] efflux in intact cells and also maintains the increase in NADH levels which occurs upon rapid stimulation of cells.
Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.
2016-01-01
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144
Pereda-Miranda, Rogelio; Kaatz, Glenn W; Gibbons, Simon
2006-03-01
Twenty-two convolvulaceous oligosaccharides selected from the tricolorin (1-7), scammonin (8, 9), and orizabin (10-22) series were evaluated for activity against a panel of Staphylococcus aureus strains possessing or lacking specific efflux pumps. The minimum inhibitory concentrations (MIC values) for most of the amphipatic compounds ranged from 4 to 32 microg/mL against XU-212 (possessing the TetK multidrug efflux pump) and SA-1199B (overexpressing the NorA multidrug efflux pump), compared with 64 and 0.25 microg/mL, respectively, for tetracycline. This activity was shown to be bactericidal. Two microbiologically inactive members of the orizabin series (10, 20) increased norfloxacin susceptibility of strain SA-1199B. At low concentrations, compound 10 was a more potent inhibitor of multidrug pump-mediated EtBr efflux than reserpine. The wide range of antimicrobial activity displayed by these compounds is an example of synergy between related components occurring in the same medicinal crude drug extract, i.e., microbiologically inactive components disabling a resistance mechanism, potentiating the antibiotic properties of the active substances. These results provide an insight into the antimicrobial potential of these complex macrocyclic lactones and open the possibility of using these compounds as starting points for the development of potent inhibitors of S. aureus multidrug efflux pumps.
Barrese, Vincenzo; Taglialatela, Maurizio; Greenwood, Iain A; Davidson, Colin
2015-01-01
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage. PMID:25966943
The spontaneous and evoked release of spermine from rat brain in vitro.
Harman, R. J.; Shaw, G. G.
1981-01-01
1 The efflux of previously accumulated [3H]-spermine from brain slices was measured using a continuous perfusion system. The spontaneous efflux was biphasic, consisting of an initial rapid efflux followed by a much slower release. 2 The slices were depolarized by the addition to the medium of high potassium concentrations, ouabain or veratrine. 3 At concentrations greater than 30 mM, potassium evoked a striking increase in the release of [3H]-spermine. Following uptake in the presence of 5.7 x 10(-9)M [3H]-spermine, K+-evoked release was dependent on the presence of calcium ions. Release of spermine after uptake at 5.6 x 10(-8)M or 5.0 x 10(-7)M was not calcium-dependent. 4 The calcium-dependent, K+-stimulated release of spermine was inhibited in the presence of diphenylhydantoin (5 x 10(-5)M) or ruthenium red (10(-5)M). 5 Following uptake of 5.7 x 10(-9)M [3H]-spermine in a sodium-free medium, the calcium-dependent, K+-stimulated release was significantly inhibited. 5 Ouabain (10(-4)M) caused a large but calcium-independent increase in the efflux of [3H]-spermine. 7 Veratrine-induced release was less substantial but was increased in a calcium-free medium. Release evoked by veratrine was abolished in the absence of sodium. 8 These results are discussed with respect to a possible 'neurotransmitter' or 'neuromodulator' role for spermine. PMID:6169383
Biogeochemistry of a treeline watershed, northwestern Alaska
Stottlemyer, R.
2001-01-01
Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO-3) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.
Biogeochemistry of a treeline watershed, northwestern Alaska.
Stottlemyer, R
2001-01-01
Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO3-) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.
Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags
Wegner, Carl-Eric; Liesack, Werner
2017-01-01
Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111), and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat. PMID:28642744
Khera, Amit V; Demler, Olga V; Adelman, Steven J; Collins, Heidi L; Glynn, Robert J; Ridker, Paul M; Rader, Daniel J; Mora, Samia
2017-06-20
Recent failures of drugs that raised high-density lipoprotein (HDL) cholesterol levels to reduce cardiovascular events in clinical trials have led to increased interest in alternative indices of HDL quality, such as cholesterol efflux capacity, and HDL quantity, such as HDL particle number. However, no studies have directly compared these metrics in a contemporary population that includes potent statin therapy and low low-density lipoprotein cholesterol. HDL cholesterol levels, apolipoprotein A-I, cholesterol efflux capacity, and HDL particle number were assessed at baseline and 12 months in a nested case-control study of the JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin), a randomized primary prevention trial that compared rosuvastatin treatment to placebo in individuals with normal low-density lipoprotein cholesterol but increased C-reactive protein levels. In total, 314 cases of incident cardiovascular disease (CVD) (myocardial infarction, unstable angina, arterial revascularization, stroke, or cardiovascular death) were compared to age- and gender-matched controls. Conditional logistic regression models adjusting for risk factors evaluated associations between HDL-related biomarkers and incident CVD. Cholesterol efflux capacity was moderately correlated with HDL cholesterol, apolipoprotein A-I, and HDL particle number (Spearman r = 0.39, 0.48, and 0.39 respectively; P <0.001). Baseline HDL particle number was inversely associated with incident CVD (adjusted odds ratio per SD increment [OR/SD], 0.69; 95% confidence interval [CI], 0.56-0.86; P <0.001), whereas no significant association was found for baseline cholesterol efflux capacity (OR/SD, 0.89; 95% CI, 0.72-1.10; P =0.28), HDL cholesterol (OR/SD, 0.82; 95% CI, 0.66-1.02; P =0.08), or apolipoprotein A-I (OR/SD, 0.83; 95% CI, 0.67-1.03; P =0.08). Twelve months of rosuvastatin (20 mg/day) did not change cholesterol efflux capacity (average percentage change -1.5%, 95% CI, -13.3 to +10.2; P =0.80), but increased HDL cholesterol (+7.7%), apolipoprotein A-I (+4.3%), and HDL particle number (+5.2%). On-statin cholesterol efflux capacity was inversely associated with incident CVD (OR/SD, 0.62; 95% CI, 0.42-0.92; P =0.02), although HDL particle number again emerged as the strongest predictor (OR/SD, 0.51; 95% CI, 0.33-0.77; P <0.001). In JUPITER, cholesterol efflux capacity was associated with incident CVD in individuals on potent statin therapy but not at baseline. For both baseline and on-statin analyses, HDL particle number was the strongest of 4 HDL-related biomarkers as an inverse predictor of incident events and biomarker of residual risk. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00239681. © 2017 American Heart Association, Inc.
Hutson, Peter H; Heins, Mariette S; Folgering, Joost H A
2015-08-01
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by poor attention, impulse control and hyperactivity. A significant proportion of ADHD patients are also co-morbid for other psychiatric problems including mood disorders and these patients may be managed with a combination of psychostimulants and anti-depressants. While it is generally accepted that enhanced catecholamine signalling via the action of psychostimulants is likely responsible for the cognitive improvement in ADHD, other neurotransmitters including acetylcholine and histamine may be involved. In the present study, we have examined the effect of lisdexamfetamine dimesylate (LDX), an amphetamine pro-drug that is approved for the treatment of ADHD on acetylcholine and histamine efflux in pre-frontal cortex and hippocampus alone and in combination with the anti-depressant s-citalopram. LDX increased cortical acetylcholine efflux, an effect that was not significantly altered by co-administration of s-citalopram. Cortical and hippocampal histamine were markedly increased by LDX, an effect that was attenuated in the hippocampus but not in pre-frontal cortex when co-administered with s-citalopram. Taken together, these results suggest that efflux of acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially influenced by the co-administration of s-citalopram. Attention deficit hyperactivity disorder (ADHD) is characterized by poor attention, impulse control and hyperactivity. Some ADHD patients are also co-morbid for mood disorders and may be managed with psychostimulants (e.g. lisdexamfetamine, LDX) and anti-depressants (e.g. s-citalopram). LDX increased the efflux of acetylcholine and histamine, neurotransmitters involved in cognitive function, which were differentially influenced when co-administered with s-citalopram. Acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially affected by the co-administration of s-citalopram. © 2015 International Society for Neurochemistry.
NASA Astrophysics Data System (ADS)
Eller, A. S.; Wright, I.; Cernusak, L. A.
2013-12-01
Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the CO2 efflux rates measured on branch exterior surfaces may be driven more strongly by bark respiration than wood respiration and a better understanding of bark respiration will increase our ability to predict CO2 efflux from branches
Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras
2015-08-01
Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.
Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress
Ma, Zhihui; Huang, Binlong; Xu, Shanshan; Chen, Yu; Cao, Guangqiu; Ding, Guochang; Lin, Sizu
2016-01-01
Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+. PMID:27270726
Yuan, Zhong-Wen; Li, Ya-Zhuo; Liu, Zhong-Qiu; Feng, Sen-Ling; Zhou, Hua; Liu, Chang-Xiao; Liu, Liang; Xie, Ying
2018-02-01
Biological responses of a variety of naturally occurring compounds in vivo were restrained by their poor oral bioavailability. Silybin, as one of the active ingredients of silymarin, has presented promising bioactivity for the treatment of chronic liver diseases and cancer. However, its exposure in body was limited. In this study, silybin was demonstrated to be substrates of both BCRP and MRP2 by utilizing monolayer Caco-2 cell model and confirmed in MDCK cells overexpressing specific efflux transporter. Of all compounds screened, tangeretin, a potent inhibitor of efflux transporters of BCRP, MRP2 and P-gp, was able to enhance exposure of silybin by inhibiting functions of the barriers mediating transcellular transport. Moreover, study carried out in sandwich-cultured rat hepatocyte (SCH) model showed that the biliary excretion index (BEI) and in vitro biliary clearance of silybin decreased as levels of tangeretin increased, indicating efflux transporters mediating biliary excretion of silybin might be involved. Pharmacokinetic behaviors of silybin in rats were altered by co-administration of tangeretin, in terms of increased AUC and Cmax of silybin by comparing with that of silybin given alone. In addition, results coming from CCl 4 -induced acute liver injury rat model revealed that protection effect of silybin against liver damage in the presence of tangeretin was significantly enhanced. All these data were evident that efflux transporters play a critical role in transcellular transport of silybin and account for its low bioavailability. Enhanced bioavailability of silybin with co-administration of tangeretin by significantly inhibiting the efflux transporters further boost its bioactivity which is of particular importance in clinical use. Copyright © 2017. Published by Elsevier Ltd.
Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L
2005-12-01
P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.
Macrolide resistance in Legionella pneumophila: the role of LpeAB efflux pump.
Massip, Clémence; Descours, Ghislaine; Ginevra, Christophe; Doublet, Patricia; Jarraud, Sophie; Gilbert, Christophe
2017-05-01
A previous study on 12 in vitro -selected azithromycin-resistant Legionella pneumophila lineages showed that ribosomal mutations were major macrolide resistance determinants. In addition to these mechanisms that have been well described in many species, mutations upstream of lpeAB operon, homologous to acrAB in Escherichia coli , were identified in two lineages. In this study, we investigated the role of LpeAB and of these mutations in macrolide resistance of L. pneumophila . The role of LpeAB was studied by testing the antibiotic susceptibility of WT, deleted and complemented L. pneumophila Paris strains. Translational fusion experiments using GFP as a reporter were conducted to investigate the consequences of the mutations observed in the upstream sequence of lpeAB operon. We demonstrated the involvement of LpeAB in an efflux pump responsible for a macrolide-specific reduced susceptibility of L. pneumophila Paris strain. Mutations in the upstream sequence of lpeAB operon were associated with an increased protein expression. Increased expression was also observed under sub-inhibitory macrolide concentrations in strains with both mutated and WT promoting regions. LpeAB are components of an efflux pump, which is a macrolide resistance determinant in L. pneumophila Paris strain. Mutations observed in the upstream sequence of lpeAB operon in resistant lineages led to an overexpression of this efflux pump. Sub-inhibitory concentrations of macrolides themselves participated in upregulating this efflux and could constitute a first step in the acquisition of a high macrolide resistance level. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no; Institute of Clinical Medicine, University of Oslo, Oslo; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo
Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhancedmore » cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.« less
Mombeshora, Molly; Mukanganyama, Stanley
2017-07-26
Chlorhexidine digluconate (CHG) is used as a disinfectant. The emergence of pathogens resistant to the biocide raises health concern. Information on specific efflux mechanisms utilised by bacteria to confer reduced susceptibility to the biocide, may be used to develop ways of preventing the efflux of the biocide from nosocomial pathogens resulting in higher disinfection activity. The aim of the study was to evaluate the role of ATP-binding cassette transporters on the transport of CHG in bacteria. Clinical strains of Pseudomonas aeruginosa, Staphylococcus aureus and their respective laboratory strains ATCC 27853 and ATCC 9144 were used for susceptibility tests. The minimum inhibitory concentration (MIC) of CHG with or without an efflux pump inhibitor [reserpine or carbonyl cyanide m-chlorophenylhydrazone (CCCP)] was determined using the broth microdilution method. A spectrophotometric method to quantify the amount of chlorhexidine in a sample was developed, validated and used to quantify CHG within P. aeruginosa and S. aureus cells. In the presence of reserpine, the MIC of CHG against the clinical strains of P. aeruginosa and S. aureus decreased from 6.3 to 3.2 µg/ml but showed no change against both ATCC isolates. The MIC of CHG in the presence of CCCP for both strains of P. aeruginosa remained unchanged but showed a reduction for both isolates of S. aureus. The suitability of the spectrophotometric method developed for quantifying the amount of CHG accumulated in microbial cells was validated and used successfully to quantify CHG accumulated within bacterial cells. The spectrophotometric determination of CHG within microbial cells may be used to quantify CHG in microbial cells. Only the clinical strain of P. aeruginosa showed significant efflux of CHG suggesting the participation of efflux transporters in the pumping out of CHG from this isolate. The use of efflux pump inhibitors together with the biocide may be explored to preventing the efflux of the biocide from P. aeruginosa resulting in order to increase disinfection activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decleva, Eva; Menegazzi, Renzo, E-mail: menegazz@units.it; Fasolo, Alba
2013-07-15
Proton efflux via voltage-gated proton channels (Hv1) is considered to mediate the charge compensation necessary to preserve NADPH oxidase activity during the respiratory burst. Using the Hv1 inhibitor Zn{sup 2+}, we found that the PMA-induced respiratory burst of human neutrophils is inhibited when assessed as extracellular production of O{sub 2}{sup −} and H{sub 2}O{sub 2}, in accordance with literature studies, but, surprisingly, unaffected when measured as oxygen consumption or total (extracellular plus intracellular) H{sub 2}O{sub 2} production. Furthermore, we show that inhibiting Hv1 with Zn{sup 2+} results in an increased production of intracellular ROS. Similar results, i.e. decreased extracellular andmore » increased intracellular ROS production, were obtained using a human granulocyte-like cell line with severely impaired Hv1 expression. Acidic extracellular pH, which dampens proton efflux, also augmented intracellular production of H{sub 2}O{sub 2}. Zinc caused an increase in the rate but not in the extent of depolarization and cytosolic acidification indicating that mechanisms other than proton efflux take part in charge compensation. Our results suggest a hitherto unpredicted mechanism of charge compensation whereby, in the absence of proton efflux, part of O{sub 2}{sup −} generated within gp91{sup phox} in the plasma membrane is shunted intracellularly down electrochemical gradient to dampen excessive depolarization. This would preserve NADPH oxidase activity under conditions such as the inflammatory exudate in which the acidic pH hinders charge compensation by proton efflux. Highlights: • Neutrophils’ respiratory burst is not inhibited by the H{sup +} channel inhibitor Zn{sup 2+}. • Intracellular production of O{sub 2}{sup −} and H{sub 2}O{sub 2} is increased in the presence of Zn{sup 2+}. • Intracellular H{sub 2}O{sub 2} production is increased in H{sup +} channels knock-down cells. • Zn{sup 2+} increases the rate but not the extent of depolarization and pH{sub i} decrease. • Intracellular shunting of O{sub 2}{sup −} contributes to charge compensation in neutrophils.« less
NASA Astrophysics Data System (ADS)
Padilla, Germán D.; Evans, Bethany J.; Provis, Aaron R.; Asensio, María; Alonso, Mar; Calvo, David; Hernández, Pedro; Pérez, Nemesio M.
2017-04-01
Tenerife together and Gran Canaria are the central islands of the Canarian archipelago, which have developed a central volcanic complex characterized by the eruption of differentiated magmas. Tenerife is the largest of the Canary Islands (2100 km2) and at present, the North-West Rift-Zone (NWRZ) is one of the most active volcanic structures of the three volcanic rift-zone of the island, which has hosted two historical eruptions (Arenas Negras in 1706 and Chinyero in 1909). In order to monitor the volcanic activity of NWRZ, since the year 2000, 49 soil CO2 efflux surveys have been performed at NWRZ (more than 300 observation sites each one) to evaluate the temporal an spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. We report herein the results of the last diffuse CO2 efflux surveys at the NWRZ undertaken in July and October 2016 to constrain the total CO2 output from the studied area. During July and October 2016 surveys, soil CO2 efflux values ranged from non-detectable up to 32.4 and 53.7 g m-2 d-1, respectively. The total diffuse CO2 output released to atmosphere were estimated at 255 ± 9 and 338 ± 18 t d-1, respectively, values higher than the background CO2 emission estimated on 144 t d-1. Since 2000, soil CO2 efflux values have ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005 whereas total CO2 output ranged between 52 and 867 t d-1. Long-term variations in the total CO2 output have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area during April 22-29, 2004 and also during October 2-3, 2016. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values measured along a trending WNW-ESE zone. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission as well as for the spatial distribution of soil CO2 efflux. The increasing trend of total CO2 output suggests increasing pressurization of the volcanic-hydrothermal system, a mechanism capable of triggering dyke intrusion along the NWRZ of Tenerife in the near future or futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.
Koomoa, D L; Musch, M W; MacLean, A V; Goldstein, L
2001-09-01
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.
Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria.
Buffet-Bataillon, Sylvie; Tattevin, Pierre; Maillard, Jean-Yves; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne
2016-01-01
Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.
NASA Astrophysics Data System (ADS)
Salazar, J. M. L.; Pérez, N. M.; Hernández, P. A.; Soriano, T.; Barahona, F.; Olmos, R.; Cartagena, R.; López, D. L.; Lima, R. N.; Melián, G.; Galindo, I.; Padrón, E.; Sumino, H.; Notsu, K.
2002-12-01
Anomalous changes in the diffuse emission of carbon dioxide have been observed before some of the aftershocks of the 13 February 2001 El Salvador earthquake (magnitude 6.6). A significant increase in soil CO 2 efflux was detected 8 days before a 5.1 magnitude earthquake on 8 May 2001 25 km away from the observation site. In addition, pre- and co-seismic CO 2 efflux variations have also been observed related to the onset of a seismic swarm beneath San Vicente volcano on May 2001. Strain changes and/or fluid pressure fluctuations prior to earthquakes in the crust are hypothesized to be responsible for the observed variations in gas efflux at the surface environment of San Vicente volcano.
Test of the mechanism of UV-induced K/sup +/ efflux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, T.M.; Huerta, A.J.
1987-04-01
UV radiation and certain plant pathogens stimulate a net efflux of K/sup +/ from cultured plant cells. Many aspects of the efflux are uncertain, including the counterion(s) involved. In the case of UV irradiation of rose cells, Murphy and Wilson suggest a coordinate loss of K/sup +/ and HCO/sub 3//sup -/; in contrast, Atkinson et al. suggest that treatment of tobacco cells with Erwinia pectate lyase introduces a counterflux of K/sup +/ and H/sup +/. In respiring cells, the cytoplasm and medium are buffered by respiratory CO/sub 2/, and it is difficult to distinguish between the two mechanisms. Still, themore » two models predict different influences of external pH on the rate of K/sup +/ flux. The authors have found that increasing pH from 4 to 8 by use of MES-TRIS buffer, pH state, or controlled external CO/sub 2/ concentration does not significantly decrease the rate of UV-induced K/sup +/ efflux. This evidence does not support the application of the K/sup +//H/sup +/ counterflux model to the case of the UV-irradiated rose cells.« less
Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.
Jansen, Mickel L A; De Winde, Johannes H; Pronk, Jack T
2002-09-01
When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing.
Soil Carbon Budget During Establishment of Short Rotation Woody Crops
NASA Astrophysics Data System (ADS)
Coleman, M. D.
2003-12-01
Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.
Hassanzadeh, Sepideh; Mashhadi, Rahil; Yousefi, Masoud; Askari, Emran; Saniei, Maryam; Pourmand, Mohammad Reza
2017-10-01
Efflux pumps are well known as a key role to fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus (MRSA). In this study, among 60 clinical MRSA isolates, 42 isolates (70%) were resistant to ciprofloxacin. MRSA were isolated to detect efflux genes including norA, norB, norC, mepA, sepA, mdeA, qacA/B and smr. Isolates subjected to PCR detection and DNA sequence analysis for these genes. PCR detection showed that 42 isolates (70%) contained at least one efflux pump gene. Among ciprofloxacin-resistant isolates, mdeA and qacA/B genes were found with the highest (61.7%) and lowest (3.3%) frequency, respectively. We also observed that the highest minimum inhibitory concentrations of ciprofloxacin in the presence of mdeA+mepA+norA-C+sepA+smr combination. This type of combination may have the greatest impact on resistance to ciprofloxacin. Finally, compared to previous studies, our study demonstrates that prevalence of ciprofloxacin resistance has been increasing among MRSA clinical isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.
2015-01-01
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914
Hxt-Carrier-Mediated Glucose Efflux upon Exposure of Saccharomyces cerevisiae to Excess Maltose
Jansen, Mickel L. A.; De Winde, Johannes H.; Pronk, Jack T.
2002-01-01
When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing. PMID:12200274
Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F
2015-01-28
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Machado, Diana; Coelho, Tatiane S; Perdigão, João; Pereira, Catarina; Couto, Isabel; Portugal, Isabel; Maschmann, Raquel De Abreu; Ramos, Daniela F; von Groll, Andrea; Rossetti, Maria L R; Silva, Pedro A; Viveiros, Miguel
2017-01-01
Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis . A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55 , and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality that is often disregarded by the tuberculosis specialists in favor of the almost undisputed importance of antibiotic target-gene mutations for the resistance in M. tuberculosis .
The putative drug efflux systems of the Bacillus cereus group
Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit
2017-01-01
The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps. PMID:28472044
Timescale dependence of environmental controls on methane efflux from Poyang Hu, China
NASA Astrophysics Data System (ADS)
Liu, Lixiang; Xu, Ming; Li, Renqiang; Shao, Rui
2017-04-01
Lakes are an important natural source of CH4 to the atmosphere. However, the multi-seasonal CH4 efflux from lakes has been rarely studied. In this study, the CH4 efflux from Poyang Hu, the largest freshwater lake in China, was measured monthly over a 4-year period by using the floating-chamber technique. The mean annual CH4 efflux throughout the 4 years was 0.54 mmol m-2 day-1, ranging from 0.47 to 0.60 mmol m-2 day-1. The CH4 efflux had a high seasonal variation with an average summer (June to August) efflux of 1.34 mmol m-2 day-1 and winter (December to February) efflux of merely 0.18 mmol m-2 day-1. The efflux showed no apparent diel pattern, although most of the peak effluxes appeared in the late morning, from 10:00 to 12:00 CST (GMT + 8). Multivariate stepwise regression on a seasonal scale showed that environmental factors, such as sediment temperature, sediment total nitrogen content, dissolved oxygen, and total phosphorus content in the water, mainly regulated the CH4 efflux. However, the CH4 efflux only showed a strong positive linear correlation with wind speed within 1 day on a bihourly scale in the multivariate regression analyses but almost no correlation with wind speed on diurnal and seasonal scales.
Asano, Y
1978-01-01
Thyroid hormone (T3) increased Na+ dependent respiration accompanied by an increase in NaK-ATPase activity. Administration of T3 increased intracellular K+ concentration and Na/K ratio in thyroidectomized rats, and the Na+ efflux rate constant incubated in oxygenized Na+, K+-Ringers in euthyroid rats. However, the magnitude of the changes in intracellular K+ concentration was modest or invisible in comparison to the changes in QO2(t) and NaK-ATPase activity. The Na+ and K+ efflux rate constants in K+-free +ouabain Ringers were increased by T3 in both thyroidectomized and euthyroid rats. Thus, thyroid hormone stimulates not only Na pump but also the permeability of cell membrane to Na+ and K+. The both effects might contribute to the thyroid thermogenesis.
Wang, Yanan; Snel, Marieke; Jonker, Jacqueline T.; Hammer, Sebastiaan; Lamb, Hildo J.; de Roos, Albert; Meinders, A. Edo; Pijl, Hanno; Romijn, Johannes A.; Smit, Johannes W.A.; Jazet, Ingrid M.; Rensen, Patrick C.N.
2011-01-01
OBJECTIVE Using a mouse model for human-like lipoprotein metabolism, we observed previously that reduction of the hepatic triglyceride (TG) content resulted in a decrease in plasma cholesteryl ester transfer protein (CETP) and an increase in HDL levels. The aim of the current study was to investigate the effects of prolonged caloric restriction in obese patients with type 2 diabetes mellitus, resulting in a major reduction in hepatic TG content, on plasma CETP and HDL levels. RESEARCH DESIGN AND METHODS We studied 27 obese (BMI: 37.2 ± 0.9 kg/m2) insulin-dependent patients with type 2 diabetes mellitus (14 men and 13 women, aged 55 ± 2 years) who received a 16-week very low calorie diet (VLCD). At baseline and after a 16-week VLCD, plasma lipids, lipoproteins, and CETP were measured. Furthermore, functionality of HDL with respect to inducing cholesterol efflux from human monocyte cells (THP-1) was determined. RESULTS A 16-week VLCD markedly decreased plasma CETP concentration (−18%; P < 0.01) and increased plasma apolipoprotein (apo)AI levels (+16%; P < 0.05), without significantly affecting plasma HDL-cholesterol and HDL-phospholipids. Although a VLCD results in HDL that is less lipidated, the functionality of HDL with respect to inducing cholesterol efflux in vitro was unchanged. CONCLUSIONS The marked decrease in hepatic TG content induced by a 16-week VLCD is accompanied by a decrease in plasma CETP concentration and an increase in apoAI levels, without improving the cholesterol efflux properties of HDL in vitro. PMID:21994427
Feenstra, M G; Botterblom, M H; Mastenbroek, S
2000-01-01
We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the inactive, light period; (ii) the activation induced by environmental stimuli would be dependent on these conditions. When determined one day after cannula placement, noradrenaline and dopamine levels were higher during the dark. Maximal relative increases induced by novelty and handling were 150% and 175-200%, respectively, and were very similar in the light and the dark, but the net increases were higher in the dark. Separate groups were tested one week after cannula placement to ensure recovery of possibly disturbed circadian rhythms. While basal levels in the dark were now approximately twice those in the light, the maximal relative and net increases after both novelty and handling were very similar. Basal levels of dopamine in the nucleus accumbens (one day after cannula placement) were not different in the light or dark, but were increased by novelty and handling to about 130% only in the light period, not in the dark. Thus, in the prefrontal cortex, dopamine strongly resembles noradrenaline, in that basal efflux was state dependent, whereas activation by stimuli was not. In the nucleus accumbens, basal dopamine efflux was not state dependent, but activation by stimuli was. These results suggest that there are differential effects of circadian phase on basal activity and responsiveness of the mesolimbic vs the mesocortical dopamine system.
Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...
2015-08-31
Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less
Fiamegos, Yiannis C.; Kastritis, Panagiotis L.; Exarchou, Vassiliki; Han, Haley; Bonvin, Alexandre M. J. J.; Vervoort, Jacques; Lewis, Kim; Hamblin, Michael R.; Tegos, George P.
2011-01-01
Background Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria. PMID:21483731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Jianmei; Department of Endocrinology, The First Hospital of Zibo, 4# E Mei Shan Dong Road, Zibo 255200; Li, Bo, E-mail: libosubmit@163.com
Objectives: Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. Methods: After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [{sup 3}H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL{sub 2}more » or HDL{sub 3}. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. Results: The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. Conclusion: These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway. - Highlights: • Sal B promotes the expression of ABCA1. • Sal B promotes cholesterol efflux in macrophages. • Sal B promotes the expression of ABCA1 and cholesterol efflux through PPAR-γ/LXRα signaling pathway.« less
Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.
Ebel, H; Hollstein, M; Günther, T
2004-12-15
The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.
NASA Technical Reports Server (NTRS)
Evans, M. L.; Mulkey, T. J.
1984-01-01
In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.
Effects of Chitosan on Candida albicans: Conditions for Its Antifungal Activity
Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha
2013-01-01
The effects of low molecular weight (96.5 KDa) chitosan on the pathogenic yeast Candida albicans were studied. Low concentrations of chitosan, around 2.5 to 10 μg·mL−1 produced (a) an efflux of K+ and stimulation of extracellular acidification, (b) an inhibition of Rb+ uptake, (c) an increased transmembrane potential difference of the cells, and (d) an increased uptake of Ca2+. It is proposed that these effects are due to a decrease of the negative surface charge of the cells resulting from a strong binding of the polymer to the cells. At higher concentrations, besides the efflux of K+, it produced (a) a large efflux of phosphates and material absorbing at 260 nm, (b) a decreased uptake of Ca2+, (c) an inhibition of fermentation and respiration, and (d) the inhibition of growth. The effects depend on the medium used and the amount of cells, but in YPD high concentrations close to 1 mg·mL−1 are required to produce the disruption of the cell membrane, the efflux of protein, and the growth inhibition. Besides the findings at low chitosan concentrations, this work provides an insight of the conditions required for chitosan to act as a fungistatic or antifungal and proposes a method for the permeabilization of yeast cells. PMID:23844364
Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo
2017-01-01
Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508
Ishimaru, Yasuhiro; Kakei, Yusuke; Shimo, Hugo; Bashir, Khurram; Sato, Yutaka; Sato, Yuki; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K.
2011-01-01
Iron deficiency is one of the major agricultural problems, as 30% of the arable land of the world is too alkaline for optimal crop production, rendering plants short of available iron despite its abundance. To take up apoplasmic precipitated iron, plants secrete phenolics such as protocatechuic acid (PCA) and caffeic acid. The molecular pathways and genes of iron uptake strategies are already characterized, whereas the molecular mechanisms of phenolics synthesis and secretion have not been clarified, and no phenolics efflux transporters have been identified in plants yet. Here we describe the identification of a phenolics efflux transporter in rice. We identified a cadmium-accumulating rice mutant in which the amount of PCA and caffeic acid in the xylem sap was dramatically reduced and hence named it phenolics efflux zero 1 (pez1). PEZ1 localized to the plasma membrane and transported PCA when expressed in Xenopus laevis oocytes. PEZ1 localized mainly in the stele of roots. In the roots of pez1, precipitated apoplasmic iron increased. The growth of PEZ1 overexpression lines was severely restricted, and these lines accumulated more iron as a result of the high solubilization of precipitated apoplasmic iron in the stele. We show that PEZ1 is responsible for an increase of PCA concentration in the xylem sap and is essential for the utilization of apoplasmic precipitated iron in the stele. PMID:21602276
Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke
2017-09-15
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.
Soil respiration dynamics in the middle taiga of Central Siberia region
NASA Astrophysics Data System (ADS)
Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria
2017-04-01
A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with highest soil efflux rates. The influence of soil temperature on the soil CO2 efflux showed that an increase of soil efflux was observed from 0 °C to 16 °C. The temperature of more than 16 °C led to the inhibition of soil respiration process. The investigation of relationship between soil CO2 efflux and soil moisture revealed that the moisture from 0 to 0.3 m-3m-3 resulted in an increase of soil efflux. The moisture of more than 0.3 m-3m-3 led to the inhibition of soil respiration. Our study suggested that the decline of the rainfall and increase of temperature due to climate change could significantly decrease the CO2 emission from the Siberian boreal forests.
Tang, Xiao-Er; Li, Heng; Chen, Ling-Yan; Xia, Xiao-Dan; Zhao, Zhen-Wang; Zheng, Xi-Long; Zhao, Guo-Jun; Tang, Chao-Ke
2018-04-24
Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism. Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux. Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-183 was highly conserved during evolution and directly inhibited ABCA1 protein and mRNA expression by targeting ABCA1 3'UTR. MiR-183 directly regulated endogenous ABCA1 expression levels. Furthermore, IL-8 enhanced the expression of miR-183 and decrease ABCA1 expression. Cholesterol transport assays confirmed that IL-8 dramatically inhibited apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux by increasing miR-183 expression. In contrast, treatment with anti-IL-8 antibody reversed these effects. IL-8 enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol efflux. Our studies suggest that the IL-8-miR-183-ABCA1 axis may play an intermediary role in the development of atherosclerosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
A mathematical model for lactate transport to red blood cells.
Wahl, Patrick; Yue, Zengyuan; Zinner, Christoph; Bloch, Wilhelm; Mester, Joachim
2011-03-01
A simple mathematical model for the transport of lactate from plasma to red blood cells (RBCs) during and after exercise is proposed based on our experimental studies for the lactate concentrations in RBCs and in plasma. In addition to the influx associated with the plasma-to-RBC lactate concentration gradient, it is argued that an efflux must exist. The efflux rate is assumed to be proportional to the lactate concentration in RBCs. This simple model is justified by the comparison between the model-predicted results and observations: For all 33 cases (11 subjects and 3 different warm-up conditions), the model-predicted time courses of lactate concentrations in RBC are generally in good agreement with observations, and the model-predicted ratios between lactate concentrations in RBCs and in plasma at the peak of lactate concentration in RBCs are very close to the observed values. Two constants, the influx rate coefficient C (1) and the efflux rate coefficient C (2), are involved in the present model. They are determined by the best fit to observations. Although the exact electro-chemical mechanism for the efflux remains to be figured out in the future research, the good agreement of the present model with observations suggests that the efflux must get stronger as the lactate concentration in RBCs increases. The physiological meanings of C (1) and C (2) as well as their potential applications are discussed.
Soil Carbon Response to Soil Warming and Nitrogen Deposition in a Temperate Deciduous Forest
NASA Astrophysics Data System (ADS)
Parton, W. J.; Savage, K. E.; Davidson, E. A.; Trumbore, S.; Frey, S. D.
2011-12-01
While estimates of global soil C stocks vary widely, it is clear that soils store several times more C than is present in the atmosphere as CO2, and a significant fraction of soil C stocks are potentially subject to faster rates of decomposition in a warmer world. We address, through field based studies and modeling efforts, whether manipulations of soil temperature and nitrogen supply affect the magnitude and relative age of soil C substrates that are respired from a temperate deciduous forest located at Harvard Forest, MA. A soil warming and nitrogen addition experiment was initiated at the Harvard Forest in 2006. The experiment consists of six replicates of four treatments, control, heated, nitrogen, and heat+nitrogen addition. Soil temperatures in the heated plots are continuously elevated 5 oC above ambient and for the fertilized plots an aqueous solution of NH4NO3 is applied at a rate of 5 g m-2 yr-1. Soil C efflux from these plots was measured (n=24, 6 per treatment) biweekly throughout the year, while 14CO2 was measured (3 samples per treatment) several times during the summer months from 2006-2010. Following treatment, observed rates of annual C efflux increased under heating and nitrogen additions with heating treatments showing the greatest increase in respired C. The difference between control and treatments was greatest during the initial year following treatment; however this difference decreased in the subsequent 3 years of measurement. The plots designated for heating had a higher 14C signature from CO2 efflux prior to the heating (presumably due to spatial heterogeneity). However, because of the high spatial heterogeneity in measured 14C among treatments, no significant difference among treatments was observed from 2006 through 2010. Long term datasets (1995 through 2010) of soil C stocks, radiocarbon content, and CO2 efflux were used to parameterize the ForCent model for Harvard forest. The model was then run with the same treatment parameters as the field experiment for comparison of soil C efflux and 14C. Model results show increased annual C efflux for heated, nitrogen and nitrogen+heat plots with the largest increase in respired C from heated treatments. However there was little difference in simulated 14C respired from any treatment plots. While heating speeds up decomposition of all soil C pools in the model, the absolute amount of increased decomposition from the older pools (with higher 14C) was not large enough to make a difference in 14C composition of respired C, even as the more labile pool with lower 14C was gradually depleted. These results demonstrate that experiments conducted over several years do not provide great insight into the dynamics of slowly cycling soil C.
Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.
Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A
2017-11-01
Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.
CO2 efflux from soils with seasonal water repellency
NASA Astrophysics Data System (ADS)
Urbanek, Emilia; Doerr, Stefan H.
2017-10-01
Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2 supply and CO2 exchange between the soil and the atmosphere.The effects of soil moisture and SWR on soil CO2 efflux are strongly co-correlated, but the results of this study support the notion that SWR indirectly affects soil CO2 efflux by affecting soil moisture distribution. The appearance of SWR is influenced by moisture and temperature, but once present, SWR influences subsequent infiltration patterns and resulting soil water distribution, which in turn affects respiration. This study demonstrates that SWR can have contrasting effects on CO2 efflux. It can reduce it in dry soil zones by preventing their re-wetting, but, at the field soil scale and when spatially variable, it can also enhance overall CO2 efflux. Spatial variability in SWR and associated soil moisture distribution therefore need to be considered when evaluating the effects of SWR on soil C dynamics under current and predicted future climatic conditions.
Dokras, Anuja; Playford, Martin; Kris-Etherton, Penny M; Kunselman, Allen R; Stetter, Christy M; Williams, Nancy I; Gnatuk, Carol L; Estes, Stephanie J; Sarwer, David B; Allison, Kelly C; Coutifaris, Christos; Mehta, Nehal; Legro, Richard S
2017-05-01
To study the effects of oral contraceptive pills (OCP), the first-line treatment for PCOS, on high-density lipoprotein cholesterol (HDL-C) function (reverse cholesterol efflux capacity) and lipoprotein particles measured using nuclear magnetic resonance spectroscopy in obese women. Secondary analysis of a randomized controlled trial (OWL-PCOS) of OCP or Lifestyle (intensive Lifestyle modification) or Combined (OCP + Lifestyle) treatment groups for 16 weeks. Eighty-seven overweight/obese women with PCOS at two academic centres. Change in HDL-C efflux capacity and lipoprotein particles. High-density lipoprotein cholesterol efflux capacity increased significantly at 16 weeks in the OCP group [0·11; 95% confidence interval (CI) 0·03, 0·18, P = 0·008] but not in the Lifestyle (P = 0·39) or Combined group (P = 0·18). After adjusting for HDL-C and TG levels, there was significant mean change in efflux in the Combined group (0·09; 95% CI 0·01, 0·15; P = 0·01). Change in HDL-C efflux correlated inversely with change in serum testosterone (r s = -0·21; P = 0·05). In contrast, OCP use induced an atherogenic low-density lipoprotein cholesterol (LDL-C) profile with increase in small (P = 0·006) and large LDL-particles (P = 0·002). Change in small LDL-particles correlated with change in serum testosterone (r s = -0·31, P = 0·009) and insulin sensitivity index (ISI; r s = -0·31, P = 0·02). Both Lifestyle and Combined groups did not show significant changes in the atherogenic LDL particles. Oral contraceptive pills use is associated with improved HDL-C function and a concomitant atherogenic LDL-C profile. Combination of a Lifestyle program with OCP use improved HDL-C function and mitigated adverse effects of OCP on lipoproteins. Our study provides evidence for use of OCP in overweight/obese women with PCOS when combined with Lifestyle changes. © 2017 John Wiley & Sons Ltd.
Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng
2017-01-01
Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.
Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z.
2014-01-01
The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages. PMID:25329888
Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes.
Mostafa, Ahmed M; Hamdy, Nadia M; Abdel-Rahman, Sherif Z; El-Mesallamy, Hala O
2016-07-01
Many reports suggested that some statins are almost ineffective in reducing triglycerides or enhancing HDL-C plasma levels, although statin treatment was still efficacious in reducing LDL-C. In diabetic dyslipidemic patients, it may therefore be necessary to use a combination therapy with other drugs to achieve either LDL-C- and triglyceride-lowering or HDL-C-enhancing goals. Such ineffectiveness of statins can be attributed to their effect on the liver X receptor (LXR) which regulates the expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. A decrease in the expression of these transporters eventually leads to decreased cholesterol efflux from peripheral tissues leading to low levels of HDL-C. Although manipulating the LXR pathway may complement the effects of statins, LXR synthetic ligands as T091317 have shown significant hypertriglyceridemic action which limits their use. We recently found that the antidiabetic drug vildagliptin stimulates LXR expression leading to increased ABCB1/ABCG1 expression which improves cholesterol efflux from adipocytes. Therefore, a combination of vildagliptin and statin may provide a solution without the hypertriglyceridemic action observed with LXR agonist. We hypothesize that a combination of vildagliptin and pravastatin will improve cholesterol efflux in adipocytes. Statin-treated 3T3-L1 adipocytes were treated with vildagliptin, and the expression of LXR-ABCA1/ABCG1 cascade and the cholesterol efflux were then determined. Our data indicate that a combination of vildagliptin and pravastatin significantly induces the expression of LXR-ABCA1/ABCG1 cascade and improves cholesterol efflux (P > 0.05) in adipocytes. Our data may explain, at least in part, the improvement in HDL-C levels observed in patients receiving both medications. © 2016 IUBMB Life, 68(7):535-543, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per
2012-05-01
To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.
Liao, Julie; Schurr, Michael J; Sauer, Karin
2013-08-01
A defining characteristic of biofilms is antibiotic tolerance that can be up to 1,000-fold greater than that of planktonic cells. In Pseudomonas aeruginosa, biofilm tolerance to antimicrobial agents requires the biofilm-specific MerR-type transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm tolerance has not been elucidated. Genome-wide transcriptional profiling indicated that brlR was required for maximal expression of genes associated with antibiotic resistance, in particular those encoding the multidrug efflux pumps MexAB-OprM and MexEF-OprN. Chromatin immunoprecipitation (ChIP) analysis revealed a direct regulation of these genes by BrlR, with DNA binding assays confirming BrlR binding to the promoter regions of the mexAB-oprM and mexEF-oprN operons. Quantitative reverse transcriptase PCR (qRT-PCR) analysis further indicated BrlR to be an activator of mexAB-oprM and mexEF-oprN gene expression. Moreover, immunoblot analysis confirmed increased MexA abundance in cells overexpressing brlR. Inactivation of both efflux pumps rendered biofilms significantly more susceptible to five different classes of antibiotics by affecting MIC but not the recalcitrance of biofilms to killing by bactericidal agents. Overexpression of either efflux pump in a ΔbrlR strain partly restored tolerance of ΔbrlR biofilms to antibiotics. Expression of brlR in mutant biofilms lacking both efflux pumps partly restored antimicrobial tolerance of biofilms to wild-type levels. Our results indicate that BrlR acts as an activator of multidrug efflux pumps to confer tolerance to P. aeruginosa biofilms and to resist the action of antimicrobial agents.
Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis
2016-04-01
A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.
Mao, Min; Lei, Han; Liu, Qing; Chen, Yaxi; Zhao, Lei; Li, Qing; Luo, Suxin; Zuo, Zhong; He, Quan; Huang, Wei; Zhang, Nan; Zhou, Chao; Ruan, Xiong Z
2014-01-01
The present study is to investigate whether inflammatory cytokines inhibit ABCA1/ABCG1-mediated cholesterol efflux by regulating miR-33a-5P in THP-1 macrophages. We used interleukin-6 and tumor necrosis factor-alpha in the presence or absence of native low density lipoprotein (LDL) to stimulate THP-1 macrophages. THP-1 macrophages were infected by either control lentivirus vectors or lentivirus encoding miR-33a-5P or antisense miR-33a-5P. The effects of inflammatory cytokines, miR-33a-5P and antisense miR-33a-5P on intracellular lipids accumulation and intracellular cholesterol contents were assessed by oil red O staining and quantitative intracellular cholesterol assay. ApoA-I-mediated cholesterol efflux was examined using the fluorescent sterol (BODIPY-cholesterol). The gene and protein expressions of the molecules involved in cholesterol trafficking were examined using quantitative real-time polymerase chain reaction and Western blotting. Inflammatory cytokines or miR-33a-5P increased intracellular lipid accumulation and decreased apoA-I-mediated cholesterol efflux via decreasing the expression of ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. However, antisense miR-33a-5P reversed the effects of inflammatory cytokines on intracellular lipid accumulation, cholesterol efflux, and the expression of miR-33a-5P, ABCA1 and ABCG1 in the absence or presence of LDL in THP-1 macrophages. This study indicated that inflammatory cytokines inhibited ABCA1/ABCG1-mediated cholesterol efflux by up-regulating miR-33a-5P in THP-1 macrophages.
Thomas, Andrew D.
2012-01-01
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706
Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.
Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R
2017-06-06
Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.
Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T
2015-02-10
Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug efflux systems which are very common in Proteobacteria: the proteobacterial antimicrobial compound efflux (PACE) family. This is the first new family of multidrug efflux pumps to be described in 15 years. Copyright © 2015 Hassan et al.
NASA Technical Reports Server (NTRS)
Mulkey, T. J.; Evans, M. L.
1982-01-01
In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.
NASA Astrophysics Data System (ADS)
Gupta, Divya; Singh, Ajeet; Khan, Asad U.
2017-07-01
The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.
Horowicz, P.; Taylor, J. W.; Waggoner, D. M.
1970-01-01
The influence of strophanthidin, ouabain, and the removal of external sodium on the sodium efflux from frog sartorius muscle was measured. In freshly dissected muscles strophanthidin and ouabain in maximally effective concentrations reduced the efflux of sodium by about 50%. Of the sodium efflux which is strophanthidin-insensitive about 75% is inhibited after complete replacement of external sodium by lithium. In the absence of strophanthidin replacement of external sodium by lithium, calcium, or magnesium produces an initial rise in the sodium efflux, followed by a fall in the efflux as the exposure of the muscles to sodium-free media is continued. When the muscles are exposed for prolonged periods in sodium-free media, the fraction of internal sodium lost per minute is higher when returned to normal Ringer fluid than it was initially. The activation of sodium efflux by external sodium after long periods in sodium-free solutions is partly strophanthidin-sensitive and partly strophanthidin-insensitive. The internal sodium concentration is an important factor in these effects. The effects of temperature on the sodium efflux were also measured. Above 7°C the Q 10 of both the strophanthidin-sensitive and strophanthidin-insensitive sodium efflux is about 2.0. Below 7°C the strophanthidin-insensitive sodium efflux has a Q 10 of about 7.4. PMID:5315424
Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid.
Li, Lujia; Fu, Qingxue; Xia, Mengxin; Xin, Lei; Shen, Hongyi; Li, Guowen; Ji, Guang; Meng, Qianchao; Xie, Yan
2018-01-31
Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10 -5 cm/s in the control group to (3.39 ± 0.417) × 10 -5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.
Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases
NASA Astrophysics Data System (ADS)
Snell, H. S. K.; Robinson, D.; Midwood, A. J.
2014-12-01
Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.
NASA Astrophysics Data System (ADS)
Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Notsu, K.; Lopez, D.
2001-12-01
Santa Ana volcanic complex (0.22 Ma), located 40 Km west of San Salvador, comprises Santa Ana, Izalco, and Cerro Verde stratovolcanoes, the Coatepeque collapse caldera, as well as several cinder cones and explosion craters. Most recent activity has occurred at Izalco (1966) and Santa Ana which shows a permanent acidic crater lake with an intense fumarolic activity. In addition, Santa Ana exhibits a SO2-rich rising plume though no local seismicity has been reported. Weak fumarolic activity is also present at two locations within the Santa Ana volcanic complex: the summit crater of Izalco and Cerro Pacho at Coatepeque caldera. Other important structural features of this volcanic complex are two fault/fissure systems running NNW-SSE that can be identified by the alignment of the stratovolcanoes and numerous cinder cones and explosion craters. In January 2001, a 7.6 magnitude earthquake occurred about 150 Km SE of Santa Ana volcano. A soil gas and CO2 efflux survey was performed to evaluate the impact of this seismic event upon the diffuse degassing rates in Santa Ana volcanic complex in March 2001. A total of 450 soil gas and diffuse CO2 efflux measurements were carried out covering an area of 209.5 Km2. CO2 efflux ranged from non-detectable values to 293 gm-2d-1, with a median of 8.9 gm-2d-1 and an upper quartile of 5.2 gm-2d-1. The CO2 efflux spatial distribution reveals the existence of areas with CO2 efflux higher than 60 gm-2d-1 associated to the fault/fissure systems of NNW-SSE orientation. One of these areas, Cerro Pacho, was selected for the continuous monitoring of diffuse CO2 efflux in late May 2001. Secular variations of diffuse CO2 efflux ranged from 27.4 to 329 gm-2d-1 with a median of 130 gm-2d-1 and a quartile range of 59.3 gm-2d-1. An increasing trend of 43 gm-2d-1 was observed between May and August 2001 overlapped to high-frequency minor fluctuations related to meteorological variables' changes. However, a larger observation time-span is needed to understand the influence of the rainy-season and meteorological parameters in the observed CO2 efflux time series.
Barnard, J P; Pedersen, P L
1994-08-15
In the presence of glucose and ample oxygen, insect form African trypanosomes release pyruvate more than 100-fold more slowly than do bloodstream forms. This rate decrease could not be accounted for simply by an increased mitochondrial pyruvate oxidation rate as inhibiting mitochondrial respiration increases pyruvate efflux to rates only 2-3% of that observed for bloodstream form trypanosomes. Alternatively, decreased pyruvate efflux from insect form trypanosomes could not be accounted for by decreased pyruvate transporter activity, which, surprisingly, was nearly as high in insect form trypanosomes as reported by us earlier for bloodstream forms (J.P. Barnard, B. Reynafarje, and P.L. Pedersen (1993) J. Biol. Chem. 268, 3654-3661). Rather, the low pyruvate efflux rate appears to be due primarily to reduced levels of the enzyme pyruvate kinase, which, in contrast to conclusions of an earlier study, is readily detected in insect form trypanosomes in the absence of added activators at an activity level about 4% of that found in bloodstream forms. Insect form pyruvate kinase seems to be located in the cytosol and exhibits kinetic profiles and constants nearly identical to those reported by us earlier for the bloodstream form enzyme (J.P. Barnard, and P.L. Pedersen (1988) Mol. Biochem. Parasitol. 31, 141-148). It is suggested that the reduced levels of pyruvate kinase, and hence the reduced pyruvate efflux rates, in insect form trypanosomes result from down regulation of the gene encoding the cytosolic enzyme.
Mirzaei, Seyed Abbas; Safari Kavishahi, Mansureh; Keshavarz, Zhila; Elahian, Fatemeh
2018-06-01
The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.
Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori
2014-01-01
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticku, M.K.; Delgado, A.
1989-01-01
/sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but notmore » by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.« less
Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Tyagi, Charu; du Toit, Lisa C.
2015-01-01
The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671
Glutathione Efflux and Cell Death
2012-01-01
Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858
Charlton, R R; Wenner, C E
1978-03-15
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing-Min, E-mail: wjm730222@163.com; Wang, Dong, E-mail: 8888dd@163.com; Tan, Yu-Yan, E-mail: tyytyz@sina.com
Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis andmore » the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.« less
CD147 Required for Corneal Endothelial Lactate Transport
Li, Shimin; Nguyen, Tracy T.; Bonanno, Joseph A.
2014-01-01
Purpose. CD147/basigin is a chaperone for lactate:H+ cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. Methods. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. Results. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. Conclusions. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. PMID:24970254
CD147 required for corneal endothelial lactate transport.
Li, Shimin; Nguyen, Tracy T; Bonanno, Joseph A
2014-06-26
CD147/basigin is a chaperone for lactate:H(+) cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Willers, Clarissa; Wentzel, Johannes Frederik; du Plessis, Lissinda Hester; Gouws, Chrisna; Hamman, Josias Hendrik
2017-01-01
Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.
Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.
2016-01-01
1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.
Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F.; Ferguson, Gayle C.; Godsoe, William; Gibson, Paddy
2015-01-01
ABSTRACT Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides—dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)—were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. PMID:25805724
Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K
1985-01-01
Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, R.M.M.; Martinez, J.R.
The uptake and efflux of the isotopic tracer /sup 45/Ca were compared in dispersed submandibular acini of both control rats and rats treated with seven daily doses of reserpine (0.5 mg/kg, i.p.). Tracer uptake occurred in a time-dependent manner in both types of acini and reached 8.4 +/- 0.2 and 8.0 +/- 0.2 pmol/mg protein, respectively, in acini from control and treated animals after 60 min of incubation. Uptake of tracer was 2.35 nmol/mg DNA in control cells and 4 nmol/mg DNA in cells from treated rats at 60 min. /sup 45/Ca uptake (per mg protein) was enhanced in controlmore » acini 48% by 20 mumol/L epinephrine; 38% by 50 mumol/L carbachol; and 23% by 10 mumol/L isoproterenol. A similar order of potency was observed when uptake was expressed per mg DNA. In acini from reserpine-treated rats, /sup 45/Ca uptake (per mg protein) was increased 53% by epinephrine, 39% by isoproterenol, and only 8% by carbachol. The same enhanced effect of isoproterenol and lack of effect of carbachol were observed when uptake was calculated per mg DNA. In the absence of secretagogue, efflux of /sup 45/Ca from tracer-pre-loaded acini was larger in acini from reserpine-treated rats (53%) than in control acini (36%). Whether expressed in terms of mg protein or mg DNA, this efflux was increased in control acini 35% by epinephrine, from 25 to 28% by isoproterenol, and 17% by carbachol. In acini of reserpine-treated rats, epinephrine increased /sup 45/Ca efflux 20%, isoproterenol from 25 to 28%, and carbachol from 14 to 15%.« less
Choudhury, Mahua G.; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment. PMID:26950213
Choudhury, Mahua G; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.
NASA Astrophysics Data System (ADS)
Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María
2016-04-01
The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1, respectively) than under CT treatment (399 g C-CO2 m-2 yr-1) in site 2. Tillage operations had a rapid but short-lived effect on soil CO2 efflux rates, with no significant influence on the annual soil CO2 emissions. The larger amounts of plant biomass incorporated into soil annually in the reduced tillage treatments compared to the conventional tillage treatment promoted soil aggregation and the physico-chemical soil organic carbon stabilization while soil CO2 emissions did not significantly increase. According to our results, reduced-tillage is strongly recommended as a beneficial SLM strategy for mitigating atmospheric CO2 increase through soil carbon sequestration and stabilization in semiarid Mediterranean agroecosystems.
Wood CO(2) efflux and foliar respiration for Eucalyptus in Hawaii and Brazil.
Ryan, Michael G; Cavaleri, Molly A; Almeida, Auro C; Penchel, Ricardo; Senock, Randy S; Luiz Stape, José
2009-10-01
We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).
O’Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O’Driscoll, Lorraine
2018-01-01
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome. PMID:29507696
O'Neill, Sadhbh; Larsen, Mette Bohl; Gregersen, Søren; Hermansen, Kjeld; O'Driscoll, Lorraine
2018-02-06
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p's predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.
MacInnes, Alan; Timmons, James A
2005-01-01
Background Patients suffering from Intermittent Claudication (IC) experience repeated periods of muscle contraction with low blood flow, throughout the day and this may contribute to the hypothesised skeletal muscle abnormalities. However, no study has evaluated the consequences of intermittent contraction with low blood flow on skeletal muscle tissue. Our aim was to generate this basic physiological data, determining the 'normal' response of healthy skeletal muscle tissue. We specifically proposed that the metabolic responses to contraction would be modified under such circumstances, revealing endogenous strategies engaged to protect the muscle adenine nucleotide pool. Utilizing a canine gracilis model (n = 9), the muscle was stimulated to contract (5 Hz) for three 10 min periods (separated by 10 min rest) under low blood flow conditions (80% reduced), followed by 1 hr recovery and then a fourth period of 10 min stimulation. Muscle biopsies were obtained prior to and following the first and fourth contraction periods. Direct arterio-venous sampling allowed for the calculation of muscle metabolite efflux and oxygen consumption. Results During the first period of contraction, [ATP] was reduced by ~30%. During this period there was also a 10 fold increase in muscle lactate concentration and a substantial increase in muscle lactate and ammonia efflux. Subsequently, lactate efflux was similar during the first three periods, while ammonia efflux was reduced by the third period. Following 1 hr recovery, muscle lactate and phosphocreatine concentrations had returned to resting values, while muscle [ATP] remained 20% lower. During the fourth contraction period no ammonia efflux or change in muscle ATP content occured. Despite such contrasting metabolic responses, muscle tension and oxygen consumption were identical during all contraction periods from 3 to 10 min. Conclusion repeated periods of muscle contraction, with low blood flow, results in cessation of muscle ammonia production which is suggestive of a dramatic reduction in flux through AMP deaminase. PMID:16018808
Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu
2016-01-01
Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432
NASA Technical Reports Server (NTRS)
Chromiak, J. A.; Vandenburgh, H. H.
1994-01-01
The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content in tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the effects of Dex and mechanical stretch on prostaglandin production and prostaglandin H synthase (PGHS) activity were examined. In static cultures, 10(-8) M Dex reduced PGF2 alpha production 55-65% and PGE2 production 84-90% after 24-72 h of incubation. Repetitive 10% stretch-relaxations of non-Dex-treated cultures increased PGF2 alpha efflux 41% at 24 h and 276% at 72 h, and increased PGE2 production 51% at 24 h and 236% at 72 h. Mechanical stimulation of Dex-treated cultures increased PGF2 alpha production 162% after 24 h, returning PGF2 alpha efflux to the level of non-Dex-treated cultures. At 72 h, stretch increased PGF2 alpha efflux 65% in Dex-treated cultures. Mechanical stimulation of Dex-treated cultures also increased PGE2 production at 24 h, but not at 72 h. Dex reduced PGHS activity in the muscle cultures by 70% after 8-24 h of incubation, and mechanical stimulation of the Dex-treated cultures increased PGHS activity by 98% after 24 h. Repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by mitigating the Dex-induced declines in PGHS activity and prostaglandin production.
Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha
2013-01-01
Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921
Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine.
Stadmiller, Samantha S; Gorensek-Benitez, Annelise H; Guseman, Alex J; Pielak, Gary J
2017-04-21
Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Snell, Helen S K; Robinson, David; Midwood, Andrew J
2014-11-15
Microbial degradation of soil organic matter (heterotrophic respiration) is a key determinant of net ecosystem exchange of carbon, but it is difficult to measure because the CO2 efflux from the soil surface is derived not only from heterotrophic respiration, but also from plant root and rhizosphere respiration (autotrophic). Partitioning total CO2 efflux can be achieved using the different natural abundance stable isotope ratios (δ(13)C) of root and soil CO2. Successful partitioning requires very accurate measurements of total soil efflux δ(13)CO2 and the δ(13)CO2 of the autotrophic and heterotrophic sources, which typically differ by just 2-8‰. In Scottish moorland and grass mesocosm studies we systematically tested some of the most commonly used techniques in order to identify and minimise methodological errors. Typical partitioning methods are to sample the total soil-surface CO2 efflux using a chamber, then to sample CO2 from incubated soil-free roots and root-free soil. We investigated the effect of collar depth on chamber measurements of surface efflux δ(13)CO2 and the effect of incubation time on estimates of end-member δ(13)CO2. (1) a 5 cm increase in collar depth affects the measurement of surface efflux δ(13)CO2 by -1.5‰ and there are fundamental inconsistencies between modelled and measured biases; (2) the heterotrophic δ(13)CO2 changes by up to -4‰ within minutes of sampling; we recommend using regression to estimate the in situ δ(13)CO2 values; (3) autotrophic δ(13)CO2 measurements are reliable if root CO2 is sampled within an hour of excavation; (4) correction factors should be used to account for instrument drift of up to 3‰ and concentration-dependent non-linearity of CRDS (cavity ringdown spectroscopy) analysis. Methodological biases can lead to large inaccuracies in partitioning estimates. The utility of stable isotope partitioning of soil CO2 efflux will be enhanced by consensus on the optimum measurement protocols and by minimising disturbance, particularly during chamber measurements. Copyright © 2014 John Wiley & Sons, Ltd.
Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps
2007-01-01
Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100
Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta
2017-02-15
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alcohol consumption stimulates early steps in reverse cholesterol transport.
van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F
2001-12-01
Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage
Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.
Roundhill, E A; Burchill, S A
2012-03-13
Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; P<0.001). Induced MRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.
Inhibition of the NorA efflux pump of Staphylococcus aureus by synthetic riparins.
Costa, L M; de Macedo, E V; Oliveira, F A A; Ferreira, J H L; Gutierrez, S J C; Peláez, W J; Lima, F C A; de Siqueira Júnior, J P; Coutinho, H D M; Kaatz, G W; de Freitas, R M; Barreto, H M
2016-11-01
The goal of this study was to increase knowledge about the antimicrobial activity of some synthetic Riparin-derived compounds, alone or in combination with fluoroquinolone antibiotics, against a strain of Staphylococcus aureus resistant to fluoroquinolone by way of overexpression of the NorA efflux pump. Microdilution tests showed that Riparins A and B did not show any significant antibacterial activity against Staph. aureus strains. On the other hand, the intrinsic antibacterial activity increased with increasing lipophilicity of the compounds, in the following order: Riparin-D (MIC 256 μg ml -1 ; Log P 2·95) < Riparin-C (MIC 102 μg ml -1 ; Log P 3·22) < Riparin-E (MIC 16 μg ml -1 ; Log P 3·57). The addition of all riparins to growth media at subinhibitory concentrations caused an increase in the antibacterial activity of antibiotics against the NorA-overexpressing test strain. Riparin-B, which has two methoxyl groups at the phenethyl moiety, showed the best modulatory effect. Riparin-E is a good anti-staphylococci agent, while Riparin-B functions as a NorA efflux pump inhibitor. Our data suggest the possibility of using Riparin-B in combination with norfloxacin or ciprofloxacin for therapy of infections caused by multi-drug resistant Staph. aureus. © 2016 The Society for Applied Microbiology.
In vitro studies on the putative function of N-acetylaspartate as an osmoregulator.
Tranberg, Mattias; Abbas, Abdul-Karim; Sandberg, Mats
2007-07-01
Efflux and tissue content of N-acetylaspartate (NAA) and amino acids were evaluated from cultured and acutely prepared hippocampal slices in response to changes in osmolarity. The osmoregulator taurine, but not NAA, was lost from both types of slices after moderate reductions in extracellular osmolarity (-60 mOsm) for 10-48 h. Hypoosmotic shock (-166 mOsm) for 5 min resulted in unselective efflux of several amino acids from acutely prepared slices. Notably, the efflux of taurine, but not NAA, was prominent also after the shock. Efflux of NAA was markedly enhanced by NMDA and high K(+), in particular after the stimulation period. The high K(+)-mediated efflux was decreased by high extracellular osmolarity and a NMDA-receptor antagonist. The results indicate that NAA efflux can be induced by a sudden non-physiological decrease in extracellular osmolarity but not by prolonged more moderate changes in osmolarity. The mechanisms behind the efflux of NAA by high K(+) are complex and may involve both swelling and activation of NMDA-receptors.
[Efflux systems in Serratia marcescens].
Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R
2014-01-01
A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.
Nagayoshi, Yohsuke; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi
2017-01-01
The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions. PMID:28700656
Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates.
Kim, Soo-Young; Lee, Si-Kyung; Park, Myeong-Soo; Na, Hun-Taek
2016-09-28
Quinolone-resistant Salmonella strains were isolated from patient samples, and several quinolone-sensitive strains were used to analyze mutations in the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE and to screen for plasmid-mediated quinolone resistance. Among the 21 strains that showed resistance to nalidixic acid and ciprofloxacin (MIC 0.125-2.0 μg/ml), 17 strains had a mutation in QRDR codon 87 of gyrA, and 3 strains had a single mutation (Ser83 → Phe). Another cause of resistance, efflux pump regulation, was studied by examining the expression of acrB, ramA, marA, and soxS. Five strains, including Sal-KH1 and Sal-KH2, showed no increase in relative expression in an analysis using the qRT-PCR method (p < 0.05). In order to determine the genes involved in the resistance, the Sal-9 isolate that showed decreased susceptibility and did not contain a mutation in the gyrA QRDR was used to make the STM (MIC 8 μg/ml) and STH (MIC 16 μg/ml) ciprofloxacin-resistant mutants. The gyrA QRDR Asp87 → Gly mutation was identified in both the STM and STH mutants by mutation analysis. qRT-PCR analysis of the efflux transporter acrB of the AcrAB-TolC efflux system showed increased expression levels in both the STM (1.79-fold) and STH (2.0-fold) mutants. In addition, the expression of the transcriptional regulator marA was increased in both the STM (6.35-fold) and STH (21.73-fold) mutants. Moreover, the expression of soxS was increased in the STM (3.41-fold) and STH (10.05-fold) mutants (p < 0.05). Therefore, these results indicate that AcrAB-TolC efflux pump activity and the target site mutation in gyrA are involved in quinolone resistance.
Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi
2017-01-01
The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.
The influence of the chloride gradient across red cell membranes on sodium and potassium movements
Cotterrell, D.; Whittam, R.
1971-01-01
1. A study has been made to see whether active and passive movements of sodium and potassium in human red blood cells are influenced by changing the chloride gradient and hence the potential difference across the cell membrane. 2. Chloride distribution was measured between red cells and isotonic solutions with a range of concentrations of chloride and non-penetrating anions (EDTA, citrate, gluconate). The cell chloride concentration was greater than that outside with low external chloride, suggesting that the sign of the membrane potential was reversed. The chloride ratio (internal/external) was approximately equal to the inverse of the hydrogen ion ratio at normal and low external chloride, and inversely proportional to external pH. These results show that chloride is passively distributed, making it valid to calculate the membrane potential from the chloride ratio. 3. Ouabain-sensitive (pump) potassium influx and sodium efflux were decreased by not more than 20 and 40% respectively on reversing the chloride gradient, corresponding to a change in membrane potential from -9 to +30 mV. In contrast, passive (ouabain-insensitive) movements were reversibly altered — potassium influx was decreased about 60% and potassium efflux was increased some tenfold. Sodium influx was unaffected by the nature of the anion and depended only on the external sodium concentration, whereas ouabain-insensitive sodium efflux was increased about threefold. When external sodium was replaced by potassium there was a decrease in ouabain-insensitive sodium efflux with normal chloride, but an increase in low-chloride medium. 4. Net movements of sodium and potassium were roughly in accord with the unidirectional fluxes. 5. The results suggest that reversing the chloride gradient and, therefore, the sign of the membrane potential, had little effect on the sodium pump, but caused a marked increase in passive outward movements of both sodium and potassium ions. PMID:4996368
Wang, Ming-Dong; Franklin, Vivian; Sundaram, Meenakshi; Kiss, Robert S; Ho, Kenneth; Gallant, Michel; Marcel, Yves L
2007-08-03
Niemann-Pick type C1 (Npc1) protein inactivation results in lipid accumulation in late endosomes and lysosomes, leading to a defect of ATP binding cassette protein A1 (Abca1)-mediated lipid efflux to apolipoprotein A-I (apoA-I) in macrophages and fibroblasts. However, the role of Npc1 in Abca1-mediated lipid efflux to apoA-I in hepatocytes, the major cells contributing to HDL formation, is still unknown. Here we show that, whereas lipid efflux to apoA-I in Npc1-null macrophages is impaired, the lipidation of endogenously synthesized apoA-I by low density lipoprotein-derived cholesterol or de novo synthesized cholesterol or phospholipids in Npc1-null hepatocytes is significantly increased by about 1-, 3-, and 8-fold, respectively. The increased cholesterol efflux reflects a major increase of Abca1 protein in Npc1-null hepatocytes, which contrasts with the decrease observed in Npc1-null macrophages. The increased Abca1 expression is largely post-transcriptional, because Abca1 mRNA is only slightly increased and Lxr alpha mRNA is not changed, and Lxr alpha target genes are reduced. This differs from the regulation of Abcg1 expression, which is up-regulated at both mRNA and protein levels in Npc1-null cells. Abca1 protein translation rate is higher in Npc1-null hepatocytes, compared with wild type hepatocytes as measured by [(35)S]methionine incorporation, whereas there is no difference for the degradation of newly synthesized Abca1 in these two types of hepatocytes. Cathepsin D, which we recently identified as a positive modulator of Abca1, is markedly increased at both mRNA and protein levels by Npc1 inactivation in hepatocytes but not in macrophages. Consistent with this, inhibition of cathepsin D with pepstatin A reduced the Abca1 protein level in both Npc1-inactivated and WT hepatocytes. Therefore, Abca1 expression is specifically regulated in hepatocytes, where Npc1 activity modulates cathepsin D expression and Abca1 protein translation rate.
Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.
Wood, C M; Milligan, C L; Walsh, P J
1999-08-01
Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.
Truong-Bolduc, Que Chi; Hooper, David C.
2007-01-01
MgrA is a known regulator of the expression of several multidrug transporters in Staphylococcus aureus. We identified another regulator of multiple efflux pumps, NorG, by its ability, like that of MgrA, to bind specifically to the promoter of the gene encoding the NorA efflux pump. NorG is a member of the family of the GntR-like transcriptional regulators, and it binds specifically to the putative promoters of the genes encoding multidrug efflux pumps NorA, NorB, NorC, and AbcA. Overexpression of norG produces a threefold increase in norB transcripts associated with a fourfold increase in the level of resistance to quinolones. In contrast, disruption of norG produces no change in the level of transcripts of norA, norB, and norC but causes an increase of at least threefold in the transcript level of abcA, associated with a fourfold increase in resistance to methicillin, cefotaxime, penicillin G, and nafcillin. Overexpression of cloned abcA caused an 8- to 128-fold increase in the level of resistance to all four β-lactam antibiotics. Furthermore, MgrA and NorG have opposite effects on norB and abcA expression. MgrA acts as an indirect repressor for norB and a direct activator for abcA, whereas NorG acts as a direct activator for norB and a direct repressor for abcA. PMID:17277059
Magnetic Levitation as a Platform for Competitive Protein-Ligand Binding Assays
Shapiro, Nathan D.; Soh, Siowling; Mirica, Katherine A.; Whitesides, George M.
2012-01-01
This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (Kd’s within the range of ~ 10 nM to 100 µM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 minutes – 2 hours). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater than approximately 65 kDa. PMID:22686324
Magnetic levitation as a platform for competitive protein-ligand binding assays.
Shapiro, Nathan D; Soh, Siowling; Mirica, Katherine A; Whitesides, George M
2012-07-17
This paper describes a method based on magnetic levitation (MagLev) that is capable of indirectly measuring the binding of unlabeled ligands to unlabeled protein. We demonstrate this method by measuring the affinity of unlabeled bovine carbonic anhydrase (BCA) for a variety of ligands (most of which are benzene sulfonamide derivatives). This method utilizes porous gel beads that are functionalized with a common aryl sulfonamide ligand. The beads are incubated with BCA and allowed to reach an equilibrium state in which the majority of the immobilized ligands are bound to BCA. Since the beads are less dense than the protein, protein binding to the bead increases the overall density of the bead. This change in density can be monitored using MagLev. Transferring the beads to a solution containing no protein creates a situation where net protein efflux from the bead is thermodynamically favorable. The rate at which protein leaves the bead for the solution can be calculated from the rate at which the levitation height of the bead changes. If another small molecule ligand of BCA is dissolved in the solution, the rate of protein efflux is accelerated significantly. This paper develops a reaction-diffusion (RD) model to explain both this observation, and the physical-organic chemistry that underlies it. Using this model, we calculate the dissociation constants of several unlabeled ligands from BCA, using plots of levitation height versus time. Notably, although this method requires no electricity, and only a single piece of inexpensive equipment, it can measure accurately the binding of unlabeled proteins to small molecules over a wide range of dissociation constants (K(d) values within the range from ~10 nM to 100 μM are measured easily). Assays performed using this method generally can be completed within a relatively short time period (20 min-2 h). A deficiency of this system is that it is not, in its present form, applicable to proteins with molecular weight greater than approximately 65 kDa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberbauer, S.F.; Gillespie, C.T.; Cheng, Weixin
1996-08-01
Carbon dioxide efflux and soil microenvironment were measured in three upland tundra communities in the foothills of the Brooks Range in arctic Alaska to determine the magnitude of CO{sub 2} efflux rates and the relative importance of the belowground factors that influence them. Gas exchange and soil microenvironment measurements were made weekly between 14 June and 31 July 1990. The study communities included lichen-heath, a sparse community vegetated by lichens and dwarf ericaceous shrubs on rocky soils, moist Cassiope dwarf-shrub heath tundra, dominated by Carex and evergreen and deciduous shrubs on relatively deep organic soils, and dry Cassiope dwarf-shrub heathmore » of stone-stripe areas, which was of intermediate character. Rates of CO{sub 2} efflux were similar for the three communities until mid-season when they peaked at rates between 4.9 and 5.9 g m{sup {minus}2} d{sup {minus}1}. Following the mid-season peak, the rates in all three communities declined, particularly in the lichen-heath. Seasonal patterns of CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux over the course of the season. Rates of carbon dioxide efflux followed changes in soil temperature early in the season when soil moisture was highest. Mid-season efflux appeared to be limited by soil, moss, and lichen hydration until the end of July, when temperature again limited efflux. Differences between the communities were related to microenvironmental differences and probable differences in carbon quality. The presence of peat-forming mosses is suggested to play an important role in differences in efflux and micro-environment among the communities. 32 refs., 3 figs., 4 tab.« less
Taccola, Camille; Cartot-Cotton, Sylvaine; Valente, Delphine; Barneoud, Pascal; Aubert, Catherine; Boutet, Valérie; Gallen, Fabienne; Lochus, Murielle; Nicolic, Sophie; Dodacki, Agnès; Smirnova, Maria; Cisternino, Salvatore; Declèves, Xavier; Bourasset, Fanchon
2018-05-30
Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a k m of ≅ 3 μM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 μl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs. Copyright © 2018. Published by Elsevier B.V.
Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei
2007-01-01
Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.
Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng
2014-01-01
Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE−/− mice and its potential mechanism. ApoE−/− mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE−/− mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA. PMID:25187964
Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling
2016-01-01
High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [3H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. PMID:27458015
Lansdell, K A; Kidd, J F; Delaney, S J; Wainwright, B J; Sheppard, D N
1998-01-01
We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique.The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl− channels that had previously been activated by protein kinase A.Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl− channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux.The alkaline phosphatase inhibitor, (−)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR.As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR. PMID:9769419
Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng
2014-01-01
Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.
Pakzad, Iraj; Zayyen Karin, Maasoume; Taherikalani, Morovat; Boustanshenas, Mina; Lari, Abdolaziz Rastegar
2013-01-01
Resistance to fluoroquinolones has been recently increased among bacterial strains isolated from outpatients. Multidrug-resistant K. pneumoniae is one of the major organisms isolated from burn patients and the AcrAB efflux pump is the principal pump contributing to the intrinsic resistance in K. pneumoniae against multiple antimicrobial agents including ciprofloxacin and other fluoroquinolones. Fifty-two K. pneumoniae isolated from burn patients in Shahid Motahari hospital and confirmed by conventional biochemical tests. Antimicrobial susceptibility testing was done according to CLSI 2011 guidelines, to determine the antimicrobial resistance pattern of isolates. AcrA gene was detected among ciprofloxacin-resistant isolates by PCR assay. MICs to ciprofloxacin were measured with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Forty out of the 52 K. pneumoniae isolated from burn patients in Shahid Motahari hospital were resistant to ciprofloxacin according to breakpoint of CLSI guideline. PCR assay for acrA gene demonstrated that all ciprofloxacin-resistant isolates harbored acrA gene coding the membrane fusion protein AcrA and is a part of AcrAB efflux system. Among these isolates, 19 strains (47.5%) showed 2 to 32 fold reduction in MICs after using CCCP as an efflux pump inhibitor. The other 21 strains (52.5%) showed no disparity in MICs before and after using CCCP. In conclusion, the AcrAB efflux system is one of the principal mechanisms contribute in ciprofloxacin resistance among K. pneumoniae isolates but there are some other mechanisms interfere with ciprofloxacin resistance such as mutation in target proteins of DNA gyrase of topoisomerase IV enzymes.
Zhou, Gaofeng; Ryan, Peter R.
2014-01-01
Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species. PMID:24692647
Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori
2014-01-01
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters. PMID:25302608
Lim, Siew Ping; Nikaido, Hiroshi
2010-01-01
The multidrug efflux transporter AcrAB-TolC is known to pump out a diverse range of antibiotics, including β-lactams. However, the kinetic constants of the efflux process, needed for the quantitative understanding of resistance, were not available until those accompanying the efflux of some cephalosporins were recently determined by combining efflux with the hydrolysis of drugs by the periplasmic β-lactamase. In the present study we extended this approach to the study of a wide range of penicillins, from ampicillin and penicillin V to ureidopenicillins and isoxazolylpenicillins, by combining efflux with hydrolysis with the OXA-7 penicillinase. We found that the penicillins had a much stronger apparent affinity to AcrB and higher maximum rates of efflux than the cephalosporins. All penicillins showed strong positive cooperativity kinetics for export. The kinetic constants obtained were validated, as the MICs theoretically predicted on the basis of efflux and hydrolysis kinetics were remarkably similar to the observed MICs (except for the isoxazolylpenicillins). Surprisingly, however, the efflux kinetics of cloxacillin, for example, whose MIC decreased 512-fold in Escherichia coli upon the genetic deletion of the acrB gene, were quite similar to those of ampicillin, whose MIC decreased only 2-fold with the same treatment. Analysis of this phenomenon showed that the extensive decrease in the MIC for the acrB mutant is primarily due to the low permeation of the drug and that comparison of the MICs between the parent and the acrB strains is a very poor measure of the ability of AcrB to pump a drug out. PMID:20160052
A Perspective on Efflux Transport Proteins in the Liver
Kock, K; Brouwer, K.L.R
2013-01-01
Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal and hepatocyte exposure to drugs and metabolites are highlighted. PMID:22948894
Ion transport in rat liver mitochondria: the effect of the incubation medium osmolarity.
Novgorodov, S A; Yaguzhinsky, L A
1985-04-08
A decrease in the incubation medium osmolarity from 320 to 120 mosM reverses the pH dependence of K+ efflux from rat liver mitochondria. The K+ efflux is no longer inhibited by oligomycin and a free radical scavenger butylhydroxytoluene. At 320 mosM, the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) accelerates the K+ efflux, while EGTA inhibits it. At 120 mosM these CCCP and EGTA effects are reversed. In either case the K+ efflux is inhibited by Mg2+. The decrease in osmolarity changes the ruthenium red-insensitive Ca2+ efflux in the same manner. It has thus been shown that the modification of the mitochondrial structure by changing the incubation medium osmolarity results in a qualitative alteration of the systems regulating the K+ and Ca2+ effluxes.
Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.
2016-01-01
Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204
Tsugawa, Hitoshi; Suzuki, Hidekazu; Muraoka, Hiroe; Ikeda, Fumiaki; Hirata, Kenro; Matsuzaki, Juntaro; Saito, Yoshimasa; Hibi, Toshifumi
2011-01-14
Although metronidazole (Mtz) is an important component of Helicobacter pylori eradication regimens, it has been pointed out that the increasing use of Mtz may result in increase in the incidence of Mtz-resistant strains. The present study was designed to examine the initial mechanism of resistance acquisition of H. pylori to Mtz. After 10 Mtz-susceptible strains were cultured on plates containing sub-inhibitory concentrations of Mtz, the MIC of Mtz for 9 of the 10 strains increased to levels of the Mtz-resistant strains. In the Mtz-resistance-induced strains, the expression of the TolC efflux pump (hefA) was significantly increased under Mtz exposure, without the reduction of the Mtz-reductive activity. Our finding suggests that overexpression of hefA may be the initial step in the acquisition of Mtz resistance in H. pylori. Copyright © 2010 Elsevier Inc. All rights reserved.
Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1
Birch, Douglas G.; Elrifi, Ivor R.; Turpin, David H.
1986-01-01
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO2 efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO2 efflux in the light. The nitrate and ammmonium induced rates of CO2 efflux were 31.0 and 33.8 micromoles CO2 per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO2 was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279). PMID:16665097
Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang
2013-01-01
A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO2) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO2 from soil and floodwater in intermittently draining rice paddy soil. The soil CO2 flux rates ranged from −0.45 to 8.62 µmol.m−2.s−1 during the rice-growing season. The net effluxes of CO2 from the paddy soil were lower when the paddy was flooded than when it was drained. The CO2 emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO2 fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO2 efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO2 flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO2 emissions from paddy soils. PMID:23437170
Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M
2017-07-01
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Saneja, Ankit; Dubey, Ravindra Dhar; Alam, Noor; Khare, Vaibhav; Gupta, Prem N
2014-01-01
Scientific community is striving to understand the role of P-glycoprotein (P-gp) in drug discovery programs due to its impact on pharmacokinetic and multi-drug resistance (MDR) of anticancer drugs. A number of efforts to resolve the crystal structure and understanding the mechanism of P-gp mediated efflux have been made. Several generations of Pgp inhibitors have been developed to tackle this multi-specific efflux protein. Unfortunately, these inhibitors lack selectivity, exhibit poor solubility and severe pharmacokinetic interactions restricting their clinical use. The nanocarrier drug delivery systems (NDDS) are receiving increasing attention for P-gp modulating activity of pharmaceutical excipients which are used in their fabrication. In addition, NDDS can enhance the solubility and exhibited ability to bypass P-gp mediated efflux. The co-formulation of P-gp inhibitors and substrate anticancer drugs in single drug delivery system offers the advantage of bypassing P-gp mediated drug efflux as well as inhibiting the P-gp. Moreover, severe pharmacokinetic interactions between P-gp inhibitor and substrate anticancer drugs could be avoided by using this strategy. In this article we describe the co-formulation strategies using nanocarriers for modulation of pharmacokinetics as well as multi-drug resistance of anticancer drugs along with the challenges in this area.
Astolfi, Andrea; Felicetti, Tommaso; Iraci, Nunzio; Manfroni, Giuseppe; Massari, Serena; Pietrella, Donatella; Tabarrini, Oriana; Kaatz, Glenn W; Barreca, Maria L; Sabatini, Stefano; Cecchetti, Violetta
2017-02-23
An intriguing opportunity to address antimicrobial resistance is represented by the inhibition of efflux pumps. Focusing on NorA, the most important efflux pump of Staphylococcus aureus, an efflux pump inhibitors (EPIs) library was used for ligand-based pharmacophore modeling studies. By exploitation of the obtained models, an in silico drug repositioning approach allowed for the identification of novel and potent NorA EPIs.
An ex vivo study of nitric oxide efflux from human erythrocytes in both genders.
Duarte, Catarina; Napoleão, Patrícia; Freitas, Teresa; Saldanha, Carlota
2016-01-01
Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p < 0.05) in women than in men. The efflux of NO from erythrocyte of healthy humans did not change with gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.
Living with a leaky skin: upregulation of ion transport proteins during sloughing.
Wu, Nicholas C; Cramp, Rebecca L; Franklin, Craig E
2017-06-01
Amphibian skin is a multifunctional organ providing protection from the external environment and facilitating the physiological exchange of gases, water and salts with the environment. In order to maintain these functions, the outer layer of skin is regularly replaced in a process called sloughing. During sloughing, the outermost layer of the skin is removed in its entirety, which has the potential to interfere with skin permeability and ion transport, disrupting homeostasis. In this study, we measured, in vivo , the effects of sloughing on the cutaneous efflux of ions in toads Rhinella marina kept in freshwater conditions. We also measured transepithelial potential, cutaneous resistance, active ion transport and the distribution, abundance and gene expression of the key ion transport proteins sodium-potassium ATPase (NKA) and epithelial sodium channel (ENaC) during sloughing. We hypothesised that the increase in transepithelial efflux of ions during sloughing is a consequence of increased permeability and/or a reduction in the abundance or expression of cutaneous ion transport proteins, resulting in disruption of internal ion homeostasis. There was a significant increase in sodium and chloride efflux during sloughing in R. marina However, although in vitro skin resistance decreased after sloughing, active sodium transport increased commensurate with an increase in NKA and ENaC protein abundance in the skin. These changes in skin function associated with sloughing did not affect the maintenance of internal electrolyte homeostasis. These results suggest that during sloughing, amphibians actively maintain internal homeostasis by increasing cutaneous rates of ion uptake. © 2017. Published by The Company of Biologists Ltd.
Brief exposure to obesogenic diet disrupts brain dopamine networks
Williams, Jason M.; Siuta, Michael A.; Tantawy, Mohammed N.; Speed, Nicole K.; Saunders, Christine; Galli, Aurelio; Niswender, Kevin D.; Avison, Malcolm J.
2018-01-01
Objective We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). Methods We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). Results We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens–anterior cingulate) and sensorimotor circuits (caudate/putamen–thalamus–sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. Conclusion These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding. PMID:29698491
HNP-3 enhanced the antimicrobial activity of CIP by promoting ATP efflux from P. aeruginosa cells.
Wang, Hao; Dong, Birong; Lou, Li
2011-04-01
To establish a novel strategy of P. aeruginosa control, we acquired recombination HNP-3 by gene recombination. Then we examined HNP-3 bio-activities and the influences of antimicrobial peptide on the efflux of ATP. Consequently, we obtained target protein with a molecular mass of 3,000 D consistent with the Anticipation. FIC index of Ciprofloxacin added HNP-3 was less than 0.5 and HNP3 synergistically cooperated with CIP to suppress P. aeruginosa colony formation revealed that there was significant synergy. ATP efflux was however up-regulated by low concentrations of HNP-3, although CIP did not exert any influence on ATP efflux. Conclusively, recombination protein HNP-3 displayed antimicrobial and synergic effects. HNP-3 enhanced the antimicrobial activity of CIP by promoting ATP efflux from P. aeruginosa cells and decreasing efflux of the drugs, which could have useful clinical applications.
Tomita, T; Ishikawa, D; Noguchi, T; Katayama, E; Hashimoto, Y
1998-07-01
Flammutoxin has been previously isolated as a cardiotoxic and cytolytic polypeptide of 22 or 32 kDa from the fruiting bodies of the edible mushroom Flammulina velutipes. In the present study, we purified flammutoxin as a single haemolytic protein of 31 kDa and studied the mode of its cytolytic action. (1) Flammutoxin caused efflux of potassium ions from human erythrocytes and swelling of the cells before haemolysis. (2) Flammutoxin did not lyse human erythrocytes in the presence of non-electrolytes with hydrodynamic diameters of >5.0 nm, although it caused leakage of potassium ions and swelling of the cells under the same conditions. (3) Experiments including solubilization of cell-bound toxin with 2% (w/v) SDS at 20 degrees C and subsequent Western immunoblots showed that flammutoxin formed a band corresponding to 180 kDa under the conditions where it lysed erythrocytes. (4) Electron microscopy of flammutoxin-treated human erythrocytes revealed the presence of a ring-shaped structure with outer and inner diameters of 10 and 5 nm, respectively, on the cells. (5) A ring-shaped toxin oligomer of the same dimensions was solubilized from the toxin-treated human erythrocytes with 2% (w/v) SDS at 20 degrees C and isolated by a sucrose-gradient ultracentrifugation. These data indicated that flammutoxin assembles into a ring-shaped oligomer possessing a hydrophilic pore of 4-5 nm on target cells.
Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel
2013-01-01
A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations. PMID:23914184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Cuiping, E-mail: yangsophia76@hotmail.com; Zhang, Tianhong, E-mail: wdzth@sina.com; Li, Zheng, E-mail: lizh2524@126.com
Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusionmore » study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup −5} to 2.85 × 10{sup −5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max} and AUC of aconitine. • P-gp interacted with both verapamil and aconitine and recognized them similarly.« less
2015-01-01
Pseudomonas aeruginosa, the major nosocomial opportunistic pathogen, is an important cause of infectious morbidity and mortality among immunocompromised patients. To establish the role of metallo-β-lactamases (MBL) and efflux-mediated mechanisms in confer- ring carbapenem resistance in nosocomial isolates of P. aeruginosa. We analyzed carbapenem nonsusceptible nosocomial P. aeruginosa isolates obtained from pediatric and adult patients at three hospitals in Moscow in 2012-2015. Carbapenem susceptibility was assessed using the E-test. In addition, minimal inhibitory concentrations (MICs) of meropenem were tested by the broth microdilution method. The presence of MBL was determined using the ED TA-mediated suppression test. Efflux-dependent resistance was measured using an assay based on MIC modification by an ionophore carbonyl cyanide 3-chlorophenyl hydrazine (CCCP). A total of 54 carbapenem nonsusceptible P. aeruginosa isolates was examined. The presence of an MBL was detected in 37 (69%) isolates, 29 (54%) isolates had efflux-mediated resistance. In 10 (19%) isolates neither MBL nor efflux activity was found. Five out of 6 isolates (83%) with highly active efflux were MBL-positive. Among isolates with low efflux activity, 74% (17/23) possessed MBL, whereas in isolates with no efflux the rate of MBL-positivity was 60% (15/25). The prevalence of MBL- and efflux-mediated carbapenem resistance in nosocomial P. aeruginosa is high. Moreover, our results reveal that several resistance mechanisms may combine at the isolate level. These data may contribute to the development of novel strategies in combating carbapenem resistance.
Contrasting roles of the ABCG2 Q141K variant in prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobek, Kathryn M.; Cummings, Jessica L.; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
ABCG2 is a membrane transport protein that effluxes growth-promoting molecules, such as folates and dihydrotestosterone, as well as chemotherapeutic agents. Therefore it is important to determine how variants of ABCG2 affect the transporter function in order to determine whether modified treatment regimens may be necessary for patients harboring ABCG2 variants. Previous studies have demonstrated an association between the ABCG2 Q141K variant and overall survival after a prostate cancer diagnosis. We report here that in patients with recurrent prostate cancer, those who carry the ABCG2 Q141K variant had a significantly shorter time to PSA recurrence post-prostatectomy than patients homozygous for wild-typemore » ABCG2 (P=0.01). Transport studies showed that wild-type ABCG2 was able to efflux more folic acid than the Q141K variant (P<0.002), suggesting that retained tumoral folate contributes to the decreased time to PSA recurrence in the Q141K variant patients. In a seemingly conflicting study, it was previously reported that docetaxel-treated Q141K variant prostate cancer patients have a longer survival time. We found this may be due to less efficient docetaxel efflux in cells with the Q141K variant versus wild-type ABCG2. In human prostate cancer tissues, confocal microscopy revealed that all genotypes had a mixture of cytoplasmic and plasma membrane staining, with noticeably less staining in the two homozygous KK patients. In conclusion, the Q141K variant plays contrasting roles in prostate cancer: 1) by decreasing folate efflux, increased intracellular folate levels result in enhanced tumor cell proliferation and therefore time to recurrence decreases; and 2) in patients treated with docetaxel, by decreasing its efflux, intratumoral docetaxel levels and tumor cell drug sensitivity increase and therefore patient survival time increases. Taken together, these data suggest that a patient's ABCG2 genotype may be important when determining a personalized treatment plan. - Highlights: • The presence of ABCG2 Q141K variant decreases time to PSA recurrence. • Cells expressing the Q141K variant retain more folic acid than wild type. • Cells expressing the Q141K variant are more sensitive to docetaxel. • ABCG2 protein is repressed miR-519c and/or miR-520h in prostate cancer cell lines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendling, W.W.; Harakal, C.
1987-05-01
The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips duringmore » 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.« less
Dahan, Arik; Amidon, Gordon L
2010-02-15
We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.
Zhou, Yumei; Hagedorn, Frank; Zhou, Chunliang; Jiang, Xiaojie; Wang, Xiuxiu; Li, Mai-He
2016-01-01
Climatic warming is expected to particularly alter greenhouse gas (GHG) emissions from soils in cold ecosystems such as tundra. We used 1 m2 open-top chambers (OTCs) during three growing seasons to examine how warming (+0.8–1.2 °C) affects the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from alpine tundra soils. Results showed that OTC warming increased soil CO2 efflux by 141% in the first growing season and by 45% in the second and third growing season. The mean CH4 flux of the three growing seasons was −27.6 and −16.7 μg CH4-C m−2h−1 in the warmed and control treatment, respectively. Fluxes of N2O switched between net uptake and emission. Warming didn’t significantly affect N2O emission during the first and the second growing season, but stimulated N2O uptake in the third growing season. The global warming potential of GHG was clearly dominated by soil CO2 effluxes (>99%) and was increased by the OTC warming. In conclusion, soil temperature is the main controlling factor for soil respiration in this tundra. Climate warming will lead to higher soil CO2 emissions but also to an enhanced CH4 uptake with an overall increase of the global warming potential for tundra. PMID:26880107
More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S
2016-01-01
Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034
Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria
Roundhill, E A; Burchill, S A
2012-01-01
Background: Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. Methods: MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. Results: MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55–64%) than that of plasma membrane MRP-1 (11–22% P<0.001). Induced MRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 n, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Conclusion: Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success. PMID:22353810
Epigallocatechin gallate as a modulator of Campylobacter resistance to macrolide antibiotics.
Kurinčič, Marija; Klančnik, Anja; Smole Možina, Sonja
2012-11-01
Comprehensive therapeutic use of macrolides in humans and animals is important in the selection of macrolide-resistant Campylobacter isolates. This study shows high co-resistance to erythromycin, azithromycin, clarithromycin, dirithromycin and tylosin, with contributions from the 23S rRNA gene and drug efflux systems. The CmeABC efflux pump plays an important role in reduced macrolide susceptibility, accompanied by contributions from the CmeDEF efflux pump and potentially a third efflux pump. To improve clinical performance of licensed antibiotics and chemotherapeutic agents, it is important to understand the factors in Campylobacter that affect susceptibility to macrolide antibiotics. Using mutants that lack the functional genes coding for the CmeB and CmeF efflux pump proteins and the CmeR transcriptional repressor, we show that these efflux pumps are potential targets for the development of therapeutic strategies that use a combination of a macrolide with an efflux pump inhibitor (EPI) to restore macrolide efficacy. The natural phenolic compound epigallocatechin gallate (EGCG) has good modulatory activity over the extrusion across the outer membrane of the macrolides tested, both in sensitive and resistant Campylobacter isolates. Comparing EGCG with known chemical EPIs, correlations in the effects on the particular macrolide antibiotics were seen. EGCG modifies Campylobacter multidrug efflux systems and thus could have an impact on restoring macrolide efficacy in resistant strains. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Zhang, Rui; Bai, Yang; Liu, Juan; Jiang, Pei-kun; Zhou, Guo-mo; Wu, Jia-sen; Tong, Zhi-peng; Li, Yong-fu
2015-10-01
Soil CO2 effluxes in natural broad-leaved forest and the conversed Chinese fir plantation in Linglong Mountains Scenic of Zhejiang Province were evaluated by using static closed chamber and gas chromatography method. The results showed that soil CO2 efflux showed consistent seasonal dynamics in natural broad-leaved forest and Chinese fir plantation, with the maximums observed in summer and autumn, the minimums in winter and spring. Soil CO2 effluxes were 20.0-111.3 and 4.1-118.6 mg C . m-2 . h-1 in natural broad-leaved forest and Chinese fir plantation, respectively. The cumulative soil CO2 emission of natural broad-leaved forest (16.46 t CO2 . hm-2 . a-1) was significantly higher than that of Chinese fir plantation (11.99 t CO2 . hm-2 . a-1). Soil moisture did not affect soil CO2 efflux. There was a significant relationship between soil CO2 efflux and soil temperature at 5 cm depth. There was no significant relationship between soil CO2 efflux of natural broad-leaved forest and water soluble organic carbon content, while water soluble organic carbon content affected significantly soil CO2 efflux in Chinese fir plantation. Converting the natural broad-leaved forest to Chinese fir plantation reduced soil CO2 efflux significantly but improved the sensitivity of soil respiration to environmental factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, Melissa; CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro; Pavlichenko, Vasiliy
Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil)more » and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A mixture effect design with inhibitors was applied in transporter activity assays. • ABCB1- and ABCC-type efflux activities were distinguished in native gill tissue. • Inhibitory action of environmental chemicals targeted ABCB1-type efflux activity.« less
McCarthy, Ryan C; Park, Yun-Hee; Kosman, Daniel J
2014-01-01
A sequence within the E2 domain of soluble amyloid precursor protein (sAPP) stimulates iron efflux. This activity has been attributed to a ferroxidase activity suggested for this motif. We demonstrate that the stimulation of efflux supported by this peptide and by sAPPα is due to their stabilization of the ferrous iron exporter, ferroportin (Fpn), in the plasma membrane of human brain microvascular endothelial cells (hBMVEC). The peptide does not bind ferric iron explaining why it does not and thermodynamically cannot promote ferrous iron autoxidation. This peptide specifically pulls Fpn down from the plasma membrane of hBMVEC; based on these results, FTP, for ferroportin-targeting peptide, correctly identifies the function of this peptide. The data suggest that in stabilizing Fpn via the targeting due to the FTP sequence, sAPP will increase the flux of iron into the cerebral interstitium. This inference correlates with the observation of significant iron deposition in the amyloid plaques characteristic of Alzheimer’s disease. PMID:24867889
Lavigne, J-P; Sotto, A; Nicolas-Chanoine, M-H; Bouziges, N; Bourg, G; Davin-Regli, A; Pagès, J-M
2012-06-01
Imipenem-susceptible E. aerogenes isolates exhibiting extended spectrum β-lactamases, target mutations and a basal efflux expression, were identified in five patients. After imipenem treatment, imipenem-intermediate susceptible (IMI-I) or resistant (IMI-R) isolates emerged in these patients. Alteration in porin synthesis and increase in efflux expression were observed in the IMI-I isolates whereas complete loss of the porins, LPS alteration and efflux overexpression were observed in the IMI-R isolates. Bacterial virulence of the strains was investigated by the Caenorhabditis elegans model. The IMI-R isolates were shown to be significantly less virulent than the IMI-susceptible or IMI-I isolates. The pleiotropic membrane alteration and its associated fitness burden exhibited by E. aerogenes isolates influence their antibiotic resistance and their virulence behaviour. These findings highlight the balance between the low permeability-related resistance and virulence and their relationships with the treatment of resistant pathogens. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Bacterial resistance modifying tetrasaccharide agents from Ipomoea murucoides.
Chérigo, Lilia; Pereda-Miranda, Rogelio; Gibbons, Simon
2009-01-01
As part of an ongoing project to identify oligosaccharides which modulate bacterial multidrug resistance, the CHCl(3)-soluble extract from flowers of a Mexican arborescent morning glory, Ipomoea murucoides, through preparative-scale recycling HPLC, yielded five lipophilic tetrasaccharide inhibitors of Staphylococcusaureus multidrug efflux pumps, murucoidins XII-XVI (1-5). The macrocyclic lactone-type structures for these linear hetero-tetraglycoside derivatives of jalapinolic acid were established by spectroscopic methods. These compounds were tested for in vitro antibacterial and resistance modifying activity against strains of Staphylococcus aureus possessing multidrug resistance efflux mechanisms. Only murucoidin XIV (3) displayed antimicrobial activity against SA-1199B (MIC 32microg/ml), a norfloxacin-resistant strain that over-expresses the NorA MDR efflux pump. The four microbiologically inactive (MIC>512microg/ml) tetrasaccharides increased norfloxacin susceptibility of this strain by 4-fold (8microg/ml from 32microg/ml) at concentrations of 25microg/ml, while murucoidin XIV (3) exerted the same potentiation effect at a concentration of 5microg/ml.
Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing
2015-08-01
Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.
Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing
2016-01-01
Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341
McCarthy, Ryan C; Kosman, Daniel J
2014-01-01
We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.
Liu, Fei; Wang, Xiaoqing; Li, Zheng; Li, Jin; Zhuang, Xiaomei; Zhang, Zhenqing
2015-01-01
YQA-14 is a promising agent for treating addiction to cocaine and opioids. However, previous studies have showed there is marked contrast between the relatively small differences in pharmacological action in vivo and the large differences in their respective receptor binding properties in vitro. We hypothesized that the conflict between the in vivo and in vitro outcomes was attributable to poor brain exposure to YQA-14 caused by drug efflux transporters. To address this issue, we investigated the directional flux of YQA-14 across Caco-2 cells at 37°C or 4°C and the bidirectional transport in the presence and absence of transporter chemical inhibitors. These phenomena were further investigated by an in vivo determination of the brain and blood pharmacokinetics (PK) profile of YQA-14 following intraperitoneal administration with and without inhibitor. The efflux ratio of YQA-14 on Caco-2 cell monolayers was 2.39 and the efflux was temperature-dependent. When co-incubated with GF120918 or LY335979, the efflux of YQA-14 was markedly decreased. However, there was no significant difference in the permeability of YQA-14 when the cells were treated with Ko143. In vivo experiments showed that the brain-to-plasma ratio increased by more than 75-fold and 20-fold with co-administration of GF120918 and LY335979, respectively. Use of Ko143 did not change the brain-to-blood ratio of YQA-14. The results indicate that the brain distribution of YQA-14 was restricted because of active efflux transport at the blood brain barrier. In addition, P-glycoprotein (P-gp) played a dominant role in limiting the distribution of YQA-14 to the brain.
Action of some foreign cations and anions on the chloride permeability of frog muscle
Hutter, O. F.; Warner, Anne E.
1967-01-01
1. Evidence for the existence in skeletal muscle of a specific cation binding system capable of lowering the chloride permeability was obtained by testing the effect of several metal ion species upon the efflux of 36Cl from frog muscles equilibrated in high-KCl solution. 2. Cu2+, Zn2+ and UO22+ ions, when present in concentrations of approximately 10-4 M in inactive wash solution at pH 7·4 slowed the efflux of 36Cl to half its original value. At pH 5·0, when the chloride permeability was already low as a consequence of hydrogen ion binding, these metal ions had little further effect. 3. Presence of Ni2+, Co2+, Pb2+, Ce3+ and La3+ in 10-4 M or higher concentrations had no detectable influence on the 36Cl efflux. Wide variations in Ca2+ concentration were similarly ineffective. 4. The influence of more adsorbable anions on the chloride permeability was examined at different pH values. Extracellular iodide greatly slowed the rapid efflux of 36Cl into alkaline solution. In acid solutions, when the chloride permeability was already low, the effect of iodide was less pronounced, but still demonstrable. The chloride permeability was consequently increased to a lesser extent by a rise in pH in the presence of iodide. 5. The efflux of iodide and bromide was measured at different pH values under conditions of self exchange. In alkaline solution the permeabilities to iodide and bromide were considerably lower than that to chloride. In acid solution the membrane differentiated less between anion species of different adsorbability. PMID:6040156
Chronic administration of phenytoin induces efflux transporter overexpression in rats.
Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra
2014-12-01
Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling
2016-09-09
High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Liu, Peng; Peng, Liang; Zhang, Haojun; Tang, Patrick Ming-Kuen; Zhao, Tingting; Yan, Meihua; Zhao, Hailing; Huang, Xiaoru; Lan, Huiyao; Li, Ping
2018-01-01
The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro . In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.
Fontaine, Fanny; Héquet, Arnaud; Voisin-Chiret, Anne-Sophie; Bouillon, Alexandre; Lesnard, Aurélien; Cresteil, Thierry; Jolivalt, Claude; Rault, Sylvain
2015-05-05
In response to the extensive use of antibiotics, bacteria have evolved numerous mechanisms of defense against antimicrobial agents. Among them, extrusion of the antimicrobial agents outside the bacterial cell through efflux pumps is a major cause of concern. At first limited to one or few structurally-related antibiotics, bacterial resistance have then progressed towards cross-resistance between different classes of antibiotics, leading to multidrug-resistant microorganisms. Emergence of these pathogens requires development of novel therapeutic strategies and inhibition of efflux pumps appears to be a promising strategy that could restore the potency of existing antibiotics. NorA is the most studied chromosomal efflux pump of Staphylococcus aureus; it is known to be implied in resistance of Methicillin-resistant S. aureus (MRSA) strains against a wide range of unrelated substrates, including hydrophilic fluoroquinolones. Starting from 6-benzyloxypyridine-3-boronic acid I that we previously identified as a potential inhibitor of the NorA efflux pump against the NorA-overexpressing S. aureus 1199B strain (SA1199B), we describe here the synthesis and biological evaluation of a series of 6-(aryl)alkoxypyridine-3-boronic acids. 6-(3-Phenylpropoxy)pyridine-3-boronic acid 3i and 6-(4-phenylbutoxy)pyridine-3-boronic acid 3j were found to potentiate ciprofloxacin activity by a 4-fold increase compared to the parent compound I. In addition, it has been shown that both compounds promote Ethidium Bromide (EtBr) accumulation in SA1199B, thus corroborating their potential mode of action as NorA inhibitors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Singh, Samsher; Kalia, Nitin P; Joshi, Prashant; Kumar, Ajay; Sharma, Parduman R; Kumar, Ashok; Bharate, Sandip B; Khan, Inshad A
2017-01-01
This study elucidated the role of boeravinone B, a NorA multidrug efflux pump inhibitor, in biofilm inhibition. The effects of boeravinone B plus ciprofloxacin, a NorA substrate, were evaluated in NorA-overexpressing, wild-type, and knocked-out Staphylococcus aureus (SA-1199B, SA-1199, and SA-K1758, respectively). The mechanism of action was confirmed using the ethidium bromide accumulation and efflux assay. The role of boeravinone B as a human P -glycoprotein ( P -gp) inhibitor was examined in the LS-180 (colon cancer) cell line. Moreover, its role in the inhibition of biofilm formation and intracellular invasion of S. aureus in macrophages was studied. Boeravinone B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin against S. aureus and its methicillin-resistant strains; the effect was stronger in SA-1199B. Furthermore, time-kill kinetics revealed that boeravinone B plus ciprofloxacin, at subinhibitory concentration (0.25 × MIC), is as equipotent as that at the MIC level. This combination also had a reduced mutation prevention concentration. Boeravinone B reduced the efflux of ethidium bromide and increased the accumulation, thus strengthening the role as a NorA inhibitor. Biofilm formation was reduced by four-eightfold of the minimal biofilm inhibitory concentration of ciprofloxacin, effectively preventing bacterial entry into macrophages. Boeravinone B effectively inhibited P -gp with half maximal inhibitory concentration (IC 50 ) of 64.85 μM. The study concluded that boeravinone B not only inhibits the NorA-mediated efflux of fluoroquinolones but also considerably inhibits the biofilm formation of S. aureus. Its P -gp inhibition activity demonstrates its potential as a bioavailability and bioefficacy enhancer.
Singh, Samsher; Kalia, Nitin P.; Joshi, Prashant; Kumar, Ajay; Sharma, Parduman R.; Kumar, Ashok; Bharate, Sandip B.; Khan, Inshad A.
2017-01-01
This study elucidated the role of boeravinone B, a NorA multidrug efflux pump inhibitor, in biofilm inhibition. The effects of boeravinone B plus ciprofloxacin, a NorA substrate, were evaluated in NorA-overexpressing, wild-type, and knocked-out Staphylococcus aureus (SA-1199B, SA-1199, and SA-K1758, respectively). The mechanism of action was confirmed using the ethidium bromide accumulation and efflux assay. The role of boeravinone B as a human P-glycoprotein (P-gp) inhibitor was examined in the LS-180 (colon cancer) cell line. Moreover, its role in the inhibition of biofilm formation and intracellular invasion of S. aureus in macrophages was studied. Boeravinone B reduced the minimum inhibitory concentration (MIC) of ciprofloxacin against S. aureus and its methicillin-resistant strains; the effect was stronger in SA-1199B. Furthermore, time–kill kinetics revealed that boeravinone B plus ciprofloxacin, at subinhibitory concentration (0.25 × MIC), is as equipotent as that at the MIC level. This combination also had a reduced mutation prevention concentration. Boeravinone B reduced the efflux of ethidium bromide and increased the accumulation, thus strengthening the role as a NorA inhibitor. Biofilm formation was reduced by four–eightfold of the minimal biofilm inhibitory concentration of ciprofloxacin, effectively preventing bacterial entry into macrophages. Boeravinone B effectively inhibited P-gp with half maximal inhibitory concentration (IC50) of 64.85 μM. The study concluded that boeravinone B not only inhibits the NorA-mediated efflux of fluoroquinolones but also considerably inhibits the biofilm formation of S. aureus. Its P-gp inhibition activity demonstrates its potential as a bioavailability and bioefficacy enhancer. PMID:29046665
Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation.
López-Soriano, F J; Fernández-López, J A; Mampel, T; Villarroya, F; Iglesias, R; Alemany, M
1988-01-01
The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids. PMID:3421924
Tintino, Saulo R; Oliveira-Tintino, Cícera D M; Campina, Fábia F; Silva, Raimundo L P; Costa, Maria do S; Menezes, Irwin R A; Calixto-Júnior, João T; Siqueira-Junior, José P; Coutinho, Henrique D M; Leal-Balbino, Tereza C; Balbino, Valdir Q
2016-08-01
During the early periods of antibiotic usage, bacterial infections were considered tamed. However, widespread antibiotic use has promoted the emergence of antibiotic-resistant pathogens, including multidrug resistant strains. Active efflux is a mechanism for bacterial resistance to inhibitory substances, known simply as drug efflux pumps. The bacterium Staphylococcus aureus is an important pathogenic bacterium responsible for an array of infections. The NorA efflux pump has been shown to be responsible for moderate fluoroquinolone resistance of S. aureus. The inhibition of the efflux pump was assayed using a sub-inhibitory concentration of standard efflux pump inhibitors and tannic acid (MIC/8), where its capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due to the possible inhibitory effect of these substances was observed. The MICs of EtBr and antibiotics were significantly reduced in the presence of tannic acid, indicating the inhibitory effect of this agent against the efflux pumps of both strains causing a three-fold reduction of the MIC when compared with the control. These results indicate the possible usage of tannic acid as an adjuvant in antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2016 Elsevier Ltd. All rights reserved.
Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan
2018-05-01
Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.
Hossain, Md Sharoare; Afrose, Sadia; Sawada, Tomio; Hamano, Koh-Ichi; Tsujii, Hirotada
2010-03-01
For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14 C-oleic acid and 3 H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty acid-induced acrosome reaction were examined. Semen was collected from a Duroc boar, and the metabolic activities of fatty acids in the spermatozoa were measured using radioactive compounds and thin layer chromatography. Cholesterol efflux was measured with a cholesterol determination assay kit. Participation of fatty acids on the AR through PKA and PKC pathways was evaluated using a specific inhibitor of these enzymes. Incorporation rate of 14 C-oleic acid into the sperm lipids was significantly higher than that of 3 H-linoleic acid ( P < 0.05). The oxidation of 14 C-oleic acid was higher in combined radiolabeling rather than in one. The highest amounts of 3 H-linoleic acid and 14 C-oleic acid were recovered mainly in the triglycerides and phospholipids fraction, and 14 C-oleic acid distribution was higher than the 3 H-linoleic acid in both labeled ( P < 0.05) sperm lipids. In the 3 H-linoleic and 14 C-oleic acid combined radiolabeling, the incorporation rate of the radioactive fatty acids in all the lipid fractions increased 15 times more than the alone radiolabeling. Boar sperm utilize oleic acid to generate energy for hyperactivation ( P < 0.05). Supplementation of arachidonic acid significantly increased ( P < 0.05) cholesterol efflux in sperm. When spermatozoa were incubated with PKA or PKC inhibitors, there was a significant reduction of arachidonic acid-induced acrosome reaction (AR) ( P < 0.05), and inhibition by PKA inhibitor is stronger than that by PKC inhibitor. Incorporation of unsaturated fatty acids, especially oleic acid, into triglycerides and phospholipids provides prerequisite energy for AR. Cholesterol efflux by arachidonic acid triggers AR. Arachidonic acid activated PKA and PKC pathway participate in induction of the AR.
Balimane, Praveen V; Chong, Saeho
2005-09-14
The objective of this project was to develop a cell based in vitro experimental procedure that can differentiate P-glycoprotein (P-gp) substrates from inhibitors in a single assay. Caco-2 cells grown to confluency on 12-well Transwell were used for this study. The efflux permeability (B to A) of P-gp specific probe (viz., digoxin) in the presence of test compounds (e.g. substrates, inhibitors and non-substrates of P-gp) was monitored, and the influx permeability (A to B) of test compounds was evaluated after complete P-gp blockade. Radiolabelled digoxin was added on the basolateral side with buffer on the apical side. The digoxin concentration appearing on the apical side represents digoxin efflux permeability during the control phase (0-1 h period). After 1 h, a test compound (10 microM) was added on the apical side. The reduced efflux permeability of digoxin suggests that the added test compound is an inhibitor. The influx permeability of test compound is also determined during the 1-2 h study period by measuring the concentration of the test compound in the basolateral side. At the end of 2 h, a potent P-gp inhibitor (GF120918) was added. The increased influx permeability of test compound during the 2-3 h incubation period indicates that the added test compound is a substrate. Samples were taken from both sides at the end of 1-3 h and the concentrations of the test compounds and digoxin were quantitated. Digoxin efflux permeability remained unchanged when incubated with P-gp substrates (e.g., etoposide, rhodamine123, taxol). However, when a P-gp inhibitor was added to the apical side, the digoxin efflux (B to A permeability) was significantly reduced (ketoconazole=51% reduction) as expected. The influx permeability of substrates increased significantly (rhodamine123=70%, taxol=220%, digoxin=290%) after the P-gp inhibitor (GF120918) was introduced, whereas the influx permeability of P-gp inhibitor and non-substrates was not affected by GF120918. Thus, this combined assay provides an efficient cell based in vitro screening tool to simultaneously distinguish compounds that are P-gp substrates from P-gp inhibitors.
Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil
Michael G. Ryan; Molly A. Cavaleri; Auro C. Almeida; Ricardo Penchel; Randy S. Senock; Jose Luiz Stape
2009-01-01
We measured CO2 efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-halfyear- old Eucalyptus in Brazil. In Hawaii, CO2 efflux from wood per unit biomass declined ~10x from age two to age five, twice as much as the decline in tree growth. The CO2 efflux from wood in Brazil was 8-10· lower than that...
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria
Xu, Zeling; Yan, Aixin
2015-01-01
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630
Diego A. Riveros-Iregui; Brian L. McGlynn
2009-01-01
We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...
Su, Wendy; Pasternak, Gavril W.
2013-01-01
The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590
Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo
2014-01-01
In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.
Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo
2014-01-01
In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522
Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.
Sun, Huadong; Pang, K Sandy
2008-01-01
We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs <1), but approached unity with high passive diffusive clearance (CL(d)) and increasing C(D,0) at a higher degree of saturation of the process. The J(max) (apparent V(max) estimated for the carrier system) and K(m)(') [or the K(m)('') based on a modified equation with the Hill coefficient (beta)] estimates from the Eadie-Hofstee plot revealed spurious correlations with the assigned V(max) and K(m). The sampling time, CL(d), and parameter space of K(m) and V(max) strongly influenced both the correlation and accuracy of estimates. Improved correlation was found for compounds with high CL(d). These observations showed that the catenary model is appropriate in the description of transport and metabolic data in Caco-2 cells.
Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R
2014-06-01
Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin
Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased inmore » acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.« less
Engelmann, B
1993-11-01
The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.
Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei
2017-09-01
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway. PMID:22129452
Furi, Leonardo; Ciusa, Maria Laura; Knight, Daniel; Di Lorenzo, Valeria; Tocci, Nadia; Cirasola, Daniela; Aragones, Lluis; Coelho, Joana Rosado; Freitas, Ana Teresa; Marchi, Emmanuela; Moce, Laura; Visa, Pilar; Northwood, John Blackman; Viti, Carlo; Borghi, Elisa; Orefici, Graziella
2013-01-01
The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant. PMID:23669380
Cha, Min Kyeong; Kang, Cheol-In; Park, Ga Eun; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon
2018-01-05
Tigecycline (TIG) is one of the most important antimicrobial agents used to treat infections by multidrug-resistant bacteria. However, rates of TIG-resistant pathogens have increased recently. This study was conducted to identify the antimicrobial susceptibility profiles and to investigate the role of efflux pumps in high-level TIG-resistant Enterobacter spp. isolates causing bacteraemia. A total of 323 Enterobacter spp. causing bacteraemia were collected from eight hospitals in various regions of South Korea. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method and Etest. Expression levels of the efflux pump gene acrA and its regulators (ramA and rarA) were examined by quantitative real-time PCR. Isolate relatedness was determined by multilocus sequence typing (MLST). Among the 323 clinical isolates included in this study, 37 (11.5%) were TIG-non-susceptible, of which 8 isolates were highly resistant to TIG with MICs of 8mg/L (4 isolates) or 16mg/L (4 isolates). All high-level TIG-resistant isolates showed increased expression of acrA (0.93-13.3-fold) and ramA (1.4-8.2-fold). Isolates with a tigecycline MIC of 16mg/L also showed overexpression of rarA compared with TIG-susceptible isolates. In this study, overexpression of acrA, ramA and rarA was observed in high-level TIG-resistant Enterobacter spp. isolates. We suggest that rarA might be involved in the regulation of acrA overexpression in high-level TIG-resistant Enterobacter spp. isolates. Efflux pump-mediated resistance should be closely monitored because it could be indirectly attributed to the use of other antibiotics transported by the same efflux pump. Copyright © 2017. Published by Elsevier Ltd.
Lévesque, Jean-François; Bleasby, Kelly; Chefson, Amandine; Chen, Austin; Dubé, Daniel; Ducharme, Yves; Fournier, Pierre-André; Gagné, Sébastien; Gallant, Michel; Grimm, Erich; Hafey, Michael; Han, Yongxin; Houle, Robert; Lacombe, Patrick; Laliberté, Sébastien; MacDonald, Dwight; Mackay, Bruce; Papp, Robert; Tschirret-Guth, Richard
2011-09-15
An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chloride fluxes in crab muscle fibres
Richards, C. D.
1969-01-01
1. Isotopic techniques were used to study the efflux of Cl- from single cannulated muscle fibres of the crab Maia squinado. 2. The efflux of 36Cl- was found to be exponential with steady rate constants ranging from 0·01 to 0·07 min-1. The steady efflux was ca. 1000-2000 pM cm-2 sec-1. The efflux was slightly depressed by K+-free saline and was unaffected by 40 mM-K+ saline and NO3- saline. The influx and efflux of Cl- were presumed independent. 3. The membrane conductance calculated from 36Cl- flux data was consistent with that determined by the method of electrotonic spread for other marine crustacean muscle fibres. Cl- accounted for most of the membrane conductance. PMID:5770889
Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin
2017-08-01
Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A directmore » observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.« less
NASA Astrophysics Data System (ADS)
Kim, Y.; Nishina, K.; Chae, N.; Park, S. J.; Yoon, Y. J.; Lee, B. Y.
2014-10-01
The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - a function of soil temperature, soil moisture, vegetation type, and thaw depth - to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes - 742 and 539 g CO2 m-2 period-1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17-36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.
Auvity, Sylvain; Caillé, Fabien; Marie, Solène; Wimberley, Catriona; Bauer, Martin; Langer, Oliver; Buvat, Irène; Goutal, Sébastien; Tournier, Nicolas
2018-05-10
Rationale : PET imaging using radiolabeled high-affinity substrates of P-glycoprotein (ABCB1) has convincingly revealed the role of this major efflux transporter in limiting the influx of its substrates from blood into the brain across the blood-brain barrier (BBB). Many drugs, such as metoclopramide, are weak ABCB1 substrates and distribute into the brain even when ABCB1 is fully functional. In this study, we used kinetic modeling and validated simplified methods to highlight and quantify the impact of ABCB1 on the BBB influx and efflux of 11 C-metoclopramide, as a model weak ABCB1 substrate, in non-human primates. Methods : The regional brain kinetics of a tracer dose of 11 C-metoclopramide (298 ± 44 MBq) were assessed in baboons using PET without (n = 4) or with intravenous co-infusion of the ABCB1 inhibitor tariquidar (4 mg/kg/h, n = 4). Metabolite-corrected arterial input functions were generated to estimate the regional volume of distribution ( V T ) as well as the influx ( K 1 ) and efflux ( k 2 ) rate constants, using a one-tissue compartment model. Modeling outcome parameters were correlated with image-derived parameters, i.e. area under the curve AUC 0-30 min and AUC 30-60 min (SUV.min) as well as the elimination slope (k E ; min -1 ) from 30 to 60 min of the regional time-activity curves. Results : Tariquidar significantly increased the brain distribution of 11 C-metoclopramide ( V T = 4.3 ± 0.5 mL/cm 3 and 8.7 ± 0.5 mL/cm 3 for baseline and ABCB1 inhibition conditions, respectively, P<0.001), with a 1.28-fold increase in K 1 (P < 0.05) and a 1.64-fold decrease in k 2 (P < 0.001). The effect of tariquidar was homogeneous across different brain regions. The most sensitive parameters to ABCB1 inhibition were V T (2.02-fold increase) and AUC 30-60 min (2.02-fold increase). V T was significantly (P < 0.0001) correlated with AUC 30-60 min (r 2 = 0.95), AUC 0-30 min (r 2 = 0.87) and k E (r 2 = 0.62). Conclusion : 11 C-metoclopramide PET imaging revealed the relative importance of both the influx hindrance and efflux enhancement components of ABCB1 in a relevant model of the human BBB. The overall impact of ABCB1 on drug delivery to the brain can be non-invasively estimated from image-derived outcome parameters without the need for an arterial input function. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis
2017-07-25
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs. Copyright © 2017 Olivares Pacheco et al.
Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.
Stutz, Samantha S; Anderson, Jeremiah; Zulick, Rachael; Hanson, David T
2017-05-17
High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Bowman, William P; Turnbull, Matthew H; Tissue, David T; Whitehead, David; Griffin, Kevin L
2008-10-01
Temperature plays a critical role in the regulation of respiration rates and is often used to scale measurements of respiration to the stand-level and calculate annual respiratory fluxes. Previous studies have indicated that failure to consider temperature gradients between sun-exposed stems and branches in the crown and shaded lower stems may result in errors when deriving stand-level estimates of stem CO(2) efflux. We measured vertical gradients in sapwood temperature in a mature lowland podocarp rain forest in New Zealand to: (1) estimate the effects of within-stem temperature variation on the vertical distribution of stem CO(2) efflux; and (2) use these findings to estimate stand-level stem CO(2) efflux for this forest. Large within-stem gradients in sapwood temperature (1.6 +/- 0.1 to 6.0 +/- 0.5 degrees C) were observed. However, these gradients did not significantly influence the stand-level estimate of stem CO(2) efflux in this forest (536 +/- 42 mol CO(2) ha(-1) day(-1)) or the vertical distribution of stem CO(2) efflux, because of the opposing effects of daytime warming and nighttime cooling on CO(2) efflux in the canopy, and the small fraction of the woody biomass in the crowns of forest trees. Our findings suggest that detailed measurements of within-stand temperature gradients are unlikely to greatly improve the accuracy of tree- or stand-level estimates of stem CO(2) efflux.
2008-01-01
The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. PMID:18260641
Iatta, Roberta; Puttilli, Maria Rita; Immediato, Davide; Otranto, Domenico; Cafarchia, Claudia
2017-03-01
This study aims to evaluate the effect of efflux pump modulators (EPMs) on the minimal inhibitory concentration (MIC) of fluconazole (FLZ) and voriconazole (VOR) in Malassezia furfur and Malassezia pachydermatis. The in vitro efficacy of azoles, in combination with EPMs (ie haloperidol-HAL, promethazine-PTZ and cyclosporine A-CYS), against 21 M. furfur from bloodstream infection patients and 14 M. pachydermatis from the skin of dogs with dermatitis, was assessed using a broth microdilution chequerboard analysis. Data were analysed using the model-fractional inhibitory concentration index (FICI) method. The MIC of FLZ and VOR of Malassezia spp. decreased in the presence of sub-inhibitory concentrations of HAL and/or PTZ. The synergic effect was observed only in strains with FLZ MIC≥128 μg/mL for M. furfur, FLZ MIC≥64 μg/mL for M. pachydermatis and VOR MIC≥4 μg/mL in both Malassezia spp. These results suggest that the drug efflux pumps are involved as defence mechanisms to azole drugs in Malassezia yeast. The synergism might be related to an increased expression of efflux pump genes, eventually resulting in azole resistance phenomena. Finally, the above FLZ and VOR MIC values might be considered the cut-off to discriminate susceptible and resistant strains. © 2016 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin
2016-12-01
The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha-1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.
Dopamine efflux in response to ultraviolet radiation in addicted sunbed users
Aubert, Pamela M.; Seibyl, John P.; Price, Julianne L.; Harris, Thomas S.; Filbey, Francesca M.; Jacobe, Heidi; Devous, Michael D.; Adinoff, Bryon
2017-01-01
Compulsive tanning despite awareness of ultraviolet radiation (UVR) carcinogenicity may represent an “addictive” behavior. Many addictive disorders are associated with alterations in dopamine (D2/D3) receptor binding and dopamine reactivity in the brain’s reward pathway. To determine if compulsive tanners exhibited neurobiologic responses similar to other addictive disorders, this study assessed basal striatal D2/D3 binding and UVR-induced striatal dopamine efflux in ten addicted and ten infrequent tanners. In a double-blind crossover trial, UVR or sham UVR was administered in separate sessions during brain imaging with single photon emission computerized tomography (SPECT). Basal D2/D3 receptor density and UVR-induced dopamine efflux in the caudate were assessed using 123I-iodobenzamide (123I-IBZM) binding potential non-displaceable (BPnd). Basal BPnd did not significantly differ between addicted and infrequent tanners. Whereas neither UVR nor sham UVR induced significant changes in bilateral caudate BPnd in either group, post-hoc analyses revealed left caudate BPnd significantly decreased (reflecting increased dopamine efflux) in the addicted tanners – but not the infrequent tanners –during the UVR session only. Bilateral ΔBPnd correlated with tanning severity only in the addicted tanners. These preliminary findings are consistent with a stronger neural rewarding response to UVR in addicted tanners, supporting a cutaneous-neural connection driving excessive sunbed use. PMID:27085608
Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.; ...
2016-05-24
CO 2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO 2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO 2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather eventsmore » associated with extratropical cyclones induce CO 2 flux pulses, resulting in further increase in annual CO 2 effluxes by 16%. Therefore, CO 2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO 2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO 2 emissions should account for both daytime-nighttime efflux difference and enhanced emissions during synoptic weather events. Furthermore, the analysis here can guide carbon emission sampling to improve regional carbon estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Heping; Zhang, Qianyu; Katul, Gabriel G.
CO 2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO 2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO 2 effluxes at night are approximately 70% greater than those during the day. At longer time scales, frequent synoptic weather eventsmore » associated with extratropical cyclones induce CO 2 flux pulses, resulting in further increase in annual CO 2 effluxes by 16%. Therefore, CO 2 emission rates from this reservoir, if these diel and synoptic processes are under-sampled, are likely to be underestimated by approximately 40%. Our results also indicate that the CO 2 emission rates from global inland waters reported in the literature, when based on indirect methods, are likely underestimated. Field samplings and indirect modeling frameworks that estimate CO 2 emissions should account for both daytime-nighttime efflux difference and enhanced emissions during synoptic weather events. Furthermore, the analysis here can guide carbon emission sampling to improve regional carbon estimates.« less
Effect of bisphenol A on drug efflux in BeWo, a human trophoblast-like cell line.
Jin, H; Audus, K L
2005-04-01
Bisphenol A (BPA) is a monomer of polycarbonate plastics that has estrogenic activities and has been shown to be a substrate for multidrug resistant efflux mechanisms, specifically, P-glycoprotein. Since the natural hormone estrogen reverses multidrug resistance in some cell types, we hypothesized that BPA might have a similar activity in trophoblasts. We have used BeWo cells as an in vitro model for human trophoblasts and calcein AM as a substrate for drug efflux mechanism to characterize BPA interactions with placental P-glycoprotein. We found that chronic exposure of BeWo cells to BPA did not alter intracellular calcein accumulation in a fashion that would be reflective of changes in P-glycoprotein expression. Immunoblots affirmed that BPA had small effects on P-glycoprotein expression. However, BeWo cells acutely exposed to BPA pretreatment were observed to have a significantly decreased calcein accumulation. Addition of cyclosporin A, a P-glycoprotein inhibitor and substrate, completely reversed BPA's effects on calcein accumulation and resulted in a net increase, relative to controls, in calcein accumulation by the BeWo cells. BPA was found not to stimulate P-gp ATPase or alter intracellular esterases mediating calcein release from calcein AM. Therefore, our results suggested that BPA stimulated drug efflux by BeWo cells probably by direct effects on P-glycoprotein.
Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin
2016-12-08
The CH 4 emissions from soil were influenced by the changeable CH 4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH 4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH 4 production sites during the rice-growing seasons. This layer acted as the source of CH 4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH 4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH 4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha -1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH 4 concentrations and diffusive effluxes induced by N in paddy fields.
Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant
2013-12-01
Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping
2016-01-01
P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343
NASA Astrophysics Data System (ADS)
Lauren, Ari; Hökkä, Hannu; Launiainen, Samuli; Palviainen, Marjo; Lehtonen, Aleksi
2016-04-01
Forest growth in peatlands is nutrient limited; principal source of nutrients is the decomposition of organic matter. Excess water decreases O2 diffusion and slows down the nutrient release. Drainage increases organic matter decomposition, CO2 efflux, and nutrient supply, and enhances the growth of forest. Profitability depends on costs, gained extra yield and its allocation into timber assortments, and the rate of interest. We built peatland simulator Susi to define and parameterize these interrelations. We applied Susi-simulator to compute water and nutrient processes, forest growth, and CO2 efflux of forested drained peatland. The simulator computes daily water fluxes and storages in two dimensions for a peatland forest strip located between drainage ditches. The CO2 efflux is made proportional to peat bulk density, soil temperature and O2 availability. Nutrient (N, P, K) release depends on decomposition and peat nutrient content. Growth limiting nutrient is detected by comparing the need and supply of nutrients. Increased supply of growth limiting nutrient is used to quantify the forest growth response to improved drainage. The extra yield is allocated into pulpwood and sawlogs based on volume of growing stock. The net present values of ditch cleaning operation and the gained extra yield are computed under different rates of interest to assess the profitability of the ditch cleaning. The hydrological sub-models of Susi-simulator were first parameterized using daily water flux data from Hyytiälä SMEAR II-site, after which the predictions were tested against independent hydrologic data from two drained peatland forests in Southern Finland. After verification of the hydrologic model, the CO2 efflux, nutrient release and forest growth proportionality hypothesis was tested and model performance validated against long-term forest growth and groundwater level data from 69 forested peatland sample plots in Central Finland. The results showed a clear relation between the stand growth, nutrient availability, and CO2 efflux. Potassium was the main limiting factor for the forest growth. This indicates that management aiming at decreasing heterotrophic CO2 efflux by raising the ground water table will decrease the forest growth. From the C balance perspective the growth rate of the tree stand becomes essential. Modelling approach enables a search for an optimal management schedule for producing timber in situation when there is a price given for release of C. Ditch network maintenance by ditch cleaning becomes profitable if: i) the initial drainage is very poor, ii) the availability of the critical nutrient is sufficient, iii) during prolonged rainy conditions, and iv) the tree stand is Scots pine (Pinus sylvestris) dominated and v) in a phase where most of the extra yield is allocated into sawlogs. The simulator and its holistic approach has been successfully implemented in both tropical pulpwood plantations in Sumatra, Indonesia and in Finnish boreal forests.
Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.
2013-12-01
Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected soils solution samples to quantify dissolved inorganic carbon (DIC), pH, and other solute concentrations. Importantly, we found Rsoil dynamics to be nearly in direct contrast to our classic understanding of patterns of soil CO2 efflux after rain events. Rsoil rates declined immediately upon wetting and gradually increased to pre-rain rates as the soils dried. Investigation into soil CO2 profile data showed that CO2 concentrations just below the surface declined significantly from near-ambient levels to near ~50ppm, which would directly impact rates of Rsoil. We detected differences among plant functional types in terms of rooting depth, water use, photosynthetic uptake, base rates of Rsoil, the time required to return to pre-rain rates of Rsoil, and the rates of soil weathering. Combining aboveground measurements of carbon uptake with these belowground estimates of carbon pools and efflux will allow us to make much more informed projections of carbon dynamics within highly weatherable soils across a range of global climate change projections and plant functional types.
Nürnberger, T; Nennstiel, D; Jabs, T; Sacks, W R; Hahlbrock, K; Scheel, D
1994-08-12
An oligopeptide of 13 amino acids (Pep-13) identified within a 42 kDa glycoprotein elicitor from P. mega-sperma was shown to be necessary and sufficient to stimulate a complex defense response in parsley cells comprising H+/Ca2+ influxes, K+/Cl- effluxes, an oxidative burst, defense-related gene activation, and phytoalexin formation. Binding of radiolabeled Pep-13 to parsley microsomes and protoplasts was specific, reversible, and saturable. Identical structural features of Pep-13 were found to be responsible for specific binding and initiation of all plant responses analyzed. The high affinity binding site recognizing the peptide ligand (KD = 2.4 nM) may therefore represent a novel class of receptors in plants, and the rapidly induced ion fluxes may constitute elements of the signal transduction cascade triggering pathogen defense in plants.
A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol
USDA-ARS?s Scientific Manuscript database
Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...
NASA Technical Reports Server (NTRS)
Chromiak, Joseph A.; Vandenburgh, Herman H.
1993-01-01
The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content of tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the role of prostaglandins as growth modulators in these processes was examined. Dex at 10(exp -8) M reduced PGF(sub 2(alpha)) production 55 percent - 65 percent and PGE(sub 2) production 84 - 90 percent after 24 - 72 h of incubation in static cultures. Repetitive 10 percent stretch-relaxations of the non-Dex treated cultures increased PGF(sub 2(alpha)) efflux 41 percent at 24 h and 276 percent at 72 h and increased PGE(sub 2) production 51 percent at 24 h and 236 percent at 72 h. Mechanical stimulation of Dex treated cultures increased PGF(sub 2(alpha)) production 162 percent after 24 h, thus returning PGF(sub 2(alpha)) efflux to the level of non-Dex treated cultures. At 72 h, stretch increased PGF(sub 2(alpha)) efflux 65 percent in Dex treated cultures, but PGF(sub 2(alpha)) production was 45-84 percent less than non-Dex treated cultures. Mechanical stimulation of Dex treated cultures increased PGE(sub 2) production at 24 h, but not at 72 h. Dex reduced prostaglandin H synthase (PGHS) activity in the muscle cultures by 70 percent after 8 - 24 h of incubation, and mechanical stimulation increased PGHS activity of the Dex treated cultures by 98 percent. It is concluded that repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by reversing the Dex-induced declines in PGHS activity and prostaglandin production.
Contreras, Laura; Satrústegui, Jorgina
2009-03-13
Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.
Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.
2014-01-01
Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394
Reversal of multidrug resistance by surfactants.
Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.
1992-01-01
Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678
Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun; Yancey, Patricia G; Zhong, Jianyong; Tao, Huan; Bian, Aihua; Fogo, Agnes B; Linton, Mac Rae F; Fazio, Sergio; Ikizler, Talat Alp; Kon, Valentina
2018-01-27
Our aim was to evaluate lipid trafficking and inflammatory response of macrophages exposed to lipoproteins from subjects with moderate to severe chronic kidney disease (CKD), and to investigate the potential benefits of activating cellular cholesterol transporters via liver X receptor (LXR) agonism. LDL and HDL were isolated by sequential density gradient ultracentrifugation of plasma from patients with stage 3-4 CKD and individuals without kidney disease (HDL CKD and HDL Cont , respectively). Uptake of LDL, cholesterol efflux to HDL, and cellular inflammatory responses were assessed in human THP-1 cells. HDL effects on inflammatory markers (MCP-1, TNF-α, IL-1β), Toll-like receptors-2 (TLR-2) and - 4 (TLR-4), ATP-binding cassette class A transporter (ABCA1), NF-κB, extracellular signal regulated protein kinases 1/2 (ERK1/2) were assessed by RT-PCR and western blot before and after in vitro treatment with an LXR agonist. There was no difference in macrophage uptake of LDL isolated from CKD versus controls. By contrast, HD CKD was significantly less effective than HDL Cont in accepting cholesterol from cholesterol-enriched macrophages (median 20.8% [IQR 16.1-23.7] vs control (26.5% [IQR 19.6-28.5]; p = 0.008). LXR agonist upregulated ABCA1 expression and increased cholesterol efflux to HDL of both normal and CKD subjects, although the latter continued to show lower efflux capacity. HDL CKD increased macrophage cytokine response (TNF-α, MCP-1, IL-1β, and NF-κB) versus HDL Cont . The heightened cytokine response to HDL CKD was further amplified in cells treated with LXR agonist. The LXR-augmentation of inflammation was associated with increased TLR-2 and TLR-4 and ERK1/2. Moderate to severe impairment in kidney function promotes foam cell formation that reflects impairment in cholesterol acceptor function of HDL CKD . Activation of cellular cholesterol transporters by LXR agonism improves but does not normalize efflux to HDL CKD . However, LXR agonism actually increases the pro-inflammatory effects of HDL CKD through activation of TLRs and ERK1/2 pathways.
Crossing boundaries: the importance of cellular membranes in industrial biotechnology.
Jezierska, Sylwia; Van Bogaert, Inge N A
2017-05-01
How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.
Soparkar, Ketaki; Kinana, Alfred D.; Weeks, Jon W.; Morrison, Keith D.; Nikaido, Hiroshi
2015-01-01
ABSTRACT The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions—Y49S, V127A, V127G, D153E, and G288C—mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions—F453C and L486W—were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity. PMID:26240069
Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.
Brincat, Jean Pierre; Broccatelli, Fabio; Sabatini, Stefano; Frosini, Maria; Neri, Annalisa; Kaatz, Glenn W; Cruciani, Gabriele; Carosati, Emanuele
2012-03-08
Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.
Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm.
Soto, Sara M
2013-04-01
Biofilms are complex microbial associations anchored to abiotic or biotic surfaces, embedded in extracellular matrix produced by the biofilms themselves where they interact with each other and the environment. One of the main properties of biofilms is their capacity to be more resistant to antimicrobial agents than planktonic cells. Efflux pumps have been reported as one of the mechanisms responsible for the antimicrobial resistance in biofilm structures. Evidence of the role of efflux pump in biofilm resistance has been found in several microorganisms such as Pseudomonas aeruginosa, Escherichia coli and Candida albicans. However, in spite of the studies on the importance of efflux pumps in biofilm growth and about their relevance in antimicrobial resistance forming biofilm, the exact role of these efflux systems has not been determined as yet.
Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae
Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.
2015-01-01
Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826
Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.
Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre
2016-06-07
Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.
Serum cholesterol acceptor capacity in intrauterine growth restricted fetuses.
Pecks, Ulrich; Rath, Werner; Bauerschlag, Dirk O; Maass, Nicolai; Orlikowsky, Thorsten; Mohaupt, Markus G; Escher, Geneviève
2017-10-26
Intrauterine growth restriction (IUGR) is an independent risk factor for the development of cardiovascular diseases later in life. The mechanisms whereby slowed intrauterine growth confers vascular risk are not clearly established. In general, a disturbed cholesterol efflux has been linked to atherosclerosis. The capacity of serum to accept cholesterol has been repeatedly evaluated in clinical studies by the use of macrophage-based cholesterol efflux assays and, if disturbed, precedes atherosclerotic diseases years before the clinical diagnosis. We now hypothesized that circulating cholesterol acceptors in IUGR sera specifically interfere with cholesterol transport mechanisms leading to diminished cholesterol efflux. RAW264.7 cells were used to determine efflux of [3H]-cholesterol in response to [umbilical cord serum (IUGR), n=20; controls (CTRL), n=20]. Cholesterol efflux was lower in IUGR as compared to controls [controls: mean 7.7% fractional [3H]-cholesterol efflux, standard deviation (SD)=0.98; IUGR: mean 6.3%, SD=0.79; P<0.0001]. Values strongly correlated to HDL (ρ=0.655, P<0.0001) and apoE (ρ=0.510, P=0.0008), and mildly to apoA1 (ρ=0.3926, P=0.0122) concentrations. Reduced cholesterol efflux in IUGR could account for the enhanced risk of developing cardiovascular diseases later in life.
A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps
Martins, Marta; McCusker, Matthew P; Viveiros, Miguel; Couto, Isabel; Fanning, Séamus; Pagès, Jean-Marie; Amaral, Leonard
2013-01-01
It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to produce fluorescence of the bacterial mass, the greater the efflux capacity of the bacterial cells. We have tested and applied this method to a large number of Gram-positive and Gram-negative bacteria to detect efflux activity among these multi-drug resistant isolates. The presumptive efflux activity detected by the Ethidium Bromide-agar Cartwheel method was subsequently confirmed by the determination of the minimum inhibitory concentration for several antibiotics in the presence and absence of known efflux pump inhibitors. PMID:23589748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Heath H; Mcdowell, Nate; Hanson, David
2009-01-01
High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar tomore » measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high temporal frequency.« less
Khalil, H; Murrin, C; O'Reilly, M; Viljoen, K; Segurado, R; O'Brien, J; Somerville, R; McGillicuddy, F; Kelleher, C C
2017-01-01
High-density lipoprotein (HDL) cholesterol efflux capacity in adults may be a measure of the atheroprotective property of HDL. Little however, is known about HDL cholesterol efflux capacity in childhood. We aimed to investigate the relationship between HDL cholesterol efflux capacity and childhood anthropometrics in a longitudinal study. Seventy-five children (mean age = 9.4 ± 0.4 years) were followed from birth until the age of 9 years. HDL cholesterol efflux capacity was determined at age 9 by incubating serum-derived HDL-supernatants with 3 H-cholesterol labeled J774 macrophages and percentage efflux determined. Mothers provided dietary information by completing food frequency questionnaires in early pregnancy and then 5 years later on behalf of themselves and their children. Pearson's correlations and multiple regression analyses were conducted to confirm independent associations with HDL efflux. There was a negative correlation between HDL cholesterol efflux capacity and waist circumference at age 5 (r = -0.3, p = 0.01) and age 9 (r = -0.24, p = 0.04) and BMI at age 5 (r = -0.45, p = 0.01) and age 9 (r = -0.19, p = 0.1). Multiple regression analysis showed that BMI at age 5 remained significantly associated with reduced HDL cholesterol efflux capacity (r = -0.45, p < 0.001). HDL-C was negatively correlated with energy-adjusted fat intake (r = -0.24, p = 0.04) and positively correlated with energy-adjusted protein (r = 0.24, p = 0.04) and starch (r = 0.29, p = 0.01) intakes during pregnancy. HDL-C was not significantly correlated with children dietary intake at age 5. There were no significant correlations between maternal or children dietary intake and HDL cholesterol efflux capacity. This novel analysis shows that efflux capacity is negatively associated with adiposity in early childhood independent of HDL-C. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Tye, S J; Miller, A D; Blaha, C D
2013-11-12
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina
2012-01-01
Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475
Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.
2013-01-01
Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498
Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.
Macías-García, B; González-Fernández, L; Loux, S C; Rocha, A M; Guimarães, T; Peña, F J; Varner, D D; Hinrichs, K
2015-01-01
Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions. © 2015 Society for Reproduction and Fertility.
Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; ...
2016-10-21
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less
Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F
2017-10-01
The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.
Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface
Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.; ...
2017-11-28
Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less
Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.
Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less
Mechanisms of Sodium Transport in Plants—Progresses and Challenges
Keisham, Monika; Mukherjee, Soumya; Bhatla, Satish C.
2018-01-01
Understanding the mechanisms of sodium (Na+) influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na+ accumulation and assure the maintenance of low Na+ concentration in the cytosol and, hence, plant tolerance to salt stress. Na+ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs). Na+ is compartmentalized into vacuoles by Na+/H+ exchangers (NHXs). Na+ efflux from the plant roots is mediated by the activity of Na+/H+ antiporters catalyzed by the salt overly sensitive 1 (SOS1) protein. In animals, ouabain (OU)-sensitive Na+, K+-ATPase (a P-type ATPase) mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na+, K+-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na+ influx, compartmentalization, and efflux in higher plants in response to salt stress. PMID:29495332
Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle
1976-01-01
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4- dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin- insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels. PMID:1086888
Thienhaus, R; Tharandt, L; Zais, U; Staib, W
1975-06-01
The release of amino acids by skeletal muscle was studied in the isolated perfused rat hindquarter. Adrenalectomy depressed the formation of glutamine and alanine as well as the efflux of all other amino acids measured. Betamethasone--a synthetic glucocorticoid--caused a significant increase in the efflux of nearly all amino acids up to the level of normal controls. The release of amino acids was also increased in perfused hindquarters of diabetic rats. On the other hand, insulin exhibited a depressing effect on the release of amino acids by hindquarters of normal rats. The metabolic integrity of the muscle tissue was proved by measuring creatine phosphate, ATP, ADP and water content as well as by the significant insulin effect on glucose uptake and on [14C]leucine incorporation into muscle proteins.
Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G
2013-02-15
Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.
Rowley, Helen L; Kulkarni, Rajiv S; Gosden, Jane; Brammer, Richard J; Hackett, David; Heal, David J
2014-03-01
Lisdexamfetamine dimesylate is a novel prodrug approved in North America, Europe and Brazil for treating attention deficit hyperactivity disorder (ADHD). It undergoes rate-limited hydrolysis by red blood cells to yield d-amphetamine. Following our previous work comparing lisdexamfetamine with d-amphetamine, the neurochemical and behavioural profiles of lisdexamfetamine, methylphenidate and modafinil were compared by dual-probe microdialysis in the prefrontal cortex (PFC) and striatum of conscious rats with simultaneous locomotor activity measurement. We employed pharmacologically equivalent doses of all compounds and those that spanned the therapeutically relevant and psychostimulant range. Lisdexamfetamine (0.5, 1.5, 4.5 mg/kg d-amphetamine base, per os (po)), methylphenidate (3, 10, 30 mg/kg base, po) and modafinil (100, 300, 600 mg/kg base, po) increased efflux of dopamine and noradrenaline in PFC, and dopamine in striatum. Only lisdexamfetamine increased 5-hydroxytryptamine (5-HT) efflux in PFC and striatum. Lisdexamfetamine had larger and more sustained effects on catecholaminergic neurotransmission than methylphenidate or modafinil. Linear correlations were observed between striatal dopamine efflux and locomotor activity for lisdexamfetamine and methylphenidate, but not modafinil. Regression slopes revealed greater increases in extracellular dopamine could be elicited without producing locomotor activation by lisdexamfetamine than methylphenidate. These results are consistent with clinical findings showing that lisdexamfetamine is an effective ADHD medication with prolonged duration of action and good separation between its therapeutic actions and stimulant side-effects.
Oyekan, A O; Youseff, T; Fulton, D; Quilley, J; McGiff, J C
1999-10-01
Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.
Mind the gap: non-biological processes contributing to soil CO2 efflux.
Rey, Ana
2015-05-01
Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global carbon budget. © 2014 John Wiley & Sons Ltd.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee
2017-05-01
1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.
Engineering microbial biofuel tolerance and export using efflux pumps
Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila
2011-01-01
Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065
Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus.
S. Mark Nay; Kim G. Mattson; Bernard T. Bormann
1994-01-01
Investigators have historically measured soil CO2 efflux as an indicator of soil microbial and root activity and more recently in calculations of carbon budgets. The most common methods estimate CO2 efflux by placing a chamber over the soil surface and quantifying the amount of CO2 entering the...
NASA Astrophysics Data System (ADS)
Kim, Y.; Nishina, K.; Chae, N.; Park, S.; Yoon, Y.; Lee, B.
2014-04-01
The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance in response to thawing permafrost, changes in the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted in dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of the driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - which is a function of soil temperature, soil moisture, vegetation type and thaw depth - to quantify the effect of environmental parameters on CO2 efflux, and to estimate growing season CO2 emission. Our results showed that average CO2 efflux in 2011 is 1.4-fold higher than in 2012, resulting from the distinct difference in soil moisture between the two years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, reflecting tussock as a significant CO2 source in the Arctic, with wide area distribution on a circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals soil temperature as the most important parameter in regulating CO2 efflux, rather than soil moisture and thaw depth. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference in CO2 efflux - 742 and 539 g CO2 m-2 period-1 in 2011 and 2012, respectively, suggesting that the 2012 CO2 emission rate was constrained by 27% (95% credible interval: 17-36%) compared to 2011, due to higher soil moisture from severe rain. Estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 period-1 in 2012 to 1.2 Mg CO2 period-1 in 2011 within a 40 m × 40 m plot, corresponding to 86% and 80% of the annual CO2 emission rates within the Alaska western tundra ecosystem. Therefore, the HB model can be readily applied to observed CO2 efflux, as it demands only four environmental parameters and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.
Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G
2017-04-28
Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.
2011-01-01
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172
Variability in soil CO2 efflux across distinct urban land cover types
NASA Astrophysics Data System (ADS)
Weissert, Lena F.; Salmond, Jennifer A.; Schwendenmann, Luitgard
2015-04-01
As a main source of greenhouse gases urban areas play an important role in the global carbon cycle. To assess the potential role of urban vegetation in mitigating carbon emissions we need information on the magnitude of biogenic CO2 emissions and its driving factors. We examined how urban land use types (urban forest, parklands, sportsfields) vary in their soil CO2 efflux. We measured soil CO2 efflux and its isotopic signature, soil temperature and soil moisture over a complete growing season in Auckland, New Zealand. Soil physical and chemical properties and vegetation characteristics were also measured. Mean soil CO2 efflux ranged from 4.15 to 12 μmol m-2 s-1. We did not find significant differences in soil CO2 efflux among land cover types due to high spatial variability in soil CO2 efflux among plots. Soil (soil carbon and nitrogen density, texture, soil carbon:nitrogen ratio) and vegetation characteristics (basal area, litter carbon density, grass biomass) were not significantly correlated with soil CO2 efflux. We found a distinct seasonal pattern with significantly higher soil CO2 efflux in autumn (Apr/May) and spring (Oct). In urban forests and sportsfields over 80% of the temporal variation was explained by soil temperature and soil water content. The δ13C signature of CO2 respired from parklands and sportsfields (-20 permil - -25 permil) were more positive compared to forest plots (-29 permil) indicating that parkland and sportsfields had a considerable proportion of C4 grasses. Despite the large intra-urban variability, our results compare to values reported from other, often climatically different cities, supporting the hypothesis of homogenization across urban areas as a result of human management practices.
Winter and early spring CO2 efflux from tundra communities of northern Alaska
NASA Astrophysics Data System (ADS)
Fahnestock, J. T.; Jones, M. H.; Brooks, P. D.; Walker, D. A.; Welker, J. M.
1998-11-01
Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Berg, G.J.; de Goeij, J.J.; Bock, I.
1991-08-01
Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less
Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.
2012-01-01
Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683
Rineh, Ardeshir; Bremner, John B; Hamblin, Michael R; Ball, Anthony R; Tegos, George P; Kelso, Michael J
2018-02-24
Resistance of bacteria to antibiotics is a public health concern worldwide due to the increasing failure of standard antibiotic therapies. Antimicrobial photodynamic inactivation (aPDI) is a promising non-antibiotic alternative for treating localized bacterial infections that uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species and kill microbes. Phenothiazinium photosensitizers like methylene blue (MB) and toluidine blue O are hydrophobic cations that are naturally expelled from bacterial cells by multidrug efflux pumps, which reduces their effectiveness. We recently reported the discovery of a NorA efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en-MB that shows enhanced photodynamic inactivation of the Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) relative to MB, both in vitro and in vivo. Here, we report the surprising observation that INF55-(Ac)en-MB and two related hybrids bearing the NorA efflux pump inhibitors INF55 and INF271 also show enhanced aPDI activity in vitro (relative to MB) against the Gram-negative bacteria Escherichia coli and Acinetobacter baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed superior effects to MB in murine aPDI infection models. The findings motivate wider exploration of aPDI with EPI-MB hybrids against Gram-negative pathogens and more detailed studies into the molecular mechanisms underpinning their activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chi, Yan; Wang, Le; Liu, Yuanyuan; Ma, Yanhua; Wang, Renjun; Han, Xiaofei; Qiao, Hui; Lin, Jiabin; Matsuura, Eiji; Liu, Shuqian; Liu, Qingping
2014-06-01
ATP binding cassette transporter A1 (ABCA1) is a member of the ATP-binding cassette transporter family. It plays an essential role in mediating the efflux of excess cholesterol. It is known that peroxisome proliferator-activated receptor gamma (PPARγ) promoted ABCA1 expression. We previously found 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) upregulated ABCA1 partially through CD36 mediated signals. In the present study, we intended to test if PPARγ signally is involved in the upregulation mediated by oxLig-1. First, we docked oxLig-1 and the ligand-binding domain (LBD) of PPARγ by using AutoDock 3.05 and subsequently confirmed the binding by ELISA assay. Western blotting analyses showed that oxLig-1 induces liver X receptor alpha (LXRα), PPARγ and consequently ABCA1 expression. Furthermore, oxLig-1 significantly enhanced ApoA-I-mediated cholesterol efflux. Pretreatment with an inhibitor for PPARγ (GW9662) or/and LXRα (GGPP) attenuated oxLig-1-induced ABCA1 expression. Under PPARγ knockdown by using PPARγ-shRNA, oxLig-1-induced ABCA1 expression and cholesterol efflux in THP-1 macrophages was blocked by 62% and 25% respectively. These observations suggest that oxLig-1 is a novel PPARγ agonist, promoting ApoA-I-mediated cholesterol efflux from THP-1 macrophages by increasing ABCA1 expression via induction of PPARγ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wood, Chris M; Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J
2013-01-01
The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L(-1) urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L(-1) with osmotic compensation by 175 mmol L(-1) mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L(-1)) to those of urea (175 mmol L(-1)), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.
Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria.
Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko
2018-01-01
Large-scale femtoliter droplet array as a platform for single cell efflux assay of bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single bacterial cells, fluorescence-based detection of efflux activity at the single cell level, and collection of single cells from droplet and subsequent gene analysis are described in detail.
P. Eric Wiseman; John R. Seiler
2004-01-01
Soil CO2 efflux resulting from microbial and root respiration is a major component of the forest C cycle. In this investigation, we examined in detail how soil CO2 efflux differs both spatially and temporally with respect to stand age for loblolly pine (Pinus taeda L.) plantations on the Virginia Piedmont...
Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin
2017-08-04
The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.
Reimann, Sven; Deising, Holger B.
2005-01-01
Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029