Sample records for increased defect concentration

  1. Characterization and modelling of the boron-oxygen defect activation in compensated n-type silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schön, J.; Niewelt, T.; Broisch, J.

    2015-12-28

    A study of the activation of the light-induced degradation in compensated n-type Czochralski grown silicon is presented. A kinetic model is established that verifies the existence of both the fast and the slow components known from p-type and proves the quadratic dependence of the defect generation rates of both defects on the hole concentration. The model allows for the description of lifetime degradation kinetics in compensated n-type silicon under various intensities and is in accordance with the findings for p-type silicon. We found that the final concentrations of the slow defect component in compensated n-type silicon only depend on themore » interstitial oxygen concentration and on neither the boron concentration nor the equilibrium electron concentration n{sub 0}. The final concentrations of the fast defect component slightly increase with increasing boron concentration. The results on n-type silicon give new insight to the origin of the BO defect and question the existing models for the defect composition.« less

  2. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  3. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  4. Enhanced photoluminescence properties of Al doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Ding, J. J.

    2018-01-01

    Al doped ZnO films are fabricated by radio frequency magnetron sputtering. In general, visible emission is related to various defects in ZnO films. However, too much defects will cause light emission quench. So it is still a controversial issue to control appropriate defect concentrations. In this paper, based on our previous results, appropriate Al doping concentration is chosen to introduce more both interstitial Zn and O vacancy defects, which is responsible for main visible emission of ZnO films. A strong emission band located at 405 nm and a long tail peak is observed in the samples. As Al is doped in ZnO films, the intensity of emission peaks increases. Zn interstitial might increase with the increasing Al3+ substitute because ZnO was a self-assembled oxide compound. So Zn interstitial defect concentration in Al doped ZnO films will increase greatly, which results in the intensity of emission peaks increases.

  5. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  6. An exploratory analysis of the relationship between ambient ...

    EPA Pesticide Factsheets

    Background: Associations between ozone (O3) and fine particulate matter (PM2.5) concentrations and birth outcomes have been previously demonstrated. We perform an exploratory analysis of O3 and PM2.5 concentrations during early pregnancy and multiple types of birth defects. Methods: Data on births were obtained from the Texas Birth Defects Registry and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were determined using a Bayesian hierarchical model that combined modeled air pollution concentrations with air monitoring data to create bias-corrected concentrations and matched to residential address at birth. Average air pollution concentrations during the first trimester were calculated. Results: The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations between the air pollutants and birth defects were null. The hypotheses are provided by an observed association between O3 and craniosynostosis [adjusted OR 1.28 (95% CI 1.04, 1.58) per 13.3 ppb increase) and observed inverse associations between PM2.5 concentrations and septal heart defects and obstructive heart defects [adjusted ORs 0.79 (95% CI 0.75, 0.82) and 0.88 (95% CI 0.79, 0.97) per 5.0 µg/m3 increase, respectively] in the Texas Birth Defects Registry study. Septal heart defects and ventricular outflow tract obstructions were also examined using the NBDPS but the associations with PM2.5 were null [adj

  7. Nonlinear effects in defect production by atomic and molecular ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, C., E-mail: david@igcar.gov.in; Dholakia, Manan; Chandra, Sharat

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al{sub 3}, resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed duemore » to Al{sub 4} implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations.« less

  8. Influence of anisotropy on percolation and jamming of linear k-mers on square lattice with defects

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yu Yu; Laptev, V. V.; Burmistrov, A. S.; Shinyaeva, T. S.

    2015-09-01

    By means of the Monte Carlo simulation, we study the layers produced by the random sequential adsorption of the linear rigid objects (k-mers also known as rigid or stiff rods, sticks, needles) onto the square lattice with defects in the presence of an external field. The value of k varies from 2 to 32. The point defects randomly and uniformly placed on the substrate hinder adsorption of the elongated objects. The external field affects isotropic deposition of the particles, consequently the deposited layers are anisotropic. We study the influence of the defect concentration, the length of the objects, and the external field on the percolation threshold and the jamming concentration. Our main findings are (i) the critical defect concentration at which the percolation never occurs even at jammed state decreases for short k-mers (k < 16) and increases for long k-mers (k > 16) as anisotropy increases, (ii) the corresponding critical k-mer concentration decreases with anisotropy growth, (iii) the jamming concentration decreases drastically with growth of k-mer length for any anisotropy, (iv) for short k-mers, the percolation threshold is almost insensitive to the defect concentration for any anisotropy.

  9. Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Praveen

    Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of defect concentrations allowed the conclusion that the In vacancy signal was due to second-shell and not third-shell defects. PAC spectroscopy was applied to study deformation -induced defects in PdIn and NiAl after mechanically milling in a SPEX 8000 vibrator mill for periods of up to four hours. For PdIn, the Pd vacancy concentration increased rapidly for short milling times and was observed to saturate at a value of 3.5(5) at.% after 10 minutes of milling when milling was carried out using a WC vial to avoid sample contamination. Such a large vacancy concentration accounts for 4.41(63) kJ mol-1 excess-stored energy in milled PdIn and implies a high density of "broken bonds" which may lead to mechanical instability of the lattice. Milling also produced In antisite atoms on the Pd sublattice. The antisite-atom concentration increased linearly with milling time, reaching a value of 4.0(7) at.% after 2 hours of milling. The Ni vacancy concentration in NiAl was also observed to increase with milling and to saturate after two hours of milling. Here, the "local" Ni vacancy concentration in the first-neighbor shell of the probe, deduced from the vacancy site fraction, was in excess of values that should occur if defects were located at random. This is attributed to binding between the Ni vacancy and the In/Cd probe, which is known from other work to be 0.22 eV.

  10. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  11. Sensitivity of thermal transport in thorium dioxide to defects

    NASA Astrophysics Data System (ADS)

    Park, Jungkyu; Farfán, Eduardo B.; Mitchell, Katherine; Resnick, Alex; Enriquez, Christian; Yee, Tien

    2018-06-01

    In this research, the reverse non-equilibrium molecular dynamics is employed to investigate the effect of vacancy and substitutional defects on the thermal transport in thorium dioxide (ThO2). Vacancy defects are shown to severely alter the thermal conductivity of ThO2. The thermal conductivity of ThO2 decreases significantly with increasing the defect concentration of oxygen vacancy; the thermal conductivity of ThO2 decreases by 20% when 0.1% oxygen vacancy defects are introduced in the 100 unit cells of ThO2. The effect of thorium vacancy defect on the thermal transport in ThO2 is even more detrimental; ThO2 with 0.1% thorium vacancy defect concentration exhibits a 38.2% reduction in its thermal conductivity and the thermal conductivity becomes only 8.2% of that of the pristine sample when the thorium vacancy defect concentration is increased to 5%. In addition, neutron activation of thorium produces uranium and this uranium substitutional defects in ThO2 are observed to affect the thermal transport in ThO2 marginally when compared to vacancy defects. This indicates that in the thorium fuel cycle, fissile products such as 233U is not likely to alter the thermal transport in ThO2 fuel.

  12. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    NASA Astrophysics Data System (ADS)

    Alberi, K.; Scarpulla, M. A.

    2016-06-01

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-state excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. This effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.

  13. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    DOE PAGES

    Alberi, Kirstin; Scarpulla, M. A.

    2016-06-21

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-statemore » excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. Furthermore, this effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.« less

  14. Pullout Performances of Grouted Rockbolt Systems with Bond Defects

    NASA Astrophysics Data System (ADS)

    Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan

    2018-03-01

    This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.

  15. Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.

    2015-08-28

    The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less

  16. Effects of Excess Carriers on Charged Defect Concentrations in Wide Bandgap Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin M; Scarpulla, Michael A.

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transitionmore » level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.« less

  17. Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin; Scarpulla, Michael A.

    2018-05-01

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transition level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.

  18. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  19. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  20. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  1. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.

  2. Defect center characteristics of silica optical fiber material by gamma ray radiation

    NASA Astrophysics Data System (ADS)

    Luo, Wenyun; Xiao, Zhongyin; Wen, Jianxiang; Yin, Jianchong; Chen, Zhenyi; Wang, Zihua; Wang, Tingyun

    2011-12-01

    Defect centers play a major role in the radiation-induced transmission loss for silica optical fibers. We have investigated characteristics of the best known defect centers E' in silica optical fiber material irradiated with γ ray at room temperature, and measured by using electron spin resonance (ESR) and spectrophotometer. The results show that the defect concentrations increase linearly with radiation doses from 1kGy to 50kGy. We have established the mechanism models of radiation induced defect centers' formation. We have also studied the influences of thermal annealing on defect centers. The radiation induced defect centers can be efficiently decreased by thermal annealing. Particularly, the defect concentration is less than the initial one when the temperature of thermal annealing is over 500°C for our silica samples. These phenomena can also be explained by the optical absorption spectra we have obtained.

  3. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    DOE PAGES

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less

  4. Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1-x)2O3 thin films

    NASA Astrophysics Data System (ADS)

    Prozheeva, V.; Hölldobler, R.; von Wenckstern, H.; Grundmann, M.; Tuomisto, F.

    2018-03-01

    Various nominally undoped and Si-doped (InxGa1-x)2O3 thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane α-sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga2O3-like trend for low indium concentrations changing to In2O3-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in VIn-like defects, suggesting a vacancy concentration of at least mid-1018 cm-3 independent of the indium content.

  5. Ferromagnetism in proton irradiated 4H-SiC single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  6. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M.; Department of Physics, University of Chinese Academy of Sciences, Beijing 100049; Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a verymore » reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.« less

  7. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  8. Analysis of Reparative Activity of Platelet Lysate: Effect on Cell Monolayer Recovery In Vitro and Skin Wound Healing In Vivo.

    PubMed

    Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D

    2016-11-01

    Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.

  9. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  10. Effect of doping ions on the structural defect and the electrical behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn

    Graphical abstract: The dielectric constant decreases with Ta doping, increases with Y doping and keeps almost constant with Zr doping compared with that of pure CCTO. - Highlights: • Y and Ta doping cause different defect types and concentration. • Defect influences the grain boundary mobility and results in different grain size. • Y doping increases the dielectric constant and decreases the nonlinear property. • Ta doping decreases the dielectric constant and enhances the nonlinear property. • Zr doped sample has nearly the defect type and dielectric properties as CaCu{sub 3}Ti{sub 4}O{sub 12}. - Abstract: The microstructure, dielectric and electricalmore » properties of CaCu{sub 3}Ti{sub 4−x}R{sub x}O{sub 12} (R = Y, Zr, Ta; x = 0 and 0.005) ceramics were investigated by XRD, Raman spectra, SEM and dielectric spectrum measurements. Positron annihilation measurements have been performed to investigate the influence of doping on the defects. The results show that all samples form a single crystalline phase. Y and Ta doping cause different defect types and increase the defect size and concentration, which influence the mobility of grain boundary and result in the different grain size. Y doping increases the dielectric constant and decreases the nonlinear property while Ta doping lead to an inverse result. Zr-doped sample has nearly the defect type, grain morphology and dielectric properties as pure CaCu{sub 3}Ti{sub 4}O{sub 12}. The effects of microstructure including the grain morphology and the vacancy defects on the mechanism of the dielectric and electric properties by doping are discussed.« less

  11. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys

    DOE PAGES

    Jin, Ke; Guo, Wei; Lu, Chenyang; ...

    2016-12-01

    Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less

  12. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Guo, Wei; Lu, Chenyang

    Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less

  13. On the Mechanism of Polyuria in Potassium Depletion

    PubMed Central

    Berl, Tomas; Linas, Stuart L.; Aisenbrey, Gary A.; Anderson, Robert J.

    1977-01-01

    The association of potassium (K) depletion with polyuria and a concentrating defect is established, but the extent to which these defects could be secondary to an effect of low K on water intake has not been systematically investigated. To determine whether hypokalemia has a primary effect to increase thirst and whether any resultant polyuria and polydipsia contribute to the concentrating defect, we studied three groups of rats kept in metabolic cages for 15 days. The groups were set up as follows: group 1, normal diets and ad lib. fluids (n = 12); group 2, K-deficient diet on ad lib. fluids (n = 12); and group 3, K-deficient diet and fluid intake matched to group 1 (n = 14). Daily urine flow and urinary osmolality of groups 1 and 3 were not significantly different throughout the study. In contrast, as of day 6, group 2 rats consistently had a higher fluid intake (P < 0.0025), higher urine flow (P < 0.001), and lower urinary osmolality (P < 0.001) than the other two groups. These alterations in fluid intake and urine flow preceded a defect in maximal concentrating ability. On day 7, maximal urinary osmolality was 2,599±138 msmol/kg in rats on K-deficient intake and 2,567±142 msmol/kg in controls. To determine whether this primary polydipsia is itself responsible for the development of the concentrating defect, the three groups of rats were dehydrated on day 15. Despite different levels of fluid intake, maximal urinary osmolality was impaired equally in groups 2 and 3 (1,703 and 1,511 msmol/kg, respectively), as compared to rats in group 1 (2,414 msmol/kg), P < 0.001. We therefore conclude that K depletion stimulates thirst, and the resultant increase in water intake is largely responsible for the observed polyuria. After 15 days of a K-deficient diet, the impaired maximal urinary concentration in hypokalemia, however, was not related to increased water intake, since fluid restriction did not abolish the renal concentrating defect. PMID:893666

  14. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  15. Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits.

    PubMed

    Chen, Jianghao; Liu, Wei; Zhao, Jinxiu; Sun, Cong; Chen, Jie; Hu, Kaijin; Zhang, Linlin; Ding, Yuxiang

    2017-03-01

    To investigate the therapeutic effect of gelatin microspheres containing different concentrations of calcitonin gene-related peptide (CGRP) or substance P on repairing bone defects in a rabbit osteoporosis model. Gelatin microspheres containing different concentrations of CGRP or substance P promoted osteogenesis after 3 months in a rabbit osteoporotic bone defective model. From micro-computed tomography imaging results, 10 nM CGRP was optimal for increasing the trabecular number and decreasing the trabecular bone separation degree; similar effects were observed with the microspheres containing 1 µM substance P. Histological analysis showed that the gelatin microspheres containing CGRP or substance P, regardless of the concentration, effectively promoted osteogenesis, and the highest effect was achieved in the groups containing 1 µM CGRP or 1 µM substance P. Gelatin microspheres containing CGRP or substance P effectively promoted osteogenesis in a rabbit osteoporotic bone defect model dose-dependently, though their effects in repairing human alveolar ridge defects still need further investigation.

  16. Enhancing the photoresponse and photocatalytic properties of TiO 2 by controllably tuning defects across {101} facets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Piaopiao; Hood, Zachary D.; Oak Ridge National Lab.

    Introducing defects into semiconductors with well-controlled exposed facets offers an effective route for the development of photocatalytic materials with greatly improved properties. Here, we report a facile ethylene glycol reduction procedure to make anatase titanium dioxide (TiO 2) with different concentrations of exposed {001} and {101} facets, leading to different surficial defects. TiO 2 with increased concentrations of {101} facets shows a 5-fold improvement in photocurrent generation as well as improved photocatalytic activity towards water splitting under visible light irradiation. Thus, the improved activity is ascribed to the oxygen vacancies as well as the variable surface chemical states, which collectivelymore » induce a slower recombination rate of photo-induced electron-hole pairs. This work also highlights a feasible strategy to obtain the defective TiO 2 and explore the synergistic effect of surface defects and different concentrations of exposed {001} and {101} facets for photocurrent and photocatalytic properties under visible light irradiation.« less

  17. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of helium concentration and radiation temperature on interaction of helium atoms with displacement cascades in bcc iron

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2018-03-01

    In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.

  19. Positron annihilation studies of vacancy related defects in ceramic and thin film Pb(Zr,Ti)O3 materials

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.

    Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.

  20. Assessing the association between natural food folate intake and blood folate concentrations: a systematic review and Bayesian meta-analysis of trials and observational studies.

    PubMed

    Marchetta, Claire M; Devine, Owen J; Crider, Krista S; Tsang, Becky L; Cordero, Amy M; Qi, Yan Ping; Guo, Jing; Berry, Robert J; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C

    2015-04-10

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992-3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12-49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥ 450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~ 1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births.

  1. Reversal in fatigued athletes of a defect in interferon gamma secretion after administration of Lactobacillus acidophilus.

    PubMed

    Clancy, R L; Gleeson, M; Cox, A; Callister, R; Dorrington, M; D'Este, C; Pang, G; Pyne, D; Fricker, P; Henriksson, A

    2006-04-01

    Fatigue and impaired performance in athletes is well recognised and has been loosely linked to "overtraining". Reduced concentration of IgA in the saliva and increased shedding of Epstein Barr virus (EBV) have been associated with intense training in elite athletes. To determine whether athletes presenting with fatigue and impaired performance had an immune defect relevant to defective containment of EBV infection, and whether a probiotic preparation (Lactobacillus acidophilus) shown to enhance mucosal immunity in animal models could reverse any detected abnormality. The fatigued athletes had clinical characteristics consistent with re-activation of EBV infection and significantly (p = 0.02) less secretion of interferon (IFN) gamma from blood CD4 positive T cells. After one month of daily capsules containing 2 x 10(10) colony forming units of L acidophilus, secretion of IFNgamma from T cells had increased significantly (p = 0.01) to levels found in healthy control athletes. A significant (p = 0.03) increase in salivary IFNgamma concentrations in healthy control athletes after the one month course of L acidophilus demonstrated in man the capacity for this probiotic to enhance the mucosal IFNgamma concentration. This is the first evidence of a T cell defect in fatigued athletes, and of its reversal following probiotic therapy.

  2. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  3. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  4. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ya; Wang, Guang; Han, Sha-Sha

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but didmore » not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.« less

  5. Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-04-01

    In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.

  6. Investigation of the evolution of nitrogen defects in flash-lamp-annealed InGaZnO films and their effects on transistor characteristics

    NASA Astrophysics Data System (ADS)

    Eom, Tae-Yil; Ahn, Chee-Hong; Kang, Jun-Gu; Saad Salman, Muhammad; Lee, Sun-Young; Kim, Yong-Hoon; Lee, Hoo-Jeong; Kang, Chan-Mo; Kang, Chiwon

    2018-06-01

    In this study, we show the evolution of nitrogen defects during a sol–gel reaction in flash-lamp-annealed InGaZnO (IGZO) films and their effects on the device characteristics of their thin-film transistors (TFTs). The flash lamp annealing (FLA) of the IGZO TFT for 16 s helps achieve a mobility of approximately 7 cm2 V‑1 s‑1. However, further extension of the annealing time results only in drastic increases in carrier concentration and off-current. The X-ray photoelectron spectroscopy (XPS) analysis of the N 1s peak unravels the presence of oxygen-vacancy-associated nitrogen defects and their evolution with annealing time, which is possibly responsible for the increase in carrier concentration.

  7. Tuning the formation of p-type defects by peroxidation of CuAlO2 films

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-07-01

    p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.

  8. Autologous Bone Marrow Concentrates and Concentrated Growth Factors Accelerate Bone Regeneration After Enucleation of Mandibular Pathologic Lesions.

    PubMed

    Talaat, Wael M; Ghoneim, Mohamed M; Salah, Omar; Adly, Osama A

    2018-02-23

    Stem cell therapy is a revolutionary new way to stimulate mesenchymal tissue regeneration. The platelets concentrate products started with platelet-rich plasma (PRP), followed by platelet-rich fibrin (PRF), whereas concentrated growth factors (CGF) are the latest generation of the platelets concentrate products which were found in 2011. The aim of the present study was to evaluate the potential of combining autologous bone marrow concentrates and CGF for treatment of bone defects resulting from enucleation of mandibular pathologic lesions. Twenty patients (13 males and 7 females) with mandibular benign unilateral lesions were included, and divided into 2 groups. Group I consisted of 10 patients who underwent enucleation of the lesions followed by grafting of the bony defects with autologous bone marrow concentrates and CGF. Group II consisted of 10 patients who underwent enucleation of the lesions without grafting (control). Radiographic examinations were done immediately postoperative, then at 1, 3, 6, and 12 months, to evaluate the reduction in size and changes in bone density at the bony defects. Results indicated a significant increase in bone density with respect to the baseline levels in both groups (P < 0.05). The increase in bone density was significantly higher in group I compared with group II at the 6- and 12-month follow-up examinations (P < 0.05). The percent of reduction in the defects' size was significantly higher in group I compared with group II after 12 months (P = 0.00001). In conclusion, the clinical application of autologous bone marrow concentrates with CGF is a cost effective and safe biotechnology, which accelerates bone regeneration and improves the density of regenerated bone.

  9. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  10. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  11. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  12. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  13. Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex

    2013-05-01

    Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and magnetic moment μ.

  14. On compensation in Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Harris, Joshua S.; Baker, Jonathon N.; Gaddy, Benjamin E.; Bryan, Isaac; Bryan, Zachary; Mirrielees, Kelsey J.; Reddy, Pramod; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.

    2018-04-01

    Controllable n-type doping over wide ranges of carrier concentrations in AlN, or Al-rich AlGaN, is critical to realizing next-generation applications in high-power electronics and deep UV light sources. Silicon is not a hydrogenic donor in AlN as it is in GaN; despite this, the carrier concentration should be controllable, albeit less efficiently, by increasing the donor concentration during growth. At low doping levels, an increase in the Si content leads to a commensurate increase in free electrons. Problematically, this trend does not persist to higher doping levels. In fact, a further increase in the Si concentration leads to a decrease in free electron concentration; this is commonly referred to as the compensation knee. While the nature of this decrease has been attributed to a variety of compensating defects, the mechanism and identity of the predominant defects associated with the knee have not been conclusively determined. Density functional theory calculations using hybrid exchange-correlation functionals have identified VAl+n SiAl complexes as central to mechanistically understanding compensation in the high Si limit in AlN, while secondary impurities and vacancies tend to dominate compensation in the low Si limit. The formation energies and optical signatures of these defects in AlN are calculated and utilized in a grand canonical charge balance solver to identify carrier concentrations as a function of Si content. The results were found to qualitatively reproduce the experimentally observed compensation knee. Furthermore, these calculations predict a shift in the optical emissions present in the high and low doping limits, which is confirmed with detailed photoluminescence measurements.

  15. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation inmore » the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.« less

  16. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO 2 (111) surfaces

    DOE PAGES

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; ...

    2016-05-12

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO 2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO 2(111) surface was obtained by annealing the thin film under 2.0 × 10 –5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO 2(111) surface, the thin film was annealed under ~5.0 × 10 –10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface.more » The saturated TMAA coverage on the CeO 2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO 2–δ(111) surface through dissociative adsorption.« less

  17. Effect of Defects on III-V MWIR nBn Detector Performance

    DTIC Science & Technology

    2014-08-01

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 infrared detectors ...rather than diffusion based processes. Keywords: infrared detectors , MWIR, nBn, photodiode, defects, irradiation, lattice mismatch, dark current...currents will increase noise in the detector , it is important to understand the impact elevated defect concentrations will have on barrier architecture

  18. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model.

    PubMed

    Jin, Ya; Wang, Guang; Han, Sha-Sha; He, Mei-Yao; Cheng, Xin; Ma, Zheng-Lai; Wu, Xia; Yang, Xuesong; Liu, Guo-Sheng

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel(+) apoptosis but did not dramatically affect PCNA(+) cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence.

    PubMed

    Gianakos, Arianna; Ni, Amelia; Zambrana, Lester; Kennedy, John G; Lane, Joseph M

    2016-01-01

    Long bone fractures that fail to heal or show a delay in healing can lead to increased morbidity. Bone marrow aspirate concentrate (BMAC) containing bone mesenchymal stem cells (BMSCs) has been suggested as an autologous biologic adjunct to aid long bone healing. The purpose of this study was to systematically review the basic science in vivo evidence for the use of BMAC with BMSCs in the treatment of segmental defects in animal long bones. The PubMed/MEDLINE and EMBASE databases were screened in July 14-25, 2014. The following search criteria were used: [("bmac" OR "bone marrow aspirate concentrate" OR "bmc" OR "bone marrow concentrate" OR "mesenchymal stem cells") AND ("bone" OR "osteogenesis" OR "fracture healing" OR "nonunion" OR "delayed union")]. Three authors extracted data and analyzed for trends. Quality of evidence score was given to each study. Results are presented as Hedge G standardized effect sizes with 95% confidence intervals. The search yielded 35 articles for inclusion. Of studies reporting statistics, 100% showed significant increase in bone formation in the BMAC group on radiograph. Ninety percent reported significant improvement in earlier bone healing on histologic/histomorphometric assessment. Eighty-one percent reported a significant increase in bone area on micro-computed tomography. Seventy-eight percent showed a higher torsional stiffness for the BMAC-treated defects. In the in vivo studies evaluated, BMAC confer beneficial effects on the healing of segmental defects in animal long bone models when compared with a control. Proof-of-concept has been established for BMAC in the treatment of animal segmental bone defects.

  20. Defects and properties of cadmium oxide based transparent conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Kin Man, E-mail: kinmanyu@cityu.edu.hk; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Detert, D. M.

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ∼2 × 10{sup 20}/cm{sup 3}more » and mobility in the range of 40–100 cm{sup 2}/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O{sub 2} partial pressure in the sputter gas mixture results in films with resistivity from ∼4 × 10{sup −4} to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 10{sup 21 }cm{sup −3} and electron mobility higher than 120 cm{sup 2}/V s can be achieved. Thermal annealing of doped CdO films in N{sub 2} ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ∼1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of ∼5–6 × 10{sup 20}/cm{sup 3}. The calculations offer an insight into understanding of the effects of defects on electrical properties of undoped and doped CdO and offer a potential to use similar methods to analyze doping and defect properties of other semiconductor materials.« less

  1. A Copeptin-Based Classification of the Osmoregulatory Defects in the Syndrome of Inappropriate Antidiuresis

    PubMed Central

    Fenske, Wiebke Kristin; Christ-Crain, Mirjam; Hörning, Anna; Simet, Jessica; Szinnai, Gabor; Fassnacht, Martin; Rutishauser, Jonas; Bichet, Daniel G.; Störk, Stefan

    2014-01-01

    Hyponatremia, the most frequent electrolyte disorder, is caused predominantly by the syndrome of inappropriate antidiuresis (SIAD). A comprehensive characterization of SIAD subtypes, defined by type of osmotic dysregulation, is lacking, but may aid in predicting therapeutic success. Here, we analyzed serial measurements of serum osmolality and serum sodium, plasma arginine vasopressin (AVP), and plasma copeptin concentrations from 50 patients with hyponatremia who underwent hypertonic saline infusion. A close correlation between copeptin concentrations and serum osmolality existed in 68 healthy controls, with a mean osmotic threshold±SD of 282±4 mOsM/kg H2O. Furthermore, saline-induced changes in copeptin concentrations correlated with changes in AVP concentrations in controls and patients. With use of copeptin concentration as a surrogate measure of AVP concentration, patients with SIAD could be grouped according to osmoregulatory defect: Ten percent of patients had grossly elevated copeptin concentrations independent of serum osmolality (type A); 14% had copeptin concentrations that increased linearly with rising serum osmolality but had abnormally low osmotic thresholds (type B); 44% had normal copeptin concentrations independent of osmolality (type C), and 12% had suppressed copeptin concentrations independent of osmolality (type D). A novel SIAD subtype discovered in 20% of patients was characterized by a linear decrease in copeptin concentrations with increasing serum osmolality (type E or “barostat reset”). In conclusion, a partial or complete loss of AVP osmoregulation occurs in patients with SIAD. Although the mechanisms underlying osmoregulatory defects in individual patients are presumably diverse, we hypothesize that treatment responses and patient outcomes will vary according to SIAD subtype. PMID:24722436

  2. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less

  3. Influence of processing in mercury and selenium vapor on the electrical properties of Cd /SUB x/ Hg /SUB 1-x/ Se, Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.

    1985-12-01

    In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.

  4. Defect quasi Fermi level control-based CN reduction in GaN: Evidence for the role of minority carriers

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-10-01

    Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.

  5. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  6. Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study

    NASA Astrophysics Data System (ADS)

    Zhou, Yecheng; Li, Wei; Wu, Minghui; Zhao, Li-Dong; He, Jiaqing; Wei, Su-Huai; Huang, Li

    2018-06-01

    SnSe has emerged as an efficient and fascinating thermoelectric material. A fundamental understanding of the effects and nature of intrinsic defects and dopants in SnSe is crucial to optimize its thermoelectric performance. In this paper, we perform first-principles calculations to examine the native and extrinsic point-defect properties in SnSe. We show that the easy formation of acceptorlike Sn vacancy (VSn) is responsible for the p -type conductivity in intrinsic SnSe. We also propose a mechanism and explain the anomalous temperature dependence of the carrier concentration in intrinsic SnSe crystals. Concerning the extrinsic defects, we focus on the dopants used in experiments. We find that Na (Ag) substitution on Sn site, NaSn (AgSn), acts as acceptor, whereas, substitutional BrSe, ISe, and BiSn dopants act as donor. It is shown that for Ag doping, its carrier concentration will be saturated with increasing doping concentration due to the coexistence of compensated defects (Agi and AgSn). Furthermore, we analyze how this doping introduced carrier impact on their thermoelectric characteristics. It is found that the more efficient doping of Na, Br, and I can realize higher Z T .

  7. Regulation of K+ Transport in Tomato Roots by the TSS1 Locus. Implications in Salt Tolerance1

    PubMed Central

    Rubio, Lourdes; Rosado, Abel; Linares-Rueda, Adolfo; Borsani, Omar; García-Sánchez, María J.; Valpuesta, Victoriano; Fernández, José A.; Botella, Miguel A.

    2004-01-01

    The tss1 tomato (Lycopersicon esculentum) mutant exhibited reduced growth in low K+ and hypersensitivity to Na+ and Li+. Increased Ca2+ in the culture medium suppressed the Na+ hypersensitivity and the growth defect on low K+ medium of tss1 seedlings. Interestingly, removing NH4+ from the growth medium suppressed all growth defects of tss1, suggesting a defective NH4+-insensitive component of K+ transport. We performed electrophysiological studies to understand the contribution of the NH4+-sensitive and -insensitive components of K+ transport in wild-type and tss1 roots. Although at 1 mm Ca2+ we found no differences in affinity for K+ uptake between wild type and tss1 in the absence of NH4+, the maximum depolarization value was about one-half in tss1, suggesting that a set of K+ transporters is inactive in the mutant. However, these transporters became active by raising the external Ca2+ concentration. In the presence of NH4+, a reduced affinity for K+ was observed in both types of seedlings, but tss1 at 1 mm Ca2+ exhibited a 2-fold higher Km than wild type did. This defect was again corrected by raising the external concentration of Ca2+. Therefore, membrane potential measurements in root cells indicated that tss1 is affected in both NH4+-sensitive and -insensitive components of K+ transport at low Ca2+ concentrations and that this defective transport is rescued by increasing the concentration of Ca2+. Our results suggest that the TSS1 gene product is part of a crucial pathway mediating the beneficial effects of Ca2+ involved in K+ nutrition and salt tolerance. PMID:14684839

  8. Vacancy-type defects in TiO2/SiO2/SiC dielectric stacks

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Burrows, C. P.; Mahapatra, R.; Wright, N. G.

    2007-07-01

    Open-volume (vacancy-type) point defects have been observed in ˜80-nm-thick titanium dioxide films grown on silicon dioxide/4H silicon carbide substrates as stacks with high dielectric constant for power device applications, using variable-energy positron annihilation spectroscopy. The concentration of vacancies decreases as the titanium dioxide growth temperature is increased in the range from 700to1000°C, whereas grain boundaries form in the polycrystalline material at the highest growth temperatures. It is proposed that the optimal electrical performance for films grown at 800°C reflects a balance between decreasing vacancy concentration and increasing grain boundary formation. The concentration of vacancies at the silicon dioxide/silicon carbide interface appears to saturate after 2.5h oxidation at 1150°C. A supplementary result suggests that the quality of the 10-μm-thick deposited silicon carbide epilayer is compromised at depths of about 2μm and beyond, possibly by the migration of impurities and/or other defects from the standard-grade highly doped 4H silicon carbide wafer beneath the epilayer during oxidation.

  9. Effect of intermixing at CdS/CdTe interface on defect properties

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Yang, Ji-Hui; Barnes, Teresa; Wei, Su-Huai

    2016-07-01

    We investigated the stability and electronic properties of defects in CdTe1-xSx that can be formed at the CdS/CdTe interface. As the anions mix at the interface, the defect properties are significantly affected, especially those defects centered at cation sites like Cd vacancy, VCd, and Te on Cd antisite, TeCd, because the environment surrounding the defect sites can have different configurations. We show that at a given composition, the transition energy levels of VCd and TeCd become close to the valence band maximum when the defect has more S atoms in their local environment, thus improving the device performance. Such beneficial role is also found at the grain boundaries when the Te atom is replaced by S in the Te-Te wrong bonds, reducing the energy of the grain boundary level. On the other hand, the transition levels with respect to the valence band edge of CdTe1-xSx increases with the S concentration as the valence band edge decreases with the S concentration, resulting in the reduced p-type doping efficiency.

  10. The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Dever, Therese M.; Quinn, William F.

    1990-01-01

    Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.

  11. In situ enhancement of the blue photoluminescence of colloidal Ga2O3 nanocrystals by promotion of defect formation in reducing conditions.

    PubMed

    Wang, Ting; Radovanovic, Pavle V

    2011-07-07

    We demonstrate redox control of defect-based photoluminescence efficiency of colloidal γ-Ga(2)O(3) nanocrystals. Reducing environment leads to an increase in photoluminescence intensity by enhancing the concentration of oxygen vacancies, while the blue emission is suppressed in oxidative conditions. These results enable optimization of nanocrystal properties by in situ defect manipulation. This journal is © The Royal Society of Chemistry 2011

  12. A copeptin-based classification of the osmoregulatory defects in the syndrome of inappropriate antidiuresis.

    PubMed

    Fenske, Wiebke Kristin; Christ-Crain, Mirjam; Hörning, Anna; Simet, Jessica; Szinnai, Gabor; Fassnacht, Martin; Rutishauser, Jonas; Bichet, Daniel G; Störk, Stefan; Allolio, Bruno

    2014-10-01

    Hyponatremia, the most frequent electrolyte disorder, is caused predominantly by the syndrome of inappropriate antidiuresis (SIAD). A comprehensive characterization of SIAD subtypes, defined by type of osmotic dysregulation, is lacking, but may aid in predicting therapeutic success. Here, we analyzed serial measurements of serum osmolality and serum sodium, plasma arginine vasopressin (AVP), and plasma copeptin concentrations from 50 patients with hyponatremia who underwent hypertonic saline infusion. A close correlation between copeptin concentrations and serum osmolality existed in 68 healthy controls, with a mean osmotic threshold±SD of 282±4 mOsM/kg H2O. Furthermore, saline-induced changes in copeptin concentrations correlated with changes in AVP concentrations in controls and patients. With use of copeptin concentration as a surrogate measure of AVP concentration, patients with SIAD could be grouped according to osmoregulatory defect: Ten percent of patients had grossly elevated copeptin concentrations independent of serum osmolality (type A); 14% had copeptin concentrations that increased linearly with rising serum osmolality but had abnormally low osmotic thresholds (type B); 44% had normal copeptin concentrations independent of osmolality (type C), and 12% had suppressed copeptin concentrations independent of osmolality (type D). A novel SIAD subtype discovered in 20% of patients was characterized by a linear decrease in copeptin concentrations with increasing serum osmolality (type E or "barostat reset"). In conclusion, a partial or complete loss of AVP osmoregulation occurs in patients with SIAD. Although the mechanisms underlying osmoregulatory defects in individual patients are presumably diverse, we hypothesize that treatment responses and patient outcomes will vary according to SIAD subtype. Copyright © 2014 by the American Society of Nephrology.

  13. Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; You, H.-M.; Gösele, U. M.

    1993-03-01

    We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.

  14. Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Weber, William J.; Zhang, Yanwen

    2017-11-01

    Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.

  15. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification.

    PubMed

    Molloy, Anne M; Kirke, Peadar N; Troendle, James F; Burke, Helen; Sutton, Marie; Brody, Lawrence C; Scott, John M; Mills, James L

    2009-03-01

    Folic acid fortification has reduced neural tube defect prevalence by 50% to 70%. It is unlikely that fortification levels will be increased to reduce neural tube defect prevalence further. Therefore, it is important to identify other modifiable risk factors. Vitamin B(12) is metabolically related to folate; moreover, previous studies have found low B(12) status in mothers of children affected by neural tube defect. Our objective was to quantify the effect of low B(12) status on neural tube defect risk in a high-prevalence, unfortified population. We assessed pregnancy vitamin B(12) status concentrations in blood samples taken at an average of 15 weeks' gestation from 3 independent nested case-control groups of Irish women within population-based cohorts, at a time when vitamin supplementation or food fortification was rare. Group 1 blood samples were from 95 women during a neural tube defect-affected pregnancy and 265 control subjects. Group 2 included blood samples from 107 women who had a previous neural tube defect birth but whose current pregnancy was not affected and 414 control subjects. Group 3 samples were from 76 women during an affected pregnancy and 222 control subjects. Mothers of children affected by neural tube defect had significantly lower B(12) status. In all 3 groups those in the lowest B(12) quartiles, compared with the highest, had between two and threefold higher adjusted odds ratios for being the mother of a child affected by neural tube defect. Pregnancy blood B(12) concentrations of <250 ng/L were associated with the highest risks. Deficient or inadequate maternal vitamin B(12) status is associated with a significantly increased risk for neural tube defects. We suggest that women have vitamin B(12) levels of >300 ng/L (221 pmol/L) before becoming pregnant. Improving B(12) status beyond this level may afford a further reduction in risk, but this is uncertain.

  16. Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Chen, Haidong; Zhang, Feng; Zhang, Weifeng; Du, Yingge; Li, Guoqiang

    2018-01-01

    Defects play an important and in many cases dominant role in the physical and chemical properties of many oxide materials. In this work, we show that the surface Ti3+ defects in SrTiO3 (STO), characterized by electron paramagnetic resonance and X-ray photoelectron spectroscopy, directly impact the photocatalytic activity of STO. O2 species are found to absorb preferentially on Ti3+ defect sites. Hydrogen evolution under ambient air diminishes with the increase in the concentration of surface Ti3+. This is explained by the over-accumulation of Pt cocatalysts on the site of surface Ti3+ defects after the removal of adsorbed O2.

  17. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Wiedigen, S.; Kramer, T.; Feuchter, M.; Knorr, I.; Nee, N.; Hoffmann, J.; Kamlah, M.; Volkert, C. A.; Jooss, Ch.

    2012-02-01

    Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO3. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity κ in homoepitaxial SrTiO3 films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of κ is mainly sensitive on the defect concentration.

  18. Carrier providers or killers: The case of Cu defects in CdTe

    DOE PAGES

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    2017-07-24

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  19. Carrier providers or killers: The case of Cu defects in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  20. A Study on the Effects of Ball Defects on the Fatigue Life in Hybrid Bearings

    NASA Technical Reports Server (NTRS)

    Tang, Ching-Yao; Foerster, Chad E.; O'Brien, Michael J.; Hardy, Brian S.; Goyal, Vinay K.; Nelson, Benjamin A.; Robinson, Ernest Y.; Ward, Peter C.; Hilton, Michael R.

    2014-01-01

    Hybrid ball bearings using silicon nitride ceramic balls with steel rings are increasingly being used in space mechanism applications due to their high wear resistance and long rolling contact fatigue life. However, qualitative and quantitative reports of the effects of ball defects that cause early fatigue failure are rare. We report on our approach to study these effects. Our strategy includes characterization of defects encountered in use, generation of similar defects in a laboratory setting, execution of full-scale bearing tests to obtain lifetimes, post-test characterization, and related finite-element modeling to understand the stress concentration of these defects. We have confirmed that at least one type of defect of appropriate size can significantly reduce fatigue life. Our method can be used to evaluate other defects as they occur or are encountered.

  1. Probing defects in ZnO nanostructures by Photoluminescence and Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Manoranjan; Raychaudhuri, A. K.; Chaudhuri, S. K.; Das, Dipankar

    2008-03-01

    We have investigated defect related emission in the blue green region (2.2 eV -- 2.5 eV) of ZnO nanostructures having spherical (5 nm-15 nm) as well as those with hexagonal platelet and rod like morphologies (20nm-100 nm), synthesized by solvo-thermal route. This emission show anomalous size dependence. Emission energy near 2.2 eV, shifts to higher energy (2.5 eV) for increase in size beyond 20nm when shape of the nanostructures changes. This change in photoluminescence has a close correlation with the size (and shape) induced change in the positron trapping rate which is directly proportional to the defect concentration. The trapping rates show non-monotonous dependence on size. It increases initially as the size increases (5nm-15nm) and then decreases as the size increases beyond 20nm. While increase of the trapping rate on size reduction is expected due to accumulation of more defects at the surface, the initial dependence of the trapping rate on the size (below 20nm) is anomalous. The data are explained by the presence of defects like Zn vacancy and confinement due to size reduction.

  2. A first principles calculation and statistical mechanics modeling of defects in Al-H system

    NASA Astrophysics Data System (ADS)

    Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2007-03-01

    The behavior of defects and hydrogen in Al was investigated by first principles calculations and statistical mechanics modeling. The formation energy of different defects in Al+H system such as Al vacancy, H in institution and multiple H in Al vacancy were calculated by first principles method. Defect concentration in thermodynamical equilibrium was studied by total free energy calculation including configuration entropy and defect-defect interaction from low concentration limit to hydride limit. In our grand canonical ensemble model, hydrogen chemical potential under different environment plays an important role in determing the defect concentration and properties in Al-H system.

  3. Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2018-07-01

    We theoretically investigate the effects of the unintentional background concentration, indium composition and defect density of intrinsic layer (i-layer) on the photovoltaic performance of InGaN p-i-n homojunction solar cells by solving the Poisson and steady-state continuity equations. The built-in electric field and carrier generation rate depend on the position within the i-layer. The collection efficiency, short circuit current density, open circuit voltage, fill factor, and conversion efficiency are found to depend strongly on the background concentration, thickness, indium composition, and defect density of the i-layer. With increasing the background concentration, the maximum thickness of field-bearing i-layer decreases, and the width of depletion region may become even too small to cover the whole i-layer, resulting in a serious decrease of the carrier collection. Some oscillations as a function of indium composition are found in the short circuit current density and conversion efficiency at high indium composition and low defect density due to the interference between the absorbance and the generation rate of carriers. The defect density degrades seriously the overall photovoltaic performance, and its effect on the photovoltaic performance is roughly seven orders of magnitude higher than the previously reported values [Feng et al., J. Appl. Phys. 108 (2010) 093118]. As a result, the high crystalline quality InGaN with high indium composition is a key factor in the device performance of III-nitride based solar cells.

  4. The influence of nitrogen implantation on the electrical properties of amorphous IGZO

    NASA Astrophysics Data System (ADS)

    Zhan, S. L.; Zhao, M.; Zhuang, D. M.; Fu, E. G.; Cao, M. J.; Guo, L.; Ouyang, L. Q.

    2017-09-01

    In this study, nitrogen (N) implantation was adopted to regulate the carrier concentration and the Hall mobility of amorphous Indium Gallium Zinc Oxide (a-IGZO) films. The Hall Effect measurement demonstrates that the increase of implantation fluence can decrease the carrier concentration of a-IGZO by three orders to 1016 cm-3, which attributes to the reduction of oxygen defects. The addition of nitrogen atoms can result in the increase of Hall mobility to 9.93 cm2/V s with the subsequent decrease to 6.49 cm2/V s, which reflects the reduction of the average potential barrier height (φ0) to be 22.0 meV with subsequent increase to 74.8 meV in the modified percolation model. The results indicate that nitrogen can serve as an effective p-type dopants and oxygen defect suppressors. N-implantation with an appropriate fluence can effectively improve the Hall mobility and reduce the carrier concentration simultaneously.

  5. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  6. Investigations on the structure of Pb-Ge-Se glasses

    NASA Astrophysics Data System (ADS)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Abhaya, S.; Murugavel, S.; Amarendra, G.

    2016-05-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on PbxGe42-xSe58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalphy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  7. Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: A case-control study in north China.

    PubMed

    Li, Zhenjiang; Huo, Wenhua; Li, Zhiwen; Wang, Bin; Zhang, Jingxu; Ren, Aiguo

    2016-12-01

    Increasing uses of titanium and silver in various products raise concerns for their potential adverse effects on pregnancy outcomes. We aimed to examine the associations between titanium and silver concentrations in maternal hair growing during the periconception period and the risk of neural tube defects (NTDs) in offspring. Our case-control study recruited 191 women with NTD-affected pregnancies and 261 women delivering healthy infants. Metal concentrations in maternal hair were measured by inductively coupled plasma-mass spectrometry. The adjusted odds ratios (AOR) of titanium concentration above the median were 1.46 (95% confidence interval (CI), 0.99-2.13) for total NTDs and 2.10 (95% CI, 1.12-3.94) for anencephaly, while OR of silver wasn't statistically significant. Titanium concentration was positively correlated with consumptions of vegetables and fruits. Maternal exposure to titanium during the periconception period was associated with an increased NTD risk in offspring, which may be partly mediated through maternal dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties

    NASA Astrophysics Data System (ADS)

    Niranjan, K.; Dutta, Subhajit; Varghese, Soney; Ray, Ajoy Kumar; Barshilia, Harish C.

    2017-04-01

    We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein-Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.

  9. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the Al layer, resulting in an increase in saturation magnetization, from 115 emu/g in the alloys without Zr to 128 emu/g in Mn53Al43C 3Zr1. To further improve the coercivity in Mn53Al 43C3Zr1, microstructure modification was achieved through the addition of excessive C and through surfactant-assisted mechanical milling. Enhancement in coercivity was accomplished through the microstructure modification, however, the loss of saturation magnetization was observed due to the formation of other equilibrium phases, including epsilon, beta-Mn and ZrO.

  10. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  11. A study of thermal conductivity in graphene diodes and transistors with intrinsic defects and subjected to metal impurities

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Rezapour, Navid

    2016-12-01

    In this paper, the effect of the presence of cavities resulting from the fabrication process and the effect of common metal impurities added during the synthesis process on the thermal conductivity of single-layer graphene sheets, diodes and transistors have been investigated by using the Reverse Non Equilibrium Molecular Dynamics (RNEMD) method. The obtained results show that thermal conductivity generally diminishes by increasing the concentration of nanoparticles and increases when porosities and impurities are at the edges of sheets. Regarding a better thermal management in graphene with the addition of nanoparticles, and considering its existing porosity, a lower thermal conductivity is achieved by adding more nanoparticles. By increasing the diameter of pores from 0.5 nm to 4.4 nm in a specific single-layer graphene sheet, thermal conductivity diminishes from 67 W/mk to 1.43 W/mk; while it diminishes from 45 to 1.0 W/mk for the same structure containing both the defects and nanoparticles over the defects. In evaluating the influences of cavities and metallic nanoparticles on thermal conductivity, it was observed that changing the share of cavities or nanoparticles has a significant effect on the thermal conductivity of graphene diodes and transistors. The rectification efficiency of diodes diminished from about 100% for the defect-free diode to about 19% for the diode containing 2 nm cavities and then increased to 75% for the diode with 5 nm cavities. While, with the increase in the concentration of iron nanoparticles, the rectification efficiency increased from about 100% for the diode with no iron particles to about 255% for the diode containing 13 wt % of iron particles. Final results demonstrate that the metallic nanoparticles and also defects with specific diameters can be effectively exploited to increase or decrease the efficiency of nanodiodes and nanotransistors. This leads to engineered design of nanodiodes and nanotransistors for various applications.

  12. Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.

    2012-01-01

    Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.

  13. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  14. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology Calicut, Calicut 673601; Anappara, Aji A.

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopantmore » concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the defect density by precisely controlling the dopant concentration in order to get the desired magnetic behavior at room temperature.« less

  15. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE PAGES

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.; ...

    2017-09-11

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  16. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  17. Effect of midgap defect states on the optical properties of Ge20Se70Te10 nano colloids

    NASA Astrophysics Data System (ADS)

    Cheruvalath, Ajina; Sebastian, Indu; Sebastian, Mathew; Nampoori, V. P. N.; Thomas, Sheenu

    2017-10-01

    In this work, we report the linear and nonlinear optical studies on a pseudo binary chalcogenide glass of composition Ge20 Se70 Te10 in its nano colloidal form. The possibility of tuning the band gap, nonlinear refractive index and nonlinear absorption of the material by changing the glass loading in the colloid has been revealed. A red shift in the band edge along with an intermediate peak in the band tail due to defect states is observed with increasing concentration. Photoluminescence studies confirm the existence of intermediate defect states in the bandgap. Nonlinear properties analyzed with open and closed aperture z scan technique reveal that the nonlinear refraction enhances due to resonant effects as the band gap of the colloid gets near the one photon absorption edge. The nonlinear absorption is prominent in the concentrated sample due to the presence of defect states which acts as an intermediate level in two step photon absorption.

  18. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  19. Effects of the copper content on the structural and electrical properties of Cu2ZnSnSe4 bulks

    NASA Astrophysics Data System (ADS)

    Tsega, Moges; Dejene, F. B.; Koao, L. F.

    2016-01-01

    We have investigated the concept of defect in CuxZnSnSe4 (x=1.6-2.0) and Cuy(Zn0.9Sn1.1)Se4 (y= 1.6-2.0) bulks prepared by liquid-phase sintering at 600 °C for 2 h with soluble sintering aids of Sb2S3 and Te. All samples were found to exhibit p-type semiconductor for CuxZnSnSe4, while n-type of behavior obtained at y= 1.8-2.0 for Cuy(Zn0.9Sn1.1)Se4 pellets. The Cu vacancy acts as an acceptor point defect to form the p-type semiconductor, and Sn4+ acts as a donor to form the n-type behavior for the Sn-rich CZTSe. SEM images of pellets show dense surface morphology, and increase in grain size upon Cu inclusion. The largely increased Hall mobility and the slightly changed carrier concentration for Cuy(Zn0.9Sn1.1)Se4 with increasing the Cu content is related to the types of its defects. At y=2.0 with carrier concentration of 4.88×1017 cm-3 showed the highest mobility of around 58 cm2/V s. Based upon the proposed point defects, the CZTSe property can be consistently explained.

  20. Electric Field Simulation of Surge Capacitors with Typical Defects

    NASA Astrophysics Data System (ADS)

    Zhang, Chenmeng; Mao, Yuxiang; Xie, Shijun; Zhang, Yu

    2018-03-01

    The electric field of power capacitors with different typical defects in DC working condition and impulse oscillation working condition is studied in this paper. According to the type and location of defects and considering the influence of space charge, two-dimensional models of surge capacitors with different typical defects are simulated based on ANSYS. The distribution of the electric field inside the capacitor is analyzed, and the concentration of electric field and its influence on the insulation performance are obtained. The results show that the type of defects, the location of defects and the space charge all affect the electric field distribution inside the capacitor in varying degrees. Especially the electric field distortion in the local area such as sharp corners and burrs is relatively larger, which increases the probability of partial discharge inside the surge capacitor.

  1. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    NASA Astrophysics Data System (ADS)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  2. Difference between resistance degradation of fixed valence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hyun; Randall, Clive A.; Hur, Kang-Heon

    2010-09-01

    The difference in the resistance degradation behavior was investigated between fixed valence acceptor (Mg) and the variable valence acceptor (Mn)-doped BaTiO3 ceramics with an increase of each acceptor concentration. Coarse-grained specimens with uniform grain sizes and different acceptor concentrations were prepared. In the case of Mg-doped BaTiO3, the time to degradation systematically decreased with the increase in Mg concentration. In contrast, there is a systematically increased time to degradation with the increase in Mn concentration in Mn-doped BaTiO3. The fast degradation by the increase in Mg concentration directly corresponded to an increase in the Warburg impedance and ionic transference number (tion) associated with an increase in oxygen vacancy concentration ([VO••]). On the other hand, no distinct Warburg impedance or ionic conduction contribution could be observed with the increase in Mn concentration. It is supposed that the increase in [VO••] is negligible in spite of the increase in acceptor Mn concentration, when it is compared to Mg-doped BaTiO3. The much lower [VO••] and more dominant electron/hole trapping effect due to multivalence nature of Mn are supposed to cause such a contrary degradation behavior between Mg and Mn-doped BaTiO3. Reoxidation in a slightly reducing atmosphere (N2) showed better resistance to degradation behavior than in a oxidizing air atmosphere in both Mg and Mn-doped BaTiO3, which is anticipated to be an increase in the electron/hole trapping sites. All these behaviors could be explained by the low temperature defect chemical model that shows difference in the defect structure between Mg and Mn-doped BaTiO3, and its dependence on the oxygen partial pressure (pO2) during reoxidation and cooling. Not only the [VO••], but also the density of electron/hole trap sites, are believed to be crucial in controlling resistance degradation.

  3. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    PubMed Central

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  4. Grain boundary resistance to amorphization of nanocrystalline silicon carbide.

    PubMed

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-12

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  5. Concentrations of blood folate in Brazilian studies prior to and after fortification of wheat and cornmeal (maize flour) with folic acid: a review.

    PubMed

    Britto, Jéssica Carrilho; Cançado, Rodolfo; Guerra-Shinohara, Elvira Maria

    2014-01-01

    In July 2004, the Brazilian Ministry of Health through the National Health Surveillance Agency made the fortification of wheat flour and cornmeal (maize flour) with iron and folic acid mandatory, with the intention of reducing the rate of diseases such as neural tube defects. The aim of the study was to investigate the impact of the folic acid fortified wheat flour and cornmeal on serum and red blood cell folate levels and on the reduction of neural tube defects in different Brazilian studies. In order to compare folate concentrations in the Brazilian population prior to and following the implementation of mandatory fortification of wheat and cornmeal, studies that involved blood draws between January 1997 and May 2004 (pre-fortification period), and from June 2004 to the present (post-fortification period) were chosen. The data search included PubMed and Scopus databases as well as the Brazilian Digital Library of Theses and Dissertations. The following keywords were employed for the query: folate, folic acid, fortification, Brazil, healthy population, the elderly, children and pregnant women. A total of 47 Brazilian studies were selected; 26 from the pre-fortification period and 22 after the fortification implementation. The studies were classified according to the cohort investigated (pregnant women, children, adolescents, adults and the elderly). After the implementation of flour fortification with folic acid in Brazil, serum folate concentrations increased in healthy populations (57% in children and adolescents and 174% in adults), and the incidence of neural tube defects dropped. Folic acid fortification of wheat flour and cornmeal increased the blood folate concentrations and reduced the incidence of neural tube defects. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  6. Effect Of Fluorine Doping On Radiation Hardness Of Graded Index Optical Fibers

    NASA Astrophysics Data System (ADS)

    Wei, T.; Singh, M. P.; Miniscalco, W. J.; Onorato, P. I. K.; Wall, J. A.

    1987-01-01

    We report an experimental and theoretical investigation of the effects of doping and processing on precursor defects in graded index multimode fibers. Fabrication parameters that significantly influence radiation sensitivity have been identified. In particular, we examined the role of fluorine doping in defect formation and its relationship to radiation sensitivity. The experimental effort included fiber fabrication and radiation-induced loss measurements on graded index, Ge-doped core fibers. Fluorine was added to the core and/or the cladding of test fibers. Two critical parameters, barrier layer thickness and core dopants, have been identified and correlate with induced loss. In addition, the reproducibility of both fiber fabrication and measurement with respect to induced loss has been tested and found to be excellent. Induced loss was found to be proportional to Ge concentration in the core; however, the trend with fluorine doping was less clear. The experimental results are consistent with molecular dynamics simulations which indicate the types and numbers of structural defects in the glasses. The simulations revealed significant differences in defect types and concentrations among glass corn-positions that included pure silica, Ge-doped silica, and Ge/F-codoped silica. Fluorine codoping decreases the number of germanium-related defects but increases the number of defects associated with silicon.

  7. High incidence of defective high-shear platelet function among platelet donors.

    PubMed

    Harrison, Paul; Segal, Helen; Furtado, Charlene; Verjee, Salim; Sukhu, Kampta; Murphy, Michael F

    2004-05-01

    Because single-donor plateletpheresis concentrates now account for a large percentage of PLT concentrates, the PLT quality of individual donations is increasingly important. There has been little previous work on PLT function in blood donors. The aim of this study was to investigate the prevalence of defective PLT function among 100 healthy UK PLT donors on 3 consecutive donation days. Citrated blood samples were taken before plateletpheresis. High-shear PLT function testing was performed by a PLT function analyzer (PFA-100, Dade Behring), within both collagen-ADP (CADP) and collagen-epinephrine (CEPI) cartridges. Sixteen percent of PLT donors (mainly over the 3 donating days) had prolonged CEPI closure times (CTs) only, indicative of an aspirin-like pattern; 9 percent had a severe defect with prolonged CEPI CTs between 200 and 300 seconds, and 4 percent had maximal CEPI CTs of greater than 300 seconds. The majority of prolonged CEPI CTs appeared transient in nature. PLT dysfunction as detected by the PFA-100 is surprisingly common within a voluntary PLT donor population. The majority of CEPI defects appeared transient in nature and are indicative of surreptitious intake of cyclooxygenase inhibitors (e.g., aspirin). Identification of defective PLT function within donors would provide a simple means to eradicate defective PLTs from being clinically utilized.

  8. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  9. Plant photonics: application of optical coherence tomography to monitor defects and rots in onion

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Buranachai, C.; Terry, L. A.

    2010-04-01

    The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.

  10. OPTOELECTRONIC PROPERTIES AND THE GAP STATE DISTRIBUTION IN a-Si, Ge ALLOYS

    NASA Astrophysics Data System (ADS)

    Aljishi, S.; Smith, Z. E.; Wagner, S.

    In this article we review optical and electronic transport data measured in amorphous silicon-germanium alloys with the goal of identifying the density of states as a function of alloy composition. The results show that while alloying a-Si:H with germanium has little effect on the valence band tail, the conduction band tail density of states is increased dramatically. Defect distributions both above and below midgap are detected and identified with the dangling bond D+/° and D°/- states. The density of deep defects below midgap increases exponentially with germanium content. Above midgap, a large concentration of defects lying between 0.3 and 0.5 eV below the conduction band edge has a strong effect on transient electron transport.

  11. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  12. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.

    2015-10-01

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.

  13. Folic acid: influence on the outcome of pregnancy.

    PubMed

    Scholl, T O; Johnson, W G

    2000-05-01

    The periconceptional use of folic acid-containing supplements reduces the first occurrence, as well as the recurrence, of neural tube defects. Women of populations in which adverse pregnancy outcomes are prevalent often consume diets that contain a low density of vitamins and minerals, including folate. Folate intake may need to be sustained after complete closure of the neural tube to decrease the risk of other poor pregnancy outcomes. A central feature of embryonic and fetal development is widespread cell division; folate is central because of its role in nucleic acid synthesis. During gestation, marginal folate nutriture can impair cellular growth and replication in the fetus or placenta. Folate deficiency can occur because dietary folate intake is low or because the metabolic requirement for folate is increased by a particular genetic defect or defects. During pregnancy, low concentrations of dietary and circulating folate are associated with increased risks of preterm delivery, infant low birth weight, and fetal growth retardation. A metabolic effect of folate deficiency is an elevation of blood homocysteine. Likewise, the presence of maternal homocysteine concentrations have been associated both with increased habitual spontaneous abortion and pregnancy complications (eg, placental abruption and preeclampsia), which increase the risk of poor pregnancy outcome and of decreased birth weight and gestation duration.

  14. Compensating vacancy defects in Sn- and Mg-doped In2O3

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.

    2014-12-01

    MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.

  15. Hydrogen-related defects in Al2O3 layers grown on n-type Si by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.

    2018-04-01

    The electrical properties of alumina films with thicknesses varying from 15 nm to 150 nm, grown by the atomic layer deposition technique on n-type Si, were investigated. We demonstrated that the annealing of the alumina layers in argon (Ar) or hydrogen (H) atmosphere at about 700 K resulted in the introduction of negatively charged defects irrespective of the type of the substrate. These defects were also observed in samples subjected to a dc H plasma treatment at temperatures below 400 K, whereas they were not detected in as-grown samples and in samples annealed in Ar atmosphere at temperatures below 400 K. The concentration of these defects increased with a higher H content in the alumina films. In good agreement with theory we assigned these defects to interstitial H-related defects.

  16. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    PubMed

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  17. Impulsive excitation of mechanoluminescence in gamma-irradiated CaSO4:Eu phosphors

    NASA Astrophysics Data System (ADS)

    Kher, R. S.; Dhoble, S. J.; Pandey, R. K.; Upadhyay, A. K.; Khokhar, M. S. K.

    2011-01-01

    The mechanoluminescence (ML) and thermoluminescence (TL) of γ-irradiated CaSO4:Eu phosphor have been studied. CaSO4 samples having different concentrations of Eu were prepared by dissolving CaSO4.2H2O in sulphuric acid and evaporating the excess acid around 300 °C. ML was excited impulsively by dropping a load onto the sample. Three distinct peaks have been observed in the ML intensity versus time curve. The ML intensity increases with the increasing concentration of the dopant. The effect of temperature on the shape and peak of ML intensity was also recorded. Growth, saturation and broadening in an ML peak were observed. TL glow curves of CaSO4:Eu phosphors at different concentrations contain two TL peaks: the first peak was observed at around 110 °C and the other at 210 °C. Experimental results suggest that the ML excitation is related to the movement of dislocation with defect centres, the increase in ML with temperature is due to the enhancement in dislocation capture probability, and the reduction is due to the thermal bleaching of defect centres.

  18. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  19. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements ofmore » dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.« less

  20. Polarization Coupling in Ferroelectric Multilayers as a Function of Interface Charge Concentration

    NASA Astrophysics Data System (ADS)

    Okatan, Mahmut; Mantese, Joseph; Alpay, Pamir

    2009-03-01

    Intriguing properties of multilayered and graded ferroelectrics follow from the electrostatic and electromechanical interactions. The strength of the interlayer coupling depends on the concentration of interfacial defects with short-range local electrostatic fields. Defects may locally relax polarization differences and thus reduce the commensurate bound charge concentration at the interlayer interfaces. In this talk, we develop a theoretical analysis based on non-linear thermodynamics coupled with basic electrostatic relations to understand the role of charge compensation at the interlayer interfaces. The results show multilayered ferroelectrics with systematic variations in the composition may display a colossal dielectric response depending upon the interlayer electrostatic interactions. It is expected that other properties such as the pyroelectric and piezoelectric response will yield concomitant increases through the dielectric permittivity.

  1. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  2. Influence of defect luminescence and structural modification on the electrical properties of Magnesium Doped Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Santoshkumar, B.; Biswas, Amrita; Kalyanaraman, S.; Thangavel, R.; Udayabhanu, G.; Annadurai, G.; Velumani, S.

    2017-06-01

    Magnesium doped zinc oxide nanorod arrays on zinc oxide seed layers were grown by hydrothermal method. X-ray diffraction (XRD) patterns revealed the growth orientation along the preferential (002) direction. The hexagonal morphology was revealed from the field emission scanning electron microscope (FESEM) images. The elemental composition of the samples was confirmed by energy dispersive x-ray analysis spectra (EDS) and mapping dots. Carrier concentration, resistivity and mobility of the samples were obtained by Hall measurements. I-V characteristic curve confirmed the increase in resistivity upon doping. Photoluminescence (PL) spectra exposed the characteristic of UV emission along with defect mediated visible emission in the samples. Electrochemical impedance spectroscopy and cyclic voltammetry were undertaken to study the charge transport property. Owing to the change in the structural parameters and defect concentration the electrical properties of the doped samples were altered.

  3. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-12-01

    Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  4. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.

  5. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Uberuaga, Blas P.

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less

  7. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths

    PubMed Central

    Günay, Seçkin D.

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  8. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    DOE PAGES

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less

  9. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  10. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    PubMed

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.

  11. High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation In Vivo

    PubMed Central

    Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang

    2011-01-01

    The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  12. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  13. Annealing kinetics of radiation defects in boron-implanted p-Hg1‑xCdxTe

    NASA Astrophysics Data System (ADS)

    Talipov, Niyaz; Voitsekhovskii, Alexander

    2018-06-01

    The results of studying the annealing kinetics of the radiation-induced donor-type defects in boron implanted p-type Hg1‑x Cd x Te (MCT) are presented. The annealing kinetics of the radiation donor centers depend significantly on the dose of B+ ions, that is on the initial level of structural defects generated in the MCT lattice by ion bombardment. The activation energy E A of annealing of donor defects generated by implantation of B+ ions increases with increasing dose and temperature of the post-implantation heat treatment under the SiO2 cap. The smaller the dose and the higher the initial hole concentration in p-MCT, the lower the temperature of a complete annealing of donor centers, which lies in the range 220–275 °C. In the initial stages of the post-implantation heat treatment, primary donor defects are annealed, and then, more stable secondary impurity-defect complexes are annealed. It was established for the first time that the activation energy of the donor defects annealing in bulk crystals and heteroepitaxial structures of MCT has two clearly pronounced regions: at low temperatures 90–130 °C, E A = 0.06 eV and at Т = 150–250 °C, E A = 0.71–0.86 eV.

  14. Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna

    2015-05-01

    In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.

  15. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  16. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  17. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE PAGES

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...

    2015-10-06

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  18. Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Malzbender, Jürgen; Wakui, Takashi; Wessel, Egbert; Steinbrech, Rolf W.

    Thermal barrier coatings (TBCs) of plasma sprayed yttria stabilised zirconia (YSZ) are increasingly utilised for heat exposed components of advanced gas turbines1,2. An important reason for the application of zirconia coatings is the low thermal conductivity of this ceramic material which is further diminished in a TBC by the high concentration of spraying induced microstructural defects, e.g. crack-shaped defects between and within the spraying splats. Thus with TBCs on gas cooled turbine components stiff temperature gradients can be realised as an important prerequisite for an increased thermal efficiency of the energy conversion process.

  19. Growth experiment of narrow band-gap semiconductor PbSnTe single crystals in space (M-1)

    NASA Technical Reports Server (NTRS)

    Yamada, Tomoaki

    1993-01-01

    An experiment on crystal growth of Pb(1-x)Sn(x)Te in microgravity is planned. This material is an alloy of the compound semiconductors PbTe and SnTe. It is a promising material for infrared diode lasers and detectors in the wavelength region between 6 and 30 micron. Since the electrical properties of Pb(1-x)Sn(x)Te depend greatly on the Pb/Sn ratio and crystalline defects as well as impurity concentration, homogeneous, defect-free, high-quality crystals are anticipated. Although many growth methods, such as the pulling method, the Bridgman method, the vapor growth method, etc., have been applied to the growth of Pb(1-x)Sn(x)Te, large, homogeneous, low-defect-density crystals have not yet been grown on Earth. The unsuccessful results were caused by buoyancy-driven convection in the fluids induced by the specific gravity difference between heated and cooled fluids on Earth. A crystal is grown by cooling the melt from one end of the ampoule. In crystal growth from the melt, about 30 percent of the SnTe in the melt is rejected at the solid-liquid interface during solidification. On Earth, the rejected SnTe is completely mixed with the remaining melt by convection in the melt. Therefore, SnTe concentration in the melt, and accordingly in the crystal, increases as the crystal grows. In the microgravity environment, buoyancy-driven convection is suppressed because the specific gravity difference is negligible. In that case, the rejected SnTe remains at the solid-liquid interface and its concentration increases only at the interface. If the growth rate is higher than the PbTe-SnTe interdiffusion rate, the amount of SnTe which diffuses from the interface into the melt increases as SnTe piles up at the interface, and finally it balances the amount of rejected SnTe during solidification, resulting in steady-state SnTe transportation at the interface. By using this principle, compositionally homogeneous crystals can be grown. Furthermore, low-defect-density crystals will be grown in microgravity, because convection causes crystalline defects by mising hot and cold fluids and generating temperature fluctuations in them.

  20. Defects in ZnO nanorods prepared by a hydrothermal method.

    PubMed

    Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K

    2006-10-26

    ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.

  1. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  2. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe 2-x Crystals

    DOE PAGES

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; ...

    2016-01-01

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. In this paper, we demonstrate the growth of MoSe 2–x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ~20%, that exhibit a remarkable transition in electrical transport propertiesmore » from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ~250 cm -1 appears, and the A 1g Raman characteristic mode at 240 cm -1 softens toward ~230 cm -1 which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. Finally, first-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.« less

  3. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    DOE PAGES

    Shi, Shi; He, Mo-Rigen; Jin, Ke; ...

    2018-01-10

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less

  4. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shi; He, Mo-Rigen; Jin, Ke

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less

  5. Influence of point defects on the thermal conductivity in FeSi

    NASA Astrophysics Data System (ADS)

    Stern, Robin; Wang, Tao; Carrete, Jesús; Mingo, Natalio; Madsen, Georg K. H.

    2018-05-01

    The unique transport properties of B20 FeSi have been investigated for decades. The progress in theoretical calculations allows the explanation and prediction of more and more of such properties. In this paper we investigate the lattice thermal conductivity of FeSi. Calculation for pristine FeSi severely overestimates the lattice thermal conductivity compared to experiment. We point out that the defect concentration can be considerably larger than indicated by the Hall coefficient. The defect formation energies are calculated and it is found that a substantial amount of iron vacancies can form at thermal equilibrium. These will lead to an increased phonon scattering. To explain the thermal conductivity of FeSi, we consider phonon-phonon, isotope, and phonon-defect scattering to assess possible scattering mechanisms. The calculated thermal conductivities indicate that phonon-defect scattering is important in order to explain the reported experimental values.

  6. Physicochemical characterization of point defects in fluorine doped tin oxide films

    NASA Astrophysics Data System (ADS)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  7. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yang; Liu, Yang; Zhu, Guanghui

    Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less

  9. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  10. Multiscale simulations of defect dipole-enhanced electromechanical coupling at dilute defect concentrations

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Cohen, R. E.

    2017-08-01

    The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.

  11. Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...

    2017-06-23

    Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less

  12. The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment

    NASA Astrophysics Data System (ADS)

    Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira

    2018-06-01

    Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.

  13. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  14. A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Pappus, S. Aurosman; Ekka, Basanti; Sahu, Swetapadma; Sabat, Debabrat; Dash, Priyabrat; Mishra, Monalisa

    2017-04-01

    The effects of oral intake of hydroxyapatite nanoparticles (HApNPs) were investigated on growth, development and behaviour of Drosophila. The Drosophila responses to various concentrations of HApNPs were compared. At lower concentrations, i.e. 5 mg L-1 more amount of oxidative stress was produced than that of highest concentration, i.e. 80 mg L-1. The increased amounts of oxidative stress reflect a higher amount of ROS production and increased cell damage within the larval gut. HApNPs was further shown to interfere with the calcium and phosphorus absorption pathway. Besides all these damage, HApNPs causes developmental delay in the late third instar larvae. The most significant anomaly was observed in pupae count, fly hatching after the feeding of HApNPs. Flies hatched from treated vials have decreased body weight with defective walking behaviour. Hatched flies have a phenotypic defect in the wing, eye and thorax of the bristles. Along with these changes, the adult fly becomes more prone towards stress. The findings hint that HApNPs persuade noxious effects and alter the development, structure, function and behaviour of the fly in a concentration-dependent manner.

  15. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  16. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications.

    PubMed

    Zetterberg, Henrik

    2004-02-17

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  17. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  18. Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2015-10-01

    The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.

  19. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  20. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7-12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  1. Water sensitivity of the seismic properties of upper-mantle olivine

    NASA Astrophysics Data System (ADS)

    Cline, Christopher; David, Emmanuel; Faul, Ulrich; Berry, Andrew; Jackson, Ian

    2017-04-01

    The wave speeds and attenuation of seismic waves in the upper mantle are expected to be strongly influenced by the defect chemistry of olivine grain interiors and the associated chemical complexity of grain-boundary regions. Changes in chemical environment (oxygen fugacity and/or water fugacity) can impose different defect chemistries, including the creation and retention of hydrous defects, and therefore can directly influence anelastic relaxation involving stress-induced migration of lattice defects and/or grain-boundary sliding. Here we report the first low-frequency experimental study of the seismic properties of olivine under water-undersaturated conditions. Three synthetic sol-gel derived olivine (Fo90) specimens were fabricated by hot-pressing in welded Pt capsules with various concentrations of hydroxyl, chemically bound as doubly protonated Si vacancies, charge balanced by substitution of Ti on a neighboring M-site (i.e., the Ti-clinohumite-like defect). Hydroxyl contents, determined following the subsequent mechanical testing within Pt sleeves, increased systematically with the amount of added Ti-dopant. Added Ti concentrations ranged between 176 and 802 atom ppm Ti/Si, resulting in concentrations of bound hydrogen in the three samples ranging between 330 and 1150 atom ppm H/Si. Each hot-pressed specimen was precision ground and then sleeved in Pt for mechanical testing in forced torsional oscillation under water-undersaturated conditions. Forced-oscillation tests were conducted at seismic periods of 1 - 1000 s and 200 MPa confining pressure during slow staged cooling from 1200 to 25°C. Each Ti-doped specimen showed mechanical behavior of the high-temperature background type involving monotonically increasing dissipation and decreasing shear modulus with increasing oscillation period and increasing temperature. Comparison of the mechanical data acquired in these water-undersaturated conditions with a similarly tested, but dry, Ti-bearing specimen (enclosed within an Ni-Fe sleeve under more reducing conditions) shows a marked contrast. The OH-bearing specimens exhibit much lower shear moduli (by as much as 80%) and higher levels of dissipation (by as much as 0.5 log units in Q-1), but also limited sensitivity of the seismic properties to the total water content among the hydrated specimens in the series. These results indicate that the higher oxygen and water fugacities prevailing within Pt-sleeved specimens result in lower shear moduli and higher dissipation under water-undersaturated conditions - presumably attributable to contrasting defect populations and/or grain boundary chemistries. Clarification of the relative roles of grain-boundary sliding and any additional intragranular relaxation under increased fH2O and fO2 thus offers the prospect of an improved understanding of the seismological signature of more oxidized/hydrous portions of the Earth's upper mantle, such as subduction zone environments.

  2. Space charge induced surface stresses: implications in ceria and other ionic solids.

    PubMed

    Sheldon, Brian W; Shenoy, Vivek B

    2011-05-27

    Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society

  3. Insight into the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response in chemically grown ZnO/Al2O3 films

    NASA Astrophysics Data System (ADS)

    Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata

    2017-11-01

    We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.

  4. Carrier removal and defect behavior in p-type InP

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  5. Agrichemicals in surface water and birth defects in the United States

    PubMed Central

    Winchester, Paul D; Huskins, Jordan; Ying, Jun

    2009-01-01

    Objectives: To investigate if live births conceived in months when surface water agrichemicals are highest are at greater risk for birth defects. Methods: Monthly concentrations during 1996–2002 of nitrates, atrazine and other pesticides were calculated using United States Geological Survey's National Water Quality Assessment data. Monthly United States birth defect rates were calculated for live births from 1996 to 2002 using United States Centers for Disease Control and Prevention natality data sets. Birth defect rates by month of last menstrual period (LMP) were then compared to pesticide/nitrate means using logistical regression models. Results: Mean concentrations of agrichemicals were highest in April–July. Total birth defects, and eleven of 22 birth defect subcategories, were more likely to occur in live births with LMPs between April and July. A significant association was found between the season of elevated agrichemicals and birth defects. Conclusion: Elevated concentrations of agrichemicals in surface water in April–July coincided with higher risk of birth defects in live births with LMPs April–July. While a causal link between agrichemicals and birth defects cannot be proven from this study an association might provide clues to common factors shared by both variables. PMID:19183116

  6. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  7. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  8. Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies

    DOE PAGES

    Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...

    2017-09-21

    Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less

  9. The fine structure of electron irradiation induced EL2-like defects in n-GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.

    2016-04-14

    Defects induced by electron irradiation in n-GaAs have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS). The E{sub 0.83} (EL2) is the only defect observed prior to irradiation. Ru/n-GaAs Schottky diodes were irradiated with high energy electrons from a Sr-90 radionuclide up to a fluence of 2.45 × 10{sup 13} cm{sup −2}. The prominent electron irradiation induced defects, E{sub 0.04}, E{sub 0.14}, E{sub 0.38}, and E{sub 0.63}, were observed together with the metastable E{sub 0.17}. Using L-DLTS, we observed the fine structure of a broad base EL2-like defect peak. This was found to be made up of the E{submore » 0.75}, E{sub 0.83}, and E{sub 0.85} defects. Our study reveals that high energy electron irradiation increases the concentration of the E{sub 0.83} defect and introduces a family of defects with electronic properties similar to those of the EL2.« less

  10. Effect of alpha-particle irradiation on the electrical properties of n-type Ge

    NASA Astrophysics Data System (ADS)

    Roro, K. T.; Janse van Rensburg, P. J.; Auret, F. D.; Coelho, S.

    2009-12-01

    Deep-level transient spectroscopy was used to investigate the effect of alpha particle irradiation on the electrical properties of n-type Ge. The samples were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radionuclide source. The main defects introduced were found to be electron traps with energy levels at EC-0.38, EC-0.21, EC-0.20, EC-0.15, and EC-0.10 eV, respectively. The main defects in alpha particle irradiation are similar to those introduced by MeV electron irradiation, where the main defect is the E-center. A quadratic increase in concentration as a function of dose is observed.

  11. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO 2

    DOE PAGES

    Wuttig, Anna; Krizan, Jason W.; Gu, Jing; ...

    2016-11-14

    Here, we report the tuning of CuFeO 2 photoelectrodes by Mg doping and Cu deficiency to demonstrate the effects of carrier concentration on the photoresponse. Carrier type and concentration were quantitatively assessed using the Hall effect on pure, Mg-incorporated, and Cu-deficient pellets (CuFe 1–xMg xO 2 and Cu 1–yFeO 2, x = 0, 0.0005, 0.005, 0.02, and y = 0.005, 0.02) over the range of thermodynamic stability achievable using solid-state synthesis. The same samples were used in a photoelectrochemical cell to measure their photoresponse. We find that the material with the lowest p-type carrier concentration and the highest carrier mobilitymore » shows the largest photoresponse. Furthermore, we show that increasing the p-type carrier concentration and thus the conductivity to high levels is limited by the delafossite defect chemistry, which changes the majority carrier type from p-type to n-type near the Mg solubility limit (x = 0.05) and at high Cu defect concentrations.« less

  12. Investigations of structural defects, crystalline perfection, metallic impurity concentration and optical quality of flat-top KDP crystal

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Verma, Sunil; Singh, Yeshpal; Bartwal, K. S.; Tiwari, M. K.; Lodha, G. S.; Bhagavannarayana, G.

    2015-08-01

    KDP crystal grown using flat-top technique has been characterized using X-ray and optical techniques with the aim of correlating the defects structure and impurity concentration in the crystal with its optical properties. Crystallographic defects were investigated using X-ray topography revealing linear and arc like chains of dislocations and to conclude that defects do not originate from the flat-top part of the crystal. Etching was performed to quantify dislocation defects density. The crystalline perfection of the crystal was found to be high as the FWHM of the rocking curves measured at several locations was consistently low 6-9 arc s. The concentration of Fe metallic impurity quantified using X-ray fluorescence technique was approximately 5 times lower in the flat-top part which falls in pyramidal growth sector as compared to the region near to the seed which lies in prismatic sector. The spectrophotometric characterization for plates cut normal to different crystallographic directions in the flat-top potassium dihydrogen phosphate (FT-KDP) crystal was performed to understand the influence of metallic impurity distribution and growth sectors on the optical transmittance. The transmittance of the FT-KDP crystal at 1064 nm and its higher harmonics (2nd, 3rd, 4th and 5th) was determined from the measured spectra and the lower transmission in the UV region was attributed to increased absorption by Fe metallic impurity at these wavelengths. The results are in agreement with the results obtained using X-ray fluorescence and X-ray topography. Birefringence and Mach-Zehnder interferometry show that except for the region near to the seed crystal the optical homogeneity of the entire crystal was good. The laser-induced damage threshold (LDT) values are in the range 2.4-3.9 GW/cm2. The LDT of the plate taken from the flat-top region is higher than that from the bottom of the crystal, indicating that the flat-top technique has good optical quality and is comparable to those reported using rapid growth technique. The results indicate that the structural defects, crystalline quality and impurity concentration have a correlation with the optical properties of the FT-KDP crystal.

  13. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  14. A polycrystal plasticity model of strain localization in irradiated iron

    NASA Astrophysics Data System (ADS)

    Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime

    2013-02-01

    At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations.

  15. Features of conductivity mechanisms in heavily doped compensated V{sub 1–x}Ti{sub x}FeSb Semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaka, V. A., E-mail: vromaka@polynet.lviv.ua; Rogl, P.; Romaka, V. V.

    2016-07-15

    The crystal and electronic structure and also the energy and kinetic properties of n-VFeSb semiconductor heavily doped with the Ti acceptor impurity are investigated in the temperature and Ti concentration ranges of T = 4.2–400 K and N{sub A}{sup Ti} ≈ 9.5 × 10{sup 19}–3.6 × 10{sup 21} cm{sup –3} (x = 0.005–0.20), respectively. The complex mechanism of the generation of acceptor and donor structural defects is established. It is demonstrated that the presence of vacancies at Sb atomic sites in n-VFeSb gives rise to donor structural defects (“a priori doping”). Substitution of the Ti dopant for V in VFeSbmore » leads simultaneously to the generation of acceptortype structural defects, a decrease in the number of donor defects, and their removal in the concentration range of 0 ≤ x ≤ 0.03 via the occupation of vacancies by Sb atoms, and the generation of donor defects due to the occurrence of vacancies and an increase in their number. The result obtained underlies the technique for fabricating new n-VFeSb-based thermoelectric materials. The results are discussed in the context of the Shklovsky–Efros model for a heavily doped compensated semiconductor.« less

  16. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    DOE PAGES

    Perriot, Romain; Uberuaga, Blas P.

    2015-04-21

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less

  17. Origin of reduced efficiency in high Ga concentration Cu(In,Ga)Se2 solar cell

    NASA Astrophysics Data System (ADS)

    Wei, S.-H.; Huang, B.; Deng, H.; Contreras, M. A.; Noufi, R.; Chen, S.; Wang, L. W.

    2014-03-01

    CuInSe2 (CIS) is one of the most attractive thin-film materials for solar cells. It is well know that alloying Ga into CIS forming Cu(In,Ga)Se2 (CIGS) alloy is crucial to achieve the high efficiency, but adding too much Ga will lead to a decline of the solar cell efficiency. The exact origin of this puzzling phenomenon is currently still under debate. Using first-principles method, we have systemically studied the structural and electronic properties of CIGS alloys. Our phase diagram calculations suggest that increasing growth temperature may not be a critical factor in enhancing the cell performance of CIGS under equilibrium growth condition. On the other hand, our defect calculations identify that high concentration of antisite defects MCu(M =In, Ga) rather than anion defects are the key deep-trap centers in CIGS. The more the Ga concentration in CIGS, the more harmful the deep-trap is. Self-compensation in CIGS, which forms 2VCu + MCudefect complexes, is found to be beneficial to quench the deep-trap levels induced by MCu in CIGS, especially at low Ga concentration. Unfortunately, the density of isolated MCu is quite high and cannot be largely converted into 2VCu + MCu complexes under thermal equilibrium condition. Thus, nonequilibrium growth conditions or low growth temperature that can suppress the formation of the deep-trap centers MCu may be necessary for improving the efficiency of CIGS solar cells with high Ga concentrations.

  18. Early prenatal exposure to air pollution and its associations with birth defects in a state-wide birth cohort from North Carolina.

    PubMed

    Vinikoor-Imler, Lisa C; Davis, J Allen; Meyer, Robert E; Luben, Thomas J

    2013-10-01

    Few studies have examined the potential relationship between air pollution and birth defects. The objective of this study was to investigate whether maternal exposure to particulate matter (PM2.5 ) and ozone (O3 ) during pregnancy is associated with birth defects among women living throughout North Carolina. Information on maternal and infant characteristics was obtained from North Carolina birth certificates and health service data (2003-2005) and linked with information on birth defects from the North Carolina Birth Defects Monitoring Program. The 24-hr PM2.5 and O3 concentrations were estimated using a hierarchical Bayesian model of air pollution generated by combining modeled air pollution predictions from the U.S. Environmental Protection Agency's Community Multi-Scale Air Quality model with air monitor data from the Environmental Protection Agency's Air Quality System. Maternal residence was geocoded and assigned pollutant concentrations averaged over weeks 3 to 8 of gestation. Binomial regression was performed and adjusted for potential confounders. No association was observed between either PM2.5 or O3 concentrations and most birth defects. Positive effect estimates were observed between air pollution and microtia/anotia and lower limb deficiency defects, but the 95% confidence intervals were wide and included the null. Overall, this study suggested a possible relationship between air pollution concentration during early pregnancy and certain birth defects (e.g., microtia/anotia, lower limb deficiency defects), although this study did not have the power to detect such an association. The risk for most birth defects does not appear to be affected by ambient air pollution. Copyright © 2013 Wiley Periodicals, Inc.

  19. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  20. Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.

    2015-08-01

    Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.

  1. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  2. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  3. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x).

    PubMed

    He, Heming; Shoesmith, David

    2010-07-28

    A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.

  4. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative electrodes. Our results provide an understanding of the influence of the environment on defect formation and demonstrate a linkage between defect concentration in a solid electrolyte and the voltage of the electrode.

  5. A nitrogen-doped graphene film prepared by chemical vapor deposition of a methanol mist containing methylated melamine resin

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takizawa, M.; Tsuchiya, B.; Jinno, M.; Bandow, S.

    2013-11-01

    The effect of nitrogen doping on the sheet resistivity of a graphene film is systematically studied by changing the doping concentration. The nitrogen-doped graphene film is grown on a Cu foil by chemical vapor deposition using an ultrasonically generated methanol mist containing methylated melamine resin (simply called ‘melamine’). Using this method, it is found that the magnitude of the sheet resistivity is controllable by changing the melamine concentration. Increasing the melamine concentration up to ˜0.03 % causes a decrease of the sheet resistivity. We explain this by the substitutional doping of nitrogen atoms. A further increase in melamine concentration causes an increase of the sheet resistivity. This increase may be caused by the formation of pyridinic or pyrrolic N instead of substitutional N. Electron energy loss spectroscopy analyses for the carbon K-edge indicate a decrease of π ∗ character with increasing melamine concentration up to 0.08 % and then it recovers for higher concentration. This is due to a separation of the graphitic region and the defective region at high melamine concentration.

  6. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition.

    PubMed

    Li, Hao; Liao, Hongbing; Bao, Chongyun; Xiao, Yu; Wang, Qi

    2017-02-01

    The aim of the present study was to prepare and evaluate a sustained-release mangiferin scaffold for improving alveolar bone defect repair in diabetes. Mangiferin-loaded poly(D,L-lactide-co-glycolide) (PLGA) scaffolds were prepared using a freeze-drying technique with ice particles as the porogen material. The produced scaffolds were examined using a scanning electron microscope (SEM). Drug content and drug release were detected using a spectrophotometer. Degradation behaviors were monitored as a measure of weight loss and examined using SEM. Then, the scaffolds were incubated with rat bone marrow stromal cells under the diabetic condition in vitro, and cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Afterward, the scaffolds were implanted into alveolar bone defects of diabetic rats, and bone repair was examined using hematoxylin and eosin staining. The fabricated scaffolds showed porous structures, with average pore size range from 111.35 to 169.45 μm. A higher PLGA concentration led to decreased average pore size. A lower PLGA concentration or a higher mangiferin concentration resulted in increased drug content. The prepared scaffolds released mangiferin in a sustained manner with relatively low initial burst during 10 weeks. Their degradation ratios gradually increased as degradation proceeded. The mangiferin-loaded scaffolds attenuated cell viability decrease under the diabetic condition in vitro. Moreover, they increased histological scorings of bone regeneration and improved delayed alveolar bone defect healing in diabetic rats. These results suggest that the produced mangiferin-loaded scaffolds may provide a potential approach in the treatment of impaired alveolar bone healing in diabetes.

  7. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  8. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  9. Targeting of Several Glycolytic Enzymes Using RNA Interference Reveals Aldolase Affects Cancer Cell Proliferation through a Non-glycolytic Mechanism

    PubMed Central

    Lew, Carolyn Ritterson; Tolan, Dean R.

    2012-01-01

    In cancer, glucose uptake and glycolysis are increased regardless of the oxygen concentration in the cell, a phenomenon known as the Warburg effect. Several (but not all) glycolytic enzymes have been investigated as potential therapeutic targets for cancer treatment using RNAi. Here, four previously untargeted glycolytic enzymes, aldolase A, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase, and enolase 1, are targeted using RNAi in Ras-transformed NIH-3T3 cells. Of these enzymes, knockdown of aldolase causes the greatest effect, inhibiting cell proliferation by 90%. This defect is rescued by expression of exogenous aldolase. However, aldolase knockdown does not affect glycolytic flux or intracellular ATP concentration, indicating a non-metabolic cause for the cell proliferation defect. Furthermore, this defect could be rescued with an enzymatically dead aldolase variant that retains the known F-actin binding ability of aldolase. One possible model for how aldolase knockdown may inhibit transformed cell proliferation is through its disruption of actin-cytoskeleton dynamics in cell division. Consistent with this hypothesis, aldolase knockdown cells show increased multinucleation. These results are compared with other studies targeting glycolytic enzymes with RNAi in the context of cancer cell proliferation and suggest that aldolase may be a useful target in the treatment of cancer. PMID:23093405

  10. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    PubMed Central

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  11. Single-crystalline oxide films of the Al2O3-Y2O3-R2O3 system as optical sensors of various types of ionizing radiation: significant advantages over volume analogs

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuri V.; Batenchuk, M.; Gorbenco, V.; Pashkovsky, M.

    1997-02-01

    This investigation is dedicated to studying of peculiarities of luminescent properties of the single crystalline films (SCF) of Al2O3-Y2O3-R2O3 oxide system with alpha-Al2O3 and garnet structure, which are used as various types of ionizing radiation luminescent detectors. These peculiarities define the number of nontrivial advantages over their volume analogues. It is shown that SCF are characterized by the low concentrations of vacancy type defects and substituent defects, and the high concentration of Pb ion as dopant. This allows us to substantially increase the spatial resolution and selectivity of cathodoluminophores on the base of these compounds.

  12. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterne, P A; Pask, J E

    2003-02-13

    Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one helium atom, the calculated lifetime is 190 ps, while a di-vacancy containing two helium atoms has a positron lifetime of 205 ps. In general, increasing the helium density in a vacancy cluster or He-filled bubble reduces the positron lifetime, so that the same lifetime value can arise fi-om a range of vacancy cluster sizes with different helium densities. In order to understand the variation of positron lifetime with vacancy cluster size and helium density in the defect, we have performed over 60 positron lifetime calculations with vacancy cluster sizes ranging from 1 to 55 vacancies and helium densities ranging fi-om zero to five helium atoms per vacancy. The results indicate that the experimental lifetime of 182 ps is consistent with the theoretical value of 190 ps for a mono-vacancy with a single helium atom, but that slightly better agreement is obtained for larger clusters of 6 or more vacancies containing 2-3 helium atoms per vacancy. For larger vacancy clusters with diameters of about 3-5 nm or more, the annihilation with helium electrons dominates the positron annihilation rate; the observed lifetime of 180ps is then consistent with a helium concentration in the range of 3 to 3.5 Hehacancy, setting an upper bound on the helium concentration in the vacancy clusters. In practice, the single lifetime component is most probably associated with a family of helium-filled bubbles rather than with a specific unique defect size. The longer 350-400ps lifetime component is consistent with a relatively narrow range of defect sizes and He concentration. At zero He concentration, the lifetime values are matched by small vacancy clusters containing 6-12 vacancies. With increasing vacancy cluster size, a small amount of He is required to keep the lifetime in the 350-400 ps range, until the value saturates for larger helium bubbles of more than 50 vacancies (bubble diameter > 1.3 nm) at a helium concentration close to 1 He/vacancy. These results, taken together with the experimental data, indicate that the features observed in TEM data by Schwartz et al are not voids, but are in fact helium-filled bubbles with a helium pressure of around 2-3 helium atoms per vacancy, depending on the bubble size. This is consistent with the conclusions of recently developed models of He-bubble growth in aged plutonium.« less

  13. Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-06-01

    The major objective of this work is to present results of a classical molecular dynamics study to investigate the effect of changing the cut-off distance in the empirical potential on the stress-strain relation and also the temperature dependent Young’s modulus of pristine and defective hexagonal boron nitride. As the temperature increases, the computed Young’s modulus shows a significant decrease along both the armchair and zigzag directions. The computed Young’s modulus shows a trend in keeping with the structural anisotropy of h-BN. The variation of Young’s modulus with system size is elucidated. The observed mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales type defects. The computed room temperature Young’s modulus of pristine h-BN is 755 GPa and 769 GPa respectively along the armchair and zigzag directions. The decrease of Young’s modulus with increase in temperature has been analyzed and the results show that the system with zigzag edge shows a higher value of Young’s modulus in comparison to that with armchair edge. As the temperature increases, the computed stiffness decreases and the system with zigzag edge possesses a higher value of stiffness as compared to the armchair counterpart and this behaviour is consistent with the variation of Young’s modulus. The defect analysis shows that presence of vacancy type defects leads to a higher Young’s modulus, in the studied range with different percentage of defect concentration, in comparison with Stone-Wales defect. The variations in the peak position of the computed radial distribution function reveals the changes in the structural features of systems with zigzag and armchair edges in the presence of applied stress.

  14. Hydrogen passivation of polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.

    2012-09-01

    The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.

  15. Influence of defects and doping on phonon transport properties of monolayer MoSe2

    NASA Astrophysics Data System (ADS)

    Yan, Zhequan; Yoon, Mina; Kumar, Satish

    2018-07-01

    The doping of monolayer MoSe2 by tungsten (W) can suppress the Se vacancy concentration, but how doping and resulting change in defect concentration can tune its thermal properties is not understood yet. We use first-principles density functional theory (DFT) along with the phonon Boltzmann transport equation (BTE) to study the phonon transport properties of pristine MoSe2 and W doped MoSe2 with and without the presence of Se vacancies. We found that for samples without Se vacancy, the W doping could enhance the thermal transport of monolayer MoSe2 due to reduced three-phonon scattering phase space. For example, we observed that the 16.7% W doping increases the thermal conductivity of the monolayer MoSe2 with 2% Se vacancy by 80% if all vacancies can be suppressed by W-doping. However, the W doping in the defective MoSe2 amplifies the influence of the phonon scattering caused by the Se vacancies, which results in a further decrease in thermal conductivity of monolayer MoSe2 with defects. This is found to be related with higher phonon density of states of Mo0.83W0.17Se2 and larger mass difference between W and Se atoms compared to Mo and Se atoms. This study deciphers the effect of defects and doping on the thermal conductivity of monolayer MoSe2, which helps us understand the mechanism of defect-induced phonon transport, and provides insights into enhancing the heat dissipation in MoSe2-based electronic devices.

  16. Doping behavior of iodine in Hg/0.8/Cd/0.2/Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Kroger, F. A.

    1982-01-01

    The defect state prevailing in iodine doped single-crystal samples of Hg0.8Cd0.2Te, annealed at 450-600 C in Hg vapor, has been deduced from Hall effect measurements on samples cooled to 77 K from the annealing temperature. Results are found to be similar to those previously obtained for iodine doped CdS, i.e. iodine acts as a single donor occupying Te lattice sites with a fraction paired with the native acceptor defects. The concentration of iodine on tellurium lattice sites increases with the partial pressure of Hg, whereas that of the pair species increases as the partial pressure of Hg decreases.

  17. Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Haixia; Institute of Solid State Physics, Shanxi Datong University, Datong 037009; Fang, Dangqi

    2015-02-14

    The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-Ι and SW-ΙΙ) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-Ι defectmore » are more distinct than those influenced by the SW-ΙΙ when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.« less

  18. Defect Complex Effect in Nb Doped TiO2 Ceramics with Colossal Permittivity

    NASA Astrophysics Data System (ADS)

    Li, Fuchao; Shang, Baoqiang; Liang, Pengfei; Wei, Lingling; Yang, Zupei

    2016-10-01

    Donor-doped Nb x Ti1- x O2 ( x = 1%, 2%, 4%, 6%, and 8%) ceramics with giant permittivity (>104) and a very low dielectric loss (˜0.05) were sintered under flowing N2 at 1400°C for 10 h. By increasing Nb doping concentration, two different dielectric responses were evidenced in the frequency dependence of dielectric properties of Nb doped TiO2 ceramics, which corresponded to the space charge polarization and the electron-pinned defect-dipoles effect, respectively. Especially, combined with the x-ray photoelectron spectroscopy results, the electron-pinned defect-dipoles induced by the 2({Nb}^{5 + } )_{{Ti}}^{ bullet } to 4({Ti}^{3 + } )^'_{{Ti}} leftarrow {V}_{{o}}^{ bullet bullet } defect complex were further confirmed to give rise to both their high ɛr and low tan δ in the high frequency range for the Nb x Ti1- x O2 ceramics with x > 4%.

  19. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee

    2018-05-01

    We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

  20. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  1. p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Perl, Svenja; Kamp, Martin

    2015-02-09

    In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related tomore » the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.« less

  2. Channeling Excitons to Emissive Defect Sites in Carbon Nanotube Semiconductors beyond the Dilute Regime.

    PubMed

    Powell, Lyndsey R; Piao, Yanmei; Ng, Allen L; Wang, YuHuang

    2018-06-07

    The exciton photoluminescence of carbon nanotube semiconductors has been intensively exploited for bioimaging, anticounterfeiting, photodetection, and quantum information science. However, at high concentrations, photoluminescence is lost to self-quenching because of the nearly complete overlap of the absorption and emissive states (∼10 meV Stokes shift). Here we show that by introducing sparse fluorescent quantum defects via covalent chemistry, self-quenching can be efficiently bypassed by means of the new emission route. The defect photoluminescence is significantly red-shifted by 190 meV for p-nitroaryl tailored (6,5)-single-walled carbon nanotubes (SWCNTs) from the native emission of the nanotube. Notably, the defect photoluminescence is more than 34 times brighter than the native photoluminescence of unfunctionalized SWCNTs in the most concentrated nanotube solution tested (2.7 × 10 14 nanotubes/mL). Moreover, we show that defect photoluminescence is more resistant to self-quenching than the native state in a dense film, which is the upper limit of concentration. Our findings open opportunities to harness nanotube excitons in highly concentrated systems for applications where photoluminescence brightness and light-collecting efficiency are mutually important.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  4. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  5. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  6. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  7. The defect chemistry of UO2 ± x from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  8. No Significant Increase in the Δ4- and Δ7-Dafachronic Acid Concentration in the Long-Lived glp-1 Mutant, nor in the Mutants Defective in Dauer Formation.

    PubMed

    Li, Tie-Mei; Liu, Weilong; Lu, Shan; Zhang, Yan-Ping; Jia, Le-Mei; Chen, Jie; Li, Xiangke; Lei, Xiaoguang; Dong, Meng-Qiu

    2015-05-12

    The steroid hormone dafachronic acid (DA) regulates dauer formation and lifespan in Caenorhabditis elegans by binding to the nuclear receptor DAF-12. However, little is known about how DA concentrations change under various physiologic conditions and about how DA/DAF-12 signaling interacts with other signaling pathways that also regulate dauer formation and lifespan. Using a sensitive bioanalytical method, we quantified the endogenous DA concentrations in a long-lived germline-less glp-1 mutant and in the Dauer formation-defective (Daf-d) mutants daf-12, daf-16, daf-5, and daf-3. We found that the DA concentration in the glp-1 mutant was similar to that in the wild type (WT). This result is contrary to the long-held belief that germline loss-induced longevity involves increased DA production and suggests instead that this type of longevity involves an enhanced response to DA. We also found evidence suggesting that increased DA sensitivity underlies lifespan extension triggered by exogenous DA. At the L2/L3 stage, the DA concentration in a daf-12 null mutant decreased to 22% of the WT level. This finding is consistent with the previously proposed positive feedback regulation between DAF-12 and DA production. Surprisingly, the DA concentrations in the daf-16, daf-5, and daf-3 mutants were only 19-34% of the WT level at the L2/L3 stage, slightly greater than those in the Dauer formation-constitutive (Daf-c) mutants at the pre-dauer stage (4-15% of the WT L2 control). Our experimental evidence suggested that the positive feedback between DA and DAF-12 was partially induced in the three Daf-d mutants. Copyright © 2015 Li et al.

  9. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: A first principles study

    NASA Astrophysics Data System (ADS)

    Materlik, Robin; Künneth, Christopher; Falkowski, Max; Mikolajick, Thomas; Kersch, Alfred

    2018-04-01

    III-valent dopants have shown to be most effective in stabilizing the ferroelectric, crystalline phase in atomic layer deposited, polycrystalline HfO2 thin films. On the other hand, such dopants are commonly used for tetragonal and cubic phase stabilization in ceramic HfO2. This difference in the impact has not been elucidated so far. The prospect is a suitable doping to produce ferroelectric HfO2 ceramics with a technological impact. In this paper, we investigate the impact of Al, Y, and La doping, which have experimentally proven to stabilize the ferroelectric Pca21 phase in HfO2, in a comprehensive first-principles study. Density functional theory calculations reveal the structure, formation energy, and total energy of various defects in HfO2. Most relevant are substitutional electronically compensated defects without oxygen vacancy, substitutional mixed compensated defects paired with a vacancy, and ionically compensated defect complexes containing two substitutional dopants paired with a vacancy. The ferroelectric phase is strongly favored with La and Y in the substitutional defect. The mixed compensated defect favors the ferroelectric phase as well, but the strongly favored cubic phase limits the concentration range for ferroelectricity. We conclude that a reduction of oxygen vacancies should significantly enhance this range in Y doped HfO2 thin films. With Al, the substitutional defect hardly favors the ferroelectric phase before the tetragonal phase becomes strongly favored with the increasing concentration. This could explain the observed field induced ferroelectricity in Al-doped HfO2. Further Al defects are investigated, but do not favor the f-phase such that the current explanation remains incomplete for Al doping. According to the simulation, doping alone shows clear trends, but is insufficient to replace the monoclinic phase as the ground state. To explain this fact, some other mechanism is needed.

  10. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  11. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    EPA Science Inventory

    Background: Associations between ozone (O3) and fine particulate matter (PM2.5) concentrations and birth outcomes have been previously demonstrated. We perform an exploratory analysis of O3 and PM2.5 concentrations during early pregnancy and multiple types of birth defects. Met...

  12. The role of cobalt doping on magnetic and optical properties of indium oxide nanostructured thin film prepared by sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baqiah, H.; Ibrahim, N.B., E-mail: baayah@ukm.my; Halim, S.A.

    2015-03-15

    Highlights: • Cobalt doped indium oxide thin films have been prepared by a sol–gel method. • The films have a thickness less than 100 nm and grain size less than 10 nm. • The lattice parameters and grain size of films decrease as Co content increase. • The optical band gap of films increases as the grain size decrease. • The films' magnetic behaviour is sensitive to ratio of oxygen defects per Co ions. - Abstract: The effect of Co doping concentration, (x = 0.025–0.2), in In{sub 2−x}Co{sub x}O{sub 3} thin film was investigated by X-rays diffraction (XRD), transmission electronmore » microscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet visible spectrophotometer (UV–vis) and vibrating sample magnetometer (VSM). All films were prepared by sol–gel technique followed by spin coating process. The XRD and XPS measurements indicate that Co{sup +2} has been successfully substituted in In{sup +3} site. The TEM measurement shows nanostructure morphology of the films. The doping of Co in indium oxide resulted in a decrease in the lattice parameters and grain size while the band gap increased with increasing Co concentration. Further, by comparing VSM and XPS results, the magnetic behaviour of the films were found to be sensitive to Co concentrations, oxygen vacancies and ratio of oxygen defects to Co concentrations. The magnetic behaviour of the prepared films was explained using bound magnetic polaron (BMP) model.« less

  13. The influence of polymer molecular weight in lamellar gels based on PEG-lipids.

    PubMed Central

    Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R

    1998-01-01

    We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387

  14. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    PubMed

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.

  15. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  16. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin; Scarpulla, Michael A.

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  18. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE PAGES

    Alberi, Kirstin; Scarpulla, Michael A.

    2017-11-22

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  19. Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Gogolin, R.; Harder, N. P.

    2013-08-01

    We investigate the correlation between increased apparent carrier lifetime in photoconductance-based lifetime measurements and actually reduced recombination lifetime as measured by photoluminescence measurements. These findings are further reconfirmed by I-V curve measurements of solar cells. In particular, we show experimental results for lifetime samples and solar cells with and without hydrogen passivation. In the samples and solar cells without hydrogen passivation, we find both a stronger trapping behavior and a lower recombination lifetime. Our model provides a consistent description of the observation of both, the increased apparent lifetime from carrier trapping and the decreasing recombination lifetime. In our model, both are caused by a single physical mechanism; i.e., by Recombination-Active-Trap (RAT) states. Upon fitting the experimental lifetime data, we find that the RAT-defect parameters for the hydrogen-passivated and non-hydrogen-passivated lifetime samples and solar cells are identical except for the defect concentration: hydrogen-passivation reduced the defect density by 50% in both, the lifetime samples and solar cells. We conclude that trapping should be considered as an indication for hidden, yet potentially strongly increased, low injection recombination activity.

  20. Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Eguchi, M.; Murayama, K.

    1981-01-01

    Two dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. The effect of tangential traction on the stress concentration was also determined. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. The area involved in a process of rolling contact fatigue is confined to a shallow region at both sides of the hole. It was found that the effect of tangential traction is comparatively small on the stress concentration around the hole.

  1. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond.

    PubMed

    Khan, R U A; Martineau, P M; Cann, B L; Newton, M E; Twitchen, D J

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N(S)(0)) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of N(S)(0) centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH(-)) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N(S)(0) donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N(S)(0) concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N(S)(0) concentration is greater than the increase in NVH(-) concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  2. Sputter ripples and radiation-enhanced surface kinetics on Cu(001)

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lun; Chason, Eric

    2005-10-01

    We have measured the temperature and flux dependence of the wavelength of surface ripples spontaneously formed by low-energy sputtering of a Cu(001) surface. We find that the temperature dependence of the ripple wavelength is non-Arrhenius, with a greater apparent activation at high temperature than at low temperature. Furthermore, the dependence of the wavelength on flux changes significantly with temperature. In the high-temperature regime, the wavelength decreases as the ion flux increases, while at low temperature, the wavelength is essentially independent of flux. We explain these results by a quantitative model that includes the mechanisms controlling the concentration of mobile defects on the surface in the two temperature regimes. At low temperature, mobile defects are induced by the ion beam while at higher temperature, the defects are thermally generated.

  3. Measuring the proton selectivity of graphene membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Michael I.; Keyser, Ulrich F., E-mail: ufk20@cam.ac.uk; Braeuninger-Weimer, Philipp

    2015-11-23

    By systematically studying the proton selectivity of free-standing graphene membranes in aqueous solutions, we demonstrate that protons are transported by passing through defects. We study the current-voltage characteristics of single-layer graphene grown by chemical vapour deposition (CVD) when a concentration gradient of HCl exists across it. Our measurements can unambiguously determine that H{sup +} ions are responsible for the selective part of the ionic current. By comparing the observed reversal potentials with positive and negative controls, we demonstrate that the as-grown graphene is only weakly selective for protons. We use atomic layer deposition to block most of the defects inmore » our CVD graphene. Our results show that a reduction in defect size decreases the ionic current but increases proton selectivity.« less

  4. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.

    PubMed

    Mehta, Rutvik J; Zhang, Yanliang; Zhu, Hong; Parker, David S; Belley, Matthew; Singh, David J; Ramprasad, Ramamurthy; Borca-Tasciuc, Theodorian; Ramanath, Ganpati

    2012-09-12

    Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications.

  5. Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium

    NASA Astrophysics Data System (ADS)

    Zhu, G. H.; Lee, H.; Lan, Y. C.; Wang, X. W.; Joshi, G.; Wang, D. Z.; Yang, J.; Vashaee, D.; Guilbert, H.; Pillitteri, A.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.

    2009-05-01

    The mechanism for phonon scattering by nanostructures and by point defects in nanostructured silicon (Si) and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated. We found that the thermal conductivity is reduced by a factor of 10 in nanostructured Si in comparison with bulk crystalline Si. However, nanosize interfaces are not as effective as point defects in scattering phonons with wavelengths shorter than 1 nm. We further found that a 5at.% Ge replacing Si is very efficient in scattering phonons shorter than 1 nm, resulting in a further thermal conductivity reduction by a factor of 2, thereby leading to a thermoelectric figure of merit 0.95 for Si95Ge5, similar to that of large grained Si80Ge20 alloys.

  6. The Composite of Bone Marrow Concentrate and PRP as an Alternative to Autologous Bone Grafting

    PubMed Central

    Hakimi, Mohssen; Grassmann, Jan-Peter; Betsch, Marcel; Schneppendahl, Johannes; Gehrmann, Sebastian; Hakimi, Ahmad-Reza; Kröpil, Patric; Sager, Martin; Herten, Monika; Wild, Michael; Windolf, Joachim; Jungbluth, Pascal

    2014-01-01

    One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting. PMID:24950251

  7. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  8. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.

    Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less

  9. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less

  10. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  11. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  12. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  13. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    PubMed

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Defect chemistry and characterization of Hg sub 1x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1982-01-01

    Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.

  15. Effects of substitutional Li on the ferromagnetic response of Li co-doped ZnO:Co nanoparticles.

    PubMed

    Awan, Saif Ullah; Hasanain, S K; Bertino, Massimo F; Jaffari, G Hassnain

    2013-04-17

    Li co-doped ZnO:Co (Zn0.96-yCo0.04LiyO , y ≤ 0.1) nanoparticles were synthesized by the sol-gel technique and the correlation between the structural, electronic and magnetic properties was investigated. All the samples show a single phase hexagonal (wurtzite) ZnO structure and no secondary phases were detected. Variational trends in lattice parameters suggest the incorporation of Li in the ZnO:Co system in both substitutional and interstitial sites. Detailed electronic studies have been performed by high-resolution x-ray photoelectron spectroscopy (XPS) to determine the states of Zn, O, Co and Li. It was determined that Co substitutes at Zn sites (CoZn) while the O vacancy and Zn defects did not show much variation with increasing Li concentration. Deconvolution of the Li XPS peak showed a clear non-monotonic trend in the variation of the substitutional Li (LiZn) and interstitial Li (Lii) defects with increasing Li concentration in the particles. The magnetization study of the samples showed that the variation of the moment closely followed the trend of variation of the LiZn defects. The data are interpreted in terms of substitutional Li acting as a hole dopant and optimizing the conditions for ferromagnetism in Co-doped ZnO. Interstitial Li is not seen to be playing this role.

  16. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    DOE PAGES

    Lu, Chenyang; Yang, Taini; Jin, Ke; ...

    2017-01-12

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less

  17. Elemental composition of human semen is associated with motility and genomic sperm defects among older men

    PubMed Central

    Schmid, Thomas E.; Grant, Patrick G.; Marchetti, Francesco; Weldon, Rosana H.; Eskenazi, Brenda; Wyrobek, Andrew J.

    2013-01-01

    BACKGROUND Older men tend to have poorer semen quality and are generally at higher risks for infertility and abnormal reproductive outcomes. METHODS We employed proton-induced X-ray emission (PIXE, 3 MeV proton beam) to investigate the concentrations of zinc, copper, calcium, sulfur, chlorine, potassium, titanium, iron and nickel in washed sperm and seminal plasma from non-smoking groups of 10 older men (65–80 years old) and 10 younger men (22–28 years old) who were concurrently assayed for sperm function and genomicly defective sperm. RESULTS The older group showed elevated zinc, copper and calcium in sperm and elevated sulfur in seminal plasma compared with the younger men. The older group also showed reduced motility as well as increased sperm DNA fragmentation, achondroplasia mutations, DNA strand breaks and chromosomal aberrations. Sperm calcium and copper were positively associated with sperm DNA fragmentation (P < 0.03). Seminal sulfur was positively associated with sperm DNA fragmentation and chromosomal aberrations (P < 0.04), and negatively associated with sperm motility (P < 0.05). Sperm calcium was negatively associated with sperm motility, independent of male age (P = 0.01). CONCLUSIONS We identified major differences in elemental concentrations between sperm and seminal plasma and that higher sperm copper, sulfur and calcium are quantitatively associated with poorer semen quality and increased frequencies of genomic sperm defects. PMID:23042799

  18. Application of metal magnetic memory technology on defects detection of jack-up platform

    NASA Astrophysics Data System (ADS)

    Xu, Changhang; Cheng, Liping; Xie, Jing; Yin, Xiaokang; Chen, Guoming

    2016-02-01

    Metal magnetic memory test (MMMT), which is an effective way in evaluating early damages of ferrimagnets, can determine the existence of material stresses concentration and premature defects. As one of offshore oil exploration and development equipment, jack-up platform always generate stress concentration during its life-cycle due to complicated loading condition and the hash marine environment, which will decline the bearing capacity and cause serious consequences. The paper conducts in situ experiments of defects detection on some key structural components of jack-up platform using MMMT. The signals acquired by MMM-System are processed for feature extraction to evaluate the severity of structure stress concentration. The results show that the method presented in this paper based on MMMT can provide an effective and convenient way of defect detection and structural health monitoring for Jack-up Platform.

  19. Optical characterization of wide-gap detector-grade semiconductors

    NASA Astrophysics Data System (ADS)

    Elshazly, Ezzat S.

    Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.

  20. Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates

    NASA Astrophysics Data System (ADS)

    Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.

    2017-07-01

    The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.

  1. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  2. The generation and accumulation of interstitial atoms and vacancies in alloys with L1{sub 2} superstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantyukhova, Olga, E-mail: Pantyukhova@list.ru; Starenchenko, Vladimir, E-mail: star@tsuab.ru; Starenchenko, Svetlana, E-mail: sve-starenchenko@yandex.ru

    2016-01-15

    The dependences of the point defect concentration (interstitial atoms and vacancies) on the deformation degree were calculated for the L1{sub 2} alloys with the high and low antiphase boundaries (APB) energy in terms of the mathematical model of the work and thermal strengthening of the alloys with the L1{sub 2} structure; the concentration of the point defects generated and annihilated in the process of deformation was estimated. It was found that the main part of the point defects generating during plastic deformation annihilates, the residual density of the deformation point defects does not exceed 10{sup −5}.

  3. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  4. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGES

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; ...

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  5. Concentration of point defects in 4H-SiC characterized by a magnetic measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Jia, R. X., E-mail: rxjia@mail.xidian.edu.cn; Wang, Y. T.

    A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the g-factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations ofmore » point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 10{sup 14} cm{sup −2}, 1 × 10{sup 15} cm{sup −2} and 1 × 10{sup 16} cm{sup −2} are 6.52 × 10{sup 14}/g, 1.14 × 10{sup 15}/g and 9.45 × 10{sup 14}/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.« less

  6. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  7. Microstructural study of Mg-doped p-type GaN: Correlation between high-resolution electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsen, S.-C. Y.; Smith, David J.; Tsen, K. T.; Kim, W.; Morkoç, H.

    1997-12-01

    A series of Mg-doped GaN films (˜1-1.3 μm) grown by reactive molecular beam epitaxy at substrate temperatures of 750 and 800 °C has been studied by high-resolution electron microscopy (HREM) and Raman spectroscopy. Stacking defects parallel to the substrate surface were observed in samples grown on sapphire substrates at 750 °C with AlN buffer layers (60-70 nm) at low Mg concentration. A transition region with mixed zinc-blende cubic (c) and wurtzite hexagonal (h) phases having the relative orientations of (111)c//(00.1)h and (11¯0)c//(10.0)h was observed for increased Mg concentration. The top surfaces of highly doped samples were rough and assumed a completely zinc-blende phase with some inclined stacking faults. Samples grown with a Mg cell temperature of 350 °C and high doping levels were highly disordered with many small crystals having inclined stacking faults, microtwins, and defective wurtzite and zinc-blende phases. Correlation between HREM and Raman scattering results points towards the presence of compressive lattice distortion along the growth direction which might be attributable to structural defects. The films grown at 800 °C had better quality with less observable defects and less yellow luminescence than samples grown at 750 °C.

  8. Band gap modulation in magnetically doped low-defect thin films of (Bi1-xSbx)2 Te3 with minimized bulk carrier concentration

    NASA Astrophysics Data System (ADS)

    Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya

    Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.

  9. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

  10. Ternary chalcogenides C s 2 Z n 3 S e 4 and C s 2 Z n 3 T e 4 : Potential p -type transparent conducting materials

    DOE PAGES

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs 2Zn 3Ch 4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4 are calculated to assess the viability of these materials as p-type TCMs. Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4, which are stable under ambient air, displaymore » large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77 m e) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  11. Phase stability tuning in the NbxZr1-xN thin-film system for large stacking fault density and enhanced mechanical strength

    NASA Astrophysics Data System (ADS)

    Joelsson, T.; Hultman, L.; Hugosson, H. W.; Molina-Aldareguia, J. M.

    2005-03-01

    The phase stability of hexagonal WC-structure and cubic NaCl-structure 4d transition metal nitrides was calculated using first-principles density functional theory. It is predicted that there is a multiphase or polytypic region for the 4d transition metal nitrides with a valence electron concentration around 9.5 to 9.7 per formula unit. For verification, epitaxial NbxZr1-xN (0⩽x⩽1) was grown by reactive magnetron sputter deposition on MgO(001) substrates and analyzed with transmission electron microscopy (TEM) and x-ray diffraction. The defects observed in the films were threading dislocations due to nucleation and growth on the lattice-mismatched substrate and planar defects (stacking faults) parallel to the substrate surface. The highest defect density was found at the x =0.5 composition. The nanoindentation hardness of the films varied between 21GPa for the binary nitrides, and 26GPa for Nb0.5Zr0.5N. Unlike the cubic binary nitrides, no slip on the preferred ⟨11¯0⟩{110} slip system was observed. The increase in hardness is attributed to the increase in defect density at x =0.5, as the defects act as obstacles for dislocation glide during deformation. The findings present routes for the design of wear-resistant nitride coatings by phase stability tuning.

  12. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  13. Growth and analysis of micro and nano CdTe arrays for solar cell applications

    NASA Astrophysics Data System (ADS)

    Aguirre, Brandon Adrian

    CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ˜20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 V through an increase in the carrier lifetime and concentration to tau >10 ns and p > 10 16 cm-3, respectively. However, the large lattice mismatch (10%) between CdTe and CdS and the polycrystalline nature of the CdTe film are the fundamental reasons for the high defect density and pose a difficult challenge to solve. In this work, a method to physically and electrically isolate the different kinds of defects at the nanoscale and understand their effect on the electrical performance of CdTe is presented. A SiO2 template with arrays of window openings was deposited between the CdTe and CdS to achieve selective-area growth of the CdTe via close-space sublimation. The diameter of the window openings was varied from the micro to the nanoscale to study the effect of size on nucleation, grain growth, and defect density. The resulting structures enabled the possibility to electrically isolate and individually probe micrometer and nanoscale sized CdTe/CdS cells. Electron back-scattered diffraction was used to observe grain orientation and defects in the miniature cells. Scanning and transmission electron microscopy was used to study the morphology, grain boundaries, grain orientation, defect structure, and strain in the layers. Finally, conducting atomic force microscopy was used to study the current-voltage characteristics of the solar cells. An important part of this work was the ability to directly correlate the one-to-one relationship between the electrical performance and defect structure of individual nanoscale cells. This method is general and can be applied to other material systems to study the electrical-microstructure relationship on a one-to-one basis with nanoscale resolution.

  14. Ion irradiation of electronic-type-separated single wall carbon nanotubes: A model for radiation effects in nanostructured carbon

    NASA Astrophysics Data System (ADS)

    Rossi, Jamie E.; Cress, Cory D.; Helenic, Alysha R.; Schauerman, Chris M.; DiLeo, Roberta A.; Cox, Nathanael D.; Messenger, Scott R.; Weaver, Brad D.; Hubbard, Seth M.; Landi, Brian J.

    2012-08-01

    The structural and electrical properties of electronic-type-separated (metallic and semiconducting) single wall carbon nanotube (SWCNT) thin-films have been investigated after irradiation with 150 keV 11B+ and 150 keV 31P+ with fluences ranging from 1012 to 1015 ions/cm2. Raman spectroscopy results indicate that the ratio of the Raman D to G' band peak intensities (D/G') is a more sensitive indicator of SWCNT structural modification induced by ion irradiation by one order of magnitude compared to the ratio of the Raman D to G band peak intensities (D/G). The increase in sheet resistance (Rs) of the thin-films follows a similar trend as the D/G' ratio, suggesting that the radiation induced variation in bulk electrical transport for both electronic-types is equal and related to localized defect generation. The characterization results for the various samples are compared based on the displacement damage dose (DDD) imparted to the sample, which is material and damage source independent. Therefore, it is possible to extend the analysis to include data from irradiation of transferred CVD-graphene films on SiO2/Si substrates using 35 keV C+ ions, and compare the observed changes at equivalent levels of ion irradiation-induced damage to that observed in the SWCNT thin-film samples. Ultimately, a model is developed for the prediction of the radiation response of nanostructured carbon materials based on the DDD for any incident ion with low-energy recoil spectra. The model is also related to the defect concentration, and subsequently the effective defect-to-defect length, and yields a maximum defect concentration (minimum defect-to-defect length) above which the bulk electrical transport properties in SWCNT thin-films and large graphene-based electronic devices rapidly degrade when exposed to harsh environments.

  15. Defects versus grain size effects on the ferromagnetism of ZrO2 nanocrystals clarified by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Qi, N.; Jiang, M.; Chen, Z. Q.

    2013-01-01

    Undoped ZrO2 nanocrystals were annealed in open air from 100 °C to 1300 °C. X-ray diffraction and transmission electron microscope were used to study the structure change and grain growth. Both the methods reveal that the ZrO2 grain size has very slight increase after annealing up to 900 °C. Positron annihilation measurements reveal a high concentration of vacancy defects which most probably exist in the grain boundary region. Thermal annealing above 500 °C causes recovery of these defects, and after annealing at 1200 °C, most of them are removed. Room temperature ferromagnetism is observed for the sample annealed at 100 °C and 500 °C. The magnetization becomes very weak after the nanocrystals are annealed at 700 °C, and it almost disappears at 1000 °C. It is clear that the intrinsic ferromagnetism in our ZrO2 nanocrystals is mostly related with the interfacial defects instead of grain size effects.

  16. Plasma folate levels in early to mid pregnancy after a nation-wide folic acid supplementation program in areas with high and low prevalence of neural tube defects in China.

    PubMed

    Liu, Jufen; Gao, Lili; Zhang, Yali; Jin, Lei; Li, Zhiwen; Zhang, Le; Meng, Qinqin; Ye, Rongwei; Wang, Linlin; Ren, Aiguo

    2015-06-01

    Folic acid supplementation is recommended for all women of child-bearing age to prevent neural tube defects (NTDs). A nation-wide folic acid supplementation program was implemented in rural areas of China since 2009; however, changes in plasma folate levels in pregnant women were unknown. A cross-sectional survey was conducted in 2011 to 2012, with 1736 pregnant women enrolled, and results were compared with a previous survey in 2002 to 2004. A microbiological method was used to determine plasma folate levels. Preprogram and postprogram median plasma folate concentrations were compared while stratified by prevalence of NTDs and residence. In the high NTD prevalence population, plasma folate concentration increased to 33.4 (18.7, 58.4) nmol/L in the postprogram sample, which is 2.9 times of the preprogram. In the low NTD prevalence population, plasma folate increased to 67.9 (44.5, 101.9) nmol/L, which is 1.9 times of the preprogram. Gaps remained in plasma folate levels with respect to prevalence of NTDs and residence. Folic acid supplementation has a strong impact on plasma folate concentrations. Earlier supplementation (before the last menstrual period), increased supplementation frequency and more total days of supplementation were associated with a higher plasma folate concentration as demonstrated in both the high- and low-prevalence populations. Plasma folate levels among pregnant Chinese women increased dramatically after the nation-wide folic acid supplementation program in both rural and urban areas, and in populations of high and low NTD prevalence. The nation-wide program should have a component to ensure that supplementation begins before pregnancy. © 2015 Wiley Periodicals, Inc.

  17. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  18. The role of Sb in solar cell material Cu 2ZnSnS 4

    DOE PAGES

    Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...

    2017-03-03

    In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu 2ZnSnS 4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe 2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, Sb Sn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration,more » Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less

  19. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  20. Neural Tube Defects and Maternal Biomarkers of Folate, Homocysteine, and Glutathione Metabolism

    PubMed Central

    Zhao, Weizhi; Mosley, Bridget S.; Cleves, Mario A.; Melnyk, Stepan; James, S. Jill; Hobbs, Charlotte A.

    2010-01-01

    Background Alterations in maternal folate and homocysteine metabolism are associated with neural tube defects (NTDs). The role that specific micronutrients and metabolites play in the causal pathway leading to NTDs is not fully understood. Methods We conducted a case-control study to investigate the association between NTDs and maternal alterations in plasma micronutrients and metabolites in two metabolic pathways, the methionine remethylation and glutathione transsulfuration. Biomarkers were measured in a population-based sample of women who had NTD-affected pregnancies (n = 43) and a control group of women who had a pregnancy unaffected by a birth defect (n = 160). Plasma concentrations of folate, Vitamin B12, Vitamin B6, methionine, S-adenosylmethionine (SAM), s- adenosylhomocysteine (SAH), adenosine, homocysteine, cysteine, and reduced and oxidized glutathione were compared between cases and controls after adjusting for lifestyle and sociodemographic factors. Results Women with NTD-affected pregnancies had significantly higher plasma concentrations of SAH (29.12 vs. 23.13 nmol/L, P = 0.0011), adenosine (0.323 vs. 0.255 μmol/L, P = 0.0269), homocysteine (9.40 vs. 7.56 μmol/L, P < 0.001), and oxidized glutathione (0.379 vs. 0.262μmol/L, P = 0.0001), but lower plasma SAM concentration (78.99 vs. 83.16 nmol/L, P = 0.0172) than controls. This metabolic profile is consistent with reduced methylation capacity and increased oxidative stress in women with affected pregnancies. Conclusions Increased maternal oxidative stress and decreased methylation capacity may contribute to the occurrence of NTDs. Further analysis of relevant genetic and environmental factors is required to define the basis for these observed alterations. PMID:16575882

  1. The sequential appearance of sperm abnormalities after scrotal insulation or dexamethasone treatment in bulls.

    PubMed Central

    Barth, A D; Bowman, P A

    1994-01-01

    Scrotal insulation and dexamethasone treatment were used as a model to compare the effect of testicular heating and stress on spermatogenesis. Insulation was applied to the scrotum of eight bulls (insulated) for a period of four days, eight bulls were treated daily for seven days with 20 mg dexamethasone injected intramuscularly, and four bulls were untreated controls. Semen from four bulls in each group was collected and evaluated over a six-week period after treatment. Blood samples for testosterone analysis were taken hourly for eight hours at the beginning and the end of the six-week period from the control bulls and before and after treatment from the four insulated and four dexamethasone-treated bulls that were not used for semen collection. At the end of the last blood sampling period, the four bulls in each group were castrated for the collection of testicular tissue for the determination of testosterone concentrations. Basal, peak episodic, and mean serum testosterone concentrations among control bulls, pre and postinsulated bulls, and pretreatment samples of dexamethasone-treated bulls were not different (p > 0.05); however, bulls that had received dexamethasone treatments had significantly lower basal, peak episodic, and mean testosterone concentrations (p < 0.05). Tissue concentrations of testosterone in control, insulated, and dexamethasone-treated bulls were not significantly different but tended to be lower in dexamethasone-treated bulls (p > 0.13). The spermiograms of the control bulls varied insignificantly over the six-week sampling period; however, there was a marked increase in sperm defects in insulated and dexamethasone-treated bulls. The types of sperm defects and the temporal relationships of rises and declines of sperm defects were quite similar for both treatments. All bulls recovered to approximately pretreatment levels of sperm defects by six weeks after the initiation of treatment. Results indicate that two of the most common types of insults to spermatogenesis in bulls, heat and stress, result in similar spermiograms. PMID:8069831

  2. Computational model for living nematic

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail; Sokolov, Andrey; Lavrentovich, Oleg; Aranson, Igor

    A realization of an active system has been conceived by combining swimming bacteria and a lyotropic nematic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics we developed a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the nematic director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields testable prediction on the accumulation and transport of bacteria in the cores of +1/2 topological defects and depletion of bacteria in the cores of -1/2 defects. Our new experiment on motile bacteria suspended in a free-standing liquid crystalline film fully confirmed this prediction. This effect can be used to capture and manipulation of small amounts of bacteria.

  3. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.

    PubMed

    Cornelius, Nanna; Frerman, Frank E; Corydon, Thomas J; Palmfeldt, Johan; Bross, Peter; Gregersen, Niels; Olsen, Rikke K J

    2012-08-01

    Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.

  4. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.

  5. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT).

    PubMed

    Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.

  6. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    NASA Astrophysics Data System (ADS)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  7. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  8. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGES

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Ramneek; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com

    This paper reports the synthesis and electrical characterization of CdSe-PMMA nanocomposite. CdSe-PMMA nanocomposite has been prepared by ex-situ technique through chemical route. The influence of three different Ag doping concentrations on the electrical properties has been studied in the temperature range ∼ 303-353 K. Transmission electron micrograph reveals the spherical morphology of the CdSe nanoparticles and their proper dispersion in the PMMA matrix. The electrical conduction of the polymer nanocomposites is through thermally activated process with single activation energy. With Ag doping, initially the activation energy increases upto 0.2 % Ag doping concentration but with further increase in Ag concentration, itmore » decreases. This behavior has been discussed on the basis of randomly oriented grain boundaries and defect states. Thus, the results indicate that the transport properties of the polymer nanocomposites can be tailored by controlled doping concentration.« less

  10. Levels of Polycyclic Aromatic Hydrocarbons in Maternal Serum and Risk of Neural Tube Defects in Offspring

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography–mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose–response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs. PMID:25488567

  11. Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Tousi, Marzieh; Cheeney, Joseph; Ngo-Duc, Tam-Triet; Zuo, Zheng; Liu, Jianlin; Haberer, Elaine D.

    2015-11-01

    An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.

  12. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.

    PubMed

    Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P

    2017-09-01

    An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impact of defects on percolation in random sequential adsorption of linear k-mers on square lattices.

    PubMed

    Tarasevich, Yuri Yu; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I

    2015-01-01

    The effect of defects on the percolation of linear k-mers (particles occupying k adjacent sites) on a square lattice is studied by means of Monte Carlo simulation. The k-mers are deposited using a random sequential adsorption mechanism. Two models L(d) and K(d) are analyzed. In the L(d) model it is assumed that the initial square lattice is nonideal and some fraction of sites d is occupied by nonconducting point defects (impurities). In the K(d) model the initial square lattice is perfect. However, it is assumed that some fraction of the sites in the k-mers d consists of defects, i.e., is nonconducting. The length of the k-mers k varies from 2 to 256. Periodic boundary conditions are applied to the square lattice. The dependences of the percolation threshold concentration of the conducting sites p(c) vs the concentration of defects d are analyzed for different values of k. Above some critical concentration of defects d(m), percolation is blocked in both models, even at the jamming concentration of k-mers. For long k-mers, the values of d(m) are well fitted by the functions d(m)∝k(m)(-α)-k(-α) (α=1.28±0.01 and k(m)=5900±500) and d(m)∝log(10)(k(m)/k) (k(m)=4700±1000) for the L(d) and K(d) models, respectively. Thus, our estimation indicates that the percolation of k-mers on a square lattice is impossible even for a lattice without any defects if k⪆6×10(3).

  14. Defect chemistry and characterization Hg(1-x)Cd(x)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.; Donovan, J. C.

    1981-01-01

    Iodine doped single crystal samples of mercury cadmium telluride were annealed at temperatures varying from 450 C to 600 C in Hg vapor and quenched to room temperature. Hall effect measurements at 77 K on the crystals cooled to room temperature indicate the samples to be n-type after anneals at high Hg pressures whereas they turn p-type after anneals at low Hg pressures; the electron concentration increases with increase in Hg pressure. The results are explained on the basis that the crystals are saturated with (Hg,Cd)I2, with a fraction of the iodine being present as donor occupying tellurium lattice sites and a fraction being present as acceptors resulting from the iodine on tellurium lattice sites pairing with the doubly ionized native acceptor defects. The solubility of the donor species increases with increase in Hg pressure, whereas that of the acceptor species increases with decrease in Hg pressure. Equilibrium constants for the incorporation of the iodine species as well as the pairing reaction were established.

  15. Environment-friendly cycle time optimization and quality improvisation using Six Sigma.

    PubMed

    Deshpande, V S; Mungle, N P

    2008-07-01

    Healthy environment in any organization can make a difference in improving productivity and quality with low defect, lack of concentration, willingness to work, minimum accidental problems etc. Six Sigma is one of the more recent quality improvement initiatives to gain popularity and acceptance in many industries across the globe. It is an alternative to TQM to obtain minimum manufacturing defect, cycle time reduction, cost reduction, inventory reduction etc. Its use is increasingly widespread in many industries, in both manufacturing and service industries with many proponents of the approach claiming that it has developed beyond a quality control approach into a broader process improvement concept.

  16. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  17. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  18. Gallium vacancies and the growth stoichiometry of GaN studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Seppälä, P.; Oila, J.; Hautojärvi, P.; Corbel, C.; Briot, O.; Aulombard, R. L.

    1998-11-01

    We have applied positron spectroscopy to study the formation of vacancy defects in undoped n-type metal organic chemical vapor deposition grown GaN, where the stoichiometry was varied. Ga vacancies are found in all samples. Their concentration increases from 1016 to 1019cm-3 when the V/III molar ratio increases from 1000 to 10 000. In nitrogen rich conditions Ga lattice sites are thus left empty and Ga vacancies are abundantly formed. The creation of Ga vacancies is accompanied by the decrease of free electron concentration from 1020 to 1016cm-3, demonstrating their role as compensating centers.

  19. Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules

    NASA Astrophysics Data System (ADS)

    Cutler, Melvin; Bez, Wolfgang G.

    1981-06-01

    A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.

  20. In vitro sealing of iatrogenic fetal membrane defects by a collagen plug imbued with fibrinogen and plasma.

    PubMed

    Engels, A C; Hoylaerts, M F; Endo, M; Loyen, S; Verbist, G; Manodoro, S; DeKoninck, P; Richter, J; Deprest, J A

    2013-02-01

    We aimed to demonstrate local thrombin generation by fetal membranes, as well as its ability to generate fibrin from fibrinogen concentrate. Furthermore, we aimed to investigate the efficacy of collagen plugs, soaked with plasma and fibrinogen, to seal iatrogenic fetal membrane defects. Thrombin generation by homogenized fetal membranes was measured by calibrated automated thrombography. To identify the coagulation caused by an iatrogenic membrane defect, we analyzed fibrin formation by optical densitometry, upon various concentrations of fibrinogen. The ability of a collagen plug soaked with fibrinogen and plasma was tested in an ex vivo model for its ability to seal an iatrogenic fetal membrane defect. Fetal membrane homogenates potently induced thrombin generation in amniotic fluid and diluted plasma. Upon the addition of fibrinogen concentrate, potent fibrin formation was triggered. Measured by densiometry, fibrin formation was optimal at 1250 µg/mL fibrinogen in combination with 4% plasma. A collagen plug soaked with fibrinogen and plasma sealed an iatrogenic membrane defect about 35% better than collagen plugs without these additives (P = 0.037). These in vitro experiments suggest that the addition of fibrinogen and plasma may enhance the sealing efficacy of collagen plugs in closing iatrogenic fetal membrane defects. © 2013 John Wiley & Sons, Ltd.

  1. Defects and Transport in Lithium Niobium Trioxide

    NASA Astrophysics Data System (ADS)

    Mehta, Apurva

    1990-01-01

    This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.

  2. Effect of edge defects on band structure of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh

    2018-04-01

    In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.

  3. Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, Yogendra; Rana, Amit Kumar; Bhojane, Prateek; Pusty, Manojit; Bagwe, Vivas; Sen, Somaditya; Shirage, Parasharam M.

    2015-10-01

    ZnO nanostructured films were prepared by a chemical bath deposition method on glass substrates without any assistance of either microwave or high pressure autoclaves. The effect of solute concentration on the pure wurtzite ZnO nanostructure morphologies is studied. The control of the solute concentration helps to control the nanostructure to form nano-needles, and -rods. X-ray diffraction (XRD) studies revealed highly c-axis oriented thin films. Scanning electron microscopy (SEM) confirms the modification of the nanostructure dependent on the concentration. Transmission electron microscopy (TEM) results show the single crystalline electron diffraction pattern, indicating high quality nano-material. UV-vis results show the variation in the band gap from 3.20 eV to 3.14 eV with increasing concentration as the nanostructures change from needle- to rod-like. Photoluminescence (PL) data indicate the existence of defects in the nanomaterials emitting light in the yellow-green region, with broad UV and visible spectra. A sharp and strong peak is observed at ˜438 cm-1 by Raman spectroscopy, assigned to the {{{{E}}}2}{{high}} optical mode of ZnO, the characteristic peak for the highly-crystalline wurtzite hexagonal phase. The solute concentration significantly affects the formation of defect states in the nanostructured films, and as a result, it alters the structural and optical properties. Current-voltage characteristics alter with the measurement environment, indicating potential sensor applications.

  4. Blood folate concentrations among women of childbearing age by race/ethnicity and acculturation, NHANES 2001-2010.

    PubMed

    Marchetta, Claire M; Hamner, Heather C

    2016-01-01

    Hispanic women have higher rates of neural tube defects and report lower total folic acid intakes than non-Hispanic white (NHW) women. Total folic acid intake, which is associated with neural tube defect risk reduction, has been found to vary by acculturation factors (i.e. language preference, country of origin, or time spent in the United States) among Hispanic women. It is unknown whether this same association is present for blood folate status. The objective of this research was to assess the differences in serum and red blood cell (RBC) folate concentrations between NHW women and Mexican American (MA) women and among MA women by acculturation factors. Cross-sectional data from the 2001-2010 National Health and Nutrition Examination Survey (NHANES) were used to investigate how blood folate concentrations differ among NHW or MA women of childbearing age. The impact of folic acid supplement use on blood folate concentrations was also examined. MA women with lower acculturation factors had lower serum and RBC folate concentrations compared with NHW women and to their more acculturated MA counterparts. Consuming a folic acid supplement can minimize these disparities, but MA women, especially lower acculturated MA women, were less likely to report using supplements. Public health efforts to increase blood folate concentrations among MA women should consider acculturation factors when identifying appropriate interventions. © 2014 John Wiley & Sons Ltd.

  5. The modular endoprosthesis for mandibular body replacement. Part 2: finite element analysis of endoprosthesis reconstruction of the mandible.

    PubMed

    Wong, Raymond C W; Tideman, Henk; Merkx, Matthias A W; Jansen, John; Goh, Suk Ming

    2012-12-01

    Problems with loosening of the modules for the modular endoprosthesis were encountered in animal studies for mandibular body replacement. We performed a finite element analysis to look at the stress distribution and areas of stress concentration in a human sized mandible. Variations were made to the stem and defect length to look at how the forces changed. The hypothesis was: (1) reconstruction with a modular endoprosthesis did not lead to areas of stress concentration beyond the material strength of cortical bone and titanium alloy; (2) changes in dimensions of the endoprosthesis did not cause a corresponding linear increase to the stresses. The endoprosthesis was modelled to create a male, female part with stems and a connection screw (Case I). The stem length was halved (Case II) and defect length doubled (Case III). Geometric data of a human sized mandible were obtained, a continuity defect created digitally at the right molar area and the models combined. Boundary conditions were set and the model loaded to get a bite force of 300 N at the incisor region. An intact mandible was used as a control. The right side of the reconstructed mandible became less rigid and flexed more. The highest stresses were within the endoprosthesis at two areas of stress concentration: (1) shear stress at the superior surface of the stems close to the junction of the stem and the module body; (2) compressive stresses at the bottom bevel of the dove-tailed connection. The stress distribution for Case I and II did not differ much except for the magnitude which was slightly higher for Case II. There was a tendency for outward bending at the module connection for Case III which potentially might cause loosening of the module connection. Displacements of the mandible were less than 1 mm throughout. The endoprosthesis with its present dimensions would be expected to perform adequately at a bite force of 300 N. An increase in defect length caused a tendency for bending at the stem and the module connection. With a decrease in stem length, there were little differences except a slight increase in magnitude. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  7. Equilibrium defects and solute site preferences in intermetallics: I. thermodynamics

    NASA Astrophysics Data System (ADS)

    Collins, Gary S.; Zacate, Matthew O.

    2001-03-01

    A model was developed to describe equilibrium defects and site preferences of dilute solute atoms in compounds having the CsCl and Ni_2Al3 structures. Equilibrium defects considered were combinations of elementary point defects that preserve the composition. Equilibria among possible defect combinations were combined with appropriate equations of constraint to obtain defect concentrations as a function of temperature and possible deviation from the stoichiometric composition. As an application, site-energies of defects and solutes in AB and A_2B_3) systems were estimated using Miedema's empirical model, with A=(Ni, Pd, Pt) and B= (Al, Ga, In). Dominant equilibrium defects in the respective systems were found to be the "triple defect" (2V_A+ A_B) and "octal defect" (5V_A+ 3A_B). Site preferences were found to depend on concentrations of intrinsic defects as well as on site-energy differences, and results reveal how preferences generally depend on temperature and composition. Consider solute S which, based on site energies, prefers to replace atom B. It is found that S always occupies B-sites in B-deficient alloys. In B-rich alloys, however, S may or may not occupy B-sites, depending on site-energy differences and the formation energies of equilibrium defects. For a solute that prefers to replace atom A, analogous results are obtained but with A replacing B in the three preceding sentences. This work was supported in part by the NSF under grant DMR 96-12306.

  8. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3–δ thin films investigated by chemical capacitance measurements

    PubMed Central

    Rupp, Ghislain M.; Fleig, Jürgen

    2018-01-01

    La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421

  9. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3-δ thin films investigated by chemical capacitance measurements.

    PubMed

    Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen

    2018-05-03

    La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.

  10. Defect Chemistry of Oxides for Energy Applications.

    PubMed

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  12. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the lattermore » signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.« less

  13. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  14. Increased BRAF Heterodimerization Is the Common Pathogenic Mechanism for Noonan Syndrome-Associated RAF1 Mutants

    PubMed Central

    Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H.; Bayliss, Peter; Backx, Peter H.

    2012-01-01

    Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1D486N. Raf1D486N/+ (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1D486N-expressing cells compared with controls. RAF1D486N, as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations. PMID:22826437

  15. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    PubMed

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  16. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects

    PubMed Central

    Weyer, Peter J.; Brender, Jean D.; Romitti, Paul A.; Kantamneni, Jiji R.; Crawford, David; Sharkey, Joseph R.; Shinde, Mayura; Horel, Scott A.; Vuong, Ann M.; Langlois, Peter H.

    2016-01-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997–2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers’ overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS. PMID:25473985

  17. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Siciliano, Antonietta; Oral, Rahime; Koçbaş, Fatma; Palumbo, Anna; Castellano, Immacolata; Migliaccio, Oriana; Thomas, Philippe J; Trifuoggi, Marco

    2016-05-01

    Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. REEs affected P. lividus larvae with concentration-related increase in developmental defects, 10(-6) to 10(-4)M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10(-5) to 10(-4)M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Use of Isobestic and Isoemission Points in Absorption and Luminescence Spectra for Study of the Transformation of Radiation Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.

    2015-03-01

    Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.

  19. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  20. Defect evolution in ZnO and its effect on radiation tolerance.

    PubMed

    Lv, Jinpeng; Li, Xingji

    2018-05-03

    The origin of ZnO radiation resistance is fascinating but still unclear. Herein, we found that radiation tolerance of ZnO can be tuned by engineering intrinsic defects into the ZnO. The role played by native defects in the radiation tolerance of ZnO was systematically explored by carrying out N+ implantation on a set of home-grown ZnO nanocrystals with various lattice defect types and concentrations. Interestingly, decreasing the VO and Zni concentration significantly aggravated N+ radiation damage, indicating the presence of O-deficient defects to be the potential cause of the radiation hardness of ZnO. A similar phenomenon was also observed for H+-implanted ZnO. This work offers a new way to manipulate ZnO and endow it with desired physicochemical properties, and is expected to pave the way for its application in radiative environments.

  1. Triangular defects in the low-temperature halo-carbon homoepitaxial growth of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Das, Hrishikesh; Melnychuk, Galyna; Koshka, Yaroslav

    2010-06-01

    Generation of triangular defects (TDs) is a significant obstacle in the way of increasing the growth rate of the low-temperature halo-carbon homoepitaxial growth of 4H-SiC conducted at 1300 °C. In this work, the structure of the TDs and the factors influencing TD generation were investigated. It has been found that TD concentration at 1300 °C is primarily influenced by the growth rate. Higher concentrations of the TDs were typically observed at the upstream regions of the sample. With the help of KOH defect delineation technique it was established that the locations of the TDs did not coincide with any of the substrate defects. Nucleation of small polycrystalline Si islands is the main origin for the TDs nucleation during the low-temperature growth, especially at moderate-to-low values of the C/Si ratio, which have been previously shown to be favorable for avoiding generation of 3C inclusions and morphology degradation. At typical low-temperature growth conditions, small polycrystalline Si islands can form on SiC surface (predominantly at the upstream portion of the growth zone). Those islands serve as nucleation centers for TDs and subsequently get evaporated. TDs are bound by two or often multiple partial dislocations, which results in one or multiple stacking faults, respectively. When arrays of partial dislocations were present at each edge of a TD, 3C polytype inclusions were often revealed by the oxidation technique and micro-Raman spectroscopy.

  2. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  3. Diminishing sign anomaly and scaling behavior of the mixed-state Hall resistivity in Tl2Ba2Ca2Cu3O10 films containing columnar defects

    NASA Technical Reports Server (NTRS)

    Budhani, R. C.; Liou, S. H.; Cai, Z. X.

    1993-01-01

    The issues of sign reversal of the Hall voltage and scaling between longitudinal (rho(xx)) and Hall (rho(xy)) resistivities are studied in Tl2Ba2Ca2Cu3O10 films in which the vortex dynamics is drastically changed by flux pinning at heavy-ion-irradiation-induced linear defects. While the sign anomaly diminishes with increasing defect concentration, the power law rho(xy) is approximately equal to rho(xx) exp beta, beta = 1.85 +/- 0.1, holds even after irradiation. This result shows that the scaling is a universal feature of the mixed state in this system. The sign anomaly, on the other hand, is not consistent with a model that invokes pinning-induced backflow in the vortex core as the mechanism for this effect.

  4. Influence of relaxation processes on the evaluation of the metastable defect density in Cu(In,Ga)Se{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciaszek, M.; Zabierowski, P.

    2016-06-07

    In this contribution, we investigated by means of numerical simulations the influence of relaxation processes related to metastable defects on electrical characteristics of Cu(In,Ga)Se{sub 2}. In particular, we analyzed the relaxation of a metastable state induced by illumination at a fixed temperature as well as the dependence of the hole concentration on the temperature during cooling. The knowledge of these two relaxation processes is crucial in the evaluation of the hole concentration in the relaxed state and after light soaking. We have shown that the distribution of the metastable defects can be considered frozen below 200 K. The hole capture crossmore » section was estimated as ∼3 × 10{sup −15} cm{sup 2}. It was shown that the usually used cooling rates may lead to relevant changes of the hole concentration. We calculated the lower limit of the hole concentration after cooling, and we presented how it depends on densities of shallow acceptors and metastable defects. Moreover, we proposed a method which allows for the evaluation of shallow acceptor and metastable defect densities from two capacitance-voltage profiles measured in the relaxed and light soaking states. Finally, we indicated experimental conditions in which the influence of relaxation processes on the accuracy of this method is the smallest.« less

  5. Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington's disease.

    PubMed

    Ciammola, Andrea; Sassone, Jenny; Sciacco, Monica; Mencacci, Niccolò E; Ripolone, Michela; Bizzi, Caterina; Colciago, Clarissa; Moggio, Maurizio; Parati, Gianfranco; Silani, Vincenzo; Malfatto, Gabriella

    2011-01-01

    Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty-five HD subjects and twenty-five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. Copyright © 2010 Movement Disorder Society.

  6. An Increase in Healthcare-Associated Clostridium difficile Infection Associated with Use of a Defective Peracetic Acid-Based Surface Disinfectant.

    PubMed

    Cadnum, Jennifer L; Jencson, Annette L; O'Donnell, Marguerite C; Flannery, Elizabeth R; Nerandzic, Michelle M; Donskey, Curtis J

    2017-03-01

    BACKGROUND We investigated an increase in the incidence of healthcare-associated Clostridium difficile infection (CDI) that occurred following a change from a bleach disinfectant to a peracetic acid-based disinfectant. OBJECTIVE To evaluate the efficacy of the peracetic acid-based disinfectant. DESIGN Laboratory-based product evaluation. METHODS The commercial peracetic acid-based product is activated on site by mixing a small volume of concentrated hydrogen peroxide and peracetic acid present in a "SmartCap" reservoir with the remaining contents of the container. We measured concentrations of peracetic acid in newly activated and in-use product and determined the stability of nonactivated and activated product. We tested the efficacy of the product against C. difficile spores using the American Society for Testing and Materials standard quantitative carrier disk test method. RESULTS Measured concentrations of peracetic acid (50-800 parts per million [ppm]) were significantly lower than the level stated on the product label (1,500 ppm), and similar results were obtained for containers from multiple lot numbers and from another hospital. Product with peracetic acid levels below 600 ppm had significantly reduced activity against C. difficile spores. Peracetic acid concentrations were reduced markedly after storage of either activated or nonactivated product for several weeks. The Environmental Protection Agency confirmed the finding of low disinfectant levels and ordered discontinuation of sale of the product. CONCLUSION Use of a defective peracetic acid-based surface disinfectant may have contributed to an increase in healthcare-associated CDI. Our findings highlight the importance of evaluating the efficacy of liquid disinfectants in healthcare settings. Infect Control Hosp Epidemiol 2017;38:300-305.

  7. Lithium-induced NDI: acetazolamide reduces polyuria but does not improve urine concentrating ability.

    PubMed

    de Groot, Theun; Doornebal, Joan; Christensen, Birgitte M; Cockx, Simone; Sinke, Anne P; Baumgarten, Ruben; Bedford, Jennifer J; Walker, Robert J; Wetzels, Jack F M; Deen, Peter M T

    2017-09-01

    Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies. Copyright © 2017 the American Physiological Society.

  8. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations.

    PubMed

    James, A M; Sheard, P W; Wei, Y H; Murphy, M P

    1999-01-01

    Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.

  9. Stress and Strain State Analysis of Defective Pipeline Portion

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  10. A reactive force field study of Li/C systems for electrical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  11. A reactive force field study of Li/C systems for electrical energy storage

    DOE PAGES

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.; ...

    2015-04-02

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  12. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  13. Atomic Force Microscope Observation of Growth and Defects on As-Grown (111) 3C-SiC Mesa Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony

    2004-01-01

    This paper presents experimental atomic force microscope (AFM) observations of the surface morphology of as-grown (111) silicon-face 3C-SiC mesa heterofilms. Wide variations in 3C surface step structure are observed as a function of film growth conditions and film defect content. The vast majority of as-grown 3C-SiC surfaces consisted of trains of single bilayer height (0.25 nm) steps. Macrostep formation (i.e., step-bunching) was rarely observed, and then only on mesa heterofilms with extended crystal defects. As supersaturation is lowered by decreasing precursor concentration, terrace nucleation on the top (111) surface becomes suppressed, sometimes enabling the formation of thin 3C-SiC film surfaces completely free of steps. For thicker films, propagation of steps inward from mesa edges is sometimes observed, suggesting that enlarging 3C mesa sidewall facets begin to play an increasingly important role in film growth. The AFM observation of stacking faults (SF's) and 0.25 nm Burgers vector screw component growth spirals on the as-grown surface of defective 3C films is reported.

  14. Biomimetic coatings for bone tissue engineering of critical-sized defects.

    PubMed

    Liu, Yuelian; Wu, Gang; de Groot, Klaas

    2010-10-06

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing attention. Bone-inducing agents have been locally injected to stimulate the native bone-formation activity, but without much success. The reason is that these drugs must be delivered slowly and at a low concentration to be effective. This then mimics the natural method of cytokine release. For this purpose, a suitable vehicle was developed, the so-called biomimetic coating, which can be deposited on metal implants as well as on biomaterials. Materials that are currently used to fill bony defects cannot by themselves trigger bone formation. Therefore, biological functionalization of such materials by the biomimetic method resulted in a novel biomimetic coating onto different biomaterials. Bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic coating can be a solution for a large bone defect repair in the fields of dental implantology, maxillofacial surgery and orthopaedics. Here, we review the performance of the biomimetic coating both in vitro and in vivo.

  15. Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K.

    2012-09-01

    Employing quantitative electron-paramagnetic resonance analysis and numerical simulations, we investigate the performance of thin-film polycrystalline silicon solar cells as a function of defect density. We find that the open-circuit voltage is correlated to the density of defects, which we assign to coordination defects at grain boundaries and in dislocation cores. Numerical device simulations confirm the observed correlation and indicate that the device performance is limited by deep defects in the absorber bulk. Analyzing the defect density as a function of grain size indicates a high concentration of intra-grain defects. For large grains (>2 μm), we find that intra-grain defects dominate over grain boundary defects and limit the solar cell performance.

  16. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  17. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, Annalise E.; Ganose, Alex M.; Bordelon, Mitchell M.

    Vacancy-ordered double perovskites of the general formula, A2BX6, are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized the solid solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration andmore » mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation and the defect energy level is a shallow donor to the conduction band, rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable, and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, as the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective -- based on extensive experimental and theoretical analysis -- provides a platform from which to understand structure-property relationships in functional perovskite halides.« less

  19. Concentration and Mobility of Electrically-Conducting Defects in Olivine

    NASA Astrophysics Data System (ADS)

    Constable, S.; Roberts, J.; Duba, A.

    2002-12-01

    We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of the few direct measurements of polaron mobility, but the very good agreement between two independent measurement techniques (thermopower versus equilibration kinetics) and two independent samples (dunite versus lherzolite) provides some level of confidence in the results. We are currently extending these modeling techniques to study olivine defect mobility anisotropy.

  20. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  1. Effect of Cobalt Concentration and Oxygen Vacancy on Magnetism of Co Doped ZnO Nanorods.

    PubMed

    Li, Congli; Che, Ping; Sun, Changyan; Li, Wenjun

    2016-03-01

    Zn(1-x)Co(x)O (x = 0-0.07) single-crystalline nanorods were prepared by a modified microemulsion route. The crystalline structure, morphology, optical, and hysteresis loop at low and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 80-250 nm in diameter and about 3 μm in length. X-ray diffraction data, TEM images confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. The PL spectra show that the ferromagnetic samples exhibit strong Zn interstitials and oxygen vacancy emission indicating defects may stabilize ferromagnetic order in the obtained diluted magnetic semiconductors. Magnetic measurements show that the Zn(1-x)Co(x)O nanorods exist obvious ferromagnetic characteristics with T(c) above 300 K. M(s) and coercivities first increase and then decrease with dopant concentration increasing, reaching the highest for 3% doping level. The structural and magnetic properties of these samples support the hypothesis that the FM of DMS nanorods is due to a defect mediated mechanism instead of cobalt nanoclusters and carrier mediated.

  2. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization.

    PubMed

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  3. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    PubMed Central

    Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-01-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte. PMID:29657754

  4. Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Stevanovic, Vladan; Toberer, Eric

    In this work, we discover anomalously low lattice thermal conductivity (<0.25 W/mK at 300 degrees C) in the Hg-containing quaternary diamond-like semiconductors within the Cu2IIBIVTe4 (IIB: Zn, Cd, Hg) (IV: Si, Ge, Sn) set of compositions. Using high-temperature X-ray diffraction, resonant ultrasound spectroscopy, and transport properties, we uncover the critical role of the antisite defects HgCu and CuHg on phonon transport within the Hg-containing systems. Despite the differences in chemistry between Hg and Cu, the high concentration of these antisite defects emerges from the energetic proximity of the kesterite and stannite cation motifs. Our phonon calculations reveal that heavier groupmore » IIB elements not only introduce low-lying optical modes, but the subsequent antisite defects also possess unusually strong point defect phonon scattering power. The scattering strength stems from the fundamentally different vibrational modes supported by the constituent elements (e.g., Hg and Cu). Despite the significant impact on the thermal properties, antisite defects do not negatively impact the mobility (>50 cm2/(Vs) at 300 degrees C) in Hg-containing systems, leading to predicted zT > 1.5 in Cu2HgGeTe4 and Cu2HgSnTe4 under optimized doping. In addition to introducing a potentially new p-type thermoelectric material, this work provides (1) a strategy to use the proximity of phase transitions to increase point defect phonon scattering, and (2) a means to quantify the power of a given point defect through inexpensive phonon calculations.« less

  5. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of interstitial species in the flux were determined. Deformation of Au was found to produce only mono- and di-interstitial fluxes in a 1:2 ratio. Cross-sections increased rapidly with the number of vacancies, which is attributed to the amount of relaxation of lattice strains around solute-vacancy complexes.

  6. Role of Insulin in Endogenous Hypertriglyceridemia*

    PubMed Central

    Reaven, Gerald M.; Lerner, Roger L.; Stern, Michael P.; Farquhar, John W.

    1967-01-01

    Dietary carbohydrate accentuation of endogenous triglyceride production has been studied in 33 patients. A broad and relatively continuous spectrum of steady-state plasma triglyceride concentrations was produced in 31 of the 33 subjects during 3 wk of a high carbohydrate (fat-free) liquid formula diet. Two patients developed plasma triglyceride concentrations in excess of 2000 mg/100 ml, and these were the only patients we have studied in which carbohydrate induction of hypertriglyceridemia seemed to be associated with a defect in endogenous plasma triglyceride removal mechanisms. In the remaining 31 patients the degree of hypertriglyceridemia was highly correlated with the insulin response elicited by the ingestion of the high carbohydrate formula (P < 0.005). No significant correlation existed between fasting plasma triglyceride concentration and either plasma glucose or free fatty acid concentrations after the high carbohydrate diet, nor was the degree of hypertriglyceridemia related to degree of obesity. It is suggested that hypertriglyceridemia in most subjects results from an increase in hepatic triglyceride secretion rate secondary to exaggerated postprandial increases in plasma insulin concentration. Images PMID:6061748

  7. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns

    PubMed Central

    de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Piskun, C. M.; Lana, S. E.; Newton, M. A.; Stein, T. J.

    2016-01-01

    Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells. PMID:25643733

  8. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  9. Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun

    Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less

  10. Impact of hydrogen and oxygen defects on the lattice parameter of chemical vapor deposited zinc sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Wolf, Walter; Wimmer, Erich

    2013-01-09

    The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less

  11. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  12. A study of the vacancy loop formation probability in Ni-Cu and Ag-Pd alloys. [50-keV Kr sup + ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalinskas, K.; Chen, Gengsheng; Haworth, J.

    1992-04-01

    The molten-zone model of vacancy loop formation from a displacement cascade predicts that the loop formation probability should scale with the melting temperature. To investigate this possibility the vacancy loop formation probability has been determined in a series of Cu-Ni and Ag-Pd alloys. The irradiations were performed at room temperature with 50 keV Kr+ ions and the resulting damage structure was examined by using transmission electron microscopy. In the Cu-Ni alloy series, the change in loop formation probability with increasing Ni concentration was complex, and at low- and high- nickel concentrations, the defect yield did not change in the predictedmore » manner. The defect yield was higher in the Cu-rich alloys than in the Ni-rich alloys. In the Ag-Pd alloy the change in the loop formation probability followed more closely the change in melting temperature, but no simple relationship was determined.« less

  13. Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-San José, V.

    2008-11-01

    We applied positron annihilation spectroscopy to study the effect of growth polarity on the vacancy defects in ZnO grown by metal-organic vapor phase deposition on sapphire. Both c-plane and a-plane ZnO layers were measured, and Zn vacancies were identified as the dominant defects detected by positrons. The results are qualitatively similar to those of earlier experiments in GaN. The Zn vacancy concentration decreases in c-plane ZnO by almost one order of magnitude (from high 1017 cm-3 to low 1017 cm-3) when the layer thickness is increased from 0.5 to 2 μm. Interestingly, in a-plane ZnO the Zn vacancy concentration is constant at a level of about 2×1017 cm-3 in all the samples with thicknesses varying from 0.6 to 2.4 μm. The anisotropy of the Doppler broadening of the annihilation radiation parallel and perpendicular to the hexagonal c-axis was also measured.

  14. Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Abu-Shams, M.; Haider, W.; Shabib, I.

    2017-06-01

    Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12 wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe-Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10 keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner-Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17 GB is found to trap more defects than Σ5 and Σ13 GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.

  15. CuBi2O4 Prepared by the Polymerized Complex Method for Gas-Sensing Applications.

    PubMed

    Choi, Yun-Hyuk; Kim, Dai-Hong; Hong, Seong-Hyeon

    2018-05-02

    Multicomponent oxides can be extensively explored as alternative gas-sensing materials to binary oxides with their structural and compositional versatilities. In this work, the gas-sensing properties of CuBi 2 O 4 have been investigated toward various reducing gases (C 2 H 5 OH, NH 3 , H 2 , CO, and H 2 S) and oxidizing gas (NO 2 ) for the first time. For this, the powder synthesis has been developed using the polymerized complex method (Pechini method) to obtain a single-phase polycrystalline CuBi 2 O 4 . The defect, optical, and electronic properties in the prepared CuBi 2 O 4 powder were modulated by varying the calcination temperature from 500 to 700 °C. Noticeably, a high concentration of Cu + -oxygen vacancy ([Formula: see text]) defect complexes and isolated Cu 2+ ion clusters was found in the 500 °C-calcined CuBi 2 O 4 , where they were removed through air calcination at higher temperatures (up to 700 °C) while making the compound more stoichiometric. The change in the intrinsic defect concentration with the calcination temperature led to the variation of the electronic band gap energy and hole concentration in CuBi 2 O 4 with the polaronic hopping conduction (activation energy = 0.43 eV). The CuBi 2 O 4 sensor with 500 °C-calcined powder showed the highest gas responses (specifically, 10.4 toward 1000 ppm C 2 H 5 OH at the operating temperature of 400 °C) with the highest defect concentration. As a result, the gas-sensing characteristics of CuBi 2 O 4 are found to be dominantly affected by the intrinsic defect concentration, which is controlled by the calcination temperature. Toward reducing H 2 S and oxidizing NO 2 gases, the multiple reactions arising simultaneously on the surface of the CuBi 2 O 4 sensor govern its response behavior, depending on the gas concentration and the operating temperature. We believe that this work can be a cornerstone for understanding the effect of chemical defect on the gas-sensing characteristics in multicomponent oxides.

  16. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Barnawi, Jameel; Tran, Hai; Jersmann, Hubertus; Pitson, Stuart; Roscioli, Eugene; Hodge, Greg; Meech, Robyn; Haberberger, Rainer; Hodge, Sandra

    2015-01-01

    Introduction We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function. Methods We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model. Results We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis. Conclusion Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets. PMID:26485657

  17. Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Eguchi, M.; Murayama, K.

    1981-01-01

    Two-dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. These were hole diameter, its vertical distance from the contact surface, and the horizontal distance from the Hertzian contact area. Also determined was the effect of tangential traction (generated by a friction coefficient of 0.1) on the stress concentration. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller the distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. Taking into account the stress amplitude, the area which can be involved in a process of rolling contact fatigue seems to be confined to a shallow region at both sides of the hole. The effect of tangential traction is comparatively small on the stress concentration around the hole.

  18. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    NASA Astrophysics Data System (ADS)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  19. Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kumari, Lakshmi; Kar, Asit Kumar

    2018-05-01

    ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.

  20. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Hu, Yu Min; Li, Jung Yu; Chen, Nai Yun; Chen, Chih Yu; Han, Tai Chun; Yu, Chin Chung

    2017-02-01

    The crystallinity and intrinsic defects of transparent conducting oxide (TCO) films have a high impact on their optical and electrical properties and therefore on the performance of devices incorporating such films, including flat panel displays, electro-optical devices, and solar cells. The optical and electrical properties of TCO films can be modified by tailoring their deposition parameters, which makes proper understanding of these parameters crucial. Magnetron sputtering is the most adaptable method for preparing TCO films used in industrial applications. In this study, we investigate the direct and inter-property correlation effects of sputtering power (PW) on the crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO (AZO) TCO films. All of the films were preferentially c-axis-oriented with a wurtzite structure and had an average transmittance of over 80% in the visible wavelength region. Scanning electron microscopy images revealed significantly increased AZO film grain sizes for PW ≥ 150 W, which may lead to increased conductivity, carrier concentration, and optical band gaps but decreased carrier mobility and in-plane compressive stress in AZO films. Photoluminescence results showed that, with increasing PW, the near band edge emission gradually dominates the defect-related emissions in which zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) are possibly responsible for emissions at 3.08, 2.8, and 2.0 eV, respectively. The presence of Zni- and Oi-related emissions at PW ≥ 150 W indicates a slight increase in the presence of Al atoms substituted at Zn sites (AlZn). The presence of Oi at PW ≥ 150 W was also confirmed by X-ray photoelectron spectroscopy results. These results clearly show that the crystallinity and intrinsic-defect type of AZO films, which dominate their optical and electrical properties, may be controlled by PW. This understanding may facilitate the development of TCO-based optoelectronic devices for industrial production.

  1. Thermal buckling behavior of defective CNTs under pre-load: A molecular dynamics study.

    PubMed

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Kiani, Yaser

    2017-05-01

    Current study is concentrated on the extraordinary properties of defective carbon nanotubes (CNTs). The role of vacancy defects in thermal buckling response of precompressed CNTs is explored via molecular dynamics (MD) simulations. Defective CNTs are initially compressed at a certain ratio of their critical buckling strain and then undergo a uniform temperature rise. Comprehensive study is implemented on both armchair and zigzag CNTs with different vacancy defects including monovacancy, symmetric bivacancy and asymmetric bivacancy. The results reveal that defects have a pronounced impact on the buckling behavior of CNTs; interestingly, defective CNTs under compressive pre-load show higher resistance to thermal buckling than pristine ones. In the following, the buckling response of defective CNTs is shown to be dependent on the vacancy defects, location of defects and chirality. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. From solid solution to cluster formation of Fe and Cr in α-Zr

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.

    2015-12-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  3. Influence of electron irradiation on hydrothermally grown zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.

    2008-09-01

    The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

  4. Effect of Nonionic Surfactant Additive in PEDOT:PSS on PFO Emission Layer in Organic-Inorganic Hybrid Light-Emitting Diode.

    PubMed

    Cho, Seong Rae; Porte, Yoann; Kim, Yun Cheol; Myoung, Jae-Min

    2018-03-21

    Poly(9,9-dioctylfluorene) (PFO) has attracted significant interests owing to its versatility in electronic devices. However, changes in its optical properties caused by its various phases and the formation of oxidation defects limit the application of PFO in light-emitting diodes (LEDs). We investigated the effects of the addition of Triton X-100 (hereinafter shortened as TX) in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to induce interlayer diffusion between PEDOT:PSS and PFO to enhance the stability of the PFO phase and suppress its oxidation. Photoluminescence (PL) measurement on PFO/TX-mixed PEDOT:PSS layers revealed that, upon increasing the concentration of TX in the PEDOT:PSS layer, the β phase of PFO could be suppressed in favor of the glassy phase and the wide PL emission centered at 535 nm caused by ketone defects formed by oxidation was decreased considerably. LEDs were then fabricated using PFO as an emission layer, TX-mixed PEDOT:PSS as hole-transport layer, and zinc oxide (ZnO) nanorods as electron-transport layer. As the TX concentration reached 3 wt %, the devices exhibited dramatic increases in current densities, which were attributed to the enhanced hole injection due to TX addition, along with a shift in the dominant emission wavelength from a green electroluminescence (EL) emission centered at 518 nm to a blue EL emission centered at 448 nm. The addition of TX in PEDOT:PSS induced a better hole injection in the PFO layer, and through interlayer diffusion, stabilized the glassy phase of PFO and limited the formation of oxidation defects.

  5. iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis1[W][OA

    PubMed Central

    Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi

    2011-01-01

    The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role. PMID:21325567

  6. Thermoluminescence and lattice defects in LiF

    NASA Technical Reports Server (NTRS)

    Stoebe, T. G.; Watanabe, S.

    1975-01-01

    The principal effect of thermal and optical treatments in an ionic solid is to alter the lattice defect equilibrium, including the concentration and arrangement of ion vacancies, impurities, impurity-vacancy associates, and assorted electrons and holes which may be associated with such defects. This paper examines the relationship between these defects and thermoluminescence in the case of lithium fluoride at and above room temperature. The discussion focuses on lattice defect equilibrium, thermoluminescent trapping centers, the relationship between recombination and luminescence, the supralinearity and sensitization of the dosimetry grade of LiF and activation energy parameters.

  7. First-principles study of configurational disorder in B4C using a superatom-special quasirandom structure method

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B.

    2014-07-01

    Configurationally disordered crystalline boron carbide, with the composition B4C, is studied using first-principles calculations. We investigate both dilute and high concentrations of carbon-boron substitutional defects. For the latter purpose, we suggest a superatom's picture of the complex structure and combine it with a special quasirandom structure approach for disorder. In this way, we model a random distribution of high concentrations of the identified low-energy defects: (1) bipolar defects and (2) rotation of icosahedral carbon among the three polar-up sites. Additionally, the substitutional disorder of the icosahedral carbon at all six polar sites, as previously discussed in the literature, is also considered. Two configurational phase transitions from the ordered to the disordered configurations are predicted to take place upon an increase in temperature using a mean-field approximation for the entropy. The first transition, at 870 K, induces substitutional disorder of the icosahedral carbon atoms among the three polar-up sites; meanwhile the second transition, at 2325 K, reveals the random substitution of the icosahedral carbon atoms at all six polar sites coexisting with bipolar defects. Already the first transition removes the monoclinic distortion existing in the ordered ground-state configuration and restore the rhombohedral system (R3m). The restoration of inversion symmetry yielding the full rhombohedral symmetry (R3¯m ) on average, corresponding to what is reported in the literature, is achieved after the second transition. Investigating the effects of high pressure on the configurational stability of the disordered B4C phases reveals a tendency to stabilize the ordered ground-state configuration as the configurationally ordering/disordering transition temperature increases with pressure exerted on B4C. The electronic density of states, obtained from the disordered phases, indicates a sensitivity of the band gap to the degree of configurational disorder in B4C.

  8. Defect evolution and impurity migration in Na-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2011-11-01

    Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.

  9. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  10. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  11. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  12. Evidence for an Intrinsic Renal Tubular Defect in Mice with Genetic Hypophosphatemic Rickets

    PubMed Central

    Cowgill, Larry D.; Goldfarb, Stanley; Lau, Kai; Slatopolsky, Eduardo; Agus, Zalman S.

    1979-01-01

    To investigate the role of parathyroid hormone (PTH) and(or) an intrinsic renal tubular reabsorptive defect for phosphate in mice with hereditary hypophosphatemic rickets, we performed clearance and micropuncture studies in hypophosphatemic mutants and nonaffected littermate controls. Increased fractional excretion of phosphate in mutants (47.2±4 vs. 30.8±2% in controls) was associated with reduced fractional and absolute reabsorption in the proximal convoluted tubule and more distal sites. Acute thyropara-thyroidectomy (TPTX) increased phosphate reabsorption in both mutants and controls with a fall in fractional phosphate excretion to ≅7.5% in both groups indicating that PTH modified the degree of phosphaturia in the intact mutants. Absolute reabsorption in the proximal tubule and beyond remained reduced in the mutants, however, possibly because of the reduced filtered load. Serum PTH levels were the same in intact mutants and normals as was renal cortical adenylate cyclase activity both before and after PTH stimulation. To evaluate the possibility that the phosphate wasting was caused by an intrinsic tubular defect that was masked by TPTX, glomerular fluid phosphate concentration was raised by phosphate infusion in TPTX mutants to levels approaching those of control mice. Phosphate excretion rose markedly and fractional reabsorption fell, but there was no change in absolute phosphate reabsorption in either the proximal tubule or beyond, indicating a persistent reabsorptive defect in the absence of PTH. We conclude that hereditary hypophosphatemia in the mouse is associated with a renal tubular defect in phosphate reabsorption, which is independent of PTH and therefore represents a specific intrinsic abnormality of phosphate transport. PMID:221535

  13. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less

  14. Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes.

    PubMed

    Billur, Deniz; Tuncay, Erkan; Okatan, Esma Nur; Olgar, Yusuf; Durak, Aysegul Toy; Degirmenci, Sinan; Can, Belgin; Turan, Belma

    2016-11-01

    The Zn 2+ in cardiomyocytes is buffered by structures near T-tubulus and/or sarcoplasmic/endoplasmic reticulum (S(E)R) while playing roles as either an antioxidant or a toxic agent, depending on the concentration. Therefore, we aimed first to examine a direct effect of ZnPO 4 (extracellular exposure) or Zn 2+ pyrithione (ZnPT) (intracellular exposure) application on the structure of the mitochondrion in ventricular cardiomyocytes by using histological investigations. The light microscopy data demonstrated that Zn 2+ exposure induced marked increases on cellular surface area, an indication of hypertrophy, in a concentration-dependent manner. Furthermore, a whole-cell patch-clamp measurement of cell capacitance also supported the hypertrophy in the cells. We observed marked increases in mitochondrial matrix/cristae area and matrix volume together with increased lysosome numbers in ZnPO 4 - or ZnPT-incubated cells by using transmission electron microscopy, again in a concentration-dependent manner. Furthermore, we observed notable clustering and vacuolated mitochondrion, markedly disrupted and damaged myofibrils, and electron-dense small granules in Zn 2+ -exposed cells together with some implications of fission-fusion defects in the mitochondria. Moreover, we observed marked depolarization in mitochondrial membrane potential during 1-μM ZnPT minute applications by using confocal microscopy. We also showed that 1-μM ZnPT incubation induced significant increases in the phosphorylation levels of GSK3β (Ser21 and Ser9), Akt (Ser473), and NFκB (Ser276 and Thr254) together with increased expression levels in ER stress proteins such as GRP78 and calregulin. Furthermore, a new key player at ER-mitochondria sites, promyelocytic leukemia protein (PML) level, was markedly increased in ZnPT-incubated cells. As a summary, our present data suggest that increased cytosolic free Zn 2+ can induce marked alterations in mitochondrion morphology as well as depolarization in mitochondrion membrane potential and changes in some cytosolic signaling proteins as well as a defect in ER-mitochondria cross talk.

  15. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells.

    PubMed

    Ravera, Silvia; Cossu, Vanessa; Tappino, Barbara; Nicchia, Elena; Dufour, Carlo; Cavani, Simona; Sciutto, Andrea; Bolognesi, Claudia; Columbaro, Marta; Degan, Paolo; Cappelli, Enrico

    2018-02-01

    Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting. © 2017 Wiley Periodicals, Inc.

  16. Urea and urine concentrating ability in mice lacking AQP1 and AQP3.

    PubMed

    Zhao, Dan; Bankir, Lise; Qian, Liman; Yang, Dayu; Yang, Baoxue

    2006-08-01

    Aquaporin-1 (AQP1) and aquaporin-3 (AQP3) water channels expressed in the kidney play a critical role in the urine concentrating mechanism. Mice with AQP1 or AQP3 deletion have a urinary concentrating defect. To better characterize this defect, we studied the influence of an acute urea load (300 mumol ip) in conscious AQP1-null, AQP3-null, and wild-type mice. Urine was collected and assayed every 2 h, from 2 h before (baseline) to 8 h after the urea load. Mice of all genotypes excreted the urea load in approximately 4 h with the same time course. Interestingly, despite their low baseline, the AQP3-null mice raised their urine osmolality and urea concentration progressively after the urea load to values almost equal to those in wild-type mice at 8 h. In contrast, urine non-urea solute concentration did not change. Urine volume fell in the last 4 h to about one-fourth of basal values. AQP1-null mice increased their urine flow rate much more than AQP3-null mice and showed no change in urine osmolality and urea concentration. The urea load strongly upregulated urea transporter UT-A3 expression in all three genotypes. These observations show that the lack of AQP3 does not interfere with the ability of the kidney to concentrate urea but impairs its ability to concentrate other solutes. This solute-selective response could result from the capacity of AQP3 to transport not only water but also urea. The results suggest a novel role for AQP3 in non-urea solute concentration in the urine.

  17. Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; He, Zhangbin; Muralt, Paul

    2009-04-01

    The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.

  18. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  19. Mono-2-ethylhexyl phthalate disrupts neurulation and modifies the embryonic redox environment and gene expression

    PubMed Central

    Sant, Karilyn E.; Dolinoy, Dana C.; Jilek, Joseph L.; Sartor, Maureen A.; Harris, Craig

    2016-01-01

    Mono-2-ethylhexl phthalate (MEHP) is the primary metabolite of di-2-ethylhexyl phthalate (DEHP), a ubiquitous contaminant in plastics. This study sought to determine how structural defects caused by MEHP in mouse whole embryo culture were related to temporal and spatial patterns of redox state and gene expression. MEHP reduced morphology scores along with increased incidence of neural tube defects. Glutathione (GSH) and cysteine (Cys) concentrations fluctuated spatially and temporally in embryo (EMB) and visceral yolk sac (VYS) across the 24h culture. Redox potentials (Eh) for GSSG/GSH were increased by MEHP in EMB (12h) but not in VYS. CySS/CyS Eh in EMB and VYS were significantly increased at 3h and 24h, respectively. Gene expression at 6h showed that MEHP induced selective alterations in EMB and VYS for oxidative phosphorylation and energy metabolism pathways. Overall, MEHP affects neurulation, alters Eh, and spatially alters the expression of metabolic genes in the early organogenesis-stage mouse conceptus. PMID:27167697

  20. Detection of deep-level defects and reduced carrier concentration in Mg-ion-implanted GaN before high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Akazawa, Masamichi; Yokota, Naoshige; Uetake, Kei

    2018-02-01

    We report experimental results for the detection of deep-level defects in GaN after Mg ion implantation before high-temperature annealing. The n-type GaN samples were grown on GaN free-standing substrates by metalorganic vapor phase epitaxy. Mg ions were implanted at 50 keV with a small dosage of 1.5×1011 cm-2, which did not change the conduction type of the n-GaN. By depositing Al2O3 and a Ni/Au electrode onto the implanted n-GaN, metal-oxide-semiconductor (MOS) diodes were fabricated and tested. The measured capacitance-voltage (C-V) characteristics showed a particular behavior with a plateau region and a region with an anomalously steep slope. Fitting to the experimental C-V curves by simulation showed the existence of deep-level defects and a reduction of the carrier concentration near the GaN surface. By annealing at 800oC, the density of the deep-level defects was reduced and the carrier concentration partially recovered.

  1. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  2. Highly defective oxides as sinter resistant thermal barrier coating

    DOEpatents

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  3. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  4. Computational modeling of properties

    NASA Technical Reports Server (NTRS)

    Franz, Judy R.

    1994-01-01

    A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.

  5. TiO 2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{submore » 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less

  7. Formation of social and household skills in children with hand defects.

    PubMed

    Klimon, Nataly; Koryukov, Alexander; Loseva, Nina; Starobina, Elena

    2015-08-01

    The aim of this study was to consider the peculiarities of forming social and household skills, and the criteria for their evaluation, as well as an assessment of functional capacity, in children with hand defects both before and after surgical treatment and rehabilitation courses using a system of games. We elaborated and implemented a program of social rehabilitation of preschool children with congenital and acquired hand defects for the development of their functional capabilities and the formation of social and household skills after surgical treatment and prosthetics using play therapy methods. As part of this work, 140 preschool children aged 3-7 years underwent social rehabilitation. Most of the children had congenital hand defects-122 children (87 %): 96 children (79 %) with ectrodactylia, adactylia, hypoplasia, aplasia, hand splitting, club hand, or partial gigantism; 26 children (21 %) with congenital syndactylism and constricted bonds and 18 children (13 %) with acquired defects (burn deformity, amputation). 110 children (79 %) had reached the stage of surgical correction; 30 children (21 %) reached the stage of prosthetics. Most of the children participating in the experiment (78 children, 56 %) had defects of fingers on one hand. The program aimed at solving specific rehabilitation tasks: formation and improvement of all possible types of grip under the existing defect including those after surgery and prosthetics; development of tactile sensations in fingers; development of fine motor skills; increase in range of motion in all joints of the damaged hand; development of attention and concentration; formation of social and household skills appropriate to age; and development of the ability to achieve the set task. Analysis of the level of social and household skills of children with hand defects undergoing rehabilitation treatment at the hospital depending on the age prior to medical and social rehabilitation showed that preschool children with hand defects in the age category of 3 years demonstrated the highest results in the level of social and household skills (31 %) as compared with children in other age categories. The indicators for children aged 4 and 5 years were slightly lower, 25 and 26 %, respectively. The lowest values were recorded among children aged 6: 20 %. Statistically significant parameters of the level of functional capacity of hand grip and social and household skills in children with hand defects obtained in the course of the investigation indicated that the use of play therapy measures significantly increased the effect of medical treatment irrespective of the type of defect. These data indicate that play therapy measures given immediately after surgery or prosthetics can significantly increase the efficiency of rehabilitation even in its early stages.

  8. Distribution of point defects in Si(100)/Si grown by low-temperature molecular-beam epitaxy and solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Gossmann, H.-J.; Unterwald, F. C.; Feldman, L. C.; Leung, T. C.; Au, H. L.; Talyanski, V.; Nielsen, B.; Lynn, K. G.

    1993-08-01

    Positron annihilation in Si is a quantitaive, depth-sensitive technique for the detection of vacancylike defects or voids. A sensitivity of 5×1015 cm-3 for voidlike defects is easily achieved. The technique has been applied to a study of point-defect distributions in thin films of Si grown by molecular-beam epitaxy. A special procedure was developed to remove the influence of the native oxide on the positron measurement. 200-nm-thick films grown at temperatures between 475 and 560 °C show no defects below the sensitivity limit and are indistinguishable from the bulk substrate. So are films grown at 220 °C, provided a 2-min high-temperature anneal to a peak temperature of >=500 °C is executed every ~=30 nm during growth. If TRTA=450 °C, part of the film contains vacancylike defects to a concentration of ~=1018 cm-3. These results correlate well with current-voltage characteristics of p-n junctions grown with different rapid thermal anneal (RTA) temperatures. Ion scattering, with a defect sensitivity of ~=1%, shows no difference between films grown with different TRTA. Recrystallization of amorphous films, deposited at room temperature and annealed in situ at 550 °C, always leaves a significant defect concentration of ~=2×1018 cm-3; those defects are reduced but still present even after a 2-h 800 °C furnace anneal.

  9. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO 2 reduction

    DOE PAGES

    Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur; ...

    2016-11-28

    In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less

  10. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO 2 reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur

    In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less

  11. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  12. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  13. Oxygen-related vacancy-type defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.

    2003-10-01

    Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.

  14. Extended defects and hydrogen interactions in ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (<650°C) defect dissolution and defect injection dominates, resulting in increased junction depths. At higher anneal temperatures, however, repair dominates over defect injection resulting in shallower junctions. Hydrogenation experiments shows that hydrogen enhances dopant activation and reduces TED at low anneal temperatures (<550°C). At anneal temperatures >550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for along time (300min). Also presented is the recipe for formation of multiple cavity layers and the electrical and optical properties of these cavities. Electrically, these cavities are metastable, with two strong minority carrier peaks formed by multiple defect levels. Photoluminescence measurements reveal a strong 0.8eV photon peak.

  15. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  16. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Malinverni, Marco; Martin, Denis

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less

  17. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  18. Effect of helium ion beam treatment on wet etching of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Grigoryev, E. A.; Sharov, T. V.; Baraban, A. P.

    2018-03-01

    We investigated the effect of helium ion beam treatment on the etching rate of silicon dioxide in a water based solution of hydrofluoric acid. A 460-nm-thick silicon dioxide film on silicon was irradiated with helium ions having energies of 20 keV and 30 keV with ion fluences ranging from 1014 cm-2 to 1017 cm-2. The dependence of the etching rate on depth was obtained and compared with the depth distribution of ion-induced defects, which was obtained from numerical simulation. Irradiation with helium ions results in an increase of the etching rate of silicon dioxide. The dependence of the etching rate on the calculated concentration of ion-induced defects is described.

  19. Evolution of irradiation-induced strain in an equiatomic NiFe alloy

    DOE PAGES

    Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...

    2017-07-10

    Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less

  20. Shearography NDE of NASA COPV

    NASA Technical Reports Server (NTRS)

    Newman, John W.; Santos, Fernando; Saulsbury, Regor; Koshti, Ajay; Russell, Rick; Regez, Brad

    2006-01-01

    1. 21 Composite Over-wrapped Pressure Vessels (COPV) consisting of Kevlar Space Shuttle Fleet Leaders and Graphite COPV were inspected at NASA WSTF, NM from Sept. 12 through Sept 16. 2. The inspection technique was Pressurization Shearography, tests designed to image composite material damage, degradation or design flaws leading to stress concentrations in the axial or hoop strain load path. 3. The defect types detected consisted of the following: a) Intentional impact damage with known energy. b) Un-intentional impact damage. c) Manufacturing defects. 4. COPV design features leading to strain concentrations detected include: a) Strain concentrations at bosses due to fiber closure pattern. b) Strain concentrations in body of COPV due to fiber wrap pattern. c) Strain concentrations at equator due to liner weld/fiber lay-up.

  1. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  2. Vacancy defects and optoelectrical properties for fluorine tin oxide thin films with various SnF2 contents

    NASA Astrophysics Data System (ADS)

    Zhou, Yawei; Xu, Wenwu; Li, Jingjing; Yin, Chongshan; Liu, Yong; Zhao, Bin; Chen, Zhiquan; He, Chunqing; Mao, Wenfeng; Ito, Kenji

    2018-01-01

    Fluorine doped tin oxide (FTO) thin films were deposited on glass substrates by e-beam evaporation. Much higher carrier concentration, broader optical band gap, and average transmittance over 80% were obtained with SnF2 doped SnO2 thin films. Positron annihilation results showed that there are two kinds of vacancy clusters with different sizes existing in the annealed FTO thin films, and the concentration of the larger vacancy clusters of VSnO in the thin films increases with increasing SnF2 contents. Meanwhile, photoluminescence spectra results indicated that the better electrical and optical properties of the FTO thin films are attributed to FO substitutions and oxygen vacancies with higher concentration, which are supported by positron annihilation Doppler broadening results and confirmed by X-ray photoelectron spectroscopy. The results showed that widening of the optical band gap of the FTO thin films strongly depends on the carrier concentration, which is interpreted for the Burstein-Moss effect and is associated with the formation of FO and oxygen vacancies with increasing SnF2 content.

  3. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si crystals. The expressions obtained in the present work are very useful for the numerical simulation of grown-in defect behavior, oxygen precipitation and dopant diffusion in heavily doped Si. DFT calculations also showed that Coulomb interaction reaches approximately 30 Å from p (n)-type dopant atoms to I (V) in Si.

  4. Demonstration of Iodide Transport Defect but Normal Iodide Organification in Nonfunctioning Nodules of Human Thyroid Glands

    PubMed Central

    Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew

    1973-01-01

    Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998

  5. Numerical study of metal oxide hetero-junction solar cells with defects and interface states

    NASA Astrophysics Data System (ADS)

    Zhu, Le; Shao, Guosheng; Luo, J. K.

    2013-05-01

    Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.

  6. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  7. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  8. Electrodeposited Cu2O doped with Cl: Electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Pelegrini, S.; Tumelero, M. A.; Brandt, I. S.; Della Pace, R. D.; Faccio, R.; Pasa, A. A.

    2018-04-01

    For understanding the electrical and optical properties of electrodeposited Cl-doped Cu2O thin films, we have studied layers with increasing thickness and Cl concentrations of 0.8 and 1.2 at. %. The deposits were characterized by measuring the charge transport, the optical reflectance, and the photoluminescence. No significant decrease of electrical resistivity was observed in doped samples compared to undoped ones. A decrease of about five orders of magnitude was measured and ascribed to the presence of pinholes, as confirmed by scanning electron microscopy analyses. From optical measurements, we concluded that the Cl atoms are incorporated into substitutional sites of Cu2O lattices in agreement with photoluminescence results showing a strong reduction in the peak intensity of VO+2 defects in comparison to undoped layers. Computational calculation using density functional theory has pointed out high formation energy for single Cl related defects, but low formation energy for Cl-defect complexes, such as ClO + VCu, that strongly compensate the carriers generated by the Cl doping.

  9. Elementary model of severe plastic deformation by KoBo process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusak, A.; Storozhuk, N.; Danielewski, M., E-mail: daniel@agh.edu.pl

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In thismore » very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.« less

  10. Structure and free energy of cholesteric DNA droplets

    NASA Astrophysics Data System (ADS)

    Strey, Helmut; Hong, Helen; Easwar, Nalini

    2000-03-01

    Liquid crystals of DNA are the simplest model systems for DNA packing in cell nuclei or in phage heads. With increasing concentration DNA solutions exhibit the following phases: hexagonal, line hexatic, cholesteric, blue phases. We will present measurements of defect structure and pitch of cholesteric spherulites of short fragment DNA (146 base pairs). DNA concentration as well as salt concentrations are controlled by bathing the spherulites in poly (ethylene glycol) (MW 35,000u) solutions of known osmotic pressure. Combining polarizing microscopy and x-ray scattering with the osmotic stress method allows us to monitor the cholesteric structure and pitch as a function of interaxial distance between DNA molecules as well as salt concentration and type. In particular, we present data on how the DNA cholesteric pitch unwinds when the line hexatic phase is approached.

  11. Calculation of point defect concentration in Cu2ZnSnS4: Insights into the high-temperature equilibrium and quenching

    NASA Astrophysics Data System (ADS)

    Kosyak, V.; Postnikov, A. V.; Scragg, J.; Scarpulla, M. A.; Platzer-Björkman, C.

    2017-07-01

    Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical-potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (" separators="|VCu --ZnC u + ) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like ZnC u + antisites are involved in the formation of (" separators="|VCu --ZnC u + ) complex making CuZ n - dominant and providing p-type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.

  12. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  13. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE PAGES

    Lany, Stephan

    2018-02-21

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  14. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  15. Characterization of Deep and Shallow Levels in GaN

    NASA Astrophysics Data System (ADS)

    Wessels, Bruce

    1997-03-01

    The role of native defects and impurities in compensating n-type GaN was investigated. From the observed dependence of carrier concentration on dopant partial pressure the compensating acceptor in n-type material is attributed to the triply charged gallium vacancy. This is consistent with recent calculations on defect stability using density functional theory. The interaction of hydrogen and point defects in GaN was also investigated using FTIR. The role of these defects in compensation will be discussed.

  16. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  17. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.

  18. Compositional effects on the chemorheological properties and forming behavior of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions

    NASA Astrophysics Data System (ADS)

    Morissette, Sherry L.

    A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).

  19. Semi-quantitative estimation by IR of framework, extraframework and defect Al species of HBEA zeolites.

    PubMed

    Marques, João P; Gener, Isabelle; Ayrault, Philippe; Lopes, José M; Ribeiro, F Ramôa; Guisnet, Michel

    2004-10-21

    A simple method based on the characterization (composition, Bronsted and Lewis acidities) of acid treated HBEA zeolites was developed for estimating the concentrations of framework, extraframework and defect Al species.

  20. Effect of irradiation with MeV protons and electrons on the conductivity compensation and photoluminescence of moderately doped p-4H-SiC (CVD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovski, V. V.; Lebedev, A. A., E-mail: shura.lebe@mail.ioffe.ru; Bogdanova, E. V.

    The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstratedmore » that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.« less

  1. Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The defect responsible for reverse annealing in 2 ohm/cm n(+)/p silicon solar cells was identified. This defect, with energy level at e sub v + 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studied. These calculated results are in reasonable agreement with experimental data.

  2. Positron annihilation and X-ray diffraction studies on tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Prabakar, K.; Abhaya, S.; Krishnan, R.; Kalavathi, S.; Dash, S.; Jayapandian, J.; Amarendra, G.

    2009-04-01

    Positron annihilation spectroscopy along with glancing incidence X-ray diffraction have been used to investigate tin oxide thin films grown on Si by pulsed laser deposition. The films were prepared at room temperature and at 670 K under oxygen partial pressure. As-grown samples are amorphous and are found to contain large concentration of open volume sites (vacancy defects). Post-deposition annealing of as-grown samples at 970 K is found to drastically reduce the number of open volume sites and the film becomes crystalline. However, film grown under elevated temperature and under partial pressure of oxygen is found to exhibit a lower S-parameter, indicating lower defect concentration. Based on the analysis of experimental positron annihilation results, the defect-sensitive S-parameter and the overlayer thickness of tin oxide thin films are deduced. S- W correlation plots exhibit distinct positron trapping defect states in three samples.

  3. Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation.

    PubMed

    Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z

    2015-03-14

    Density functional theory together with ab initio atomistic thermodynamics has been utilized to study the structures and stabilities of the low index CuCl surfaces. It is shown that the Cl-terminated structures are more stable than the Cu-terminated configurations, and that the defective CuCl(110)-Cu structure is more stable than the stoichiometric CuCl(110) surface. The equilibrium shape of a cuprous chloride nanostructure terminated by low-index CuCl surfaces has also been predicted using a Wulff construction. It was found that the (110) facets dominate at low chlorine concentration. As the chlorine concentration is increased, however, the contributions of the (100) and (111) facets to the Wulff construction also increase giving the crystal a semi-prism shape. At high chlorine concentration, and close to the rich limit, the (111) facets were found to be the only contributors to the Wulff construction, resulting in prismatic nanocrystals.

  4. Biocatalytic induction of supramolecular order

    NASA Astrophysics Data System (ADS)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  5. Suppress carrier recombination by introducing defects. The case of Si solar cell

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Deng, Huixiong; ...

    2016-01-11

    Deep level defects are usually harmful to solar cells. Here we show that incorporation of selected deep level defects in the carrier-collecting region, however, can be utilized to improve the efficiency of optoelectronic devices. The designed defects can help the transport of the majority carriers by creating defect levels that is resonant with the band edge state, and/or reduce the concentration of minority carriers through Coulomb repulsion, thus suppressing the recombination at the carrier-collecting region. The selection process is demonstrated by using Si solar cell as an example. In conclusion, our work enriches the understanding and utilization of the semiconductormore » defects.« less

  6. Folate and vitamin B12 status of adolescent girls in northern Nigeria.

    PubMed Central

    VanderJagt, D. J.; Spelman, K.; Ambe, J.; Datta, P.; Blackwell, W.; Crossey, M.; Glew, R. H.

    2000-01-01

    The diets of populations in many developing countries are low in folate and vitamin B12 and a deficiency of either of these vitamins results in increased risk for cardiovascular disease and neural tube defects. The rates of neural tube defects in Nigeria are among the highest reported worldwide. Since many girls marry at an early age in northern Nigeria, we therefore determined the folate and vitamin B12 status of adolescent girls between 12 and 16 years of age in Maiduguri, Nigeria. The mean serum folate concentration for subjects was 15.3 +/- 5.2 nmol/L. Whereas only four subjects (2.4%) had serum folate concentrations lower than 6.8 nmol/L, a level indicative of negative folate balance, 9% of the subjects had serum vitamin B12 concentrations at or below 134 pmol/L, the lower limit of the reference range for their age group. Serum homocysteine was measured in 56 of the 162 subjects and the mean level was 15.9 +/- 5.0 mumol/L. The majority of subjects had serum homocysteine concentrations above the upper limit of the reference range for their age group. We conclude that the adolescent girls we studied were at greater risk for vitamin B12 deficiency than folate deficiency. This conclusion is consistent with the fact that their diet included few foods that contained vitamin B12. PMID:10946529

  7. Infrared study of OH(-) defects in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Crawford, M. K.; Jones, B.

    1992-12-01

    Variations in the concentrations and distributions of the OH(-) defects present in flux and hydrothermal KTiOPO4 (KTP) crystals, measured by infrared spectroscopy of single crystals, are attributed to differences in the growth environments and other nonhydrogenic defects present in the crystals. The concentrations of OH(-) have been estimated from the infrared data to be approximately 400 ppma (parts per million atomic) (3.0 x 10 exp 19/cu cm) in the flux crystals, 1100-1500 ppma (0.74-1.1 x 10 exp 20/cu cm) in the high-temperature hydrothermal and 600 ppma (4.3 x 10 exp 19/cu cm) in the low-temperature hydrothermal crystals. A 3566/cm peak and a 3575/cm band are observed in all crystals. The integrated intensity of the OH(-) absorption band at 3566/cm increases at the expense of the 3575/cm band at higher temperatures in the high-temperature hydrothermal crystals. Several OH(-) peaks (3490, 3455, 3428, 3420, and 3333/cm), which have strongly temperature-dependent linewidths, are present in the hydrothermally grown KTP crystals. The temperature dependencies of their peak frequencies and widths are consistent with the presence of mobile protons in the lattice. The protons located in the 3490 and 3428/cm sites are believed to contribute to the ionic conductivity of the high-conductivity high-temperature hydrothermal crystals.

  8. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  9. Analysis of leukotrienes in cerebrospinal fluid of a reference population and patients with inborn errors of metabolism: further evidence for a pathognomonic profile in LTC(4)-synthesis deficiency.

    PubMed

    Mayatepek, E; Zelezny, R; Hoffmann, G F

    2000-02-25

    Cysteinyl leukotrienes (LTC(4), LTD(4), LTE(4)) are potent lipid mediators derived from arachidonate in the 5-lipoxygenase pathway. Recently, the first inborn error of leukotriene synthesis, LTC(4)-synthesis deficiency, has been identified in association with a fatal developmental syndrome. The absence of leukotrienes in cerebrospinal fluid was one of the most striking biochemical findings in this disorder. We analysed leukotrienes in cerebrospinal fluid of patients with a broad spectrum of other well-defined inborn errors of metabolism, including glutathione synthetase deficiency (n=2), Zellweger syndrome (n=3), mitochondrial disorders (n=8), fatty acid oxidation defects (n=7), organic acidurias (n=7), neurotransmitter defects (n=5) and patients with non-specific neurological symptoms, as a reference population (n=120). The concentrations of leukotrienes were not related to age. Representative percentiles were calculated as reference intervals of each leukotriene. In all patients with an inborn error of metabolism concentration of cysteinyl leukotrienes and LTB(4) did not differ from the reference group. Our results indicate that absence of cysteinyl leukotrienes (<5 pg/ml) in association with normal or increased LTB(4) (50.0-67.3 pg/ml) is pathognomonic for LTC(4)-synthesis deficiency. The unique profile of leukotrienes in cerebrospinal fluid in this new disorder is primarily related to the defect and represents a new diagnostic approach.

  10. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    PubMed

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  11. Dynamics of Active Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    DeCamp, Stephen J.

    Active matter systems exist in a state far from equilibrium due to the motion of their constituent particles. They exhibit complex phenomena such as collective motion, internally driven flows, and spontaneous pattern formation. Understanding the basic rules which govern these materials is an extraordinarily difficult task due to the wide variety of phenomenology they exhibit and a lack of tunable and tractable experimental systems in the field. In this thesis, we use reconstituted biological components to build a model active matter system from the ground-up and explore two different classes of active matter systems; active gels and active nematics. First we examine a bulk, 3D active gel composed of extensile bundles of microtubules and kinesin motor clusters. Upon the addition of ATP, we find that the gel undergoes percolation dynamics through cycles of bundle extension, bending, buckling and merging. The motion of microtubule bundles generates large-scale flows which we characterize by embedding passive micron-sized tracer particles into the fluid. We demonstrate that the activity of the gel can be continuously tuned by varying the ATP concentration in the system. Mean squared displacements (MSDs) show that the tracer particles are ballistically transported through the sample at high ATP concentration and become diffusive at low ATP concentration. By measuring two-point spatial velocity-velocity correlations, a characteristic length scale representative of vorticity in the fluid and therefore buckling of the microtubule bundles is found to be independent of the ATP concentration. The active gel is composed of numerous components which affect the gel dynamics. We vary each component in turn and measure the resulting characteristic length and speed of the active gel. The length scale can be tuned between 100 mum to 200 mum and the speed from 0 to 4 mu/s by varying the concentration of PEG, kinesin motors, and microtubules. We then characterize an active nematic liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum/s) while -1/2 defects are passive Brownian-like particles which receive random kicks by their +1/2 counterparts. Surprisingly, we discover a previously unknown phase in which motile +1/2 defects obtain nematic orientational order whereupon they have equal probability of pointing along a single axis in the sample. Our experiments show that the preferred direction of defect alignment is independent of the boundary conditions suggesting that it is the result of spontaneous symmetry breaking. We find that the extent of the alignment is continuously tuned from essentially isotropic to highly aligned by varying the thickness of the quasi-2D microtubule film. Interestingly, the order and alignment of defects, which is accompanied by nematic order of the constituent microtubules, persists for the sample lifetime (many hours). Finally, we assemble the 2D microtubule-based active nematic liquid crystal onto the inner leaflet of lipid bilayer vesicles. The activity drives the formation of 4x +1/2 defects which subsequently stream across the inner surface of the vesicle. The defects oscillate between a tetrahedral orientation and a state in which they reside on the great circle of the sphere with a periodicity that is directly tunable by varying ATP concentration. Remarkably, the activity of the nematic can drive large shape deformations of the vesicle producing filopodia-like protrusions.

  12. IR studies of the impact of Ge doping on the successive conversion of VOn defects in Czochralski-Si containing carbon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V. V.; Ohyama, H.

    2011-02-01

    We report infrared absorption studies of oxygen-related defects in electron-irradiated Ge-doped Czochralski-Si. Our investigation was mainly focused on the reaction channel leading to the formation of VOn (1≤n≤6) defects. The VOn defects form mainly upon annealing, as a result of the successive aggregation of oxygen atoms in the initial VO defect produced by the irradiation: (VO+Oi→VO2+Oi→VO3+Oi→VO4,…). It was found that the ratio of the conversion of VOn to VOn+1 defects is sensitive to the Ge content of the material. In particular, the ratio of the conversion of the VO to the VO2 defects was found to decrease with the increase in Ge concentration of the samples, although the opposite trend was observed for the VO3 to VO4 conversion. However, the VO2 to VO3 conversion changes only slightly with Ge content, being practically unaffected for Ge concentrations up to 2×1020 cm-3. In the case of VO2 formation, the phenomenon was attributed to the elastic strains induced in the lattice due to the Ge presence which affects the balance between the reactions VO+Oi→VO2, VO+SiI→Oi, mainly involved in the decay of the VO and the growth of the VO2 defects. In the case of VO4 formation, the phenomenon was discussed by taking into account the enhancement of the diffusivity of the Oi atoms in the Ge-doped Si, which could lead to an enhancement of the rate of the reaction VO3+Oi→VO4. For the VO3 formation this effect is practically negligible due to the fact that at the temperatures of VO2 to VO3 conversion oxygen diffusivity is quite small. The exhibited behavior in the conversion of the VOn to VOn+1 defects (n=1,2,3) was similar in Ge-doped samples with low carbon content ([Cs]<2×1016 cm-3) and in Ge-doped samples with high carbon content ([Cs]≥1×1017 cm-3). The impact of C as well as its role in the conversion efficiency of VO to VO2 was studied by comparing the spectra in low carbon and high carbon Ge free Si material. Furthermore, a pair of bands at (1037,1051 cm-1) was attributed to the VO5 defect. The origin of another pair of bands (967,1005 cm-1) was discussed and tentatively correlated with a VOnCs structure. The role of Ge and C in the formation of the latter two pairs of bands was discussed.

  13. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  14. Defect chemistry and characterization of Hg(1-x)Cd(x)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Undoped mercury cadmium telluride crystals were subjected to high temperature equilibration at temperatures ranging from 400 C to 655 C in various Hg atmospheres. Hall effect and mobility measurements were carried out on the crystals quenched to room temperature subsequent to the high temperature equilibration. The variation of the hole concentration in the cooled crystals at 77 K as a function of the partial pressure of Hg at the equlibration temperatures, together with a comparison of the hole mobility in the undoped samples with that in the copper and phosphorous doped samples yielded a defect model for the undoped crystals, according to which, the undoped crystals are essentially intrinsic at the equilibration temperatures and the native acceptor defects are doubly ionized. Native donor defects appear to be negligible in concentration, implying that the p to n conversion in these alloys is mainly due to residual foreign donor impurities. The thermodynamic constants for the intrinsic excitation process as well as for the incorporation of the doubly ionized native acceptor defects in the undoped crystals were obtained.

  15. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sasaki, Yoshie; Kojima, Ayumi; Shibata, Yuriko; Mitsuzawa, Hiroshi

    2017-01-01

    The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.

  16. Dietary selenium deficiency as well as excess supplementation induces multiple defects in mouse epididymal spermatozoa: understanding the role of selenium in male fertility.

    PubMed

    Shalini, Sonia; Bansal, M P

    2008-08-01

    Selenium (Se) is essential for male fertility. The present study was carried out to observe the defects associated with Se deficiency as well as excess Se supplementation by analyzing the sperm ultrastructure and chromatin organization. Different Se status mice were generated viz. Se deficient (group I), Se adequate (group II) and Se excess (group III) by feeding the respective diets for a period of 4 (group Ia, IIa and IIIa) and 8 weeks (group Ib, IIb and IIIb). Reduction in sperm concentration, motility and percentage fertility was observed in Se deficient and Se excess groups. Electron microscopy revealed mitochondrial swelling and gaps between adjacent mitochondria in mice fed Se-deficient diet for 4 weeks. At 8 weeks, several abnormalities such as loose contact of the mitochondrial helix with the plasma membrane, loss of mitochondria, retention of cytoplasmic droplet, fracturing of outer dense fibres and presence of both the midpiece and the principal piece cross-sections in a common plasma membrane were observed. In Se excess group, the predominant defect was the frequent presence of equidistant, cross-sectioned midpieces of the tail embedded in a common cytoplasm. These defects are indicative of loss of sperm motility. Spermatozoa from Se-deficient mice had incompletely condensed chromatin and indicated an increase in occurrence of DNA strand breaks. The animals fed Se excess diet also indicated increase in DNA breaks but this was significantly less than the deficient diet fed groups. Our study reveals the defects associated with Se deficiency that result in loss of reproductive ability and also reflects its possible harmful effects on spermatozoa after prolonged consumption at supranutritional level.

  17. Correlation between structural and opto-electronic characteristics of crystalline Si microhole arrays for photonic light management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus

    2013-11-07

    By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less

  18. Birth defects and congenital health risks in children conceived through assisted reproduction technology (ART): a meeting report.

    PubMed

    2014-08-01

    Assisted Reproduction Treatment (ART) is here to stay. This review addresses the parental background of birth defects, before, during and after conception and focuses both on the underlying subfertility and on the question whether ART as a treatment is an additional contributing factor. Searches were performed in Medline and other databases. Summaries were discussed in a Delphi panel set-up by the European Society of Human Reproduction and Embryology (ESHRE). Several birth defects and adult diseases arise during the earliest stages of ovarian development and oocyte differentiation: this is the case of cleft palate disorders in offspring from female rat exposed to Dioxin during fetal life or the polycystic ovary diseases in female offspring (primates) exposed to elevated androgen concentration during fetal life. Human oocytes and embryos often fail to stop the propagation of aneuploid cells but maintain their ability to repair DNA damages including those introduced by the fertilizing sperm. There is a 29 % increased risk of birth defects in the newborns spontaneously conceived by subfertile couples and the risk is further increased (34 %) when conception is achieved by treating infertlity with ART (Danish IVF Registry). Periconceptional conditions are critical for ART babies: their birth weight is in general smaller (Norvegian Registry) but a more prolonged culture time doubled the number of large babies (Finnish Registry). The long-term developmental effects of ART on child and subsequent health as an adult remains a subject worthy of futher monitoring and investigation.

  19. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  20. Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture

    NASA Astrophysics Data System (ADS)

    Kashyap, Kunal; Kumar, Amarendra; Huang, Chuan-Torng; Lin, Yu-Yun; Hou, Max T.; Andrew Yeh, J.

    2015-06-01

    The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-μm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation.

  1. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  2. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    PubMed

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  3. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  4. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhra, Richa; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnOmore » nanosheets depends upon the presence of surface oxygen vacancies.« less

  5. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  6. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    NASA Astrophysics Data System (ADS)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  7. Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia.

    PubMed Central

    Waldmann, T A; Broder, S; Goldman, C K; Frost, K; Korsmeyer, S J; Medici, M A

    1983-01-01

    The pathogenesis of the immunoglobulin deficiency of 20 patients with ataxia telangiectasia was studied using an in vitro immunoglobulin biosynthesis system. 10 patients had no detectable IgA in their serum as assessed by radial diffusion in agar and 3 had a reduced serum IgA concentration. The peripheral blood mononuclear cells of 17 of the patients and 17 normal controls were cultured with pokeweed mitogen for 12 d and the immunoglobulin in the supernatants measured. The immunoglobulin synthesis was below the lower limit of the normal 95% confidence interval for IgM in 5 patients, for IgG in 8, and for IgA in 14. The mononuclear cells from 9 of the 10 patients with a serum IgA concentration less than 0.1 mg/ml failed to synthesize IgA in vitro. None of the patients manifested excessive suppressor cell activity. All patients had reduced but measurable helper T cell activity for immunoglobulin synthesis by co-cultured normal pokeweed mitogen-stimulated B cells (geometric mean 22% of normal). Furthermore, the addition of normal irradiated T cells to patient peripheral blood mononuclear cells led to an augmentation of IgM synthesis in 15 of 17 and to increased IgG synthesis in 9 of the 17 patients studied, including 9 of the 12 patients who had synthesized IgG before the addition of the irradiated T cells. In addition, IgA synthesis was increased in all eight patients examined that had serum IgA concentrations greater than 0.1 mg/ml. These studies suggest that a helper T cell defect contributes to the diminished immunoglobulin synthesis. However, a helper T cell defect does not appear to be the sole cause since there was no IgA synthesis by the peripheral blood mononuclear cells of 9 of the 10 patients with a profoundly reduced serum IgA even when co-cultured with normal T cells. Furthermore, the cells of the nine patients with profoundly reduced IgA levels examined also failed to produce IgA when stimulated with the relatively helper T cell-independent polyclonal activators, Nocardia water soluble mitogen or Epstein-Barr virus. Taken together these data support the view that the reduced immunoglobulin synthesis of these patients is due to defects of both B cells and helper T cells. Such a broad defect in lymphocyte maturation taken in conjunction with our demonstration of persistent alpha fetoprotein production by ataxia telangiectasia patients provides support for the proposal that these patients exhibit a generalized defect in tissue differentiation. PMID:6822665

  8. Dental caries and developmental defects of enamel in relation to fluoride levels in drinking water in an arid area of Sri Lanka.

    PubMed

    Ekanayake, L; van der Hoek, W

    2002-01-01

    The study was conducted to assess caries and developmental defects of enamel in relation to fluoride levels in drinking water and the association between caries experience and the severity of diffuse opacities in children living in Uda Walawe, an area with varying concentrations of fluoride in drinking water in Sri Lanka. A total of 518 14-year-old children who were lifelong residents in this area were examined for dental caries and developmental defects of enamel. But the present analysis is confined to 486 children from whom drinking water samples were collected. The prevalence of enamel defects and diffuse opacities ranged from 27 to 57% while the prevalence of caries ranged from 18 to 29% in the different fluoride exposure groups. The prevalence of enamel defects increased significantly with the increase in the fluoride level in drinking water. Both the caries prevalence and the mean caries experience were significantly higher in children with diffuse opacities than in those without in the group consuming water containing >0.70 mg/l of fluoride. The association between dental caries and the severity of diffuse opacities was also significant only in this group. Children with the mildest form of opacities (DDE scores 3 and 4) had the lowest DMFS (0.25 +/- 0.7), and the highest DMFS (1.1 +/- 1.7) was found in those with the most severe form of opacities (DDE score 6). In conclusion, the relationship that was observed in this study between fluoride levels in drinking water, diffuse opacities and caries suggests that the appropriate level of fluoride in drinking water for arid areas of Sri Lanka is around 0.3 mg/l. Also individuals with severe forms of enamel defects in high-fluoride areas are susceptible to dental caries. Copyright 2002 S. Karger AG, Basel

  9. Density functional theory study of dopant effect on formation energy of intrinsic point defects in germanium crystals

    NASA Astrophysics Data System (ADS)

    Yamaoka, S.; Kobayashi, K.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    During the last decade the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. Ge is used because of the much higher carrier mobility compared to Si, allowing to design devices operating at much higher frequencies. A major issue for the use of Ge single crystal wafers is the fact that all Czochralski-grown Ge (CZ-Ge) crystals are vacancy-rich and contain vacancy clusters that are much larger than the ones in Si. In contrast to Si, control of intrinsic point defect concentrations has not yet been realized at the same level in Ge crystals due to the lack of experimental data especially on dopant effects. In this study, we have evaluated with density functional theory (DFT) calculations the dopant effect on the formation energy (Ef) of the uncharged vacancy (V) and self-interstitial (I) in Ge and compared the results with those for Si. The dependence of the total thermal equilibrium concentrations of point defects (sum of free V or I and V or I paired with dopant atoms) at melting temperature on the type and concentration of various dopants is obtained. It was found that (1) Ge crystals will be more V-rich by Tl, In, Sb, Sn, As and P doping, (2) Ge crystals will be more I-rich by Ga, C and B doping, (3) Si doping has negligible impact. The dopant impact on Ef of V and I in Ge has a narrower range and is smaller than that in Si. The obtained results are useful to control grown-in V and I concentrations, and will perhaps also allow to develop defect-free ;perfect; Ge crystals.

  10. Origin of reverse annealing in radiation-damaged silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1980-01-01

    The paper employs relative defect concentrations, energy levels, capture cross sections, and minority carrier diffusion lengths in order to identify the defect responsible for the reverse annealing observed in a radiation damaged n(+)/p silicon solar cell. It is reported that the responsible defect, with the energy level at +0.30 eV, has been tentatively identified as boron-oxygen-vacancy complex. In conclusion, it is shown that removal of this defect could result in significant cell recovery when annealing at temperatures well below the currently required 400 C.

  11. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  12. Silicon metal-semiconductor-metal photodetector

    DOEpatents

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  13. Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.

    2015-09-01

    Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.

  14. Platelet abnormalities in adults with severe pulmonary arterial hypertension related to congenital heart defects (Eisenmenger syndrome).

    PubMed

    Remková, Anna; Šimková, Iveta; Valkovičová, Tatiana; Kaldarárová, Monika

    2016-12-01

    Patients with severe pulmonary arterial hypertension suffer from life-threatening thrombotic and bleeding complications. The aim of this study was to compare selected platelet, endothelial, and coagulation parameters in healthy volunteers and patients with severe pulmonary arterial hypertension because of congenital heart defects. The study included healthy volunteers (n = 50) and patients with cyanotic congenital heart defects classified as Eisenmenger syndrome (n = 41). We investigated platelet count, mean platelet volume, and platelet aggregation - spontaneous and induced by various concentrations of five agonists. Von Willebrand factor (vWF), fibrinogen, factor VIII and XII, plasminogen activator inhibitor, antithrombin, D-dimer, and antiphospholipid antibodies were also investigated. We found a decreased platelet count [190 (147-225) vs. 248 (205-295) 10 l, P < 0.0001], higher mean platelet volume [10.9 (10.1-12.0) vs. 10.2 (9.4-10.4) fl, P < 0.0001], and significantly decreased platelet aggregation (induced by five agonists, in various concentrations) in patients with Eisenmenger syndrome compared with controls. These changes were accompanied by an increase of plasma vWF antigen [141.6 (108.9-179.1) vs. 117.4 (9.2-140.7) IU/dl, P = 0.022] and serum anti-β2-glycoprotein [2.07 (0.71-3.41) vs. 0.47 (0.18-0.99) U/ml, P < 0.0001]. Eisenmenger syndrome is accompanied by platelet abnormalities. Thrombocytopenia with increased platelet size is probably due to a higher platelet turnover associated with platelet activation. Impaired platelet aggregation can reflect specific platelet behaviour in patients with Eisenmenger syndrome. These changes can be related both to bleeding and to thrombotic events. A higher vWF antigen may be a consequence of endothelial damage in Eisenmenger syndrome, but the cause for an increase of anti-β2-glycoprotein is unknown.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Sushko, Peter V.; Bowden, Mark E.

    Epitaxial thin films of Cr2-xTixO3 were deposited by oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE) for 0.04 ≤ x ≤ 0.26. Ti speciation is verified by both x-ray photoelectron spectroscopy (XPS) and Ti K-edge x-ray absorption near-edge spectroscopy (XANES) to be Ti4+. Substitution of Ti for Cr in the corundum lattice is confirmed by modeling of the Ti K-edge extended x-ray absorption fine structure (EXAFS). Room temperature electrical transport measurements confirm the highly insulating nature of Ti-doped Cr2O3, despite the presence of aliovalent Ti4+. The resistivity of highly pure, undoped Cr2O3 was measured to be three orders of magnitude higher than formore » Ti-doped Cr2O3. Although the formation of Cr vacancies in Ti-doped Cr2O3 is found by density functional theory (DFT) calculations to be the energetically preferable defect compensation mechanism to maintain charge neutrality, an analysis of the XPS and EXAFS data reveal the presence of both Cr vacancies and oxygen interstitials at intermediate and high Ti concentrations, with a weak trend towards Cr vacancies as the Ti concentration increases. At low Ti concentrations, a strong dependence of the XPS Ti 2p core level peak width on concentration is observed. This dependence is attributed to the presence of widely spaced Ti dopants, which renders compensation of two or three Ti by a single oxygen interstitial or Cr vacancy, respectively, less probable. Instead, defect clusters of unknown type occur, although they may involve Cr vacancies. The defect compensation model developed here provides insight into previous, conflicting reports of n-type versus p-type conductivity in Ti-doped Cr2O3 at high temperature, and will inform future studies to exploit the wide variety of electronic and magnetic properties of corundum-structure oxides.« less

  16. Engineered Fibrin Gels for Parallel Stimulation of Mesenchymal Stem Cell Proangiogenic and Osteogenic Potential

    PubMed Central

    Murphy, Kaitlin C.; Hughbanks, Marissa L.; Binder, Bernard Y.K.; Vissers, Caroline B.; Leach, J. Kent

    2014-01-01

    Mesenchymal stem/stromal cells (MSCs) are under examination for use in cell therapies to repair bone defects resulting from trauma or disease. MSCs secrete proangiogenic cues and can be induced to differentiate into bone-forming osteoblasts, yet there is limited evidence that these events can be achieved in parallel. Manipulation of the cell delivery vehicle properties represents a candidate approach for directing MSC function in bone healing. We hypothesized that the biophysical properties of a fibrin gel could simultaneously regulate the proangiogenic and osteogenic potential of entrapped MSCs. Fibrin gels were formed by supplementation with NaCl (1.2, 2.3, and 3.9% w/v) to modulate gel biophysical properties without altering protein concentrations. MSCs entrapped in 1.2% w/v NaCl gels were the most proangiogenic in vitro, yet cells in 3.9% w/v gels exhibited the greatest osteogenic response. Compared to the other groups, MSCs entrapped in 2.3% w/v gels provided the best balance between proangiogenic potential, osteogenic potential, and gel contractility. The contribution of MSCs to bone repair was then examined when deployed in 2.3% w/v NaCl gels and implanted into an irradiated orthotopic bone defect. Compared to acellular gels after 3 weeks of implantation, defects treated with MSC-loaded fibrin gels exhibited significant increases in vessel density, early osteogenesis, superior morphology, and increased cellularity of repair tissue. Defects treated with MSC-loaded gels exhibited increased bone formation after 12 weeks compared to blank gels. These results confirm that fibrin gel properties can be modulated to simultaneously promote both the proangiogenic and osteogenic potential of MSCs, and fibrin gels modified by supplementation with NaCl are promising carriers for MSCs to stimulate bone repair in vivo. PMID:25527322

  17. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  18. Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement

    PubMed Central

    Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj.; Yahaya, Muhammad

    2016-01-01

    Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device. PMID:27587295

  19. Potential Therapeutic Use of Relaxin in Healing Cranial Bone Defects

    DTIC Science & Technology

    2017-09-01

    to measure circulating concentrations of relaxin during the infusion by ELISA ; 3. sacrifice the mice at 10-12 days after cranial defect; 4. fix the...osmotic pump for 10-12 days, and to measure circulating concentrations of relaxin during the infusion by ELISA . Values of 0.35, 0.69, 1.61, 0.66, 1.99...vehicle-infused mice, because in our previous work, none was detected. This makes sense, because the ELISA we use does not detect mouse relaxin

  20. Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers

    DTIC Science & Technology

    2006-07-31

    the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that

  1. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  2. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  3. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.

    PubMed

    Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J

    2011-09-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.

  4. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni 0.5Co 0.5, Ni 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen

    2016-08-03

    It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less

  5. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2.

    PubMed

    Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen

    2016-09-14

    It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.

  6. Hepatic concentrations of copper and other metals in dogs with and without chronic hepatitis.

    PubMed

    Cedeño, Y; López-Alonso, M; Miranda, M

    2016-12-01

    Defects in copper metabolism have been described in several dog breeds, and recently, it has been suggested that changes in other essential trace elements could be involved in the pathogenesis of hepatic disease. This study measured hepatic copper accumulation and its interactions with other essential trace and toxic metals in dogs diagnosed with chronic hepatitis. Liver samples of 20 chronic hepatitis and 20 healthy dogs were collected. Samples were acid digested, and essential metals (cobalt, copper, iron, manganese, molibdenum, selenium and zinc) and toxic metals (arsenic, cadmium, mercury and lead) were analysed by inductively-coupled plasma mass spectrometry. Copper concentrations were significantly higher in dogs affected by hepatic disease than in controls. Dogs having chronic hepatitis with liver copper concentration greater than 100 mg/kg wet weight showed statistically higher cobalt, manganese and zinc concentrations than dogs having chronic hepatitis with liver copper concentrations less than 100 mg/kg wet weight and controls. Toxic metal concentrations were low - in all cases below the threshold associated with toxicity in dogs. Dogs with chronic hepatitis not only have increased concentrations of copper in the liver but also increased concentrations of cobalt, manganese and zinc; measurement of these elements may perhaps aid in diagnosis of liver disease in dogs. © 2016 British Small Animal Veterinary Association.

  7. Defect-induced instability mechanisms of sputtered amorphous indium tin zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight

    2018-04-01

    We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.

  8. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  9. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Yang, Fan; Zhang, Yi

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  10. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE PAGES

    Liu, Yun; Yang, Fan; Zhang, Yi; ...

    2017-02-22

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  11. Converting ceria polyhedral nanoparticles into single-crystal nanospheres.

    PubMed

    Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein

    2006-06-09

    Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.

  12. Effect of uniaxial stress on the electrochemical properties of graphene with point defects

    NASA Astrophysics Data System (ADS)

    Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz

    2018-06-01

    We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.

  13. Aspects of silicon bulk lifetimes

    NASA Technical Reports Server (NTRS)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  14. Kinetic Monte Carlo simulations of ion-induced ripple formation: Dependence on flux, temperature, and defect concentration in the linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Chan, W. L.; Bharathi, M. S.

    Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less

  15. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  16. Analysis of the Defect Structure of B2 Feal Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Amador, Carlos

    1995-01-01

    The Bozzolo, Ferrante and Smith (BFS) method for alloys is applied to the study of the defect structure of B2 FeAI alloys. First-principles Linear Muffin Tin Orbital calculations are used to determine the input parameters to the BFS method used in this work. The calculations successfully determine the phase field of the B2 structure, as well as the dependence with composition of the lattice parameter. Finally, the method is used to perform 'static' simulations where instead of determining the ground state configuration of the alloy with a certain concentration of vacancies, a large number of candidate ordered structures are studied and compared, in order to determine not only the lowest energy configurations but other possible metastable states as well. The results provide a description of the defect structure consistent with available experimental data. The simplicity of the BFS method also allows for a simple explanation of some of the essential features found in the concentration dependence of the heat of formation, lattice parameter and the defect structure.

  17. CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.

    PubMed

    Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François

    2008-05-01

    Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.

  18. A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in north China.

    PubMed

    Huo, Wenhua; Zhu, Yibing; Li, Zhenjiang; Pang, Yiming; Wang, Bin; Li, Zhiwen

    2017-07-01

    Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    PubMed

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  20. Influence of native defects on structural and electronic properties of magnesium silicide

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Iida, Tsutomu; Nishio, Keishi; Kogo, Yasuo; Takarabe, Kenji; Hamada, Noriaki

    2017-05-01

    The narrow-gap semiconductor magnesium silicide (Mg2Si) is a promising candidate for mid-temperature (500-800 K) thermoelectric applications. Mg2Si exhibits intrinsic n-type conductivity because of its interstitial Mg defects and is generally doped with n-type dopants; however, the synthesis of p-type Mg2Si has proven difficult. In the present study, we examined several types of defects, such as vacancies and the insertion of constituent atoms (Mg and Si) into crystals, to elucidate their stability in Mg2Si and their influence on its electronic states. A first-principles calculation has revealed that the insertion of Mg into a cell is the most stable and causes n-type conductivity in terms of formation energy. In contrast, the vacancy of Mg produces hole doping although its formation energy per conventional unit cell is approximately 0.07 eV higher than that of the insertion of Mg, at their concentration of 1.04 at. %. Furthermore, the insertion and vacancy of Si atoms generate electrons with higher formation energies compared to the Mg-related defects. As these defects alter the carrier concentration, they can compensate for intentional doping because of the added impurity atoms.

  1. [Three-dimensional finite element analysis of the upper cervical-defected incisor with labial access or lingual access].

    PubMed

    Su, Fan; Zhao, Ying; Su, Qin

    2013-08-01

    To evaluate the stress distribution of the cervical-defected incisor with labial or lingual endodontic access with finite element analysis (FEA), and to explore the advantage of resistance in labial endodontic access. 3-D finite element models of upper cervical-defected incisor were established using cone-beam CT (CBCT), Mimics Catia, and Ansys software. The subjects were categorized according to the two endodontic accesses and three restorative ways, which were composite resin, glass fiber-reinforced composite resin and glass fiber-reinforced post-crown. All the models were loaded.The von Mises stress values and distribution were recorded and analyzed with Ansys 10.0 software. In this study, direct composite resin restoration showed no significant difference between the labial and lingual access. In glass fiber-reinforced composite resin, labial access could transfer the stress concentration area. It could reduce the incidence of fracture of the cervical lesion but increase the incidence of root fracture. Post-crown restoration could obviously reduce the incidence of fracture of the cervical lesion. When the cervical-defected incisor is restored with composite resin, labial and lingual accesses can be considered. Labial access with glass fiber-reinforced composite resin or post-crown restoration is a good choice.

  2. Raman spectroscopy, "big data", and local heterogeneity of solid state synthesized lithium titanate

    NASA Astrophysics Data System (ADS)

    Pelegov, Dmitry V.; Slautin, Boris N.; Gorshkov, Vadim S.; Zelenovskiy, Pavel S.; Kiselev, Evgeny A.; Kholkin, Andrei L.; Shur, Vladimir Ya.

    2017-04-01

    Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12 (LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of "big data" analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids.

  3. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  4. Colloidal crystal growth monitored by Bragg diffraction interference fringes.

    PubMed

    Bohn, Justin J; Tikhonov, Alexander; Asher, Sanford A

    2010-10-15

    We monitored the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (1 1 1) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion-driven linear growth is followed by ripening-driven growth. Between 80 and 90 microM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 microm/s until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 microM NaCl concentrations. Increasing NaCl concentrations slow the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall-nucleated CCA, that is determined by the competition between growth of heterogeneously and homogenously nucleated CCA, increases with higher NaCl concentrations. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2015-01-01

    This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.

  6. Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments

    NASA Astrophysics Data System (ADS)

    Campbell, J. M.; Jordan, P.; Arnscheidt, J.

    2014-09-01

    This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.

  7. Predesigned surface patterns and topological defects control the active matter.

    NASA Astrophysics Data System (ADS)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  8. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    NASA Astrophysics Data System (ADS)

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2009-10-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  9. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    NASA Astrophysics Data System (ADS)

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2010-02-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  10. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Li, Ming; McCann, John D.; Anderson, Matthew P.; Clancy, John P.; Liedtke, Carole M.; Nairn, Angus C.; Greengard, Paul; Welsh, Michael J.

    1989-06-01

    Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.

  11. Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond

    NASA Astrophysics Data System (ADS)

    Olivier, E. J.; Neethling, J. H.; Kroon, R. E.; Naidoo, S. R.; Allen, C. S.; Sawada, H.; van Aken, P. A.; Kirkland, A. I.

    2018-03-01

    In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.

  12. Imaging the atomic structure and local chemistry of platelets in natural type Ia diamond.

    PubMed

    Olivier, E J; Neethling, J H; Kroon, R E; Naidoo, S R; Allen, C S; Sawada, H; van Aken, P A; Kirkland, A I

    2018-03-01

    In the past decades, many efforts have been devoted to characterizing {001} platelet defects in type Ia diamond. It is known that N is concentrated at the defect core. However, an accurate description of the atomic structure of the defect and the role that N plays in it is still unknown. Here, by using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy we have determined the atomic arrangement within platelet defects in a natural type Ia diamond and matched it to a prevalent theoretical model. The platelet has an anisotropic atomic structure with a zigzag ordering of defect pairs along the defect line. The electron energy-loss near-edge fine structure of both carbon K- and nitrogen K-edges obtained from the platelet core is consistent with a trigonal bonding arrangement at interstitial sites. The experimental observations support an interstitial aggregate mode of formation for platelet defects in natural diamond.

  13. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  14. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    PubMed

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3K/AKT pathway. Altogether, these results suggest that CaSO 4 scaffolds could have potential applications for bone regeneration.

  15. Lamellar biogels comprising fluid membranes with a newly synthesized class of polyethylene glycol-surfactants

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Davidson, Patrick; Slack, Nelle L.; Schellhorn, Matthias; Eiselt, Petra; Idziak, Stefan H. J.; Schmidt, Hans-Werner; Safinya, Cyrus R.

    1997-09-01

    A series of four polymer-surfactant macromolecules, each consisting of a double-chain hydrophobic moiety attached onto a monofunctional polyethylene glycol (PEG) polymer chain, were synthesized in order to study their effect upon the fluid lamellar liquid crystalline (Lα) phase of the dimyristoylphosphatidylcholine/pentanol/water system. The main finding of this study is that the addition of these compounds induces a new lamellar gel, called Lα,g. We have determined the phase diagrams as a function of PEG-surfactant concentration, cPEG, and weight fraction water, ΦW. All phase diagrams are qualitatively similar and show the existence of the gel. Unlike more common polymer physical gels, this gel can be induced either by increasing cPEG or by adding water at constant cPEG. In particular, less polymer is required for gelation as water concentration increases. Moreover, the gel phase is attained at concentrations of PEG-surfactant far below that required for classical polymer gels and is stable at temperatures comparable to the lower critical solution temperature of free PEG-water mixtures. Small angle x-ray experiments demonstrate the lamellar structure of the gel phase, while wide angle x-ray scattering experiments prove that the structure is Lα, not Lβ' (a common chain-ordered phase which is also a gel). The rheological behavior of the Lα,g phase demonstrates the existence of three dimensional elastic properties. Polarized light microscopy of Lα,g samples reveals that the Lα,g is induced by a proliferation of defect structures, including whispy lines, spherulitic defects, and a nematiclike Schlieren texture. We propose a model of topological defects created by the aggregation of PEG-surfactant into highly curved regions within the membranes. This model accounts for both the inverse relationship between ΦW and cPEG observed along the gel transition line and the scaling dependence of the interlayer spacing at the gel transition with the PEG molecular weight. These Lα hydrogels could serve as the matrix for membrane-anchored peptides, proteins or other drug molecules, creating a "bioactive gel" with mechanical stability deriving from the polymer-lipid minority component.

  16. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress.

    PubMed

    Zheng, Peili; Lin, Yu; Wang, Feifei; Luo, Renfei; Zhang, Tiezheng; Hu, Shan; Feng, Pinning; Liang, Xinling; Li, Chunling; Wang, Weidong

    2016-10-01

    Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells. Copyright © 2016 the American Physiological Society.

  17. Study of wheat breakfast rolls fortified with folic acid. The effect on folate status in women during a 3-month intervention.

    PubMed

    Johansson, Madelene; Witthöft, Cornelia M; Bruce, Ake; Jägerstad, Margaretha

    2002-12-01

    Folate has come into focus due to its protective role against child birth defects such as neural tube defects (NTD). Swedish authorities recommend all fertile women to increase their folate intake to 400 microg/day by eating folate-rich foods. Because not all women follow these recommendations, there is a discussion today about whether Sweden should introduce folic acid fortification in wheat flour and sifted rye flour. This decision needs knowledge about the bioavailability of folic acid from fortified foods. To investigate effects of two folic acid fortification levels on folate status in healthy female volunteers and to study the folic acid stability during the baking procedure and storage of the fortified breakfast rolls. Twenty-nine healthy women were recruited. Folic acid-fortified wheat breakfast rolls were baked with the purpose to contain 200 microg folic acid/roll (roll L) and 400 microg folic acid/roll (roll H). Fourteen women were given one roll/day of roll L (group L) and 15 one roll/day of roll H (group H) during 12 weeks of intervention. Fasting venous blood samples were collected on days 0, 30, 60 and 90. Serum homocysteine concentrations were determined using an immunoassay. Serum and erythrocyte folate concentrations were analysed using a protein-binding assay with fluorescent quantification. The folic acid concentration in the breakfast rolls was analysed by HPLC on days 0, 30, 60 and 90. Total folate concentration was measured with microbiological assay on day 45. Group L Group L had initially an average erythrocyte folate concentration of 577 +/- 93 nmol/L. After 90 days of intervention, an increase of 20 % (p < 0.05) was observed. At day 0, mean serum folate concentrations were 16.9 +/- 4.3 nmol/L. The mean serum folate concentrations increased by 30 % (p < 0.001) after 90 days. At day 0, mean serum homocysteine concentrations were 9.1 +/- 2.0 micromol/L, which decreased by 20 % (p < 0.01) after 30 days. Group H Group H had an initial erythrocyte folate concentration of 784 +/- 238 nmol/L. After 90 days, an increase of 26 % (p < 0.05) was observed. Serum folate increased at least 22 % after 30 days, from a level of 18.7 +/- 4.8 nmol/L at day 0. Thereafter, all women of group H had serum concentrations at or above the upper limit of quantification (23 nmol/L). At day 0, mean serum homocysteine concentrations were 8.4 +/- 1.7 micromol/L, which decreased by 16 % (p < 0.05) after 30 days. The baking procedure resulted in 20-25 % loss of fortified folic acid in the rolls used in the present study. The size of the rolls affected the retention of folic acid during baking. No significant loss was seen in folic acid concentration in the rolls during the intervention period. The present study showed that in healthy women, subjected to a 12-week intervention with breakfast rolls fortified with either 166 microg or 355 microg folic acid, serum homocysteine concentration decreased (p < 0.05) and erythrocyte folate increased (p < 0.05). The lower level of fortification seems to be sufficient to improve the folate status. Together with the average daily intake of natural folates, these women reach the recommended intake of 400 microg/day. Folic acid is stable in fortified bread for 90 days storage at -20 degrees C.

  18. Vacancy defect and defect cluster energetics in ion-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.

    2010-02-01

    We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.

  19. Characterization of Local Carrier Dynamics in AlN and AlGaN Films using High Spatial- and Time-resolution Cathodoluminescence Spectroscopy

    DTIC Science & Technology

    2012-10-12

    21/2012 Abstract: In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in...quantitatively understood as functions of structural / point defect and impurity concentrations (crystal imperfections). However, only few papers [5...NOTES 14. ABSTRACT In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in wide bandgap

  20. Mechanistic Studies of Superplasticity of Structural Ceramics

    DTIC Science & Technology

    1992-02-01

    green compact, with a higher density and and most of Ine heavier transition-metal fewer defects and agglomerates, has a cations of the third row, is very...between 60% to 65% of the theoretical defects is merely one which mediates the above solid "elec- density. Samples of 2Y-TZP and other TZPs were prepared...trolyte," although any tendency toward binding between similarly, except for a smaller dopant concentration ot 0.6% point defects and dopants to form

  1. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  2. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE

    PubMed Central

    2011-01-01

    The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687

  3. Individualized titanium mesh combined with platelet-rich fibrin and deproteinized bovine bone: A new approach for challenging augmentation.

    PubMed

    Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram

    2018-05-21

    Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.

  4. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone

    PubMed Central

    Chase, Lewis R.; Melson, G. Leland; Aurbach, G. D.

    1969-01-01

    Urinary excretion of cyclic adenosine 3′,5′-monophosphate (3′,5′-AMP) was tested in normal subjects and patients with pseudohypoparathyroidism, idiopathic hypoparathyroidism, surgical hypoparathyroidism, and pseudopseudohypoparathyroidism under basal conditions and after a 15 min infusion of purified parathyroid hormone. Basal excretion of the nucleotide was less than normal in the patients with hypocalcemic disorders and greater than normal in pseudopseudohypoparathyroidism. Parathyroid hormone caused a marked increase in excretion of 3′,5′-AMP in all subjects except those with pseudohypoparathyroidism; nine patients with this disorder did not respond to the hormone and four showed a markedly deficient response. Radioimmunoassay showed that parathyroid hormone circulated in increased amounts in plasma from patients with pseudohypoparathyroidism and became undetectable when serum calcium was increased above 12 mg/100 ml. Suppression of parathyroid hormone secretion by induction of hypercalcemia did not alter the deficient response to exogenous hormone. The results indicate that: (a) parathyroid hormone circulates in abnormally high concentrations in pseudohypoparathyroidism and secretion of the hormone responds normally to physiological control by calcium; (b) testing urinary excretion of 3′,5′-AMP in response to infusion of purified parathyroid hormone appears to be an accurate and sensitive index for establishing the diagnosis of pseudohypoparathyroidism; and (c) the metabolic defect of the disorder can be accounted for by a lack of or defective form of parathyroid hormone-sensitive adenyl cyclase in bone and kidney. PMID:4309802

  5. Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim

    1993-01-01

    The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.

  6. Evaluation of melting point of UO 2 by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-06-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  7. Adsorption of Atoms of 3 d Metals on the Surfaces of Aluminum and Magnesium Oxide Films

    NASA Astrophysics Data System (ADS)

    Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Grigorkina, G. S.; Fukutani, K.; Magkoev, T. T.

    2018-01-01

    The adsorption and formation of submonolayer structures of Ti, Cr, Fe, Ni, Cu on the surfaces of aluminum and magnesium oxide films formed on Mo(110) under ultrahigh vacuum conditions are studied via X-ray, ultraviolet photo-, and Auger electron spectroscopy (XPS, UVES, AES); spectroscopy of energy losses of high-resolution electrons (SELHRE); spectroscopy of the backscattering of low-energy ions (SBSLEI); infrared absorption spectroscopy (IAS); and the diffraction of slow electrons (DSE). Individual atoms and small clusters of all the investigated metals deposited on oxides acquire a positive charge, due presumably to interaction with surface defects. As the concentration of adatoms increases when the adsorption centers caused by defects are filled, charge transfer from adatoms to substrates is reduced. This is accompanied by further depolarization caused by the lateral interaction of adatoms.

  8. Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation

    NASA Astrophysics Data System (ADS)

    Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong

    2017-02-01

    A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.

  9. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  10. Analysis of the defect clusters in congruent lithium tantalate

    NASA Astrophysics Data System (ADS)

    Vyalikh, Anastasia; Zschornak, Matthias; Köhler, Thomas; Nentwich, Melanie; Weigel, Tina; Hanzig, Juliane; Zaripov, Ruslan; Vavilova, Evgenia; Gemming, Sibylle; Brendler, Erica; Meyer, Dirk C.

    2018-01-01

    A wide range of technological applications of lithium tantalate (LT) is closely related to the defect chemistry. In literature, several intrinsic defect models have been proposed. Here, using a combinational approach based on DFT and solid-state NMR, we demonstrate that distribution of electric field gradients (EFGs) can be employed as a fingerprint of a specific defect configuration. Analyzing the distribution of 7Li EFGs, the FT-IR and electron spin resonance (ESR) spectra, and the 7Li spin-lattice relaxation behavior, we have found that the congruent LT samples provided by two manufacturers show rather different defect concentrations and distributions although both were grown by the Czochralski method. After thermal treatment hydrogen out-diffusion and homogeneous distribution of other defects have been observed by ESR, NMR, and FT-IR. The defect structure in one of two congruent LT crystals after annealing has been identified and proved by defect formation energy considerations, whereas the more complex defect configuration, including the presence of extrinsic defects, has been suggested for the other LT sample. The approach of searching the EFG fingerprints from DFT calculations in NMR spectra can be applied for identifying the defect clusters in other complex oxides.

  11. Enhanced thermoelectric performance of defected silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Guo, Z. X.; Zhang, Y.; Ding, J. W.; Zheng, X. J.

    2016-02-01

    Based on non-equilibrium Green's function method, we investigate the thermoelectric performance for both zigzag (ZSiNRs) and armchair (ASiNRs) silicene nanoribbons with central or edge defects. For perfect silicene nanoribbons (SiNRs), it is shown that with its width increasing, the maximum of ZT values (ZTM) decreases monotonously while the phononic thermal conductance increases linearly. For various types of edges and defects, with increasing defect numbers in longitudinal direction, ZTM increases monotonously while the phononic thermal conductance decreases. Comparing with ZSiNRs, defected ASiNRs possess higher thermoelectric performance due to higher Seebeck coefficient and lower thermal conductance. In particular, about 2.5 times enhancement to ZT values is obtained in ASiNRs with edge defects. Our theoretical simulations indicate that by controlling the type and number of defects, ZT values of SiNRs could be enhanced greatly which suggests their very appealing thermoelectric applications.

  12. Role of plasma-induced defects in the generation of 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Cultrera, Alessandro; Callegaro, Luca; Marzano, Martina; Ortolano, Massimo; Amato, Giampiero

    2018-02-01

    It has already been reported that 1/f noise in graphene can be dominated by fluctuations of charge carrier mobility. We show here that the increasing damage induced by oxygen plasma on graphene samples result in two trends: at low doses, the magnitude of the 1/f noise increases with the dose; and at high doses, it decreases with the dose. This behaviour is interpreted in the framework of 1/f noise generated by carrier mobility fluctuations where the concentration of mobility fluctuation centers and the mean free path of the carriers are competing factors.

  13. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Albin, David; Hacke, Peter

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  14. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers

    NASA Astrophysics Data System (ADS)

    Ryu, Han-Youl; Lee, Jong-Moo

    2013-05-01

    A light-emitting diode (LED) structure containing p-type GaN layers with two-step Mg doping profiles is proposed to achieve high-efficiency performance in InGaN-based blue LEDs without any AlGaN electron-blocking-layer structures. Photoluminescence and electroluminescence (EL) measurement results show that, as the hole concentration in the p-GaN interlayer between active region and the p-GaN layer increases, defect-related nonradiative recombination increases, while the electron current leakage decreases. Under a certain hole-concentration condition in the p-GaN interlayer, the electron leakage and active region degradation are optimized so that high EL efficiency can be achieved. The measured efficiency characteristics are analyzed and interpreted using numerical simulations.

  15. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE PAGES

    Johnston, Steve; Albin, David; Hacke, Peter; ...

    2018-01-12

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  16. Interplay of defect doping and Bernal-Fowler rules: A simulation study of the dynamics on ice lattices

    NASA Astrophysics Data System (ADS)

    Köster, K. W.; Klocke, T.; Wieland, F.; Böhmer, R.

    2017-10-01

    Protonic defects on ice lattices induced by doping with acids such as HCl and HF or bases such as KOH can facilitate order-disorder transitions. In laboratory experiments KOH doping is efficient in promoting the ordering transition from hexagonal ice I to ice XI, but it is ineffective for other known ice phases, for which HCl can trigger hydrogen ordering. Aiming at understanding these differences, random-walk simulations of the defect diffusion are performed on two- and three-dimensional ice lattices under the constraints imposed by the Bernal-Fowler ice rules. Effective defect diffusion coefficients are calculated for a range of dopants, concentrations, and ice phases. The interaction of different defects, incorporated by different dopants, is investigated to clarify the particular motion-enhancing role played by complementary defect pairs.

  17. Properties of single-layer graphene with supercell doped by one defect only

    NASA Astrophysics Data System (ADS)

    Wang, Zongguo; Qin, Shaojing; Wang, Chuilin

    2017-10-01

    Graphene has vast promising applications in nanoelectronics and spintronics because of its unique magnetic and electronic properties. Making use of an ab initio spin-polarized density functional theory, implemented by the method of the Heyd-Scuseria-Ernzerhof 06 (HSE06) hybrid functional, the properties of various defect dopants in a supercell of a semi-metal monolayer graphene were investigated. We found from our calculation that introducing one defect dopant in a supercell would break the spin sublattice symmetry, and will induce a magnetic state at some appropriate doping concentrations. This paper systematically analyzes the magnetic effects of three types of defects on graphene, that is, vacancy, substitutional dopant and adatoms. Different types of defects will induce various new properties in graphene. The energies and electronic properties of these three types of defects were also calculated.

  18. Cell performance and defect behavior in proton-irradiated lithium-counterdoped n(+)p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.

    1986-01-01

    Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.

  19. Maternal diet supplementation with methyl donors and increased parity affect the incidence of craniofacial defects in the offspring of twisted gastrulation mutant mice.

    PubMed

    Billington, Charles J; Schmidt, Brian; Zhang, Lei; Hodges, James S; Georgieff, Michael K; Schotta, Gunnar; Gopalakrishnan, Rajaram; Petryk, Anna

    2013-03-01

    Diets rich in methyl-donating compounds, including folate, can provide protection against neural tube defects, but their role in preventing craniofacial defects is less clear. Mice deficient in Twisted gastrulation (TWSG1), an extracellular modulator of bone morphogenetic protein signaling, manifest both midline facial defects and jaw defects, allowing study of the effects of methyl donors on various craniofacial defects in an experimentally tractable animal model. The goal of this study was to examine the effects of maternal dietary supplementation with methyl donors on the incidence and type of craniofacial defects among Twsg1(-/-) offspring. Nulliparous and primiparous female mice were fed an NIH31 standard diet (control) or a methyl donor supplemented (MDS) diet (folate, vitamin B-12, betaine, and choline). Observed defects in the pups were divided into those derived mostly from the first branchial arch (BA1) (micrognathia, agnathia, cleft palate) and midline facial defects in the holoprosencephaly spectrum (cyclopia, proboscis, and anterior truncation). In the first pregnancy, offspring of mice fed the MDS diet had lower incidence of BA1-derived defects (12.8% in MDS vs. 32.5% in control; P = 0.02) but similar incidence of midline facial defects (6.4% in MDS vs. 5.2% in control; P = 1.0). Increased maternal parity was independently associated with increased incidence of craniofacial defects after adjusting for diet (from 37.7 to 59.5% in control, P = 0.04 and from 19.1 to 45.3% in MDS, P = 0.045). In conclusion, methyl donor supplementation shows protective effects against jaw defects, but not midline facial defects, and increased parity can be a risk factor for some craniofacial defects.

  20. Point defects in ZnO: an approach from first principles

    PubMed Central

    Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao

    2011-01-01

    Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390

Top